2. 南京大学地球科学与工程学院, 南京 210023
2. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Rb受关注和利用程度远不如Li、Be、Nb、Ta等稀有金属。人们最先发现Rb的重要性质,是因为它们是“长眼睛”的金属——具有优异的光电性能(Norton, 1973)。此外,Rb(以及Cs)还具有辐射频率长时稳定性和电子敏感等性能,在原子钟、磁流体发电机、热离子转换发电、离子推进火箭、激光转换电能装置等高科技领域发挥了越来越重要的作用(Konsolakis et al., 2001; Amano and Tanaka, 2005; 李静萍和许世红,2005;Balasubramanian et al., 2008; Haider et al., 2012; Durojaiye et al., 2015; 谭彦妮和刘咏,2015)。由于Rb的地壳丰度约为Cs的30倍,因而Rb的产品开发应用较Cs更有资源优势。2018年5月,美国内务部将Rb列为35种关键矿产资源之一;2019年7月,日本政府出台了《稀有金属保障战略》,将Rb等31个矿种作为优先考虑的战略矿产;中国地质调查局“战略性新兴产业矿产调查”工作中也把Rb作为41个矿种之一,列为今后必须高度重视的关键矿产(毛景文等,2019;王登红,2019)。由此可见,Rb是重要的“关键金属”矿产资源,是未来各国资源争夺的焦点之一。
铷主要赋存于花岗(伟晶)岩(65%)、光卤石和盐类矿床(25%)中(孙艳等,2019)。国外花岗伟晶岩型Rb2O储量约17万t,主要分布于津巴布韦(10万t,约占58%)、纳米比亚(5万t,约占29%)和加拿大(1.2万t,约占7%)等少数几个国家(U.S. Geological Survey,2019)。目前我国探明Rb2O地质储量约为18.4万t,基础储量约31.1万t,查明资源量约195.8万t,其中硬岩型Rb2O约190.4万t,占全国Rb2O资源量的97%(孙艳等, 2013, 2019)。近年来,随着我国对关键矿产资源调查与研究的重视(王登红等, 2013, 2016),除华南原有稀有金属成矿带外,又有多个超大型Rb矿(广东龙川天堂山,17.5万t,贾宏翔等,2016; 内蒙古石灰窑,3.7万t,Zhou et al., 2016; 内蒙古赵井沟,3.9万t,李志丹等,2019;甘肃国宝山,28.1万t;新疆张宝山,6.7万t,李通国等,2018)被发现。
虽然我国花岗岩和伟晶岩型Rb资源总量大,但已探明的Rb矿床主要为花岗岩型,储量大、品位低、且主要赋存于天河石和铁锂云母之中,而伟晶岩型虽然品位较高,但储量小,且多与Li、Be、Nb、Ta等其它稀有金属共(伴)生,选冶难度大、工业利用困难(邵厥年和陶维屏,2010;孙艳等,2019)。
Rb矿资源的战略意义重大,我国Rb矿资源总量虽大,但主要为低品位、难以加工利用的花岗岩型Rb矿。因此,如何寻找以铁锂云母和铯沸石等为主要矿石矿物的高品位、易加工的花岗岩型和伟晶型富Rb矿床,以及如何高效利用我国已有的品位低、储量大但以天河石为主要矿石矿物的Rb矿资源,是当前面临的两大重要问题。只有深入研究富Rb花岗岩和相关伟晶岩的形成演化过程以及元素分异演化规律,才可能进一步揭示花岗岩(伟晶岩)型Rb矿形成的动力学背景、成矿规律以及Rb的赋存状态,为进一步寻找高品位、易利用的Rb等稀有金属资源提供有效的理论依据。
1 花岗(伟晶)岩型铷矿床的主要研究进展 1.1 花岗(伟晶)岩中Rb的赋存状态在自然界的独立矿物极其稀少,仅见有几种: (1)铷微斜长石(rubicline, RbAlSi3O8); (2)富Rb硼酸盐-拉曼石(ramanite-(Rb), RbB5O8·4H2O); (3)铷云母-沃罗申石(voloshinite, Rb(Li, Al1.5□0.5) [Al0.5Si3.5O10]F2)(赵振华等,2020)。目前铷每年工业消耗量很少(ca. 2000kg),其主要从花岗伟晶岩中获得,是锂云母和铯榴石的Li、Cs提取过程中副产品(U.S. Geological Survey, 2021)。
花岗(伟晶)岩中Rb2O边界品位为0.1%,其中Rb常通过替换K、Li、Cs等碱金属元素以类质同象形式进入锂云母、铯沸石、铯锂云母、钾长石(天河石)和锂辉石等矿物之中,而前两者是工业Rb的主要提取矿物(U.S. GeologicalSurvey,2019;曹冬梅等,2011)。相较于钾长石,Rb更容易进入铁锂云母以及锂云母,而锂云母中Rb2O含量可达6.98%(Černý, 1982)。但在大多数花岗岩型Rb矿床中,天河石所占比例及其中Rb的分布率均超过云母,如新疆张宝山Rb矿中Rb在天河石中的分布率为69.53%,平均品位0.35%,在白云母中的分布率为30.47%,平均品位为0.71%(陈果等,2018);甘肃国宝山Rb矿中Rb在天河石和铁锂云母的分布率分别为71.13%和28.09%(赖杨等,2016)。虽然天河石中Rb含量也较高,但由于提炼过程复杂,成本高而难以有效利用(邵厥年和陶维屏,2010)。然而,天河石结晶和受交代过程制约了相关岩浆和热液中Rb的迁移和富集过程,是理解Rb富集机制的重要研究对象。
除此以外,与富Rb花岗岩相伴生的花岗伟晶岩则往往产出更富Rb且易选冶的富Rb矿物,如锂云母、铯沸石等。富Rb伟晶岩是Li、Be、Rb、Cs、Nb、Ta、Zr、Hf、W、Sn等关键金属的主要成矿类型(Linnen et al., 2012; London, 2016)。前人研究表明,LCT型伟晶岩中往往产出富Rb矿物(如锂云母、微斜长石、铯沸石等)(Teertstra et al., 1998, 1999;London,2008;Linnen et al., 2012;孙艳等,2019)。例如,加拿大曼尼托巴省的Tanco伟晶岩含有高达28900×10-6 Rb(Stilling et al., 2006)。在我国四川甲基卡、河南卢氏、新疆可可托海等富集Li、Be、Nb、Ta、Cs的花岗伟晶岩型矿床中,也常常伴有Rb矿化,这些伟晶岩中锂云母为主要富Rb矿物(孙艳等,2019)。Rb由于极强的不相容性而倾向于在花岗质熔体中逐步富集,并在伟晶岩岩浆演化晚期以类质同象形式进入微斜长石、锂云母等矿物的晶格中。此外,含铯沸石的LCT型伟晶岩中往往可以产出极为富Rb的微斜长石(rubicline,铷长石,Rb2O含量可达26.2%),其形成与铯沸石遭受低温交代有关(Teertstra et al., 1998, 1999)。
1.2 花岗岩型铷矿床的岩相分带与元素分异机制花岗质岩浆的浅部侵位和分异演化过程会导致富挥发分的流体相从熔体相饱和出溶(Hedenquist and Lowenstern, 1994; Halter et al., 2005; Heinrich, 2007),这一点已通过共生流体/熔体包裹体、火山玻璃和实验岩石学等的相关研究得到证实(Zajacz et al., 2008; Huber et al., 2012; Neukampf et al., 2019;Iveson et al., 2019)。
在花岗质岩浆结晶分异过程中,F、Cl和Br等卤族元素属于挥发性元素,因此更易出现在流体相中(Villemant and Boudon, 1999;Wu and Koga et al., 2018)。F、Cl和Br等卤族元素主要分布于萤石、榍石、磷灰石和黄玉等副矿物中,在黑云母、白云母和角闪石中也有较高的含量(Markl and Piazolo, 1998;Förster et al., 1999; Frost et al., 2001; Frindt et al., 2004; Zhang et al., 2012)。一般来说,F和Cl优先进入磷灰石而不是黑云母,黑云母通常比白云母含有更多的F和Cl(Zhang et al., 2012);同样,黑云母比角闪石更倾向于富集F,但不同岩石样品中,黑云母和角闪石之间的Cl分布变化较大;白云母中Br含量低于全反射X-萤光检出限(0.4×10-6),但黑云母中Br含量可达0.8×10-6,磷灰石和角闪石中Br含量可达2.5×10-6(Teiber et al., 2014)。由于F-的离子半径(1.33Å)相对较小,它很容易取代造岩矿物中的OH-离子(1.32~1.37Å;Shannon,1976),因此在岩浆分异过程中仅表现出中度的不相容性(Pyle and Mather, 2009)。相比之下,更大离子半径的Cl-(1.81Å)和Br-(1.95Å)在岩浆分异过程中表现出更强的不相容性,因而两者更倾向于聚集于富挥发分的残余岩浆中(Bureau et al., 2000; Bureau and Métrich, 2003)。因此,在岩浆演化和流体分异过程中,F在高温时更倾向于赋存在共存的熔体中,导致F与另两个卤素(Cl和Br)的强烈分异(Bureau et al., 2000; Webster et al., 2009)。
在富氟花岗岩浆演化的晚期,F、Cl和H2O等挥发分的大量富集,通常在岩石的顶部或晚期岩相发生强烈热液蚀变(云英岩化),并伴生稀有金属矿化(Reyf et al., 2000;朱金初等,2002;Dostal et al., 2004; Li et al., 2017)。对Davis Lake pluton(Nova Scotia, Canada)的研究(Dostal and Chatterjee, 1995, 2000; Dostal et al., 2004)表明,稀有金属在晚期岩浆中的富集是分离结晶和流体搬运共同作用的结果。F的参与可使残余岩浆发生充分的分异作用,导致残余岩浆中的Nb/Ta、Zr/Hf和Y/Ho比值显著降低(Linnen, 1998; Dostal and Chatterjee, 2000;Zaraisky et al., 2009; Gu et al., 2011; Wu et al., 2011a; Ballouard et al., 2016)、稀土“四分组”效应增强(赵振华等,1999;Monecke et al., 2002;Gu et al., 2011; Wu et al., 2011a, 2019; Chen et al., 2018; 陈伟等,2018;Yin et al., 2019)和Sn-W等稀有金属矿化(Halter et al., 1998a, b;张德会等,2004;李建康等,2008;赵博等,2015;Wu et al., 2017, 2018a, b; Andersson et al., 2019)。
花岗质岩浆的高度分异造成残余岩浆中K和Rb等大离子亲石元素的逐步富集,而F、Cl、H2O等挥发分的存在,则降低了残余岩浆的固相线,使得残余岩浆演化时间延长。F与高场强元素(Ta、Nb、Zr、Hf及HREE)的络合作用,延迟了它们在花岗质岩浆中的晶出时间并向晚期的残余岩浆聚集(Ballouard et al., 2016)。实验岩石学结果表明,Rb的流体/熔体分配系数与熔体成分和温度没有明显的相关性,非氯化溶液与熔体平衡时的Rb/Sr比值随压力增加而增加,而氯化物溶液中的Rb/Sr比值与压力无关,随液体盐度的升高而降低(Borchert et al., 2010)。花岗质岩浆的结晶分异作用导致Rb在残余岩浆中富集,当晚期的富钾矿物(钾长石和白云母)结晶时,Rb替代这些矿物中的K,出现富Rb钾长石(天河石)和富Rb白云母,形成富Rb花岗岩。因此,富Rb花岗岩的源区特征、岩浆分异演化过程以及富F流体是Rb等稀有金属富集成矿的关健因素。
1.3 富铷花岗伟晶岩的成因类型花岗伟晶岩是Li、Be、Rb、Cs、Na、Ta、Zr和Hf等关键金属的重要矿床类型(Linnen et al., 2012; London, 2016)。Černý and Ercit(2005)根据稀有金属花岗伟晶岩的矿物组合以及地球化学特征,将其划分为LCT型(Li-Cs-Ta)和NYF(Nb-Y-F)型以及LCT+NYF混合型三大类。这两大类伟晶岩分别对应于不同的源区,LCT型伟晶岩对应于形成过铝质S型花岗岩的源区,而NYF型伟晶岩则对应于形成A型花岗岩的源区,少数情况中会出现LCT型以及NYF型伟晶岩的岩浆源区显示与I型花岗岩源区相似(Černý et al., 2012)。Wise(1999)对与A型花岗岩有关的NYF型伟晶岩进行了进一步研究,认为它们铝不饱和的特征指示形成于碰撞后至非造山裂谷背景,并进一步将NYF划分为过碱质、准铝质和过铝质三个亚类,而过铝质NYF型伟晶岩则常与LCT型伟晶岩在地球化学和矿物组合有较大的相似性,也通常被认为是NYF与LCT的混合类型(Hybridization tpye, Černý et al., 2012)。
众多研究显示,NYF型或者LCT-NYF混合类型的伟晶岩分布远不如LCT型伟晶岩广泛(Linnen et al., 2012;London, 2018)。然而,也有研究显示NYF型或者混合类型伟晶岩也可以含有较高的Rb2O含量(Martin et al., 2008;Feng et al., 2017)。Martin et al.(2008)报道了马达加斯加Anjanabonoina过渡类型伟晶岩中天河石Rb2O含量为0.3%~0.5%,并认为天河石的出现是NYF型伟晶岩的重要标志之一。陕西丹凤资峪沟一带的富Rb伟晶岩中微斜长石(非天河石)、白云母及黑云母的平均Rb2O含量分别为0.15%、0.28%以及0.30%,这一地区的伟晶岩富集HREE、含有NYF型伟晶岩的特征矿物褐钇铌矿,而且石榴石富Y和HREE,指示其可能为混合型伟晶岩(Feng et al., 2017)。目前,对于混合类型伟晶岩的成因以及Rb矿化过程仍不清楚,对于混合源区的性质理解较为模糊,需要进一步研究。
天河石花岗岩类主要由以下三大类型:白岗岩、钙碱性淡色花岗岩和碱性花岗岩。白岗岩与高分异的S型花岗岩相当,通常与晶洞伟晶岩、富Be-Ta(贫Li)等稀有金属伟晶岩、含Sn-W-Mo-Bi-Be云英岩、含Sn-Nb钠长石化云英岩有密切的成因联系。钙碱性淡色花岗岩与高分异I型花岗岩相当,可伴生少量Sn-Tl-B矿化,极少数岩体可含少量Rb-Cs-W。碱性花岗岩与A型花岗岩其分异产物相当,岩体中心或其接触带常伴生Nb-Y-REE-Zr等稀有金属矿化。相关稀有金属矿化可产于与之相关的花岗岩、细晶岩、伟晶岩、长英质脉体、次火山岩(翁岗岩)及交代蚀变岩中,除少数深成大岩体外,这类花岗岩的侵位深度通常较浅,部分岩体侵位深度甚至小于1km(Ostrooumov, 2015)。
2 中亚造山带天河石花岗岩与相关稀有金属矿床Ostrooumov (2015)统计了全球50余处天河石花岗岩,其中近半数产于中亚造山带内。中亚造山带是全球陆壳增生规模最大的多期次的增生型造山带之一,以显著的显生宙剧烈地壳增生和再造作用为特征(图 1; Xiao et al., 2015)。中亚造山带由众多前寒武纪微陆块、古岛弧、洋岛、增生杂岩、蛇绿岩带和被动陆缘由北向南逐渐拼贴而成(Jahn, 2004),其地壳增生类型主要为以下两类:1)古老地壳的残留与再造(Kröner et al., 2017);2)以A型花岗岩类及其火山岩类似物为代表的显生宙新生地壳物质(Jahn et al., 2000; Zhang et al., 2017c)。中亚造山代显生宙新生地壳物质的增长量一度被认为超过现今地壳物质的50vol%(Şengör et al., 1993)。即便剔除近年来逐渐被识别出来的一些古老微陆块(Hu et al., 2000; He et al., 2015, 2018),保守的估算模型也认为其显生宙的地壳物质增生也接近20vol% (Kröner et al., 2017)。大量地壳增生和古老陆壳再造为造山后花岗岩的形成演化及相关稀有金属矿床的成矿积累了雄厚的物质基础(吴昌志等,2006;Seltmann et al., 2010; Tkachev, 2011; Ostrooumov, 2015)。
中亚造山带天河石花岗岩及相关稀有金属矿床非常发育,如中亚造山带西段哈萨克斯坦的铌钽矿化Maikul岩体(Ostrooumov, 2015),吉尔吉斯斯坦的Uchkoshkon锡矿(Solomovich et al., 2012),蒙古西北部的Achitnur锡钨矿,中亚造山带西段俄罗斯东西伯利亚的Etykinskoe超大型Ta-Nb-Sn-Rb矿床以及蒙古东段的多个高Rb富氟花岗(伟晶)岩有关的Li-Rb-Ta-Nb矿床(Seltmann et al., 2010)。除此以外,中亚造山带不同部位还发育多个世界级富Rb花岗(伟晶)岩型Ta矿床(如Orlovsk Ta-Rb-Li矿床,370Mt @0.0129% Ta2O5, @0.12% Rb2O, @0.269% Li2O, Dolgopolova et al., 2004; Pogranichnoe-Voznesenskoe Li-Be-Rb-Cs矿床,300Mt @0.45% Li2O, @0.26% Rb2O, @0.02% Cs2O, @0.075% BeO; Krymsky and Belyatsky, 2003)。
与之对应的是,中国境内的中亚造山带自西向东也发育了多个大型-超大型富Rb花岗(伟晶)岩型Rb-Ta-Nb等稀有金属矿床,如新疆境内阿勒泰附近的将军山(方正)大型Rb矿(任刚等,2015①;吴家林,2018)和哈密地区的张宝山超大型Rb矿、甘肃境内的国宝山超大型Rb矿、内蒙境内的石灰窑超大型Rb矿(孙艳等,2015;Zhou et al., 2016)和赵井沟超大型Nb-Ta-Rb矿(李志丹等,2019)和维拉斯托大型Sn-Li-Rb多金属矿床(Yang et al., 2019; 周振华等,2019)。
① 任刚, 任林, 邹振林. 2015. 新疆阿勒泰市方正铷矿预查报告
2.1 中亚造山带西段典型天河石花岗(伟晶)岩及相关稀有金属矿床 2.1.1 南乌拉尔Il'menskie天河石伟晶岩型铷矿南乌拉尔地区的岩石单元主要由变质岩和古生代火成岩组成,其中变质岩主要为石英岩、片岩和斜长角闪岩,而火成岩主要为云霞正长岩和花岗岩类,含少量基性和超基性岩类。区内伟晶岩脉岩在成分、结构和形成时代上显示出多样性。伟晶岩成分由早期的花岗质向正长质,再由正长质向花岗质演化。前人研究表明,几乎所有伟晶岩都产于角闪岩相变质过程,仅天河石伟晶岩形成的晚阶段温度可能与区域副变片麻岩形成相似(相当于绿片岩相),且这些天河石伟晶岩多发生同期云英岩化作用。
目前共有65个天河石伟晶岩矿床,主要产于Il'menskie山区东坡,环绕分布于区内的云霞正长岩体边缘1~3km范围内。多个天河石伟晶岩产于云霞正长岩外接触带的霓长岩中,而花岗片麻岩和角闪岩也常为其直接围岩(图 2)。天河石伟晶岩脉的产出方式有较大差异,其中30个脉体发育水平分带,13个为同心状分带,余下22个为侧向分带。脉体的倾向多较陡或近直立,厚度小(多数为0.5m),延伸有限(最多15~200m),常发育瘤状体(4~5m)。伟晶岩的内部结构变化极大。从边部至中心,天河石伟晶岩多呈如下分带:粗文象非天河石带、细文象天河石带、核部石英带和晶洞。天河石伟晶岩的主要矿物为石英、微斜长石(包括天河石)、钠长石,次要矿物有黑云母、白云母、石榴子石、黄玉和磁铁矿等,副矿物有方铅矿、辉铋矿、斜方辉铅铋矿、烧绿石、绿柱石、硅铍石、日光榴石、锡石、铌钽矿、细晶石等(Ostrooumov, 2015)。
总体而言,Il'menskie地区的天河石伟晶岩脉多产于云霞正长岩和正长岩岩体外围数千米内,其中的钾长石呈鲜艳的蓝绿色,少数产于碱性岩与花岗片麻岩接触带中伟晶岩的天河石化较弱,长石的蓝绿色较淡(Ostrooumov, 2015)。
2.1.2 中天山东段国宝山天河石花岗岩型铷矿床国宝山铷矿位于中天山地块东部(图 1),地理上位于我国新疆哈密市星星峡镇西南约5km处。矿东南部出露的地层主要为星星峡群、卡瓦布拉群和天湖变质岩系,岩性主要为混合岩化片岩和片麻岩(张遵忠等,2005);中部主要出露的地层为眼球状花岗片麻岩和二云母片岩,区内不同时代花岗质侵入岩发育。除国宝山含矿岩体外,矿区主要侵入岩为西北部的中-粗粒花岗闪长岩和东北部的中粒斑状黑云母二长花岗岩。
国宝山岩体总体呈北东向展布,推测其侵位受区域性北东向断裂控制。该组断裂总体倾向北西,倾角60°~75°,部分断层倾向南南东。矿区内脉岩较发育,总体呈北东或北西向展布,其中基性岩脉主要为辉绿岩脉和角闪岩脉,宽2~5m,延伸30~100m;酸性岩脉包括花岗细晶岩脉、石英脉和天河石花岗伟晶岩脉。
国宝山岩体为一套中-细粒碱长花岗岩组合,呈北东-南西向舌状岩株产出,长达10km,宽0.8~1.5km,出露面积约13km2。依据是否含有标志性矿物天河石,可将该岩体分为西段的白云母花岗岩和东段(含)天河石花岗岩;根据天河石的含量,又可将东段岩性划分为含天河石花岗岩和天河石花岗岩。此外,国宝山岩体和围岩接触带附近还可见少量天河石伟晶岩脉零星出露。在国宝山岩体东南部发现有四条规模略大的天河石花岗伟晶岩脉,宽1~3.6m,长100~280m (图 3)。
甘肃地质调查院通过地质填图、探槽(10000m)、钻探(62口共11000m),对国宝山岩体各岩相的铷进行了初步评价,结果表明,国宝山岩体Rb2O资源量为28.1万t (以Rb2O大于0.10%计算),平均品位0.12% Rb2O(甘肃地质调查院,2017①)。国宝山岩体中的Rb主要赋存于天河石和铁锂云母之中,其中天河石中的资源量约占71.13%,Rb2O平均含量为0.51%,铁锂云母中的资源量约占28.09%,Rb2O平均含量为0.81% (赖杨等, 2016; 李通国等, 2018)。通过重矿物分选和LA-ICPMS分析,本课题组获得国宝山岩体不同岩相中锆石、独居石、锡石和铌钽矿的U-Pb年龄和微量元素组成,进而认为国宝山岩体的岩浆和热液分异演化及铷矿化发生于早-中三叠世(240~249Ma),且持续了约10Myr(Chen et al., in review)。
① 甘肃省地质调查院. 2017. 甘肃省瓜州县国宝山铷等稀有金属矿普查报告
2.1.3 中天山东段白石头泉天河石花岗岩型铷矿床白石头泉岩体位于中天山地块东部(图 1),新疆哈密市星星峡镇北东约30km处,与国宝山铷矿相距约35km。白石头泉岩体露头面积约7km2,沿山岗呈NE向展布,其南部被第四纪沉积物覆盖(顾连兴等, 1994, 2003)。沿山坡而上,可在岩体中分出5个渐变的相带(图 4),即淡色花岗岩(a带)、含天河石花岗岩(b带)、天河石花岗岩(c带)、含黄玉天河石花岗岩(d带)和黄玉钠长石花岗岩(e带)。在a带和c带中局部产有天河石伟晶岩囊状体。此外,c带局部发育含绿柱石伟晶岩脉和囊状体,目前已被当地居民采尽(顾连兴等,2007)。
淡色花岗岩(a带)呈灰白色,中-细粒结构,块状构造,无明显蚀变与矿化现象,是白石头泉花岗岩体的主体组成部分,其矿物组成主要为钠长石(22%~36%)、钾长石(25%~35%)、石英(28%~35%)和铁锂云母(3%~5%)。含天河石花岗岩(b带)呈灰白色,中细粒结构,块状构造,与下部淡色花岗岩的主要区别在于天河石的出现。随着天河石含量不断增多,岩性逐渐从含天河石花岗岩过渡到了天河石花岗岩(c带)。天河石花岗岩呈蓝绿色,斑状构造,斑晶为石英(25%~30%)、天河石(20%~35%)、铁锂云母(2%~5%)和钠长石(30%~35%)。含黄玉天河石花岗岩(d带)呈蓝绿色,斑状构造,以特征矿物黄玉(1%~5%)斑晶的出现为标志。黄玉钠长花岗岩(e带)位于岩体顶部,厚度约为0.5~2m,与下部d带呈快速过渡关系,而与上覆石英闪长岩以及岩体北部的黑云母二长花岗岩呈侵入接触关系。新鲜的黄玉钠长花岗岩呈灰白色,其风化面因来自上覆英云闪长岩的铁质带入而呈浅棕色,斑状结构,块状构造。斑晶为黄玉(10%~20%)和石英(15%~30%),基质主要为糖粒状钠长石(45%~60%)、白色云母(5%~10%)和钾长石(10%~15%,包括天河石)。此带中石英颗粒通常为5~15mm,最大可达20mm,均为低温的α-石英,柱体和内部亚颗粒发育。副矿物石榴子石、锡石和萤石填隙于晶粒之间。除此以外,白石头泉岩体中广泛存在的副矿物还包括锆石、磁铁矿、独居石、磷钇矿、磷灰石和铌钽组矿物等。
甘肃地质调查院对白石泉岩体不同岩相带进行了系统的刻槽取样和钻孔控制,发现淡色花岗岩Rb2O含量在0.04%~0.08%之间,局部富集达0.1%以上;含天河石花岗岩Rb2O含量在0.06%~0.12%之间;天河石花岗岩Rb2O含量0.08%~0.20%;含黄玉天河石花岗岩Rb2O含量一般介于0.08%~0.15%。白石头泉岩体中天河石花岗岩(c带)和含黄玉天河石花岗岩(d带)相带,一般含铷在0.1%以上,具有全岩面状矿化现象,为最主要的含矿岩相,与其相伴的天河石花岗伟晶岩脉也含铷在0.1%以上,一般呈细脉状分布于天河石花岗岩岩中。随后据甘肃地质调查院将白头石泉岩体命名为张宝山铷矿床,圈定Rb2O基础储量67080吨,远景Rb2O资源储量超90万t(甘肃省地质调查院,2017)。矿石中未发现独立的铷矿物,铷主要以类质同象的形式存在于铁锂云母矿物(0.35%~0.67% Rb2O)和钾长石(天河石)(0.36%~0.41% Rb2O)中。
本课题组对白石头泉岩体各相带中的锆石、铌钽矿、锡石开展了系统的LA-ICPMS U-Pb同位素定年工作,结果表明:1)a带的岩浆锆石协和的年龄为250.5±1.7Ma,表明岩体侵位于早三叠世;2)c带至e带的热液锆石均发生了较强的蜕晶化作用,下交点年龄介于238~257Ma之间,可能代表着岩浆-热液过渡阶段的年龄(Zhi et al., 2021);3)5个相带及天河石伟晶岩中的铌钽矿U-Pb定年结果介于240.1~251.4Ma;4)c带、d带和天河石伟晶岩中的锡石U-Pb定年结果介于240.7~241.8Ma之间,可代表岩浆晚期热液活动的年龄。此外,本课题组对采自a带的天河石伟晶岩中铁锂云母的Ar-Ar同位素定年结果为242.9±0.47Ma,指示伟晶岩就位和岩浆热液活动的年龄。因此,白石泉岩体的岩浆-热液活动时间被限定于250~240Ma发生于早-中三叠世,持续时间约10Myr。
2.2 中亚造山带东段典型天河石花岗岩及相关稀有金属矿床 2.2.1 外贝加尔Orlovka天河石花岗岩型Ta-Li-Rb矿床Orlovka矿床位于西伯利亚东南侧的蒙古-外贝加尔造山,是Khangilay岩体矿化群之一,该岩体中发育Ta、Li、Sn和W矿床和矿点,距Spokoininskoe大型云英岩型W矿床仅8km。矿区花岗岩主要有三类,分别为黑云母花岗岩、淡色花岗岩-白岗岩以及微斜长石-钠长石Li-F花岗岩(图 5;Beskin et al., 1994; Reyf et al., 2000; Dolgopolova et al., 2004)。微斜长石-钠长石Li-F花岗岩发育特征的岩相分带,底部为斑状石英-微斜长石-钠长石-白云母花岗岩,含少量黄玉(约0.1%);其上为等粒状钠长石-微斜长石-天河石花岗岩,含少量黄玉(约0.5%),其中的白云母向上逐渐转变为铁锂云母;最上方为中粒钠长石-微斜长石-铁锂云母-白云母-天河石花岗岩,以及细粒钠长石-锂云母花岗岩。岩体中还发育晚期近直立的细粒钠长石化细晶岩岩枝,并可转变为钠长岩、石英锂云母岩和云英岩,它们与Li-F花岗岩接触带常发育浸染状黑钨矿、白钨矿和绿柱石。岩体锆石SHRIMP U-Pb年龄为139.9±1.7Ma,为早白垩世岩浆活动的产物(Badanina et al., 2010)。总体而言,Orlovka Li-F花岗岩为强过铝、富钠、富水、富氟而贫硅,与翁岗岩组分相似。天河石花岗岩边部的稀有金属含量最高(5077×10-6 Li、6397×10-6 Rb、313×10-6 Cs、62×10-6 Ta、116×10-6 Nb和62×10-6 W)(Badanina et al., 2010)。
Orlovka矿床Ta-Li-Rb矿体主要赋存于钠长石-微斜长石-石英(+天河石)花岗岩带内,岩石构造和矿物组成变化较大,副矿物有锂云母、黄玉、萤石和稀有金属矿物。岩体富含锂云母,为钠长石锂云母花岗岩,并发育显著的钽铌矿化。矿体呈近水平状产出,总体为透镜状至碟状,宽250m,厚度80~100m,走向延伸1200m左右。Ta-Nb主要产于钽铁矿和铌铁矿中,少量产于烧绿石-细晶石和锡石中,呈微浸染状(Beskin et al., 1994)。矿床估算Ta2O5储量3990t(平均品位0.014%),Li2O储量76万t(平均品位0.27%),Rb2O储量33.9万t(平均品位0.12%),并伴生一定量的Nb和Be(Beskin et al., 1994; Seltmann et al., 2010)。
2.2.2 大兴安岭南段石灰窑天河石花岗岩型Rb-Nb-Ta矿床石灰窑铷铌钽稀有金属矿床位于内蒙古自治区锡林浩特市白音锡勒牧场,在区域上位于西伯利亚板块和华北板块之间的天山-兴蒙造山带南段,贺根山深断裂和西拉木伦深断裂之间。石灰窑矿区大部分被第四系沉积物所覆盖,出露地层较少且单一,为上二叠统林西组,主要岩性为暗黑色炭质板岩、硅质板岩夹结晶灰岩、变质砂岩(孙艳等,2015)。矿区发育不同时代岩浆岩,以燕山期侵入岩为主,为主要含矿岩体。此外,矿区内还发育少量海西期的花岗闪长岩和闪长岩(图 6a)。矿区内背斜构造发育,其轴向NE60°~70°。核部为含矿花岗岩岩体,局部可见残留林西组板岩顶垂体,产状平缓。西北翼为板岩、变质砂岩及结晶灰岩,岩层倾向NW,倾角58°~70°;东南翼为板岩、变质砂岩夹砂质灰岩透镜体,倾向SE,倾角40°~60°。断裂构造以正断层为主,走滑断层次之,断层规模大小不一。正断层一般规模较大,走向NE50°~60°,而走滑断层规模较小,走向NW310°~330°。
前人根据区域地质调查在石灰窑共发现了6个含矿花岗岩体(Ⅰ~Ⅵ),其分布和产出形态严格受NE向断裂带控制,并多呈岩基状或岩株状(图 6b;段先哲等,2006)。石灰窑含矿花岗岩岩体中普遍发育钠长石化和云英岩化蚀变,天河石为常见矿物。据钻孔揭示,矿体底部存在黑云母碱长花岗岩,为早-晚侏罗世侵位(160.2~162.9Ma;朱京占等,2013),略早于矿化花岗岩(144.7~146.3Ma;孙艳等,2015)。其中Ⅴ号岩体为区域内出露面积最大的含矿岩体,Ⅱ号岩体和Ⅳ号岩体为主要铷、铌钽、铍矿体的赋矿岩体,岩性主要为钠长石化天河石花岗岩、云英岩化花岗岩、云英岩化钠长石化花岗岩及云英岩,其中云英岩和云英岩化钠长石化花岗岩一般分布在矿体顶部,钠长石化花岗岩和含天河石钠长石化花岗岩一般分布在矿体底部(孙艳等,2015)。矿体形态复杂,呈似层状、透镜体状,矿体展布方向受岩体控制,其产状与岩体产状基本一致。除了矿体之外,花岗岩体中还发育一定规模的天河石伟晶岩脉,其边部为韵律状的天河石粗粒晶体带,中心为石英天河石带。
石灰窑矿区主要的富铷矿物为天河石及云母族矿物,另含一定量的铌钽矿族矿物,天河石有巨晶状,浸染状及细脉状三种,其中以浸染状为主。云母族矿物呈不规则叶片状,个体大约0.5~2mm。铌钽铁矿颗粒细小,在1mm左右,呈浸染状分布在矿石之中,铌钽铁矿呈针状、长锥状,颗粒细小,自形晶体,个别针柱状矿物周围具放射晕,多分布于白云母裂隙及石英、钠长石的间隙中。
内蒙古地质局109地质队通过地质填图、探槽(7个)、钻孔(18个),对石灰窑矿区的稀有金属资源作了初步评价,初步探明铷(Rb2O)资源量3.7万t,平均品位0.16%,远景Rb2O资源储量超过87万t (孙艳等,2015);钽铌(Ta, Nb)2O5资源量7176吨,平均品位为0.026% (Zhou et al., 2016)。最近,蒋少涌教授团队通过独居石U-Pb同位素测年定年、独居石和全岩Nd同位素分析,获得石灰窑矿区富铷花岗岩形成于~145Ma,独居石和全岩的εNd(t)分别为+1.6~+2.6和+0.34~+3.4, 二阶段Nd模式年龄分别为741~824Ma和648~877Ma,表明原岩是新元古代幔源岩浆和古老地壳混合形成的新生地壳部分熔融的产物;通过全岩地球化学分析,发现富铷花岗岩体具有高SiO2、Rb、Cs、Nb,低Sr、Ba、Ti、Eu、Zr/Hf、Nb/Ta的高分异花岗岩特征;并通过云母的成分分析发现,随着岩浆分异程度升高,花岗岩中的云母由铁叶云母和白云母向铁锂云母过渡,其中的Rb和F的含量也随之增高,表明结晶分异作用在岩浆房内已经接近完成,岩浆侵位后富卤族元素和挥发分的流体-岩石相互作用共同主导控制了Rb等稀有金属元素的矿化(Duan et al., 2021)。
2.2.3 大兴安岭南段维拉斯托Sn-Li-Rb多金属矿床维拉斯托Sn-Li-Rb多金属矿位于大兴安岭南段晚古生代增生造山带,黄岗-甘珠尔庙成矿带西侧。该地区自晚古生代至中生代经历了复杂的俯冲、碰撞造山和板内伸展作用,构造-岩浆活动强烈(Xiao et al., 2003)。区域地层主要有古元古界宝音图组变质岩(亦被称为锡林郭勒杂岩)、石炭系碎屑岩-碳酸盐岩建造、二叠系林西组和大石寨组碎屑岩以及侏罗系满克头鄂博组和万宝组火山-沉积岩系。区域岩浆岩活动主要有晚石炭世和早白垩世两期。晚石炭世侵入岩主要为钙碱性花岗质侵入岩(刘翼飞等,2010),岩性主要为闪长岩、石英闪长岩、花岗闪长岩和黑云母花岗岩,形成时代介于298~320Ma之间(王瑾,2009;薛怀民等,2010;王新宇等,2013)。早白垩世岩浆活动主要有:1)零星出露于矿区北东的达青牧场一带的肉红色花岗岩株(Liu et al., 2016; 武广等,2021);2)以岩基产于矿区东南侧北大山地区的浅灰色中细粒花岗和花岗斑岩,形成时代为140Ma左右(武广等,2021);3)以小岩体出露于矿区巴音高勒苏木西部含天河石碱长花岗岩,局部含天河石伟晶岩。区域矿产主要以Sn-Li-Rb多金属矿化为主,维拉斯托中型脉状铜锌矿、拜仁达坝超大型脉状银铅锌矿都赋存在相近的空间范围(3km以内),不同成矿元素组合的矿床自东向西依次产出(周振华等,2019)。
矿区内主要的容矿围岩为宝音图群黑云母斜长片麻岩、角闪斜长片麻岩(图 7a),片麻状结构明显,局部出露少量石炭系石英闪长岩。矿区北东向断裂构造发育,走向变化不大,倾向呈波状起伏,变化较大。与成矿密切相关的岩体为天河石碱长花岗斑岩,隐伏于矿区深部,最浅处距地表约400m (图 7b)。天河石碱长花岗斑岩中可见浸染状和细脉状Sn-Li-Rb矿化,呈岩枝状侵入到围岩黑云母片麻岩和石英闪长岩中,斑晶为石英、钾长石(部分为天河石),钠长石化、云英岩化普遍。天河石碱长花岗斑岩顶部附近岩相分带明显,自上而下分别为似伟晶岩、钠长石化天河石碱长花岗斑岩、天河石碱长花岗岩斑岩和白云母花岗岩,矿化逐渐减弱,锂云母、黄玉和钠长石含量逐渐降低,岩体内局部可见流动构造(祝新友等,2016)。前人对矿区内含天河石碱长花岗斑岩开展了大量的年代学工作,测得的年龄主要分布在138~130Ma之间(Liu et al., 2016; 翟德高等,2016;Yang et al., 2019;张天福等,2019;武广等,2021)。与之对应的是,维拉斯托矿区内的脉型矿和云英岩矿化年龄其年龄区间为136~129Ma(Liu et al., 2016; Wang at al., 2017; 刘瑞麟等,2018;Gao et al., 2019;Yang et al., 2019; 周振华等,2019),与含天河石碱长花岗斑岩成岩时代在误差范围内一致。
围岩蚀变以云英岩化、硅化和萤石化最为普遍,还发育有绢云母化、绿帘石化、叶腊石化和高岭土化等。矿石矿物主要有锡石、闪锌矿、锂云母、黄铜矿、黄铁矿和天河石,其次为黑钨矿、方铅矿、辉钼矿等。矿石构造主要有块状、浸染状、条带状和脉状构造(Wang et al., 2017)。维拉斯托Sn-Li-Rb矿区矿体总体呈垂向分带性,深部主要是以Sn为主,伴生Li-Rb-Nb-Ta等成矿元素,最具有经济价值的浸染状和网脉状矿体集中在天河石碱长花岗斑岩的顶部,Sn的品位在0.30%~0.90% SnO2之间,向下进入斑岩体内部矿化变弱。中部为以Sn为主的隐爆角砾岩筒型矿体,主要的矿石矿物为锡石、锂云母、黄铜矿和闪锌矿。角砾岩筒上部发育大量鳞片状锂云母,Li、Rb等元素含量很高,具有成为独立大型稀有金属矿体的潜力。浅部为以Sn-W-Zn-Cu-Mo矿化为主的石英大脉-网脉状矿体,主要赋存于北东向断裂构造中,矿体沿走向上连续性好,但在倾向上分支复合,形态复杂,品位和厚度变化较大(周振华等,2019)。目前已控制锡金属量8.98万t,平均品位0.80%SnO2,锌金属量8.00万t,平均品位0.72%,WO3金属量1.33万t,平均品位0.44% WO3,钼金属量0.03万t,平均品位0.13%(刘瑞麟等,2018);另外,在隐爆角砾岩中发现大量的含锂云母,估算Li2O资源量储量35.7万t,平均品位1.28% LiO2,Rb2O资源储量9.4万t,平均品位0.34% Rb2O,斑状细粒碱长花岗岩体的顶部还存在铌、钽等成矿元素(刘瑞麟等,2018)。
3 中亚造山带天河石花岗岩时空分布与构造背景 3.1 中亚造山带构造格架和演化作为世界上保存完整且最典型的增生造山带,中亚造山带在显生宙期间经历了强烈的陆壳增生与改造作用,其伴随多期次的壳幔相互作用和极为多样的成矿过程,是全球三大成矿域之一(Şengör et al., 1993; Jahn et al., 2000; Xiao et al., 2004, 2015; Windley et al., 2007; 薛春纪等, 2014, 2020;Gao et al., 2018; Muhtar et al., 2021)。中亚造山带的形成是古亚洲洋(Paleo-Asian Ocean)长期俯冲消减的产物, 因而又称古亚洲构造域(Dobretsov et al., 1995)。中亚造山带具有多块体与多缝合带镶嵌和山-盆耦合的大地构造格局,地壳经历了古生代地块拼合增生过程和中新生代陆内造山过程(秦克章等, 2002)。中亚造山带的陆块规模小于现代大陆板块,陆间洋盆小于现代大洋,地壳增生过程复杂多样(肖文交等,2019)。古地理、古构造和沉积学以及大地构造相分析表明中亚增生造山带具有多岛海复杂古地理环境(Xiao et al., 2008; 潘桂棠等, 2016),同时存在长条状岛链,在增生造山过程中发生大规模山弯构造(Şengör et al., 1993; Xiao et al., 2015, 2018)。
中亚造山带的大型-超大型矿床总体上表现出网格状(结状)分布特征和聚矿带的菱形镶嵌状展布规律,发育以增生造山阶段的弧环境相关矿床(蛇绿岩型铬铁矿、斑岩铜矿、块状硫化物矿床),与碰撞造山(造山型金矿)和后碰撞陆内岩石圈伸展相关的大陆环境矿床(岩浆铜镍矿、斑岩钼矿、热液金矿、砂岩铀矿等)(陈衍景,2000;Qin et al., 2002, 2011;秦克章等, 2002, 2017;Wu et al., 2016, 2018b; 肖文交等,2019; Muhtar et al., 2021a)。研究者对于古亚洲洋的闭合时间,特别是对古亚洲洋西段的古天山洋闭合时间,目前仍存晚泥盆世、晚石炭世或三叠纪等多种观点(秦克章等, 2003; 顾连兴等, 2006; Xiao et al., 2015, 2018;Chen et al., 2020;Muhtar et al., 2020b, c, 2021)。最近,古地磁数据以及古地理结果显示古亚洲洋的闭合过程整体呈剪刀式由西往东穿时完成,古生物的混生也显示了同样的穿时性,安加拉植物群和华夏植物群的混生在中二叠世已在天山-北山地区大量出现,而在东段兴蒙造山带地区则要持续到晚二叠世才广泛出现(Zhang et al., 2021)。
3.2 中亚造山带西段天河石花岗岩的构造背景中亚造山带西段古生代岩浆活动强烈,且多与古亚洲洋的俯冲、增生和随后的碰撞造山作用有关(吴昌志等, 2006; 周涛发等, 2010; Chen et al., 2019; Muhtar et al., 2020c)。然而近年来该区陆续发现了一系列三叠纪的花岗(伟晶)岩及相关岩浆热液矿床。本文收集中亚造山带西段6个含天河石花岗岩及相关稀有金属矿床的年代学结果介于310~209Ma之间,主要集中于245Ma左右,与中亚造山带西段稀有金属矿化的峰期基本一致(表 1;图 8)。顾连兴等(2006)认为,晚石炭世以来,随着古亚洲洋的闭合,中亚造山带西段陆壳整体化以后又受到了特提斯构造体制的显著影响,区内印支期岩浆活动为中亚构造体制向特提斯体制转换的产物。三叠纪时期,北特提斯洋盆向昆仑地体强烈俯冲,并导致其中的一些微陆块与东昆仑北侧的塔里木和柴达木等地体碰撞(许志琴等,2001)。东昆仑北缘距东天山的星星峡不过600km,因此俯冲和碰撞所产生的挤压力必然有相当一部分向北传输,并可能造成中亚造山带西段的陆内挤压、俯冲、地壳缩短和加厚(舒良树等,2004;Greene et al., 2005)。中-晚三叠世,随着古特提洋残留片向北的俯冲作用发生一系列后撤和回卷作用,在青藏高原北部形成了可可西里-松潘-甘孜弧后盆地(Ding et al., 2013),造成其北侧陆块的局部松弛,由此引发的陆内伸展作用造成中亚造山带内三叠纪较为广泛的壳-幔相互作用(Lei et al., 2020)及稀有金属成矿作用。中亚造山带和冈底斯印支期岩浆岩及相关稀有金属矿床的产出在空间上均同古特提斯洋俯冲带近乎平行,且时代相近(松潘-甘孜-甜水海成矿带的稀有金属成矿在210Ma;Xu et al., 2020),进一步表明中亚造山带和冈底斯造山带的岩浆活动在三叠纪时期均受控于古特提斯洋构造域(Wu et al., 2010;Lei et al., 2020)。
中亚造山带东段位作为古亚洲洋最终闭合场所已被学者广泛接受,然而该地区在基底属性、大洋消亡时间、缝合带空间配置及陆壳生长方式等方面仍存在争论(Wu et al., 2011b; Seltmann et al., 2014; Liu et al., 2017; 秦克章等,2017; Zhou et al., 2018)。古亚洲洋构造体系的岩浆岩以早古生代、石炭纪和二叠纪分布面积最广(张万益等,2008;刘翼飞等,2012;王继春,2016;朱雪峰等,2018;高征西等,2019)。矿床以斑岩型铜金钼和岩浆型铜镍为主。
中亚造山带东部晚早古生代矿床呈点状分布、时空分布不均一,主要分布在贺根山-黑河缝合带以及华北克拉通北缘,主要为斑岩型铜金钼。晚古生代矿床集中分布在华北克拉通北缘,而在中国东北等中间地块较多的区域成矿较弱,主要为热液型银铅锌铜和斑岩-矽卡岩型铜钼金矿床,成矿整体受古亚洲俯冲构造体制的控制(Wilde, 2015; Yang et al., 2015, 2016; Zhao et al., 2018)。三叠纪岩浆热液矿床呈面状分布主体处于古亚洲洋碰撞后伸展背景,以发育典型的斑岩型钼铜矿和岩浆铜镍矿组合为特征,矿床集中分布在额尔古纳-中蒙古地块和兴安地块、大兴安岭南段、辽远地块及松嫩-张广才岭地块的小兴安岭-张广才岭,但额尔古纳-中蒙古地块成矿特点与后者明显不同,同期兴安地块大兴安岭北段几乎没有成矿作用,反映了蒙古弧形断裂两侧不同构造体制(Wan et al., 2009;吕斌等,2017)。早-中侏罗世岩浆热液矿床同样呈面状分布,小兴安岭和兴凯地块吉黑东部发育大量斑岩型钼矿和矽卡岩型铅锌矿组合,而蒙古-鄂霍茨克造山带最西侧出现造山型金矿和南侧额尔古纳-中蒙古地块出现浅成低温热液型银铅锌矿及斑岩型铜钼矿组合,显示了不同的构造体制的叠加(陈志广等,2008;郝宇杰等,2013;Hu et al., 2014; 吕斌等,2017;秦克章等2017;Zhou et al., 2018)。
晚侏罗世-早白垩世中性-酸性岩浆岩在中国东北分布最为广泛。额尔古纳地块和大兴安岭北段主要为热液型银铅锌矿床和斑岩型钼矿床,主要受控于蒙古鄂霍茨克造山带碰撞后伸展。小兴安岭和吉林东部主要为浅成低温热液型、斑岩型铜金矿,是典型的古太平洋俯冲弧的产物(Sun et al., 2012;秦克章等, 2017;李真真等,2020)。本文收集整理的中亚造山带东段7个含天河石花岗岩及相关成矿作用年龄介于450~117Ma之间,主要集中于140Ma左右(表 1;图 8),与大兴安岭南段的岩浆热液型银铅锌钨锡铌钽锂矿床、斑岩型钼矿和热液型铜矿形成时代和构造背景相一致,应是蒙古鄂霍茨克造山带碰撞后伸展和古太平洋俯冲弧后伸展背景共同叠加的作用(Yang et al., 2019; 李真真等,2019;Wu et al., 2020; Duan et al., 2021)。
4 天河石花岗岩型铷矿的研究展望 4.1 成岩成矿时代的精确限定锆石能较好地保持U-Pb同位素体系的封闭,是最理想的U-Pb同位素定年对象之一(Poitrasson et al., 2002),被广泛应用于花岗质岩浆岩的定年工作。然而,由于锆石较早发生分离结晶,残余岩浆或高度分异的花岗岩浆中的锆难以达到饱和结晶出锆石,因而这类花岗岩中的锆石十分缺乏(吴福元等,2015)。此外,高演化花岗岩中锆石的U、Th含量普遍较高,易发生放射性晶格损伤和后期热事件影响而失去U-Pb同位素平衡(Geisler et al., 2007; Kusiak et al., 2009; Deng et al., 2013)。因此在对富铷花岗岩开展锆石年代学分析的过程中,应利用显微观察、锆石阴极发光和拉曼光谱等手段区分岩浆锆石与继承锆石、捕获锆石、蜕晶化锆石和热液锆石,再进行针对性的定年分析、数据处理和结果解释(Wang et al., 2016)。
高演化花岗岩浆及相关热液作用过程中,锡、铌、钽和稀土元素等通常也能发生富集并产生锡石、铌钽矿和独居石等副矿物。锡石、铌钽矿和独居石通常含有较多的U,且U-Pb体系封闭温度较高,具有较强的抵抗后期热液扰动能力(Romer and Smeds, 1994, 1996, 1997; Deng et al., 2013; Che et al., 2015),是限定晚期岩浆、热液作用或相关成矿作用的年龄的重要手段,并已成功应用于多个地区的花岗岩、伟晶岩的形成时代和铌钽矿化时代的研究(Romer and Smeds, 1994; Che et al., 2015; Lupulescu et al., 2018; Yan et al., 2018)。因此,在无法获得可靠的锆石结晶年龄的前提下,可以利用新兴的铌钽铁矿、锡石、独居石、磷钇矿和石榴石等矿物U-Pb同位素定年方法获取富铷花岗岩或伟晶岩的形成时代(Zhang et al., 2017a, b)。
此外,由于富铷花岗岩和相关铷矿床中的矿石矿物主要为锂云母和天河石等富铷矿物,因此选择白云母(包括铁锂云母和锂云母)进行Ar-Ar定年,选择富铷天河石、铁锂云母等富铷矿物开展Rb-Sr等时线定年(放射性成因Sr/普通Sr比值极高,易于获得精确的Rb-Sr等时线年龄),进而可以更加直接地限定铷等稀有金属的成矿年龄。
4.2 岩浆演化与流体分异过程天河石花岗岩因常与稀有金属成矿密切相关而受到广泛关注(Manning, 1981; Pichavant et al., 1988; Webster and Holloway, 1990;朱金初等,1993; Raimbault and Burnol, 1998; Reyf et al., 2000; Gu et al., 2011; Solomovich et al., 2012)。关于这类花岗岩的成因目前主要有岩浆结晶和热液交代两种观点。目前,多数人认为黄玉花岗岩主要是岩浆结晶分异的产物(Kovalenko and Kovalenko, 1984; Zhu et al., 2001),但仍有研究者倾向于其交代成因(Kleeman, 1985; Raimbault et al., 1995; Lowenstern and Sinclair, 1996; Breiter et al., 1997; Soufi, 2021)。
含黄玉花岗岩火山相类似物(Burt et al., 1982; Pichavant et al., 1988;Kovalenko et al., 1995; Xie et al., 2013; Agangi et al., 2014; Mercer et al., 2015)的发现为含黄玉花岗岩的岩浆成因提供了最直接的证据。同时,一系列实验岩石学和熔体包裹体研究成果也逐步证明了由富氟花岗岩浆分离结晶而产生含黄玉花岗岩的可能性(Badanina et al., 2008),并初步解释了富氟花岗岩类岩相分带的形成机制。Qz-Ab-Or-H2O-F系统的实验结果(Manning, 1981)表明,富F岩浆的分离结晶将使残余熔体朝着F、H2O、Al2O3和Na2O增加而SiO2、Fe2O3、FeO和K2O减少的方向演化,其结果是使花岗岩熔体变为翁岗岩质熔体(Kovalenko and Kovalenko, 1984; Dostal et al., 2015)。实验岩石学研究(Webster and Holloway, 1990; Holtz et al., 2001;Xiong et al., 2002)结果还表明,F在高温时趋于进入流体相,而在低温时则进入熔体相。在岩浆由下往上固结过程中,挥发分的出溶将释出F和H2O,并使之沿着温度和压力梯度向岩浆体上部聚集(Zhu et al., 1996; Burnham, 1997; Lukkari and Holtz, 2007)。F和H2O的向上富集降低了上部岩浆的固相线,从而扩大了岩浆结晶的温度间隔(Manning, 1981; Kovalenko and Kovalenko, 1984; Xiong et al., 2002)。同时,F和H2O的富集又使岩浆的密度和粘度下降,有利于组分扩散和晶体-熔体分离(Dingwell et al., 1985; Webster et al., 2018),从而使分离结晶作用能充分地进行,并造成明显的岩浆分带。
富氟花岗岩浆演化晚期,F和H2O等挥发分的大量富集,使这类岩石晚期岩相受到强烈的热液蚀变,并常伴有云英岩化和稀有金属矿化(朱金初等,2002)。Dostal及其合作者(Dostal and Chatterjee, 1995, 2000; Dostal et al., 2004)对加拿大新斯科舍Davis Lake pluton的研究表明,稀有金属在晚期岩浆中的富集是分离结晶和流体搬运共同作用的结果。Halter et al.(1998a, b)也认为流体可使残余岩浆发生充分分异,而在流体高度富集之处,往往发生云英岩化和Sn矿化。
对于花岗岩型铷矿中铷的富集和成矿机制,目前研究较少。通常认为,岩浆分离结晶、岩浆-热液转换(过渡)及流体作用是稀有金属富集成矿的重要过程(Linnen et al., 2012)。因此,理解Rb等稀有金属富集成矿过程的关键之一是能够识别岩浆分异、流体出溶和热液交代过程并且评估它们对于稀有金属成矿的重要性(Linnen et al., 2012)。针对锆石、白云母、铌钽铁矿等岩浆和热液贯通性矿物的精细矿物学和矿物化学研究是解决上述问题的重要途径(Li et al., 2015; Xie et al., 2018)。
本课题组通过对白石头泉岩体中锆石的矿物学和地球化学研究发现,高铷富氟天河石花岗岩发育两类锆石。I型锆石在光学显微镜下干净、透明、无色、自形,且具明显的振荡环带,与岩浆成因锆石相一致,在化学组成上以高Zr、低微量元素为特征,具有重稀土富集型稀土配分模式,强烈的Ce正异常与Eu负异常,Th和U含量很低,Th/U比值高等典型岩浆锆石特征(Corfu et al., 2003; Van Lichtervelde et al., 2009; Wang et al., 2010, 2011)。II型锆石在光学显微镜下呈深褐色、半透明、污浊、半自形-它形、孔洞-微裂隙发育、内部结构极不均匀,在化学上Hf、Nb、Ta、Y、Th、U、LREE以及总稀土含量明显高于I型锆石,Ce正异常不明显,Eu负异常比I型锆石的更为强烈、Th和U含量高、Th/U和Zr/Hf比值较低,与典型的热液锆石相似(Černý et al., 1985; Wang et al., 2010, 2016; Yang et al., 2014)。从I型锆石到II型锆石,随着∑REE含量的增加U也含量同时升高,且呈正相关关系,Eu负异常不断增加,”四分组”效应持续增加,表明热液流体对锆石结晶的贡献不断增强(Veksler, 2004; Hoskin, 2005)。
研究表明,热液锆石所特有的高LREE含量和低Zr/Hf比值应为非电荷和半径控制(Non-CHARAC)行为所导致(Bau, 1996),该现象常见于富挥发分的高演化岩浆岩中,发生于岩浆系统向热液系统的转换过程(Veksler, 2004)。Non-CHARAC行为的发生通常伴随着全岩与包括锆石在内的各种矿物发生稀土元素的”四分组”效应(Bau, 1996; Irber, 1999; Veksler et al., 2005)。“四分组”效应的形成通常被认为与热液流体-岩石相互作用有关(Monecke et al., 2002, 2007; Badanina et al., 2006),而M型“四分组”效应的形成被认为是富氟流体与熔体在固相线以上的相互作用有关(Wu et al., 2011a)。因此,热液锆石的结晶应代表岩浆演化晚期发生了岩浆流体-熔体相互作用,岩浆-热液系统中的Th、U、Hf、Ta和REEs等元素优先集中在与残余熔体共存的富F流体当中(顾连兴等, 2007;Yang et al., 2014; Berni et al., 2020)。
4.3 富矿体的形成过程与找矿方向Rb的富集通常与岩浆的高度演化有关(Wu et al., 2011a)。但是,淡色花岗岩中的富Rb矿物主要为天河石,而品位高且易于工业利用的矿石矿物(如铁锂云母和锂云母)主要产于钠长石化天河石花岗岩或钠长花岗岩相之中(顾连兴等,2007;Gu et al., 2011),指示在天河石花岗岩的钠长石化过程中,发生了Rb从钾长石(天河石)向白云母(铁锂云母和锂云母)的再分配过程。最近,针对国宝山Rb矿的选冶实验表明(黄雯孝等,2019),天河石和云母的混合矿在添加氯化钠焙烧后可制取含RbCl达99.97%的铷盐。天河石晶体与氯化钠焙烧反应实验结果也显示,直径1cm天河石晶体与氯化钠在900℃条件下恒温4小时间便生成了宽近2000μm的钠长石反应边,表明天河石向钠长石的转变过程可能与Rb从天河石迁出有关。
在花岗岩母岩浆持续分异演化的过程中,晚期岩相中的天河石含量逐渐升高,岩性也从淡色花岗岩相逐步向富铷、富氟和富钠质的岩浆体系演化。当岩浆演化到最晚期,即岩相中的天河石含量随着钠长石含量的增加而减少,且铁锂云母(主要富Rb矿物)含量显著增加,并成为最重要的工业矿体。天河石花岗岩的钠长石化阶段可被认为是Rb从岩浆阶段结晶的天河石大量迁出并进入热液成因云母类矿物的过程,也是Rb的重要的成矿过程。此外,富铷富氟流体或热液从花岗质岩浆中出溶后,当遇到能使F等卤族元素快速沉积的介质(如富钙岩石)时,更可发生萤石大量的沉淀和Rb的快速卸载,形成富铷云母的铷矿体。因此,天河石花岗岩发育区应是铷矿的找矿靶区,岩体边部的钠长石化带以及岩体外围的萤石蚀变带应是富铷体的重要找矿标志。
5 结语中亚造山带是全球最重要的天河石花岗岩和相关稀有金属矿床成矿域,其西段大量发育三叠纪天河石花岗岩,而东段大量发育晚侏罗至早白垩世天河石花岗岩,铷等稀有金属成矿潜力巨大。中亚造山带西段三叠纪天河石花岗岩的成岩与成矿作用受控于古亚洲洋向特提斯洋构造域的转折,而东段晚侏罗至早白垩世天河石花岗岩的成岩与成矿作用受控于古亚洲洋向古太平洋构造域的转折。
天河石花岗岩通常发育有较好的岩相分带,在矿物学上富含(铁)锂云母、黄玉或萤石,与锂氟花岗岩关系密切,铝饱和指数变化较大(过铝质到碱质均有发育),稀土四组分效应明显,是岩浆分离结晶和流体分异共同作用的产物。天河石花岗岩形成和演化过程中伴随F、Cl等挥发性元素的富集和迁移,Nb-Ta-Sn-Li-Rb-Cs等稀有金属元素的矿化普遍,是寻找铷等稀有金属矿床的有利对象。
致谢 感谢合肥工业大学周涛发教授和范裕教授的约稿;感谢中国科学院地球化学研究所张辉研究员和中国地质科学院矿产资源研究所李建康研究员认真评阅论文并提出了宝贵修改意见。感谢南京大学陈骏院士对论文工作的鼓励与指导。
Agangi A, Kamenetsky VS, Hofmann A, Przybyłowicz W and Vladykin NV. 2014. Crystallisation of magmatic topaz and implications for Nb-Ta-W mineralisation in F-rich silicic melts: The Ary-Bulak ongonite massif. Lithos, 202-203: 317-330 DOI:10.1016/j.lithos.2014.05.032
|
Amano F and Tanaka T. 2005. Modification of photocatalytic center for photo-epoxidation of propylene by rubidium ion addition to V2O5/SiO2. Catalysis Communications, 6(4): 269-273 DOI:10.1016/j.catcom.2005.01.007
|
Andersson SS, Wagner T, Jonsson E, Fusswinkel T and Whitehouse MJ. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163-187 DOI:10.1016/j.gca.2019.04.014
|
Badanina EV, Trumbull RB, Dulski P, Wiedenbeck M, Veksler IV and Syritso LF. 2006. The behavior of rare-earth and lithophile trace elements in rare-metal granites: A study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia. The Canadian Mineralogist, 44(3): 667-692 DOI:10.2113/gscanmin.44.3.667
|
Badanina EV, Syritso LF, Abushkevich VS, Thomas R and Trumbull RB. 2008. Geochemistry of ultra-potassic rhyodacite magmas from the area of the Orlovka massif of Li-F granites in eastern Transbaikalia: Evidence from study of melt inclusions in quartz. Petrology, 16(3): 299-311 DOI:10.1134/S0869591108030053
|
Badanina EV, Syritso LF, Volkova EV, Thomas R and Trumbull RB. 2010. Composition of Li-F granite melt and its evolution during the formation of the ore-bearing Orlovka massif in Eastern Transbaikalia. Petrology, 18(2): 131-157 DOI:10.1134/S0869591110020037
|
Balasubramanian D, Sankar R, Shankar VS, Murugakoothan P, Arulmozhichelvan P and Jayavel R. 2008. Growth and characterization of semiorganic nonlinear optical rubidium Bis-Dl-Malato borate single crystals. Materials Chemistry and Physics, 107(1): 57-60 DOI:10.1016/j.matchemphys.2007.06.040
|
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44(3): 231-234 DOI:10.1130/G37475.1
|
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333 DOI:10.1007/s004100050159
|
Berni GV, Wagner T and Fusswinkel T. 2020. From a F-rich granite to a NYF pegmatite: Magmatic-hydrothermal fluid evolution of the Kymi topaz granite stock, SE Finland. Lithos, 364-365: 105538 DOI:10.1016/j.lithos.2020.105538
|
Beskin SM, Grebennikov AM and Matias VV. 1994. The Khangilaiski granite pluton and the related Orlovka tantalum deposit at Transbaikalia. Petrology, 2: 68-87
|
Borchert M, Wilke M, Schmidt C and Rickers K. 2010. Rb and Sr partitioning between haplogranitic melts and aqueous solutions. Geochimica et Cosmochimica Acta, 74(3): 1057-1076 DOI:10.1016/j.gca.2009.10.033
|
Breiter K, Fryda J, Seltmann R and Thomas R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: The Podlesí Stock, Krušné Hory, Czech Republic. Journal of Petrology, 38(12): 1723-1739 DOI:10.1093/petroj/38.12.1723
|
Bureau H, Keppler H and Métrich N. 2000. Volcanic degassing of bromine and iodine: Experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth and Planetary Science Letters, 183(1-2): 51-60 DOI:10.1016/S0012-821X(00)00258-2
|
Bureau Hé and Métrich N. 2003. An experimental study of bromine behaviour in water-saturated silicic melts. Geochimica et Cosmochimica Acta, 67(9): 1689-1697 DOI:10.1016/S0016-7037(02)01339-X
|
Burnham CW. 1997. Magmas and hydrothermal fluids. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York: John Wiley & Sons, 63-124
|
Burt DM, Sheridan MF, Bikun JV and Christiansen EH. 1982. Topaz rhyolites: Distribution, origin, and significance for exploration. Economic Geology, 77(8): 1818-1836 DOI:10.2113/gsecongeo.77.8.1818
|
Cao DM, Zhang YS, Gao CJ, Huang XP and Zhang JK. 2011. Research progress on separation technology of rubidium. Journal of Salt and Chemical Industry, 40(1): 44-47 (in Chinese with English abstract)
|
Černý P. 1982. Mineralogy of rubidium and cesium. In: Granitic Pegmatites in Science and Industry. MAC Short Course Handbook, 8: 149-162
|
Černý P, Meintzer RE and Anderson AJ. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23(3): 381-421
|
Černý P and Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005-2026 DOI:10.2113/gscanmin.43.6.2005
|
Černý P, London D and Novák M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8(4): 289-294 DOI:10.2113/gselements.8.4.289
|
Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH and Zhu ZY. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979-989 DOI:10.1016/j.oregeorev.2014.07.008
|
Chen B, Gu HO, Chen YJ, Sun KK and Chen W. 2018. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chemical Geology, 483: 372-384 DOI:10.1016/j.chemgeo.2018.03.002
|
Chen B, Wu CZ, Matthew JB, Lei RX, Muhtar MN, Li GT, Zhang YK and Chen J. 2021. Geochronology and tectonic setting of the giant Guobaoshan rubidium deposit, Central Tianshan, NW China. Ore Geology Reviews, in review
|
Chen G, Liang GJ and Liu M. 2018. Dressing experiment study on the white mica with rubidium from a rubidium polymetallic ore in Gansu. Mining Research and Development, 38(9): 59-62 (in Chinese with English abstract)
|
Chen H, Tian Z, Tuller-Ross B, Korotev RL and Wang K. 2019. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight. Journal of Analytical Atomic Spectrometry, 34(1): 160-171 DOI:10.1039/C8JA00303C
|
Chen W, Chen B and Sun KK. 2018. Petrogenesis of the Maogongdong highly differentiated granite in the Dahutang tungsten ore field, Jiangxi Province. Acta Petrologica Sinica, 34(6): 1704-1724 (in Chinese with English abstract)
|
Chen YJ. 2000. Progress in the study of Central Asia-type orogenesis-metallogenesis in Northwest China. Geological Journal of China Universities, 6(1): 17-22 (in Chinese with English abstract)
|
Chen ZG, Zhang LC, Wu HY, Wan B and Zeng QD. 2008. Geochemistry study and tectonic background of A-style host granite in Nianzigou molybdenum deposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia. Acta Petrologica Sinica, 24(4): 879-889 (in Chinese with English abstract)
|
Chen ZY, Xiao WJ, Windley BF, Schulmann K, Mao QG, Zhang ZY, Zhang JE, Li YC and Song SH. 2020. Latest Permian-Early Triassic arc amalgamation of the Eastern Tianshan (NW China): Constraints from detrital zircons and Hf isotopes of Devonian-Triassic sediments. Geological Journal, 55(3): 1708-1727 DOI:10.1002/gj.3540
|
Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500 DOI:10.2113/0530469
|
Deng XD, Li JW, Zhao XF, Hu ZC, Hu H, Selby D and de Souza ZS. 2013. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: Implications for geochronology of pegmatite and associated ore deposits. Chemical Geology, 344: 1-11 DOI:10.1016/j.chemgeo.2013.02.014
|
Ding L, Yang D, Cai FL, Pullen A, Kapp P, Gehrels GE, Zhang LY, Zhang QH, Lai QZ, Yue YH and Shi RD. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34-48 DOI:10.1002/tect.20013
|
Dingwell DB, Scarfe CM and Cronin DJ. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: Implications for phonolites, trachytes and rhyolites. American Mineralogist, 70: 80-87
|
Dobretsov NL, Berzin NA and Buslov MM. 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. International Geology Review, 37(4): 335-360 DOI:10.1080/00206819509465407
|
Dolgopolova A, Seltmann R, Kober B, Weiss D, Stanley C and Dulski P. 2004. Geochemical characteristics and lead isotope systematics of highly fractionated Li-F-enriched amazonite granites and related host rocks of the Orlovka-Spokoinoe mining district, Eastern Transbaikalia (Russia). Applied Earth Science, 113(1): 83-99 DOI:10.1179/037174504225004420
|
Dostal J and Chatterjee AK. 1995. Origin of topaz-bearing and related peraluminous granites of the Late Devonian Davis Lake pluton, Nova Scotia, Canada: Crystal versus fluid fractionation. Chemical Geology, 123(1-4): 67-88 DOI:10.1016/0009-2541(95)00047-P
|
Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218 DOI:10.1016/S0009-2541(99)00113-8
|
Dostal J, Chatterjee AK and Kontak DJ. 2004. Chemical and isotopic (Pb, Sr) zonation in a peraluminous granite pluton: Role of fluid fractionation. Contributions to Mineralogy and Petrology, 147(1): 74-90 DOI:10.1007/s00410-003-0547-x
|
Dostal J, Kontak DJ, Gerel O, Shellnutt JG and Fayek M. 2015. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid/rock interaction. Lithos, 236-237: 173-189 DOI:10.1016/j.lithos.2015.08.003
|
Duan XZ, Shi H, Tan KX, Xie YS, Chen L, Han SL, Hu Y, Feng ZG, Zhang YQ, Guo HF and Jiang L. 2016. Geology and genesis of the granitic niobium-tantalum-rubidium deposit in Shihuiyao area, Inner Mongolia. Geology and Resources, 25(1): 32-40 (in Chinese with English abstract)
|
Duan ZP, Jiang SY, Su HM, Zhu XY, Zou T and Cheng XY. 2021. Geochronological and geochemical investigations of the granites from the giant Shihuiyao Rb-(Nb-Ta-Be-Li) deposit, Inner Mongolia: Implications for magma source, magmatic evolution, and rare metal mineralization. Lithos, 400-401: 106415 DOI:10.1016/j.lithos.2021.106415
|
Durojaiye T, Hayes J and Goudy A. 2015. Potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system. International Journal of Hydrogen Energy, 40(5): 2266-2273 DOI:10.1016/j.ijhydene.2014.12.056
|
Feng YG, Lei RX, Ju MH, Song GS and Xu F. 2017. Origin and petrogenetic implications of garnet from Rb-rich pegmatites in North Qinling Orogen, China. Geological Journal, 52: 215-237 DOI:10.1002/gj.3118
|
Förster HJ, Tischendorf G, Trumbull RB and Gottesmann B. 1999. Late-collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11): 1613-1645 DOI:10.1093/petroj/40.11.1613
|
Frindt S, Trumbull RB and Romer RL. 2004. Petrogenesis of the Gross Spitzkoppe topaz granite, central western Namibia: A geochemical and Nd-Sr-Pb isotope study. Chemical Geology, 206(1-2): 43-71 DOI:10.1016/j.chemgeo.2004.01.015
|
Frost BR, Chamberlain KR and Schumacher JC. 2001. Sphene (titanite): Phase relations and role as a geochronometer. Chemical Geology, 172(1-2): 131-148 DOI:10.1016/S0009-2541(00)00240-0
|
Gao J, Klemd R, Zhu MT, Wang XS, Li JL, Wan B, Xiao WJ, Zeng QD, Shen P, Sun JG, Qin KZ and Campos E. 2018. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review. Journal of Asian Earth Sciences, 165: 7-36 DOI:10.1016/j.jseaes.2017.10.002
|
Gao X, Zhou ZH, Breiter K, Ouyang HG and Liu J. 2019. Ore-formation mechanism of the Weilasituo tin-polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He-Ar isotopes, and Re-Os dating. Ore Geology Reviews, 109: 163-183 DOI:10.1016/j.oregeorev.2019.04.007
|
Gao Y, Sun Y, Zhao Z, Li JK, He HH and Yang YQ. 2017. 40Ar-39Ar dating of muscovite from the Zhaojinggou Nb-Ta polymetallic deposit in Wuchuan County of Inner Mongolia and its geological implications. Rock and Mineral Analysis, 36(5): 551-558
|
Gao ZX, Wang JC, Zhou LL, Zhao X, Qin JD, Wang PD, Wu YJ, Wang Y and Baoyin WLJ. 2019. Discovery of Early Permian Island-Arc type granodiorites in Wenduermiao area, Inner Mongolia: Constraints on timing of closure of Paleo-Asian Ocean. Earth Science, 44(10): 3178-3192 (in Chinese with English abstract)
|
Geisler T, Schaltegger U and Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43-50 DOI:10.2113/gselements.3.1.43
|
Greene TJ, Carroll AR, Wartes M, Graham SA and Wooden JL. 2005. Integrated provenance analysis of a complex orogenic terrane: Mesozoic uplift of the Bogda Shan and inception of the Turpan-Hami Basin, NW China. Journal of Sedimentary Research, 75(2): 251-267 DOI:10.2110/jsr.2005.019
|
Gu LX, Yang H, Tao XC, Yan ZF, Li HM, Wang JD and Liu YD. 1990. Rb-Sr geochronology of granites in the east section of the Mid-Tianshan Belt and its tectonic evolution. Journal of Guilin College of Geology, 10(1): 49-55 (in Chinese with English abstract)
|
Gu LX, Yang H, Gou XQ, Guo JC and Wang JZ. 1994. Geochemistry of the Baishitouquan amazonite- and topaz-bearing granite in the Mid Tianshan belt, Xinjiang, China. Chinese Journal of Geochemistry, 13(4): 289-304 DOI:10.1007/BF02838519
|
Gu LX, Yang H, Gou XQ, Guo JC and Wang JZ. 1994. Geology and genesis of the Baishitouquan high-rubidium and fluorine granites in the Xingxingshia district of Hami County, Xinjiang. Acta Petrologica Sinica, 10(1): 41-53 (in Chinese with English abstract)
|
Gu LX, Gou XQ, Zhang ZZ, Wu CZ, Liao JJ, Yang H, Yin L and Min MZ. 2003. Geochemistry and petrogenesis of a multi-zoned high Rb and F granite in eastern Tianshan. Acta Petrologica Sinica, 19(4): 585-600 (in Chinese with English abstract)
|
Gu LX, Zhang ZZ, Wu CZ, Wang YX, Tang JH, Wang CS, Xi AH and Zheng YC. 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1103-1120 (in Chinese with English abstract)
|
Gu LX, Wu CZ, Zhang ZZ, Gou XQ, Liu SH, Zheng YC and Zhang GH. 2007. Geochemistry of the Baishitouquan topaz-bearing amazonite granite: Zoning and magma evolution. Geological Journal of China Universities, 13(2): 207-223 (in Chinese with English abstract)
|
Gu LX, Zhang ZZ, Wu CZ, Gou XQ, Liao JJ and Yang H. 2011. A topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China and its zoning. Journal of Asian Earth Sciences, 42(5): 885-902 DOI:10.1016/j.jseaes.2010.12.010
|
Guo GJ. 2016. Discussion on geological characteristics and metallogenic origin of Weilasituo Sn polymetal deposit in Inner Mongolia. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English summary)
|
Haider MH, Dummer NF, Zhang DZ, Miedziak P, Davies TE, Taylor SH, Willock DJ, Knight DW, Chadwick D and Hutchings GJ. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis, 286: 206-213 DOI:10.1016/j.jcat.2011.11.004
|
Halter WE, Williams-Jones AE and Kontak DJ. 1998a. Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit: Implications for mineralization. Chemical Geology, 150(1-2): 1-17 DOI:10.1016/S0009-2541(98)00050-3
|
Halter WE, Williams-Jones AE and Kontak DJ. 1998b. Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada. Economic Geology, 93(7): 1026-1051 DOI:10.2113/gsecongeo.93.7.1026
|
Halter WE, Heinrich CA and Pettke T. 2005. Magma evolution and the formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 39(8): 845-863 DOI:10.1007/s00126-004-0457-5
|
Hao YJ, Ren YS, Zhao HL, Zou XT, Chen C, Hou ZS and Qu WJ. 2013. Re-Os isotopic dating of the molybdenite from the Cuihongshan W-Mo polymetallic deposit in Heilongjiang Province and its geological significance. Journal of Jilin University (Earth Science Edition), 43(6): 1840-1850 (in Chinese with English abstract)
|
He ZY, Klemd R, Zhang ZM, Zong KQ, Sun LX, Tian ZL and Huang BT. 2015. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence. Lithos, 236-237: 74-89 DOI:10.1016/j.lithos.2015.08.009
|
He ZY, Klemd R, Yan LL and Zhang ZM. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14 DOI:10.1016/j.earscirev.2018.05.012
|
Hedenquist JW and Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519-527 DOI:10.1038/370519a0
|
Heinrich CA. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry, 65(1): 363-387 DOI:10.2138/rmg.2007.65.11
|
Holtz F, Johannes W, Tamic N and Behrens H. 2001. Maximum and minimum water contents of granitic melts generated in the crust: A reevaluation and implications. Lithos, 56(1): 1-14 DOI:10.1016/S0024-4937(00)00056-6
|
Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648 DOI:10.1016/j.gca.2004.07.006
|
Hu AQ, Jahn BM, Zhang GX, Chen YB and Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15-51
|
Hu XL, Ding ZJ, He MC, Yao SZ, Zhu BP, Shen J and Chen B. 2014. A porphyry-skarn metallogenic system in the Lesser Xing'an Range, NE China: Implications from U-Pb and Re-Os geochronology and Sr-Nd-Hf isotopes of the Luming Mo and Xulaojiugou Pb-Zn deposits. Journal of Asian Earth Sciences, 90: 88-100 DOI:10.1016/j.jseaes.2014.04.020
|
Huang WX, Liang GJ and He LJ. 2019. Experimental study on smelting process of Guobaoshan antimony ore in Gansu Province. China Resources Comprehensive Utilization, 37(2): 17-23 (in Chinese with English abstract)
|
Huber C, Bachmann O, Vigneresse JL, Dufek J and Parmigiani A. 2012. A physical model for metal extraction and transport in shallow magmatic systems. Geochemistry, Geophysics, Geosystems, 13(8): Q08003
|
Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508 DOI:10.1016/S0016-7037(99)00027-7
|
Iveson AA, Webster JD, Rowe MC and Neill OK. 2019. Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals. Chemical Geology, 516: 18-41 DOI:10.1016/j.chemgeo.2019.03.029
|
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 DOI:10.1017/S0263593300007367
|
Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100 DOI:10.1144/GSL.SP.2004.226.01.05
|
Jia HX, Pang ZS, Geng L, Zhang ZH and Jia RY. 2016. Petrogenetic and metallogenic time of the Sn polymetallic deposit in Guangzhou and its geological implications. Geological Review, 62(Suppl.1): 107-108 (in Chinese with English abstract)
|
Kleeman JD. 1985. Origin of disseminated wolframite-bearing quartz-topaz rock in Torrington, New South Wales, Australia. In: Halls C (ed.). High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis. London: Institute of Mining and Metallurgy, 197-210
|
Konopelko D, Biske G, Seltmann R, Eklund O and Belyatsky B. 2007. Hercynian post-collisional A-type granites of the Kokshaal Range, southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160 DOI:10.1016/j.lithos.2006.12.005
|
Konsolakis M, Yentekakis IV, Palermo A and Lambert RM. 2001. Optimal promotion by rubidium of the CO+NO reaction over Pt/γ-Al2O3 catalysts. Applied Catalysis B: Environmental, 33(4): 293-302 DOI:10.1016/S0926-3373(01)00183-7
|
Kovalenko VI and Kovalenko NI. 1984. Problems of the origin, ore-bearing and evolution of rare-metal granitoids. Physics of the Earth and Planetary Interiors, 35(1-3): 51-62 DOI:10.1016/0031-9201(84)90033-5
|
Kovalenko VI, Tsaryeva GM, Goreglyad AV, Yarmolyuk VV, Troitsky VA, Hervig RL and Farmer GL. 1995. The Peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, Western Mongolia. Economic Geology, 90(3): 530-547 DOI:10.2113/gsecongeo.90.3.530
|
Kovalenko VI, Kostitsyn YA, YarmolyukVV, Budnikov SV, Kovach VP, Kotov AB and Antipin VS. 1999. Magma sources and the isotopic (Sr and Nd) evolution of Li-F rare-metal granites. Petrology, 7(4): 383-409
|
Kröner A, Kovach V, Alexeiev D, Wang KL, Wong J, Degtyarev K and Kozakov I. 2017. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data. Gondwana Research, 50: 135-166 DOI:10.1016/j.gr.2017.04.006
|
Krymsky RS and Belyatsky BV. 2003. The age and genesis of Be-Nb-Ta-fluorite mineralization of Voznesenskoe & Pogranichnoe ore-deposits (Far East, Russia): U-Pb-Nd-Sr isotope constraints. In: Geophysical Research Abstracts. EGS, 5: 07864
|
Kusiak MA, Dunkley DJ, Słaby E, Martin H and Budzyń B. 2009. Sensitive high-resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton. Geology, 37(12): 1063-1066 DOI:10.1130/G30048A.1
|
Lai Y, Yang L, Li DF and Zhang W. 2016. Study on ore characteristics in the Guobaoshan Rb deposit, Gansu Province, China. Multipurpose Utilization of Mineral Resources, (3): 71-75 (in Chinese with English abstract)
|
Lei RX, Brzozowski MJ, Feng YG, Zhang K, Muhtar MN, Luo XL and Wu CZ. 2020. Triassic crust-mantle interaction in the Eastern Tianshan, southern Altaids: Insights from microgranular enclaves and their host Tianhu granitoids. Lithos: 105879
|
Li J, Huang XL, He PL, Li WX, Yu Y and Chen LL. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65(4): 793-810
|
Li JK, Zhang DH, Wang DH and Zhang WH. 2008. Liquid immiscibility of fluorine-rich granite magma and its diagenesis and metallogeny. Geological Review, 54(2): 175-183 (in Chinese with English abstract)
|
Li JP and Xu SH. 2005. The metals with eyes-cesium and rubidium. Chemical World, 46(2): 85 (in Chinese)
|
Li SH, Li JK, Chou IM, Jiang L and Ding X. 2017. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions. Journal of Asian Earth Sciences, 137: 180-193 DOI:10.1016/j.jseaes.2016.11.016
|
Li TG, Liang MH, Yu JP, Huang BZ, Zhang X, Zhu YX, Zhang YK, Sun XC, Zhang HB, Liu YX, Liu YP, Zhou HW, Xu YL, Wu YB, Zhu WG, He LX, Feng J, Tong XH, Li XS, Wang YX, Ba JY, Feng BZ, Liu DC, Wang HX, Zhang XH, Zhao HJ and Ren WX. 2018. Study on Metallogenic Geological Background of Rare (Rare Earth) Metals in Gansu Province. Beijing: Geological Publishing House, 1-158 (in Chinese)
|
Li ZD, Li XG, Cui YR, Li GZ, Zhang J, Guo H, Liu WG, Zhang C, Yu RA, Xie Y and Wang JY. 2019. Yanshanian mineralization of Zhaojinggou Nb-Ta deposit, Inner Mongolia: Evidences from the monazite and zircon LA-MC-ICP-MS U-Pb and biotite 40Ar-39Ar geochronology. Earth Science, 44(1): 234-247 (in Chinese with English abstract)
|
Li ZZ, Qin KZ, Zhao JX, Li GM and Su SQ. 2019. Basic characteristics, research progresses and prospects of Sn-Ag-base metal metallogenic system. Acta Petrologica Sinica, 35(7): 1979-1998 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.07.03
|
Linnen RL. 1998. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: Constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013-1025 DOI:10.2113/gsecongeo.93.7.1013
|
Linnen RL, Van Lichtervelde M and Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275-280 DOI:10.2113/gselements.8.4.275
|
Liu RL, Wu G, Li TG, Chen GZ, Wu LW, Zhang PC, Zhang T, Jiang B and Liu WY. 2018. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing'an Range and their geological significance. Earth Science Frontiers, 25(5): 183-201 (in Chinese with English abstract)
|
Liu YF, Jiang SH and Zhang Y. 2010. The SHRIMP zircon U-Pb dating and geochemical features of Bairendaba diorite in the Xilinhaote area, Inner Mongolia, China. Geological Bulletin of China, 29(5): 688-696 (in Chinese with English abstract)
|
Liu YF, Nie FJ, Jiang SH, Hou WR, Liang QL, Zhang K and Liu Y. 2012. Geochronology of Zhunsujihua molybdenum deposit in Sonid Left Banner, Inner Mongolia, and its geological significance. Mineral Deposits, 31(1): 119-128 (in Chinese with English abstract)
|
Liu YF, Jiang SH and Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geology Reviews, 75: 150-173 DOI:10.1016/j.oregeorev.2015.12.006
|
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148 DOI:10.1016/j.gr.2016.03.013
|
Liu YL, Zhang H, Tang Y, Zhang X, Lv ZH and Zhao JY. 2018. Petrogenesis and tectonic setting of the Middle Permian A-type granites in Altay, northwestern China: Evidences from geochronological, geochemical, and Hf isotopic studies. Geological Journal, 53(2): 527-546 DOI:10.1002/gj.2910
|
London D. 2008. Pegmatites. Canadian Mineralogist, 10(Spec.): 347
|
London D. 2016. Rare-element granitic pegmatites. In: Verplanck PL and Hitzman MW (eds.). Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, 18: 165-193
|
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349-383 DOI:10.1016/j.oregeorev.2018.04.020
|
Lowenstern JB and Sinclair WD. 1996. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 291-303 DOI:10.1017/S0263593300006696
|
Lukkari S and Holtz F. 2007. Phase relations of a F-enriched peraluminous granite: An experimental study of the Kymi topaz granite stock, southern Finland. Contributions to Mineralogy and Petrology, 153(3): 273-288 DOI:10.1007/s00410-006-0146-8
|
Lupulescu MV, Chiarenzelli JR, Pecha ME, Singer JW and Regan SP. 2018. Columbite-group minerals from New York pegmatites: Insights from isotopic and geochemical analyses. Geosciences, 8(5): 169 DOI:10.3390/geosciences8050169
|
Lv B, Wang T, Tong Y, Zhang L, Yang QD and Zhang JJ. 2017. Spatial & temporal distribution and tectonic settings of magmatic-hydrothermal ore deposits in the eastern central Asia orogen belt. Journal of Jilin University (Earth Science Edition), 47(2): 305-343 (in Chinese with English abstract)
|
Manning DAC. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76(2): 206-215 DOI:10.1007/BF00371960
|
Mao JW, Yang ZX, Xie GQ, Yuan SD and Zhou ZH. 2019. Critical minerals: International trends and thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract)
|
Markl G and Piazolo S. 1998. Halogen-bearing minerals in syenites and high-grade marbles of Dronning Maud Land, Antarctica: Monitors of fluid compositional changes during late-magmatic fluid-rock interaction processes. Contributions to Mineralogy and Petrology, 132(3): 246-268 DOI:10.1007/s004100050420
|
Martin RF, De Vito C and Pezzotta F. 2008. Why is amazonitic K-feldspar an earmark of NYF-type granitic pegmatites? Clues from hybrid pegmatites in Madagascar. American Mineralogist, 93(2-3): 263-269 DOI:10.2138/am.2008.2595
|
Mercer CN, Hofstra AH, Todorov TI, Roberge J, Burgisser A, Adams DT and Cosca M. 2015. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado. Journal of Petrology, 56(4): 645-679 DOI:10.1093/petrology/egv010
|
Monecke T, Kempe U, Monecke J, Sala M and Wolf D. 2002. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochimica et Cosmochimica Acta, 66(7): 1185-1196 DOI:10.1016/S0016-7037(01)00849-3
|
Monecke T, Dulski P and Kempe U. 2007. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany. Geochimica et Cosmochimica Acta, 71(2): 335-353 DOI:10.1016/j.gca.2006.09.010
|
Muhtar MN, Wu CZ, Brzozowski MJ, Li P, Yuan XC, Wang SM, Zhi J and Jiang YH. 2020a. Geochronology, geochemistry, and Sr-Nd-Pb-Hf-S isotopes of the wall rocks of the Kanggur gold polymetallic deposit, Chinese North Tianshan: Implications for petrogenesis and sources of ore-forming materials. Ore Geology Reviews, 125: 103688 DOI:10.1016/j.oregeorev.2020.103688
|
Muhtar MN, Wu CZ, Santosh M, Lei RX, Feng YG, Yang T, Ye H and Gu LX. 2020b. Peraluminous granitoid magmatism from isotopically depleted sources: The case of Jing'erquanbei pluton in Eastern Tianshan, Northwest China. Geological Journal, 55(1): 117-132 DOI:10.1002/gj.3392
|
Muhtar MN, Wu CZ, Santosh M, Lei RX, Gu LX, Wang SM and Gan K. 2020c. Late Paleozoic tectonic transition from subduction to post-collisional extension in Eastern Tianshan, Central Asian Orogenic Belt. Geological Society of America Bulletin, 132(7-8): 1756-1774 DOI:10.1130/B35432.1
|
Muhtar MN, Wu CZ, Brzozowski MJ, Lei RX, Feng ZJ, Chen BY and Jiang YH. 2021. Sericite 40Ar/39Ar dating and S-Pb isotope composition of the Kanggur gold deposit: Implications for metallogenesis of Late Paleozoic gold deposits in the Tianshan, Central Asian Orogenic Belt. Ore Geology Reviews, 131: 104056 DOI:10.1016/j.oregeorev.2021.104056
|
Neukampf J, Ellis BS, Magna T, Laurent O and Bachmann O. 2019. Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: The case of the Mesa Falls Tuff, Yellowstone. Chemical Geology, 506: 175-186 DOI:10.1016/j.chemgeo.2018.12.031
|
Nie FJ, Wang FX, Zhao YA, Sun Y and Chai H. 2013. Geological features and origin of Zhaojinggou Nb-Ta deposit in Wuchuan County, Inner Mongolia. Mineral Deposits, 32(4): 730-743 (in Chinese with English abstract)
|
Norton JJ. 1973. Lithium, cesium, and rubidium-the rare alkali metals. In: Brobst DA and Prah WP (eds.). United States Mineral Resources. United States Geological Survey Professional, 820: 365-378
|
Odgerel D and Antipin VS. 2009. Avdar-Khoshutula intrusivedyke series of calc-alkaline, alkaline and rare metal granitoids of Central Mongolia. Izvestiya of Siberian Department of Russian Academy of Natural Sciences. Geology, Prospect and Survey of Ore Deposits, 1(34): 58-68
|
Ostrooumov M. 2015. Amazonite: Mineralogy, Crystal Chemistry, and Typomorphism. Elsevier: 1-214
|
Pan GZ, Lu SN, Xiao QH, Zhang KX, Yin FG, Hao GJ, Luo MS, Ren F and Yuan SH. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1-23 (in Chinese with English abstract)
|
Pavlova GG, Borisenko AS, Goverdovskii VA, Travin AV, Zhukova IA and Tret'yakova IG. 2008. Permian-Triassic magmatism and Ag-Sb mineralization in southeastern Altai and northwestern Mongolia. Russian Geology and Geophysics, 49(7): 545-555 DOI:10.1016/j.rgg.2008.06.010
|
Pichavant M, Herrera JV, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard SMF, Treuil M and Venet M. 1988. The Macusani glasses, SE Peru: Evidence of chemical fractionation in peraluminous magmas. In: Mysen BO (ed.). Magmatic Processes: Physicochmical Principles. The Geochemical Society, Special Publication No. 1: 359-373
|
Poitrasson F, Hanchar JM and Schaltegger U. 2002. The current state and future of accessory mineral research. Chemical Geology, 191(1-3): 3-24 DOI:10.1016/S0009-2541(02)00146-8
|
Pyle DM and Mather TA. 2009. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review. Chemical Geology, 263(1-4): 110-121 DOI:10.1016/j.chemgeo.2008.11.013
|
Qin KZ, Sun S, Li JL, Fang TH, Wang SL and Liu W. 2002. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance. Resource Geology, 52(4): 291-300 DOI:10.1111/j.1751-3928.2002.tb00140.x
|
Qin KZ, Fang TH, Wang SL, Zhu BQ, Feng Y, Yu HF and Xiu QY. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan mountains, NW-China. Xinjiang Geology, 20(4): 302-308 (in Chinese with English abstract)
|
Qin KZ, Peng XM, San JZ, Xu XW, Fang TH, Wang SL and Yu HF. 2003. Types of major ore deposits, division of metallogenic belts in eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization. Xinjiang Geology, 21(2): 143-150 (in Chinese with English abstract)
|
Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237-260
|
Qin KZ, Zhai MG, Li GM, Zhao JX, Zeng QD, Gao J, Xiao WJ, Li JL and Sun S. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract)
|
Raimbault L, Cuney M, Azencott C, Duthou JL and Joron JL. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li Mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90(3): 548-576 DOI:10.2113/gsecongeo.90.3.548
|
Raimbault L and Burnol L. 1998. The Richemont rhyolite dyke, Massif Central, France: A subvolcanic equivalent of rare-metal granites. Canadian Mineralogist, 36(2): 265-282
|
Reyf FG, Seltmann R and Zaraisky GP. 2000. The role of magmatic processes in the formation of banded Li, F-enriched granites from the Orlovka tantalum deposit, Transbaikalia, Russia: Microthermometric evidence. The Canadian Mineralogist, 38(4): 915-936 DOI:10.2113/gscanmin.38.4.915
|
Romer RL and Smeds SA. 1994. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90~1.85Ga magmatic arcs to the Baltic Shield. Precambrian Research, 67(1-2): 141-158 DOI:10.1016/0301-9268(94)90008-6
|
Romer RL and Smeds SA. 1996. U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden. Precambrian Research, 76(1-2): 15-30 DOI:10.1016/0301-9268(95)00023-2
|
Romer RL and Smeds SA. 1997. U-Pb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden. Precambrian Research, 82(1-2): 85-99 DOI:10.1016/S0301-9268(96)00050-2
|
Seltmann R, Soloviev S, Shatov V, Pirajno F, Naumov E and Cherkasov S. 2010. Metallogeny of Siberia: Tectonic, geologic and metallogenic settings of selected significant deposits. Australian Journal of Earth Sciences, 57(6): 655-706 DOI:10.1080/08120099.2010.505277
|
Seltmann R, Porter TM and Pirajno F. 2014. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. Journal of Asian Earth Sciences, 79: 810-841 DOI:10.1016/j.jseaes.2013.03.030
|
Şengör AMC, Natal'In BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0
|
Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751-767 DOI:10.1107/S0567739476001551
|
Shao JN and Tao WP. 2010. Handbook of Mineral Resource Industry Requirements. Beijing: Geological Publishing House: 249-250 (in Chinese)
|
Shu LS, Guo ZJ, Zhu WB, Lu HF and Wang B. 2004. Post-collision tectonism and basin-range evolution in the Tianshan belt. Geological Journal of China Universities, 10(3): 393-404 (in Chinese with English abstract)
|
Solomovich LI, Trifonov BA and Sabelnikov SE. 2012. Geology and mineralization of the Uchkoshkon tin deposit associated with a breccia pipe, Eastern Kyrgyzstan. Ore Geology Reviews, 44: 59-69 DOI:10.1016/j.oregeorev.2011.09.001
|
Soufi M. 2021. Origin and physical-chemical control of topaz crystallization in felsic igneous rocks: Contrasted effect of temperature on its OH-F substitution. Earth-Science Reviews, 213: 103467 DOI:10.1016/j.earscirev.2020.103467
|
Stilling A, C′erný P and Vanstone PJ. 2006. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist, 44(3): 599-623
|
Sun WD, Ling MX, Chung SL, Ding X, Yang XY, Liang HY, Fan WM, Goldfarb R and Yin QZ. 2012. Geochemical constraints on adakites of different origins and copper mineralization. The Journal of Geology, 120(1): 105-120 DOI:10.1086/662736
|
Sun Y, Wang RJ, Qi F, Li JK and Mei YX. 2013. The global status of rubidium resource and suggestions on its development and utilization in China. China Mining Magazine, 22(9): 11-13, 57 (in Chinese with English abstract)
|
Sun Y, Wang RJ, Li JK and Zhao Z. 2015. 40Ar-39Ar dating of the muscowite and regional exploration prospect of Shihuiyao rubidium-multi-metal deposit, Selenhot, Inner Mongolia. Geological Review, 61(2): 463-468 (in Chinese with English abstract)
|
Sun Y, Wang DH, Wang CH, Li JK, Zhao Z, Wang Y and Guo WM. 2019. Metallogenic regularity, new prospecting and guide direction of rubidium deposits in China. Acta Geologica Sinica, 93(6): 1231-1244 (in Chinese with English abstract)
|
Tan YN and Liu Y. 2015. Properties and research progress of rubidium and its compounds. The Chinese Journal of Nonferrous Metals, 27(2): 272-281 (in Chinese with English abstract)
|
Teertstra DK, Černý P and Hawthorne FC. 1998. Rubidium-rich feldspars and associated minerals from the Luolamäki pegmatite, Somero, Finland. Bulletin of the Geological Society of Finland, 70(1-2): 43-49 DOI:10.17741/bgsf/70.1-2.003
|
Teertstra DK, Černý P and Hawthorne FC. 1999. Subsolidus rubidium-dominant feldspar from the Morrua pegmatite, Mozambique: Paragenesis and composition. Mineralogical Magazine, 63(3): 313-320 DOI:10.1180/002646199548538
|
Teiber H, Marks MAW, Wenzel T, Siebel W, Altherr R and Markl G. 2014. The distribution of halogens (F, Cl, Br) in granitoid rocks. Chemical Geology, 374-375: 92-109 DOI:10.1016/j.chemgeo.2014.03.006
|
Tkachev AV. 2011. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. Geological Society, London, Special Publications, 350(1): 7-23 DOI:10.1144/SP350.2
|
U.S. Geological Survey. 2019. Mineral Commodity Summaries. https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/cesium/mcs-2009-rubid.pdf
|
U.S. Geological Survey. 2021. Mineral Commodity Summaries. https://pubs.er.usgs.gov/publication/mcs2021
|
Van Lichtervelde M, Melcher F and Wirth R. 2009. Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. American Mineralogist, 94(4): 439-450 DOI:10.2138/am.2009.2952
|
Veksler IV. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210(1-4): 7-31 DOI:10.1016/j.chemgeo.2004.06.002
|
Veksler IV, Dorfman AM, Kamenetsky M, Dulski P and Dingwell DB. 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69(11): 2847-2860 DOI:10.1016/j.gca.2004.08.007
|
Villemant B and Boudon G. 1999. H2O and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth and Planetary Science Letters, 168(3-4): 271-286 DOI:10.1016/S0012-821X(99)00058-8
|
Wan B, Hegner E, Zhang LC, Rocholl A, Chen ZG, Wu HY and Chen FK. 2009. Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites. Economic Geology, 104(3): 351-363 DOI:10.2113/gsecongeo.104.3.351
|
Wang DH, Wang RJ, Li JK, Zhao Z, Yu Y, Dai JJ, Chen ZH, Li DX, Qu WJ, Deng MC, Fu XF, Sun Y and Zheng GD. 2013. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources. Geology in China, 40(2): 361-370 (in Chinese with English abstract)
|
Wang DH, Wang RJ, Sun Y, Li JK, Zhao Z, Zhao T, Qu WJ, Fu XF, Jiang SY, Huang HG, Feng WJ, Xu P, Li SM, Huang XP, Zhou H, Zhu YX, Tu QJ, Li XR, Fang YP and Zhou YY. 2016. A review of achievements in the three-type rare mineral resources (rare resources, rare earth and rarely scattered resources) survey in China. Acta Geoscientica Sinica, 37(5): 569-580 (in Chinese with English abstract)
|
Wang DH. 2019. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract)
|
Wang FX, Bagas L, Jiang SH and Liu YF. 2017. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80: 1206-1229 DOI:10.1016/j.oregeorev.2016.09.021
|
Wang J. 2009. Chronology and geochemistry of granitoid for the Weilasituo copper polymetal deposit in Inner Mongolia. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English summary)
|
Wang JC, Wang YH, Zhang M, Liu JJ, Peng RM, Wang JP, Song CY and Zhou LL. 2016. The granite petrogenesis in the area of the Gaoerqi lead-zinc-silver deposit, Inner Mongolia: Constraints of geochemistry, zircon U-Pb geochronology and Hf isotope. Geoscience, 30(5): 961-980 (in Chinese with English abstract)
|
Wang X, Griffin WL and Chen J. 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44(1): 65-72 DOI:10.2343/geochemj.1.0043
|
Wang X, Chen J, Griffin WL, O'Reilly SY, Huang PY and Li X. 2011. Two stages of zircon crystallization in the Jingshan monzogranite, Bengbu Uplift: Implications for the syn-collisional granites of the Dabie-Sulu UHP orogenic belt and the climax of movement on the Tan-Lu fault. Lithos, 122(3-4): 201-213 DOI:10.1016/j.lithos.2010.12.014
|
Wang X, Chen J and Ren MH. 2016. Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralization (Southeast China). Ore Geology Reviews, 74: 63-75 DOI:10.1016/j.oregeorev.2015.10.034
|
Wang XY, Hou QY, Wang J, Chen YL, Liu QB, Wang Z and Li DP. 2013. SHRIMP geochronology and Hf isotope of zircons from granitoids of the Weilasituo deposit in Inner Mongolia. Geoscience, 27(1): 67-78 (in Chinese with English abstract)
|
Wang ZG, Zhao ZH and Zou TR. 1998. Geochemistry of Altai Granitoids. Beijing: Science Press (in Chinese)
|
Webster JD and Holloway JR. 1990. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. In: Stein HJ and Hannah JL (eds.). Ore-Bearing Granitic Systems, Petrogenesis and Mineralizing Processes. Geological Society of America Special Papers, 246: 21-34
|
Webster JD, Tappen CM and Mandeville CW. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581 DOI:10.1016/j.gca.2008.10.034
|
Webster JD, Baker DR and Aiuppa A. 2018. Halogens in mafic and intermediate-silica content magmas. In: Harlov D and Aranovich L (eds.). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer, 307-430
|
Wei B, Wang CY, Zhao ZH and Bao HT. 2020. Columbite-group minerals and mica of peraluminous granite record the magmatic-hydrothermal processes that formed the Zhaojinggou Ta-Nb deposit in the North China Craton. Lithos, 370: 105648
|
Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction: A review of the evidence. Tectonophysics, 662: 345-362 DOI:10.1016/j.tecto.2015.05.006
|
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022
|
Wise MA. 1999. Characterization and classification of NYF-type pegmatites. Canadian Mineralogist, 37: 802-803
|
Wu CZ, Zhang ZZ, Zaw K, Della-Pasque F, Tang JH, Zheng YC, Wang CS and San JZ. 2006. Geochronology, geochemistry and tectonic significances of the Hongyuntan granitoids in the Qoltag area, Eastern Tianshan. Acta Petrologica Sinica, 22(5): 1121-1134 (in Chinese with English abstract)
|
Wu CZ, Zhang ZZ, Gu LX, Tang JH and Lei RX. 2010. Sr, Nd and O isotopic characters of quartz syenite in the Weiya magmatic complex from eastern Tianshan in NW China: Melting of the thickened juvenile lower crust. Geochemical Journal, 44: 285-298 DOI:10.2343/geochemj.1.0072
|
Wu CZ, Liu SH, Gu LX, Zhang ZZ and Lei RX. 2011a. Formation mechanism of the lanthanide tetrad effect for a topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China. Journal of Asian Earth Sciences, 42(5): 903-916 DOI:10.1016/j.jseaes.2010.09.011
|
Wu CZ, Lei RX, Santosh M, Chi GX, Gu LX and Xie SW. 2016. Ordovician volcano-sedimentary iron deposits of the Eastern Tianshan area, Northwest China: The Tianhu example. International Geology Review, 58(11): 1398-1416 DOI:10.1080/00206814.2016.1163516
|
Wu CZ, Xie SW, Gu LX, Samson IM, Yang T, Lei RX, Zhu ZY and Dang B. 2018a. Shear zone-controlled post-magmatic ore formation in the Huangshandong Ni-Cu sulfide deposit, NW China. Ore Geology Reviews, 100: 545-560 DOI:10.1016/j.oregeorev.2017.02.015
|
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011b. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014
|
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)
|
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1
|
Wu G, Liu RL, Chen GZ, Li TG, Li RH, Li YL, Yang F and Zhang T. 2021. Mineralization of the Weilasituo rare metal-tin-polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of granitic magmas. Acta Petrologica Sinica, 37(3): 637-664 (in Chinese with English abstract) DOI:10.18654/1000-0569/2021.03.01
|
Wu HH, Huang H, Zhang ZC, Wang T, Guo L, Zhang YH and Wang W. 2020. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb-Ta deposit in the northern margin of the North China Craton, China. Ore Geology Reviews, 125: 103692 DOI:10.1016/j.oregeorev.2020.103692
|
Wu J and Koga KT. 2018. Direct analyses of fluorine in aqueous fluids extracted from 1GPa experiments. Chemical Geology, 502: 44-54 DOI:10.1016/j.chemgeo.2018.10.011
|
Wu JH, Li H, Algeo TJ, Jiang WC and Zhou ZK. 2018b. Genesis of the Xianghualing Sn-Pb-Zn deposit, South China: A multi-method zircon study. Ore Geology Reviews, 102: 220-239 DOI:10.1016/j.oregeorev.2018.09.005
|
Wu JL. 2018. A primary study on geological characters and metallogenic prospect of the Fanzheng rubidium deposit in Altay City, Xinjiang Province. Xinjiang Nonferrous Metal, 41(1): 51-52, 54 (in Chinese)
|
Wu SH, Mao JW, Ireland TR, Zhao Z, Yao FJ, Yang YP and Sun WD. 2019. Comparative geochemical study of scheelite from the Shizhuyuan and Xianglushan tungsten skarn deposits, South China: Implications for scheelite mineralization. Ore Geology Reviews, 109: 448-464 DOI:10.1016/j.oregeorev.2019.04.021
|
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
|
Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395 DOI:10.2475/ajs.304.4.370
|
Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117 DOI:10.1016/j.jseaes.2007.10.008
|
Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M and Chen HL. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507 DOI:10.1146/annurev-earth-060614-105254
|
Xiao WJ, Windley BF, Han CM, Liu W, Wan B, Zhang JE, Ao SJ, Zhang ZY and Song DF. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 186: 94-128 DOI:10.1016/j.earscirev.2017.09.020
|
Xiao WJ, Song DF, Windley BF, Li JL, Han CM, Wan B, Zhang JE, Ao SJ and Zhang ZY. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Science China (Earth Sciences), 63(3): 329-361 DOI:10.1007/s11430-019-9524-6
|
Xie L, Wang RC, Chen J, Zhu JC, Zhang WL, Lu JJ and Zhang RQ. 2013. A tin-mineralized topaz rhyolite dike with coeval topaz granite enclaves at Qiguling in the Qitianling tin district, southern China. Lithos, 170-171: 252-268 DOI:10.1016/j.lithos.2013.03.001
|
Xie L, Wang ZJ, Wang RC, Zhu JC, Che XD, Gao JF and Zhao X. 2018. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China). Ore Geology Reviews, 95: 695-712 DOI:10.1016/j.oregeorev.2018.03.021
|
Xiong XL, Rao B, Chen FR, Zhu JC and Zhao ZH. 2002. Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150MPa and H2O-saturated conditions. Journal of Asian Earth Sciences, 21(2): 175-188 DOI:10.1016/S1367-9120(02)00030-5
|
Xu ZQ, Yang JS and Jiang M. 2001. Collision-orogeny of the Northern Qinghai-Tibet Plateau and its deep dynamics. Acta Geoscientia Sinica, 22(1): 5-10 (in Chinese with English abstract)
|
Xu ZQ, Fu XF, Wang RC, Li GW, Zheng YL, Zhao ZB and Lian DY. 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355: 105281 DOI:10.1016/j.lithos.2019.105281
|
Xue CJ, Zhao XB, Mo XX, Dong LH, Gu XX, Nurtaev B, Pak N, Zhang ZC, Wang XL, Zu B, Zhang GZ, Feng B and Liu JY. 2014. Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration. Earth Science Frontiers, 21(5): 128-155 (in Chinese with English abstract)
|
Xue CJ, Zhao XB, Zhao WC, Zhao Y, Zhang GZ, Nurtaev B, Pak N and Mo XX. 2020. Deformed zone hosted gold deposits in the China-Kazakhstan-Kyrgyzstan-Uzbekistan Tian Shan: Metallogenic environment, controlling parameters, and prospecting criteria. Earth Science Frontiers, 27(2): 294-319 (in Chinese with English abstract)
|
Xue HM, Guo LJ, Hou ZQ, Tong Y, Pan XF and Zhou XW. 2010. SHRIMP zircon U-Pb ages of the middle Neopaleozoic unmetamorphosed magmatic rocks in the southwestern slope of the Da Hinggan Mountains, Inner Mongolia. Acta Petrologica et Mineralogica, 29(6): 811-823 (in Chinese with English abstract)
|
Yan QH, Qiu ZW, Wang H, Wang M, Wei XP, Li P, Zhang RQ, Li CY and Liu JP. 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite. Ore Geology Reviews, 100: 561-573 DOI:10.1016/j.oregeorev.2016.11.010
|
Yang F, Sun JG, Wang Y, Fu JY, Na FC, Fan ZY and Hu ZZ. 2019. Geology, geochronology and geochemistry of Weilasituo Sn-polymetallic deposit in Inner Mongolia, China. Minerals, 9(2): 104 DOI:10.3390/min9020104
|
Yang ZF, Luo ZH, Lu XX, Huang F, Chen BH, Zhou JL and Cheng LL. 2014. The role of external fluid in the Shanggusi dynamic granitic magma system, East Qinling, China: Quantitative integration of textural and chemical data. Lithos, 208-209: 339-360 DOI:10.1016/j.lithos.2014.09.023
|
Yang ZM, Chang ZS, Paquette J, White NC, Hou ZQ and Ge LS. 2015. Magmatic Au mineralization at the Bilihe Au deposit, China. Economic Geology, 110(7): 1661-1668 DOI:10.2113/econgeo.110.7.1661
|
Yang ZM, Chang ZS, Hou ZQ and Meffre S. 2016. Age, igneous petrogenesis, and tectonic setting of the Bilihe gold deposit, China, and implications for regional metallogeny. Gondwana Research, 34: 296-314 DOI:10.1016/j.gr.2015.04.003
|
Yin R, Han L, Huang XL, Li J, Li WX and Chen LL. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104(7): 949-965 DOI:10.2138/am-2019-6796
|
Zajacz Z, Halter WE, Pettke T and Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta, 72(8): 2169-2197 DOI:10.1016/j.gca.2008.01.034
|
Zaraisky GP, Aksyuk AM, Devyatova VN, Udoratina OV and Chevychelov VY. 2009. The Zr/Hf ratio as a fractionation indicator of rare-metal granites. Petrology, 17(1): 25-45 DOI:10.1134/S0869591109010020
|
Zhai DG, Liu JJ, Li JM, Zhang M, Li BY, Fu X, Jiang HC, Ma LJ and Qi L. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its geological significance. Mineral Deposits, 35(5): 1011-1022 (in Chinese with English abstract)
|
Zhang C, Holtz F, Ma CQ, Wolff PE and Li XY. 2012. Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: A case study from the Liujiawa pluton (Dabie orogen, China). Contributions to Mineralogy and Petrology, 164(5): 859-879 DOI:10.1007/s00410-012-0778-9
|
Zhang C, Li ZD, Li XG, Ao Z, Yu RA, Wang JY, Li GY, Zhang Q and Duan M. 2019. Zircon U-Pb dating and Hf isotopic and geochemical characteristics for K-feldspar granite in Zhaojinggou, Inner Mongolia. Acta Petrologica et Mineralogica, 38(3): 303-317 (in Chinese with English abstract)
|
Zhang DH, Zhang WH and Xiu GJ. 2004. The ore fluid geochemistry of F-rich silicate melt-hydrous fluid system and its metallogeny-the current status and problems. Earth Science Frontiers, 11(2): 479-490 (in Chinese with English abstract)
|
Zhang DH, Huang BC, Zhao GC, Meert JG, Williams S, Zhao J and Zhou TH. 2021. Quantifying the extent of the Paleo-Asian Ocean during the Late Carboniferous to Early Permian. Geophysical Research Letters, 48(15): e2021GL094498
|
Zhang QF, Hu AQ, Zhang GX, Fan SK, Pu ZP and Li QX. 1994. Evidence from isotopic age for presence of Mesozoic-Cenozoic magmatic activities in Altai Region, Xining. Geochimica, 23(3): 269-280 (in Chinese with English abstract)
|
Zhang RQ, Lehmann B, Seltmann R, Sun WD and Li CY. 2017a. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology, 45(12): 1095-1098 DOI:10.1130/G39634.1
|
Zhang RQ, Lu JJ, Lehmann B, Li CY, Li GL, Zhang LP, Guo J and Sun WD. 2017b. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284 DOI:10.1016/j.oregeorev.2016.10.039
|
Zhang TF, Guo S, Xin HT, Zhang Y, He P, Liu WG, Zhang K, Liu CB, Wang KX and Zhang C. 2019. Petrogenesis and magmatic evolution of highly fractionated granite and their constraints on Sn-(Li-Rb-Nb-Ta) mineralization in the Weilasituo deposit, Inner Mongolia, Southern Great Xing'an Range, China. Earth Science, 44(1): 248-267 (in Chinese with English abstract)
|
Zhang WY, Nie FJ, Liu Y, Jiang SH, Xu DQ and Guo LJ. 2008. 40Ar-39Ar geochronology of the Aououte Cu-Zn deposit in Inner Mongolia and its significance. Acta Geoscientica Sinica, 29(5): 592-598 (in Chinese with English abstract)
|
Zhang YY, Yuan C, Long XP, Sun M, Huang ZY, Du L and Wang XY. 2017c. Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: Evidence for arc rifting. Gondwana Research, 43: 92-106 DOI:10.1016/j.gr.2016.02.004
|
Zhang ZZ, Gu LX, Yang H, Wu CZ, Wang YX and Min MZ. 2005. Characteristics and genesis of the Pingdingshan mega-augen gneissic granite in the eastern Tianshan Mountain areas. Acta Petrologica Sinica, 21(3): 889-908 (in Chinese with English abstract)
|
Zhao B, Zhang DH, Zhang RZ and Shi CL. 2015. The progress of geochemical properties and metallogenic effect of F-rich silicate melt-solution fluid system. Chinese Journal of Geology, 50(1): 222-240 (in Chinese with English abstract)
|
Zhao GC, Wang YJ, Huang BC, Dong YP, Li SZ, Zhang GW and Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262-286 DOI:10.1016/j.earscirev.2018.10.003
|
Zhao ZH, Xiong XL and Han XD. 1999. Formation mechanism of ree quarteting effect in granites: A case study of the Qianli and Balge granites. Scientia Sinica (Terrae), 29(4): 331-338 (in Chinese)
|
Zhao ZH, Chen HY and Han JS. 2020. Data of rubidium-dominant minerals. Geochimica, 49(6): 690-693 (in Chinese with English abstract)
|
Zhi J, Lei RX, Chen BY, Muhtar MN, Feng ZJ, Zhang K, Cai YF and Wu CZ. 2021. Zircon genesis and geochronology for the Zhangbaoshan super-large rubidium deposit in the Eastern Tianshan, NW China: Implication to magmatic-hydrothermal evolution and mineralization processes. Frontiers in Earth Science, 9: 682720 DOI:10.3389/feart.2021.682720
|
Zhou JB, Wilde SA, Zhao GC and Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93 DOI:10.1016/j.earscirev.2017.01.012
|
Zhou TF, Yuan F, Zhang DY, Fan Y, Liu S, Peng MX and Zhang JD. 2010. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478-502 (in Chinese with English abstract)
|
Zhou ZH, Che HW, Ma XH and Gao X. 2016. Magmatic evolution and mineralization process of the super-large Shihuiyao Rb-Nb-Ta deposit, southern Great Xing'an Range, China. Acta Geologica Sinica, 90(6): 2275-2276 DOI:10.1111/1755-6724.13043
|
Zhou ZH, Gao X, Ouyang HG, Liu J and Zhao JQ. 2019. Formation mechanism and intrinsic genetic relationship between tin-tungsten-lithium mineralization and peripheral lead-zinc-silver-copper mineralization: Exemplified by Weilasituo tin-tungsten-lithium polymetallic deposit, Inner Mongolia. Mineral Deposits, 38(5): 1004-1022 (in Chinese with English abstract)
|
Zhu JC, Liu WX and Zhou FY. 1993. Ongonite and topazite in dike No. 431 of Xianghualing district and their spatial zonation and genetic relationship. Acta Petrologica Sinica, 9(2): 158-166 (in Chinese with English abstract)
|
Zhu JC, Li RK, Li FC, Xiong XL, Zhou FY and Huang XL. 2001. Topaz-albite granites and rare-metal mineralization in the Limu District, Guangxi Province, southeast China. Mineralium Deposita, 36(5): 393-405 DOI:10.1007/s001260100160
|
Zhu JC, Rao B, Xiong XL, Li FC and Zhang PH. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(2): 141-152 (in Chinese with English abstract)
|
Zhu JZ, Lu XC and Yao ZW. 2013. Geological characteristics and metallogenic regularity of rare metal deposit in Shihuiyao, Inner Mongolia. Mineral Exploration, 4(6): 635-641 (in Chinese with English abstract)
|
Zhu XF, Chen YJ, Wang P, Zhang C, Cai YL, Deng K, Xu QW and Li KY. 2018. Zircon U-Pb age, geochemistry and Hf isotopes of the causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia. Earth Science Frontiers, 25(5): 119-134 (in Chinese with English abstract)
|
Zhu XY, Zhang ZH, Fu X, Li BY, Wang YL, Jiao ST and Sun YL. 2016. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia. Geology in China, 43(1): 188-208 (in Chinese with English abstract)
|
Zhu YF, Zeng YS and Ai YF. 1996. Experimental evidence for a relationship between liquid immiscibility and ore-formation in felsic magmas. Applied Geochemistry, 11(3): 481-487 DOI:10.1016/S0883-2927(96)00030-3
|
曹冬梅, 张雨山, 高春娟, 黄西平, 张家凯. 2011. 提铷技术研究进展. 盐业与化工, 40(1): 44-47. |
陈果, 梁冠杰, 刘猛. 2018. 甘肃某铷多金属矿中含铷白云母的选矿试验研究. 矿业研究与开发, 38(9): 59-62. |
陈伟, 陈斌, 孙克克. 2018. 江西大湖塘矿集区茅公洞钨矿有关的高分异花岗岩成因研究. 岩石学报, 34(6): 1704-1724. |
陈衍景. 2000. 中国西北地区中亚型造山——成矿作用的研究意义和进展. 高校地质学报, 6(1): 17-22. DOI:10.3969/j.issn.1006-7493.2000.01.002 |
陈志广, 张连昌, 吴华英, 万博, 曾庆栋. 2008. 内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景. 岩石学报, 24(4): 879-889. |
段先哲, 时皓, 谭凯旋, 谢焱石, 陈亮, 韩世礼, 胡杨, 冯志刚, 张燕群, 郭恒飞, 蒋乐. 2016. 内蒙古石灰窑花岗岩型铌钽铷矿床地质特征及成因. 地质与资源, 25(1): 32-40. DOI:10.3969/j.issn.1671-1947.2016.01.006 |
高允, 孙艳, 赵芝, 李建康, 何晗晗, 杨岳清. 2017. 内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义. 岩矿测试, 36(5): 551-558. |
高征西, 王继春, 周路路, 赵鑫, 秦江东, 王沛东, 吴艳君, 汪岩, 宝音乌力吉. 2019. 内蒙古温都尔庙地区早二叠世岛弧型花岗闪长岩的发现: 对古亚洲洋闭合的时限约束. 地球科学, 44(10): 3178-3192. |
顾连兴, 杨浩, 陶仙聪, 严正富, 李惠民, 王金东, 刘彦东. 1990. 中天山东段花岗岩类铷-锶年代学及构造演化. 桂林冶金地质学院学报, 10(1): 49-55. |
顾连兴, 杨浩, 苟晓琴, 郭继春, 王金珠. 1994. 东疆星星峡地区白石头泉高铷氟花岗岩的特征和成因. 岩石学报, 10(1): 41-53. DOI:10.3321/j.issn:1000-0569.1994.01.004 |
顾连兴, 苟晓琴, 张遵忠, 吴昌志, 廖静娟, 杨浩, 尹琳, 闵茂中. 2003. 东天山一个多相带高铷氟花岗岩的地球化学及成岩作用. 岩石学报, 19(4): 585-600. |
顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识. 岩石学报, 22(5): 1103-1120. |
顾连兴, 吴昌志, 张遵忠, 苟晓琴, 刘四海, 郑远川, 张光辉. 2007. 东疆白石头泉含黄玉天河石花岗岩体的地球化学: 分带和岩浆演化. 高校地质学报, 13(2): 207-223. DOI:10.3969/j.issn.1006-7493.2007.02.006 |
郭贵娟. 2016. 内蒙古维拉斯托锡多金属矿床地质特征及成因探讨. 硕士学位论文. 北京: 中国地质大学(北京)
|
郝宇杰, 任云生, 赵华雷, 邹欣桐, 陈聪, 侯召硕, 屈文俊. 2013. 黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义. 吉林大学学报(地球科学版), 43(6): 1840-1850. |
黄雯孝, 梁冠杰, 何兰军. 2019. 甘肃国宝山铷矿选冶工艺试验研究. 中国资源综合利用, 37(2): 17-23. DOI:10.3969/j.issn.1008-9500.2019.02.005 |
贾宏翔, 庞振山, 耿林, 张志辉, 贾儒雅. 2016. 广东省龙川县天堂山锡多金属矿床成岩成矿时代及其地质意义. 地质论评, 62(增1): 107-108. |
赖杨, 杨磊, 李丹峰, 张伟. 2016. 甘肃国宝山铷矿床矿石特征研究. 矿产综合利用, (3): 71-75. DOI:10.3969/j.issn.1000-6532.2016.03.017 |
李建康, 张德会, 王登红, 张文淮. 2008. 富氟花岗岩浆液态不混溶作用及其成岩成矿效应. 地质论评, 54(2): 175-183. DOI:10.3321/j.issn:0371-5736.2008.02.004 |
李静萍, 许世红. 2005. 长眼睛的金属——铯和铷. 化学世界, 46(2): 85. DOI:10.3969/j.issn.0367-6358.2005.02.019 |
李通国, 梁明宏, 余君鹏, 黄增保, 张翔, 朱永新, 张有奎, 孙新春, 张红斌, 刘养雄, 刘元平, 周会武, 许延龙, 吴义布, 朱文戈, 何来信, 冯军, 童晓华, 李绪善, 王玉玺, 把建业, 冯备战, 刘多朝, 王鹤轩, 张兴华, 赵海钧, 任文秀. 2018. 甘肃省稀有(稀土)金属成矿地质背景研究. 北京: 地质出版社, 1-158.
|
李志丹, 李效广, 崔玉荣, 李国占, 张佳, 郭虎, 刘文刚, 张超, 俞礽安, 谢瑜, 王佳营. 2019. 内蒙古赵井沟铌钽矿床燕山期成矿: 来自LA-MC-ICP-MS独居石、锆石U-Pb和黑云母40Ar-39Ar年龄的证据. 地球科学, 44(1): 234-247. |
李真真, 秦克章, 赵俊兴, 李光明, 苏仕强. 2019. 锡-银多金属成矿系统的基本特征、研究进展与展望. 岩石学报, 35(7): 1979-1998. |
刘瑞麟, 武广, 李铁刚, 陈公正, 武利文, 章培春, 张彤, 江彪, 刘文元. 2018. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义. 地学前缘, 25(5): 189-201. |
刘翼飞, 江思宏, 张义. 2010. 内蒙古锡林浩特地区拜仁达坝矿区闪长岩体锆石SHRIMP U-Pb定年及其地质意义. 地质通报, 29(5): 688-696. DOI:10.3969/j.issn.1671-2552.2010.05.008 |
刘翼飞, 聂凤军, 江思宏, 侯万荣, 梁清玲, 张可, 刘勇. 2012. 内蒙古苏尼特左旗准苏吉花钼矿床成岩成矿年代学及其地质意义. 矿床地质, 31(1): 119-128. DOI:10.3969/j.issn.0258-7106.2012.01.010 |
吕斌, 王涛, 童英, 张磊, 杨奇荻, 张建军. 2017. 中亚造山带东部岩浆热液矿床时空分布特征及其构造背景. 吉林大学学报(地球科学版), 47(2): 305-343. |
毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 2019. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689-698. |
聂凤军, 王丰翔, 赵宇安, 孙艳, 柴华. 2013. 内蒙古赵井沟大型铌钽矿床地质特征及成因. 矿床地质, 32(4): 730-743. DOI:10.3969/j.issn.0258-7106.2013.04.007 |
潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6): 1-23. |
秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区、演化与成矿地质背景研究. 新疆地质, 20(4): 302-308. DOI:10.3969/j.issn.1000-8845.2002.04.002 |
秦克章, 彭晓明, 三金柱, 徐兴旺, 方同辉, 王书来, 于海峰. 2003. 东天山主要矿床类型、成矿区带划分与成矿远景区优选. 新疆地质, 21(2): 143-150. DOI:10.3969/j.issn.1000-8845.2003.02.001 |
秦克章, 翟明国, 李光明, 赵俊兴, 曾庆栋, 高俊, 肖文交, 李继亮, 孙枢. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325. |
邵厥年, 陶维屏. 2010. 矿产资源工业要求手册. 北京: 地质出版社, 249-250.
|
舒良树, 郭召杰, 朱文斌, 卢华复, 王博. 2004. 天山地区碰撞后构造与盆山演化. 高校地质学报, 10(3): 393-404. DOI:10.3969/j.issn.1006-7493.2004.03.010 |
孙艳, 王瑞江, 亓锋, 李建康, 梅燕雄. 2013. 世界铷资源现状及我国铷开发利用建议. 中国矿业, 22(9): 11-13, 57. DOI:10.3969/j.issn.1004-4051.2013.09.003 |
孙艳, 王瑞江, 李建康, 赵芝. 2015. 锡林浩特石灰窑铷多金属矿床白云母40Ar-39Ar年代及找矿前景分析. 地质论评, 61(2): 463-468. |
孙艳, 王登红, 王成辉, 李建康, 赵芝, 王岩, 郭唯明. 2019. 我国铷矿成矿规律、新进展和找矿方向. 地质学报, 93(6): 1231-1244. DOI:10.3969/j.issn.0001-5717.2019.06.005 |
谭彦妮, 刘咏. 2015. 铷及含铷材料的性能与应用研究进展. 中国有色金属学报, 27(2): 272-281. |
王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361-370. DOI:10.3969/j.issn.1000-3657.2013.02.001 |
王登红, 王瑞江, 孙艳, 李建康, 赵芝, 赵汀, 屈文俊, 付小方, 江善元, 黄华谷, 冯文杰, 徐平, 李胜苗, 黄新鹏, 周辉, 朱永新, 涂其军, 李新仁, 方一平, 周园园. 2016. 我国三稀(稀有稀土稀散)矿产资源调查研究成果综述. 地球学报, 37(5): 569-580. |
王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. DOI:10.3969/j.issn.0001-5717.2019.06.003 |
王瑾. 2009. 内蒙古维拉斯托铜多金属矿床矿区花岗岩类年代学与地球化学. 硕士学位论文. 北京: 中国地质大学(北京)
|
王继春, 王银宏, 张梅, 刘家军, 彭润民, 王建平, 宋崇宇, 周路路. 2016. 内蒙古高尔旗银铅锌矿区花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 现代地质, 30(5): 961-980. DOI:10.3969/j.issn.1000-8527.2016.05.003 |
王新宇, 侯青叶, 王瑾, 陈岳龙, 刘金宝, 王忠, 李大鹏. 2013. 内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究. 现代地质, 27(1): 67-78. DOI:10.3969/j.issn.1000-8527.2013.01.007 |
王中刚, 赵振华, 邹天人. 1998. 阿尔泰花岗岩类地球化学. 北京: 科学出版社.
|
吴昌志, 张遵忠, Zaw K, Della-Pasque F, 唐俊华, 郑远川, 汪传胜, 三金柱. 2006. 东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义. 岩石学报, 22(5): 1121-1134. |
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36. |
武广, 刘瑞麟, 陈公正, 李铁刚, 李睿华, 李英雷, 杨飞, 张彤. 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示. 岩石学报, 37(3): 637-664. |
吴家林. 2018. 新疆阿勒泰市方正铷矿地质特征及成矿远景初探. 新疆有色金属, 41(1): 51-52, 54. |
肖文交, 宋东方, Windley BF, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(地球科学), 49(10): 1512-1545. |
许志琴, 杨经绥, 姜枚. 2001. 青藏高原北部的碰撞造山及深部动力学——中法地学合作研究新进展. 地球学报, 22(1): 5-10. DOI:10.3321/j.issn:1006-3021.2001.01.002 |
薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Nurtaev B, Pak N, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛. 2014. 西天山"亚洲金腰带"及其动力背景和成矿控制与找矿. 地学前缘, 21(5): 128-155. |
薛春纪, 赵晓波, 赵伟策, 赵云, 张国震, Nurtaev B, Pak N, 莫宣学. 2020. 中-哈-吉-乌天山变形带容矿金矿床: 成矿环境和控矿要素与找矿标志. 地学前缘, 27(2): 294-319. |
薛怀民, 郭利军, 侯增谦, 童英, 潘晓菲, 周喜文. 2010. 大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学. 岩石矿物学杂志, 29(6): 811-823. DOI:10.3969/j.issn.1000-6524.2010.06.016 |
翟德高, 刘家军, 李俊明, 张梅, 李泊洋, 付旭, 蒋胡灿, 马立军, 漆亮. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022. |
张超, 李志丹, 李效广, 奥琮, 俞礽安, 王佳营, 李光耀, 张祺, 段明. 2019. 内蒙古赵井沟钾长花岗岩锆石U-Pb定年、Hf同位素和岩石地球化学特征. 岩石矿物学杂志, 38(3): 303-317. DOI:10.3969/j.issn.1000-6524.2019.03.002 |
张德会, 张文淮, 许国建. 2004. 富F熔体溶液体系流体地球化学及其成矿效应——研究现状及存在问题. 地学前缘, 11(2): 479-490. DOI:10.3321/j.issn:1005-2321.2004.02.018 |
张前锋, 胡蔼琴, 张国新, 范嗣昆, 蒲志平, 李启新. 1994. 阿尔泰地区中、新生代岩浆活动的同位素年龄证据. 地球化学, 23(3): 269-280. DOI:10.3321/j.issn:0379-1726.1994.03.007 |
张天福, 郭硕, 辛后田, 张云, 何鹏, 刘文刚, 张阔, 刘传宝, 王可祥, 张超. 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约. 地球科学, 44(1): 248-267. |
张万益, 聂凤军, 刘妍, 江思宏, 许东青, 郭灵俊. 2008. 内蒙古奥尤特铜-锌矿床绢云母40Ar-39Ar同位素年龄及地质意义. 地球学报, 29(5): 592-598. DOI:10.3321/j.issn:1006-3021.2008.05.008 |
张遵忠, 顾连兴, 杨浩, 吴昌志, 王银喜, 闵茂中. 2005. 东天山平顶山巨眼球状片麻状花岗岩特征及成因. 岩石学报, 21(3): 889-908. |
赵博, 张德会, 张荣臻, 石成龙. 2015. 富F熔体——溶液流体体系的地球化学性状及成矿效应研究进展. 地质科学, 50(1): 222-240. DOI:10.3969/j.issn.0563-5020.2015.01.014 |
赵振华, 熊小林, 韩小东. 1999. 花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例. 中国科学(D辑), 29(4): 331-338. |
赵振华, 陈华勇, 韩金生. 2020. 关于铷的独立矿物. 地球化学, 49(6): 690-693. |
周涛发, 袁峰, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇. 2010. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究. 岩石学报, 26(2): 478-502. |
周振华, 高旭, 欧阳荷根, 刘军, 赵家齐. 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制——以内蒙古维拉斯托锡钨锂多金属矿床为例. 矿床地质, 38(5): 1004-1022. |
朱金初, 刘伟新, 周凤英. 1993. 香花岭431岩脉中翁岗岩和黄英岩及空间分带和成因关系. 岩石学报, 9(2): 158-166. DOI:10.3321/j.issn:1000-0569.1993.02.004 |
朱金初, 饶冰, 熊小林, 李福春, 张佩华. 2002. 富锂氟含稀有矿化花岗质岩石的对比和成因思考. 地球化学, 31(2): 141-152. DOI:10.3321/j.issn:0379-1726.2002.02.005 |
朱京占, 卢显成, 姚仲伟. 2013. 内蒙古石灰窑稀有金属矿地质特征及矿化规律. 矿产勘查, 4(6): 635-641. DOI:10.3969/j.issn.1674-7801.2013.06.006 |
朱雪峰, 陈衍景, 王玭, 张成, 蔡云龙, 邓轲, 许强伟, 李凯月. 2018. 内蒙古毕力赫斑岩型金矿成矿岩体地球化学、锆石U-Pb年代学及Hf同位素研究. 地学前缘, 25(5): 119-134. |
祝新友, 张志辉, 付旭, 李泊阳, 王艳丽, 焦守涛, 孙雅琳. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征. 中国地质, 43(1): 188-208. DOI:10.3969/j.issn.1000-3657.2016.01.014 |