岩石学报  2021, Vol. 37 Issue (8): 2502-2520, doi: 10.18654/1000-0569/2021.08.15   PDF    
岩浆热液型银矿床、银矿省及形成的控制因素
回凯旋1,2,3, 秦克章1,2,3, 韩日1,2,3, 赵俊兴1,2, 王乐1,2, 高燊1,2, 张夏楠1,4     
1. 中国科学院矿产资源研究重点实验室, 中国科学院地质与地球物理研究所, 北京 100029;
2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学地球与行星科学学院, 北京 100049;
4. 核资源与环境国家重点实验室, 东华理工大学, 南昌 330013
摘要: 岩浆热液型银矿床主要指与岩浆热液作用相关的独立银矿床和共生银矿床(Ag平均品位一般大于100g/t),它是银最重要的来源。本文对全球80多个典型的大型-超大型岩浆热液型银矿床进行了梳理和总结,将其主要分为浅成低温热液型(低硫型、中硫型和高硫型)、矽卡岩型、斑岩型和五元素型四种类型,其中浅成低温热液型占主导,斑岩型和矽卡型数量较少。全球大型-超大型的岩浆热液型银矿床主要分布在东太平洋俯冲带和中亚造山带东段,这些银矿床均位于陆壳基底之上。按照发育地区不同可分为六大银成矿省,即中国兴蒙银成矿省、美国西部盆岭银成矿省、墨西哥西北银成矿省、秘鲁中部银多金属成矿省、玻利维亚银锡成矿省和俄罗斯远东银锡成矿省。成矿时代主要集中在中、新生代。这些银成矿省与大规模酸性-中酸性岩浆活动密切相关,包括发育大量酸性熔结凝灰岩的长英质大火成岩省,或者富锡流纹岩、黄玉流纹岩和石英斑岩等高演化岩浆岩。这些大规模岩浆热液银成矿作用通常与区域大地构造背景转换相关,比如从挤压到伸展或者伸展到挤压。相对富银的含水大陆下地壳源区、大规模高分异的岩浆作用、银对熔体中共存硫化物和磁铁矿相对弱的相容性、高盐度的流体、成矿流体集中运移的通道和高效的沉淀机制是银大规模成矿的有利控制因素。银矿床的研究工作相对于铜、金矿床远远落后,银成矿省和酸性大火成岩省的内在联系、控制斑岩钼-银/锡-银两种银成矿系统的机制、岩浆演化对银成矿的控制、银矿潜力区的勘查找矿等关键问题仍亟待解决。
关键词: 岩浆热液型银矿床    矿床成因分类    银矿省    岩浆热液过程    基底与构造背景    问题与展望    
Magmatic-hydrothermal silver deposits, argentiferous provinces and the main controlling factors of formation
HUI KaiXuan1,2,3, QIN KeZhang1,2,3, HAN Ri1,2,3, ZHAO JunXing1,2, WANG Le1,2, GAO Shen1,2, ZHANG XiaNan1,4     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
Abstract: Magmatic-hydrothermal silver deposits (MHSD) mainly include silver-only and silver-base metal deposits (generally average Ag grade >100g/t) associated with magmatic-hydrothermal activities. MHSD are the major source of silver. In this contribution,more than 80 typical large and super-large MHSD all over the world are sorted and summarized,which are mainly classified into four types: epithermal (low-,intermediate-,and high-sulfidation),porphyry,skarn and five-element deposits,among which the epithermal type is most important whereas porphyry and skarn types are subordinate. The large and super-large MHSD are mainly located in the East Pacific subduction zone and the eastern Central Asian orogenic belt,all of which are located on the continental basement,and the age is mainly in the Mesozoic and Cenozoic. The six silver metallogenic provinces are the China Xing-Meng argentiferous province,the United States Western Basin Ridge argentiferous province,Northwest Mexico argentiferous province,the Central Peru argentiferous-polymetallic province,the Bolivia silver-tin argentiferous province,and Russia Far East silver-tin argentiferous province. The argentiferous provinces are genetically related to large-scale acidic to intermediate-acidic magmatism,such as the silicic large igneous provinces with massive rhyolite ignimbrite,or the highly evolved magmatic rocks characterized by tin-rich rhyolite,topaz rhyolite,and quartz porphyry. These large-scale magmatic-hydrothermal activities are formed during tectonic transitions,such as from compression to extension or extension to compression. Relatively silver-rich hydrous continental lower crustal source,large-scale highly evolved magma,relatively weak preferentially partition of silver into sulfides and magnetite,high salinity fluids,focused fluid flow and efficient precipitation are important controlling factors for large-scale silver mineralization. The studies for silver are far behind that of copper and gold,and there are still many questions about magmatic-hydrothermal silver deposits,for instance,the linkage between argentiferous provinces and silicic large igneous provinces,the formation of silver mineralization related to molybdenum and tin system,the control of silver mineralization by magmatic evolution,and the exploration for silver prospects.
Key words: Magmatic-hydrothermal silver deposits    Genetic classification    Argentiferous provinces    Magmatic-hydrothermal process    Basement and tectonic setting    Problems and prospect    

银作为重要的贵金属元素,因其良好的光学、电学和磁学性质,在工业和生活中扮演比其它贵金属更多的角色,有非常广泛的用途。根据银在矿床中的经济价值,可将银矿床分为独立银矿床、共生银矿床、伴生银矿床和含银矿床(李绥远等, 1996)。本文所提到的大型岩浆热液型银矿床是指银的平均品位一般超过100g/t,储量在大型规模以上(>1000t)的矿床;其中储量>5000t者为特大型银矿床,>10000t者为超大型银矿床。银矿床目前还没有统一的分类体系。Graybeal and Viker (2010)将富银矿床分为海相火山岩块状硫化物型(VMS)、海相沉积喷流型(SEDEX)、沉积成岩型(Lithogene)和岩浆热液型(Magmatic-Hydrothermal)四大类,并对其全球分布和基本地质特征进行了总结。其中岩浆热液型银矿床银的平均品位高、储量大,是银最重要的来源。

目前国内学者对中国银矿地质特征、时空分布、成矿规律、银矿物学和成因机制等进行了不少研究和总结(李绥远等, 1996; 王静纯和简晓忠, 1996; 黄崇轲和朱裕生, 2002; 李朝阳等, 2003; 张大权等, 2015; 江彪等, 2020)。但目前缺乏对全球岩浆热液型银矿床的总结性研究;尚未有被广泛接受的岩浆热液型银矿床分类方案;缺乏对全球大型-超大型岩浆热液型银矿床时空分布的全面统计;缺乏对银的地球化学性质和成矿机制的归纳总结。本文聚焦与岩浆热液作用相关的银矿床,梳理了岩浆热液型银矿床的类型与基本特征,对比了不同成因类型和不同成矿系统的岩浆热液型银矿床的异同;总结了该类矿床全球时空分布并划分出六个世界级银成矿省,讨论了不同银成矿省的大地构造背景;以银为研究对象,探讨了源区、岩浆过程、热液过程和后期次生富集对岩浆热液型银矿形成的控制作用;最后总结了岩浆热液型银矿的矿产勘查指标并预测了靶区,希望能为岩浆热液型银矿床的勘查提供借鉴。

1 岩浆热液型银矿床类型及特征

岩浆热液型银矿床是指和火山岩、次火山岩和侵入体具有成因联系的银矿床,主要包括浅成低温热液型(低硫型、中硫型和高硫型)、矽卡岩型、斑岩型和五元素型四种(图 1表 1)。

图 1 岩浆热液型银矿成矿模式图(据Sillitoe and Hedenquist, 2003修改) Fig. 1 Schematic sections of magmatic-hydrothermal silver mineralization types (modified after Sillitoe and Hedenquist, 2003)

表 1 岩浆热液型银矿床特征总结表 Table 1 Geological characteristics of magmatic hydrothemal silver deposits

浅成低温热液型银矿是岩浆热液型银矿最重要的类型,故此处对浅成低温热液矿床作一简要介绍。浅成低温热液矿床是和陆相岩浆活动有关,形成温度一般 < 300℃,深度一般 < 1.5km,具有特定蚀变-矿化组合、结构和构造的一类矿床(Sillitoe and Hedenquist, 2003)。Lindgren (1933)最早根据矿石和蚀变矿物学以及结构等推测了成矿温度和压力,提出浅成低温热液型矿床的术语。随着研究和勘探的不断深入,浅成低温热液型矿床的分类一直在更新和细化。自20世纪70年代至21世纪初,浅成低温热液型矿床“两分法”分类方案出现多种叫法,可以总结为酸性-氧化的高硫型和中性-还原的低硫型,至今仍有较多人在使用该分类(Sillitoe, 1977; Hedenquist, 1987; Simmons et al., 2005)。其表达方式主要为两种,一为矿物组合表达,比如明矾石-高岭石和冰长石-绢云母(Berger and Henley, 1989)、石英-明矾石±叶腊石±地开石±高岭石和石英±方解石±冰长石±伊利石(Simmons et al., 2005);二为硫化状态(sulfidation, 注意此时硫化状态指的是硫的氧化状态,高硫指硫为+6价,低硫指硫为-2价;Hedenquist, 1987),比如高硫型和低硫型。由于许多低硫型矿床具有两种截然不同的大地构造背景、与岩浆的关系和矿物组合(John et al., 1999; John, 2001),Hedenquist et al. (2000)将低硫型浅成低温热液矿床进而划分为低硫型和中硫型浅成低温热液矿床两类,形成浅成低温热液矿床的“三分法”方案。“三分法”浅成低温热液矿床是根据原生硫化物组合的硫化状态(sulfidation, 注意此时硫化状态指的是不同硫逸度下含硫矿物的稳定性,对应不同的含硫矿物组合)包括低硫型(LS,磁黄铁矿)、中硫型(IS,黝铜矿/砷黝铜矿、辉银矿和贫铁闪锌矿)和高硫型(HS,硫砷铜矿、四方硫砷铜矿、脆硫锑铜矿和铜蓝)浅成低温热液矿床(Sillitoe and Hedenquist, 2003; Wang et al., 2019)。但是,仅依靠含硫矿物的硫化状态划分浅成低温热液矿床在实际勘查中并不实用,野外不易识别并且在单个矿床甚至手标本上也可以出现不同硫化状态的矿物组合。多种特征(矿石结构、蚀变组合、金属含量、脉石矿物、硫化物组合、流体盐度和大地构造背景等)综合判断是较为妥当的方式(White et al., 2019)。本文采用“三分法”分类,综合多种特征对矿床进行判别。前人已经证明斑岩-高硫-中硫型矿床之间具有成因上的演化关系(Einaudi et al., 2003)。以往认为由于大地构造背景、与岩浆的关系和流体盐度等原因,导致低硫型矿床不能由高硫、中硫型矿床演化而来(Sillitoe and Hedenquist, 2003; Simmons et al., 2005)。但有学者根据对墨西哥银铅锌矿床的研究提出中-低硫型矿床(LS-IS, B类型;Camprubí and Albinson, 2007),这类矿床特征是浅部为典型的低硫型特征(包括矿化、结构、金属含量),而深部为中硫型的银铅锌矿化,比如墨西哥Pachuca银金铅锌矿床(Dreier, 2005)。

浅成低温热液银矿床主要为脉状,但当围岩为碳酸盐岩时,浅成低温热液矿床可以形成块状的交代碳酸盐岩型矿床,比如秘鲁的Cerro de Pasco矿床。与矽卡岩型矿床相比,交代碳酸盐岩型主要指在富碳酸盐的沉积岩或者喀斯特等开放空间中矿石组成大于50%的矿床,但是并没有产生典型的矽卡岩硅酸盐矿物,有学者将这二者统称为高温碳酸盐容矿型矿床(High-temperature carbonate-hosted deposit; Megaw et al., 1988),用以区分MVT型矿床。斑岩型银矿床是指呈网脉状、浸染状矿化的多金属富银岩浆热液系统,在世界上少有分布。五元素矿床是较为特殊的脉状银矿,成因尚有争论。五元素矿床定义多引用Kissin (1992)关于五元素矿床的综述,该类型矿床是基于元素Ag、As、Co、Ni和Bi,含有自然银、自然砷、自然铋以及一系列的Ni-、Co-和Fe-砷化物,脉石矿物几乎全部为碳酸盐的热液脉状矿床。五元素矿床元素组合并非一成不变,可能含U等元素,但是五元素矿石组合必须含有Ni-Co的砷化物以及自然银(Kissin, 1992)。

1.1 浅成低温热液型

该类型银矿主要为中硫型和低硫型浅成低温热液矿床,高硫型浅成低温热液银矿床较少。矿体多呈脉状,在碳酸盐岩中可呈块状(图 1a, b)。围岩主要为酸性-中性火山岩,可见沉积地层。该类矿床空间分布范围较大、脉系众多、热液期次复杂(秦克章, 1998; Dreier, 2005; Velador et al., 2010; Mango et al., 2014; Zamora-Vega et al., 2018; Montoya-Lopera et al., 2020)。金属组合包括Ag±Au±Sb、Ag-Pb-Zn±Au±Mn、Ag-Pb-Zn-Cu-Mo±Au±Bi、Ag-Pb-Zn-Sn±Cu±In,同时伴生一些In、Cd、Ge、Bi (Baumgartner et al., 2008; 李真真等, 2019; Wang et al., 2019; 金露英等, 2020)。不同成因类型的浅成低温热液矿床蚀变-矿化差别较大(表 1)。

高硫型浅成低温热液银矿主要分布在美国、秘鲁和玻利维亚。其特征蚀变为硅化、多孔石英(图 2a)、高级泥化(明矾石、高岭石、地开石、叶腊石和铝-磷酸盐-硫酸盐矿物)和绢云母化,当与锡矿化相关时会出现电气石化。玻利维亚Cerro Rico de Potosi为超大型高硫型银矿(仅蚀变岩帽中银含量>8.6万t),是世界第一大银矿(Sillitoe et al., 1998)。其发育大量的深成铝-磷酸盐-硫酸盐矿物,如硫磷铝锶矿(svanbergite, SrAl3(PO4)(SO4)(OH)6),深成明矾石很少(Sillitoe et al., 1998),这可能是判断深部锡矿化的指标之一。特征矿石矿物包括硫砷铜矿、铜蓝等,银矿物会出现银-铋矿物、硫银锡矿,以及所有类型银矿床中均广泛发育的自然银、深红银矿-淡红银矿、辉银矿等。深部往往会出现斑岩或者热液脉状的铜金、锡成矿系统(图 1b; Sillitoe and Lorson, 1994; Sillitoe et al., 1998)。

图 2 岩浆热液型银矿床典型矿石 (a)玻利维亚Cerro Rico de Potosi高硫型银锡矿床顶部蚀变岩帽中多孔石英;(b)中国内蒙古甲乌拉-查干布拉根中硫型浅成低温热液银铅锌矿田菱锰矿-闪锌矿-方铅矿-黄铁矿-硫银锡矿矿石;(c)中国内蒙古额仁陶勒盖低硫型浅成低温热液矿床石英-冰长石-银矿物-黄铁矿矿石;(d)墨西哥Penasquito斑岩型银金铅锌矿床细脉状石英-黄铁矿-闪锌矿脉(Macario, 2016);(e)中国内蒙古二道河矽卡岩型银铅锌矿床石榴石矽卡岩型铅锌银矿石(杨发亭, 2016);(f)德国Winttichen五元素矿床自然银-砷化物矿石(Scharrer et al., 2019);(g)玻利维亚Cerro Rico de Potosi地表氧化的银矿石 Fig. 2 Representative ores of magmatic-hydrothermal silver deposits (a) the vuggy quartz in lithocap at the Cerro Rico de Potosi high sulfidation epithermal Ag-Sn deposit in Bolivia; (b) the rhodochrosite-sphalerite-galena-pyrite-canfieldite ores at Jiawula-Chaganbulagen intermediate sulfidation epithermal Ag-Pb-Zn ore-field in Inner Mongolia, China; (c) the quartz-adularia-pyrite-silver minerals ores in the E'rentaolegai low sulfidation epithermal Ag-Mn deposit in Inner Mongolia, China; (d) the veinlets of pyrite-sphalerite at Penasquito porphyry Ag-Au-Pb-Zn deposit in Mexico (Macario, 2016);(e) garnet skarn Pb-Zn-Ag ores at Erdaohe skarn Ag-Pb-Zn deposit in Inner Mongolia, China (Yang, 2016); (f) arsenides-native silver ores at Winttichen five-element deposit in Germany (Scharrer et al., 2019); (g) the oxidized silver ores at the surface of the Cerro Rico de Potosi high sulfidation epithermal Ag-Sn deposit in Bolivia

中硫型浅成低温热液银矿在全世界主要的银矿省均有发育。蚀变主要为硅化、绢云母化、伊利石-水白云母化和碳酸盐化,其中和锡矿化相关的矿床会出现特征的电气石化。靠近成矿中心为绢云母化,远端主要为伊利石-水白云母化(Hui et al., 2021)。在很多中硫型浅成低温热液矿床(田)中发育少量高硫型的蚀变甚至矿化,其经济价值较低,但对寻找热液中心和矿产勘查有一定的指导作用,比如Fresnillo矿集区(Simmons, 1991);但也有高硫型矿体和中硫型矿体共存的情况,比如Cerro de pasco矿床(Baumgartner et al., 2008)。中硫型银矿中脉石矿物出现特征的菱锰矿(图 2b),同时还有方解石、石英、萤石、冰长石和电气石等。特征矿石矿物为黝铜矿-砷黝铜矿。银矿物种类较多,包括银-铋矿物、银-碲矿物、硫银锡矿,以及其它常见的辉银矿、自然银和银的锑硫盐。深部可能出现斑岩型钼铜或锡铜系统(图 1b),比如甲乌拉-查干布拉根矿田(Hui et al., 2021)和Morococha矿田(Catchpole et al., 2015);也可能仅仅与侵入体相关(图 1a),比如Pachuca Real del Monte矿集区(Mckee et al., 1992; Camprubí et al., 2003)。

低硫型浅成低温热液银矿在全世界主要的银矿省均有发育。蚀变主要为硅化、伊利石-水白云母化和冰长石化(图 2c)。低硫型矿床主要发育磁黄铁矿、毒砂、自然银、辉银矿、锑硫盐、锑化物、硒化物、硒硫盐、含汞和卤族元素矿物等。一些低硫型银金矿化向下可能渐变为中硫型银铅锌矿化(Camprubí and Albinson, 2007),但深部不会出现成因相关的斑岩成矿系统(图 1a)。

1.2 斑岩型

根据现有报道,世界上相对典型的斑岩型银矿床有中国冷水坑(Ag:9800t @ 177g/t,Pb+Zn:385万t @ 2.55%)和墨西哥Penasquito(Ag:1.67万t @ 30g/t,Au:288t @ 0.52g/t,Pb:168万t @ 0.3%,Zn:403万t @ 0.72%)银金铅锌矿床(左力艳, 2008; 孟祥金等, 2009; Macario, 2016)。斑岩型银矿床成矿岩体为酸性岩。冷水坑矿床成矿岩体为碱长花岗斑岩和石英斑岩,Penasquito矿床为石英二长斑岩。斑岩型银矿区均发育大量的角砾岩,Penasquito矿床为火山角砾岩筒,而冷水坑为侵入岩相的隐爆角砾岩(罗诒爵, 1985)。Penasqutio矿床蚀变与典型的斑岩型矿床分带相似,但是冷水坑缺少早期钾化阶段(左力艳, 2008; Macario, 2016)。矿化为脉状、浸染状、网脉状(图 2d)。金属组合为下铜钼-中铅锌-上银的变化。在冷水坑,银主要赋存在黝铜矿、螺状硫银矿、金-银矿、硫银锡矿和深红银矿中(孟祥金等, 2009)。Penasquito矿床中不同矿化类型的银矿物不同,黝铜矿-砷黝铜矿、螺状硫银矿、金银矿为贯通矿物,在斑岩-矽卡岩-脉状矿化中均有分布;此外矽卡岩型矿化中存在碲银矿和银黝铜矿;在火山角砾岩筒中出现针碲金银矿和碲银矿(Macario, 2016)。

1.3 矽卡岩型

矽卡岩型银矿床中矽卡岩类矿化占资源量的主体,原来的地层发生矽卡岩化(图 2e),矿体呈块状、筒状、席状、脉状(Megaw et al., 1988; Megaw, 1990; González-Partida and Camprubí, 2006; 杨发亭, 2016)。前述的一些浅成低温热液型矿床、斑岩型矿床也发育有矽卡岩化,但矿化很弱或者不占主导,故未归入矽卡岩型矿床(如秘鲁科迪勒拉型矿床、墨西哥Penasquito斑岩矿床)。矿体明显受岩体与围岩的接触带和侵入体相关的断裂控制,区域断裂和褶皱对席状和烟囱状矿体也有较好的控制作用。矿体往往与地层呈不整合接触关系,出现在低渗透性岩石中(如页岩、硅质岩以及一些火山岩)。硫化物往往含有大量的磁黄铁矿,脉石矿物以多萤石、方解石,少石英为特点(如墨西哥SanMartin和Velardena;Gilmer et al., 1988)。故矽卡岩型银矿床以富氟、较还原为特征。该类型矿床主要与石英二长斑岩、花岗斑岩、石英粗安斑岩等有关。银在矽卡岩型矿化中主要赋存在黝铜矿-砷黝铜矿中,与斑铜矿和黄铜矿共生,但晚期较低温的脉状矿体中则发育自然银、深红银矿、淡红银矿、硫锑铜银矿、辉银矿等矿物(Rubin and Kyle, 1988)。

1.4 五元素型

五元素型银矿床以Ag、Co、Ni、Bi、As元素组合为特征,同时可能含有Sb、U等元素。矿床一般发育早期低经济价值的硫化物和硫盐,比如黄铁矿、黄铜矿、闪锌矿、方铅矿、黝铜矿-砷黝铜矿等;晚期为典型的晶体长度可达分米级别的自然元素银、铋、砷以及铁、钴、镍的砷化物和硫砷化物(图 2f),其中自然元素往往呈树状、蠕虫状、骨状等代表快速结晶的非平衡结构,脉石矿物主要为碳酸盐,也可有石英、重晶石、萤石(Markl et al., 2016; Kotková et al., 2018; Kreissl et al., 2018)。五元素矿床为热液脉状,可以赋存在沉积岩、不整合面、基底岩石中;成矿温度变化较大(150~450℃);流体多以高盐度、高氧化(超过赤铁矿-磁铁矿缓冲对)为特征(Staude et al., 2012);碳同位素呈负值(δ13C为-3‰~-13‰; Markl et al., 2016);金属的来源包括沉积物(比如红层)、岩浆岩、变质岩(片麻岩)(Staude et al., 2012)。五元素矿床分布范围广,其中以欧洲、北美和北非发育较多。这类矿床往往和大规模的伸展背景有关,与基性侵入岩时空关系密切(图 1a; Andrews, 1986; Volkov et al., 1999),成矿时代一般>200Ma。

1.5 岩浆热液型银矿的特点

岩浆热液型银矿床的矿化往往具有多种类型(图 3a),其中矽卡岩型、交代碳酸盐岩型和浅成低温热液脉状矿化是最常见的组合,比如Velardena(Gilmer et al., 1988)、Uchucchacua(Bussell et al., 1990)、Fresnillo(Simmons, 1991)、Penasquito(Macario, 2016)、San Francisco-Santa Barbara(Grant and Ruiz, 1988)和Taxco(Camprubí et al., 2006)等。同一矿区不同类型的矿化有时不是一期成矿事件,比如Zacatecas Ag-Pb-Zn-Cu-Au矿区,矽卡岩型铜矿成矿年龄为~51Ma,中硫型富银矿床形成于42Ma,而低硫型Au(-Ag) 矿床成矿年龄为29Ma(Zamora-Vega et al., 2018);San Dimas Ag-Au矿区,区域内的斑岩铜矿化年龄最年轻的为65Ma,中硫型浅成低温银矿年龄为34~39Ma,低硫型浅成低温热液金矿年龄为32Ma(Montoya-Lopera et al., 2020)。大多数矿床具有多期热液脉冲的特点,地质上的证据包括:多期脉系的穿插(Grant and Ruiz, 1988)、多期热液角砾(常时旗, 2018)、具有震荡环带的闪锌矿等(Shimizu and Morishita, 2012; Slater et al., 2021)。

图 3 典型岩浆热液型银矿床剖面和平面地质图 (a)墨西哥Penasquito斑岩型银矿床地质剖面图(据Macario, 2016修改),展示不同类型的矿化;(b)中国内蒙古甲乌拉-查干布拉根中硫型浅成低温热液银矿田地质图(据Hui et al., 2021修改),展示典型的金属分带 Fig. 3 Schematic cross-section and geological map of the typical magmatic-hydrothermal silver deposit (a) schematic cross-section of the Penasquito porphyry Ag-Au-Pb-Zn deposit in Mexico (modified after Macario, 2016), showing different types of mineralization; (b) sketch geological map of the Jiawula-Chaganbulagen intermediate sulfidation epithermal Ag-Pb-Zn ore-field in Inner Mongolia, China (modified after Hui et al., 2021), illustrating the typical metal zonations

岩浆热液型银矿(尤其是中硫型、中-低硫型浅成低温热液矿床)往往发育特征的垂向和侧向金属分带(图 3b)。在垂向上,深部富贱金属,浅部富银金;在侧向上,中心向外依次为Mo/Sn→Cu→Zn→Pb→Ag。深部的成矿系统主要分为斑岩钼和斑岩/热液脉状锡两种(李真真等, 2019; 金露英等, 2020)。虽然在美国Paradise Peak高硫型脉状金银汞矿床深部具有斑岩型的金矿,但是其银的储量和品位相对较低(Ag:1100t @ 126g/t;Sillitoe and Lorson, 1994)。墨西哥Pachuca Real del Monte矿田发育典型的垂向分带:下部脉宽且富铅锌等硫化物,贫银;中浅部脉窄且贫铅锌等硫化物,最富银;浅部为细脉状贫铅锌等硫化物和贫银(图 1a; Dreier, 2005)。玻利维亚锡银矿化蚀变发育垂向分带,浅部为高硫型浅成低温热液环境的高级蚀变岩帽,主要为浸染状和富矿脉状银矿石;深部为中温热液环境下的块状锡、贱金属脉,发育绢云母化和电气石化(Sillitoe et al., 1998)。内蒙古甲乌拉-查干布拉根矿田发育非常典型的侧向分带:Mo-Cu→Zn-Cu→Zn-Cu-Pb-(Ag)→Zn-Pb-Ag-(Cu)→Ag(Au)-Pb-Zn→Ag(图 3b; Hui et al., 2021),其一侧的查干布拉根矿床范围达8km,并且脉体集中,沿构造单向分布。上述分带可能是在流体流动的情况下,不同元素在不同时间沉淀形成的(Seedorff and Einaudi, 2004)。分带性的研究对于矿床成因和指导勘查都有重要意义。在蚀变-矿化分带中,独立银矿体往往在最远端,距离成矿中心可达7~8km;特征蚀变为强烈的伊利石-水白云母化、低温硅化、菱锰矿化,可能含有细小方铅矿和浅棕色闪锌矿,其中最容易被忽略的是强烈伊利石-水白云母化火山岩中的细小石英-黄铁矿脉,黄铁矿粒度可能非常细小,肉眼观察往往将其忽略。

岩浆热液型银矿区往往发育火山角砾岩筒、隐爆角砾岩,尤其在深部存在斑岩型Mo、Sn的矿区更为常见,比如墨西哥Penasquito(图 3a; Macario, 2016)、秘鲁Cerro de Pasco (Rottier et al., 2018)、俄罗斯Mangazeiskoe(Pavlova and Borisenko, 2009)。有些角砾岩并不含大量矿体,矿体主要在角砾岩旁侧的断裂或者碳酸盐岩中沉淀(Baumgartner et al., 2008);而有些矿床则是在火山角砾岩筒、隐爆角砾岩中赋矿,深部发育浸染状的矿体,比如阿根廷Pirquitas(Slater et al., 2021)、冷水坑(左力艳, 2008)。这些角砾岩可以成为窥探深部隐藏斑岩型矿化的窗口,对研究成矿过程和深部找矿具有十分重要的意义(Rottier et al., 2018)。

在全球范围内,绝大多数岩浆热液型银矿床都与酸性、中酸性岩浆岩具有密切的时空关系(图 4; Camprubí et al., 2003; 李真真等, 2019)。很多矿床和火山岩穹窿密切相关,特别是流纹-英安质穹窿,比如玻利维亚的锡银矿床(Cerro Rico de Potosi)。不过大多数矿床尚未确定成矿岩体,只有少数矿床或者部分矿化与岩浆岩体存在成因上的联系,如Santa Eulalia矿床与霏细岩(Megaw, 1990)、Fresnillo交代-矽卡岩型矿体与石英二长斑岩(Velador et al., 2010)、SanMartin矿床与石英二长斑岩(Rubin and Kyle, 1988)、Penasquito矿床与石英二长斑岩(Macario, 2016)等。

图 4 大型岩浆热液型银矿床时空分布图(据Hedenquist et al., 2000; Simmons et al., 2005; Graybeal and Vikre, 2010; Wang et al., 2019修改) 长英质大火成岩省、流纹岩和流纹熔结凝灰岩带(Bryan, 2007; Wu et al., 2011) Fig. 4 Spatial and temporal distribution of large magmatic-hydrothermal silver deposits (modified after Hedenquist et al., 2000; Simmons et al., 2005; Graybeal and Vikre, 2010; Wang et al., 2019) The distribution of silicic large igneous provinces and the belt of the rhyolite and rhyolite ignimbrite (Bryan, 2007; Wu et al., 2011)
2 世界六大岩浆热液银矿省

全球岩浆热液型银矿床主要分布在东太平洋俯冲带、中国兴蒙造山带、西太平洋俯冲带的中国华南板块和俄罗斯远东地区(图 4)。根据对全球80多个大型-超大型岩浆热液型银矿的总结,本文划分出六大银成矿省(表 2)。

表 2 世界六大岩浆热液银成矿省特征总结表 Table 2 Characteristics of six magmatic-hydrotermal argentiferous provinces in the world
2.1 中国兴蒙银成矿省

兴蒙造山带位于中亚造山带东部,是中国最重要的产银区之一(图 4)。矿床成因类型主要为浅成低温热液型银铅锌矿床,成矿时代集中在晚侏罗世-早白垩世(表 2)。根据时空关系,兴蒙造山带的岩浆热液银矿可以分为南北两带,北部额尔古纳地块、大兴安岭北段Ag-Pb-Zn矿床成矿时间大约在120~135Ma(Han et al., 2020; Hui et al., 2021);大兴安岭南段Ag-Pb-Zn矿床与Sn矿化密切相关,其成矿时间主要集中在135~140Ma(图 5a; 姚磊等, 2017; Zhai et al., 2020)。银成矿大爆发处于区域伸展阶段(Liu et al., 2017; 江思宏等, 2018)。在白垩纪构造背景由挤压转向伸展,诱发岩石圈地幔和下地壳的拆沉以及岩浆的底侵作用,导致该时期发育大量中生代中酸性-酸性火山岩和侵入岩(Zhang et al., 2010)。大兴安岭出露的花岗岩类时代主要为早白垩世(Wu et al., 2011),该地区火山岩主要为早白垩世的英安岩-流纹岩(Zhang et al., 2008, 2010)。岩浆热液型银矿与区域大范围分布的侏罗纪-白垩纪英安岩-流纹岩关系密切(图 5a)。区域上火山岩从西向东逐渐年轻,故认为可能是从西向东的岩石圈拆沉减薄形成(Wang et al., 2006),而岩浆热液型银矿床的时空分布却与之相反,所以兴蒙造山带的银铅锌成矿事件可能并非一种构造机制可以解释。

图 5 世界主要银成矿省岩浆热液型银矿床分布图 (a)中国兴蒙银成矿省(据Liu et al., 2017修改);(b)美国西部盆岭银成矿省(据Blakely et al., 2007; John et al., 2016修改);(c)墨西哥西北银成矿省(据Camprubí et al., 2003修改);(d)秘鲁中部银多金属成矿省、玻利维亚银锡成矿省 Fig. 5 The distribution of magmatic-hydrothermal silver deposits in the major argentiferous provinces (a) the China Xing-Meng argentiferous province (modified after Liu et al., 2017); (b) the United States Western Basin Ridge argentiferous province (modified after Blakely et al., 2007; John et al., 2016); (c) the Northwest Mexico epithermal argentiferous province (modified after Camprubí et al., 2003); (d) the Central Peru argentiferous-polymetallic province and the Bolivia silver-tin argentiferous provinces
2.2 美国西部盆岭银成矿省

美国西部盆岭省是美国重要的产铜、金、银等地区。银矿主要分布在喀斯喀特火山弧(Ancestral Cascades Arc)南部、大盆地(Great Basin)东部、科罗拉多成矿带。美国喀斯喀特火山弧南部发育浅成低温热液型银金矿(图 5b; John et al., 2016)。矿床以银金组合为特征,深部可能出现斑岩型金矿(Sillitoe and Lorson, 1994),矿床时代主要为早中新世(表 2)。这些矿床和晚渐新世-上新世喀斯喀特火山弧内中-酸性火山岩时空关系密切,成矿时代一般晚于火山岩几个百万年(John et al., 2016)。矿床倾向于分布在陆壳基底之上,同时具有地幔参与成矿的信息(John et al., 2016; Manning and Hofstra, 2017)。该成矿带的岩浆热液活动和俯冲板块的后撤有关(John et al., 2016)。

大盆地东部和科罗拉多成矿带距离俯冲带相对较远,发育成矿时代较老(渐新世-始新世)的交代碳酸盐岩型银铅锌铜金矿,比如Tintic、Park City特大型矿床(图 5b)。这些矿床主要是高硫-中硫型浅成低温热液矿床,与酸性-中酸性火山岩和侵入岩关系密切(Bromfield et al., 1977; Hildreth and Hannah, 1996)。

2.3 墨西哥西北银成矿省

墨西哥西北银成矿省是全球最重要的银成矿省。区内有七个万吨级矿床,矿床类型主要为浅成低温热液型和矽卡岩型矿床,成矿时代集中在46~20Ma(图 5c表 2)。矽卡岩型、交代碳酸盐型和斑岩型矿床成矿年代较早(33~46Ma; Macario, 2016; Rubin and Kyle, 1988),距离俯冲带相对较远;而浅成低温热液矿床形成时代较晚,集中在30~20Ma(Camprubí et al., 2003)。该地区岩浆热液型银矿床在时空上和墨西哥西马德雷山脉(SierraMadre Occidental)长英质大火成岩省具有密切联系,矿床一般形成于矿区最年轻火山岩2Myr之内,此时为火山喷发的寂静期,大量的侵入岩就位(Mckee et al., 1992; Camprubí et al., 2003)。墨西哥西马德雷长英质大火成岩省以大量的流纹质熔结凝灰岩为特征,形成于俯冲板片后撤和撕裂形成的伸展环境(Ferrari et al., 2018)。岩浆热液型银矿成矿主要集中在岩浆活动大规模爆发期。

2.4 秘鲁中部银多金属成矿省

秘鲁中部主要发育与深部斑岩铜钼矿化相关的浅成低温热液矿床和矽卡岩型矿床(图 5d表 2)。一般为Ag-Pb-Zn-(Cu-Au-Bi) 金属组合、富硫化物、金属分带和蚀变分带发育、可见多种矿化类型、多中心、多期活动(Baumgartner et al., 2008; Catchpole et al., 2015; Rottier et al., 2016)。该矿带的成矿时代集中为中新世(De los Rios et al., 1990; Echavarria et al., 2006)。矿床与渐新世-中新世中酸性浅成侵入岩密切相关。大地构造背景为俯冲背景。在中新世中期,岩浆活动强度增加,可能反映了晚渐新世平坦俯冲以后俯冲角度逐渐变陡,然而晚中新世岩浆喷发速率降低,这可能代表着重新进行新的平坦俯冲(Bissig et al., 2008)。

2.5 玻利维亚银锡成矿省

玻利维亚银锡成矿省范围包括玻利维亚全境及阿根廷北部(图 5d),主要发育高-中硫型浅成低温热液矿床,成矿时代集中为20~12Ma(表 2)。其发育世界上最大的岩浆热液型银矿床Cerro Rico de Potosi银锡矿床,已开采银和保有银储量总计超过11万吨(Cunningham et al., 1996; Rice et al., 2005)。矿床主要赋存在流纹英安质-英安质火山岩穹隆中(Cunningham et al., 1991)。区域内发育大量中、上新世中等-高度分异的火山岩,比如二云母过铝质流纹岩,异常富集B、Li、Be、Nb、Ta、Rb、Cs等(Mlynarczyk and Williams-Jones, 2005)。玻利维亚银锡成矿省的钨锡矿床主要和深部的花岗质岩基相关,而锡银、锡锌矿床和斑岩相关,并且时空上显示出从北向南、从老到新依次出现钨、锡→锡→锡-银矿床的变化(Turneaure, 1971; Mlynarczyk and Williams-Jones, 2005)。在俯冲板块后撤导致的整体伸展背景下,多次短时间的低角度俯冲会在弧后形成挤压环境,从而引发地壳深熔作用,形成大规模岩浆作用(Mlynarczyk and Williams-Jones, 2005)。玻利维亚银锡成矿省与S型、钛铁矿系列花岗质岩浆密切相关,对应于~17Ma板块俯冲导致的区域挤压事件(Lehmann et al., 1990; Mlynarczyk and Williams-Jones, 2005)。

2.6 俄罗斯远东银锡成矿省

俄罗斯远东银锡成矿省的银、锡储量在整个俄罗斯均处于领先地位,俄罗斯95%的锡矿资源都集中在该地区,探明的银总储量4.8万t,预测储量在6.5~7万t(图 4; 朱群和刘斌, 2014)。成矿时代主要在晚侏罗世-白垩纪。维科扬斯克(Verkhoyansk)造山带的银矿规模和潜力最大,该区主要为银-锡矿,但是银与锡表现出相反的关系,即银规模大的反而锡规模小,比如大型银矿Mangazeiskoe和Prognoz(Pavlova and Borisenko, 2009)。维科扬斯克造山带位于西伯利亚克拉通和Kolyma-Omolon微陆块之间,有大量花岗岩类岩石发育,形成于晚侏罗世-早白垩世(Prokopiev et al., 2018)。维科扬斯克造山带在144~135Ma处于碰撞阶段,110~93Ma处于伸展背景(Layer et al., 2001),这两个阶段均有银锡矿床(Kupol’noe和Mangazeiskoe矿床)产出(Prokopiev et al., 2018)。环太平洋构造背景下的鄂霍茨克-楚科奇(Okhotsk-Chukotka)火山岩带有Dukat超大型浅成低温热液银金矿(Ag 17000t @ 500g/t)产出(Filimonova et al., 2014及其中的文献)。

2.7 其它地区

除上述六大银成矿省之外,世界其它地区也有一些重要的银矿床发育(图 4)。华南是中国另一个重要的产银区,包括冷水坑、富湾和嵩溪等大型-特大型矿床。成矿时代为晚侏罗世-古新世。中国东南部晚中生代长英质大火成岩省的火山岩主要为白垩纪流纹质熔结凝灰岩和流纹岩(王德滋和周金城, 2005)。

中国华北板块南缘秦岭造山带发育大量钼矿床及银铅锌矿床,其中包括破山、冷水北沟、老里湾、铁炉坪等银铅锌矿床,Ag规模一般在1000~3000t,年龄集中在早白垩世。晚中生代华北克拉通破坏与岩石减薄背景下的岩浆作用形成了该区多个银铅锌矿床(Li et al., 2013)。

中国的三江成矿带义敦岛弧晚白垩世发育一些大型-超大型的银铅锌锡矿床,比如夏塞、砂西,其中夏塞-连龙成矿带银资源量超过1.76万t(Li et al., 2020)。这些矿床与后碰撞伸展背景形成的A型花岗岩体具有密切的时空、物质关系(Li et al., 2020)。

中亚造山带西段显示有形成大型-超大型岩浆热液型银矿床的潜力。矿床成矿时代为二叠纪-三叠纪。塔吉克斯坦北部大卡尼曼苏尔(Big KoniMansour)斑岩型银铅锌矿床Ag储量五万多吨(戴自希等, 2002)。乌兹别克斯坦Aktepe五元素矿床Ag 2.5万t @ 4500g/t,成矿年龄为276~273Ma(Volkov et al., 1999; 戴自希等, 2002)。蒙古Asgat特大型Ag-Sb矿床Ag 5000t @ 70g/t,成矿年龄为243~240Ma,是与碱性侵入岩有关的热液脉型银多金属矿床(Pavlova and Borisenko, 2009; 聂凤军等, 2010)。

特提斯成矿域目前大型-超大型岩浆热液型银矿床相对较少。近年在冈底斯西端发现了首个中型浅成低温热液锡银矿床——拔隆(高顺宝等, 2020)。土耳其地区的浅成低温热液矿床以产金为主,相对贫银(Yigit, 2009)。伊朗主要发育浅成低温热液贱金属矿床,银品位也相对比较低(Ghasemi Siani et al., 2020)。特提斯西段发育一些五元素矿床和浅成低温热液矿床,比如摩洛哥Bou Azzer和Imiter(Ahmed et al., 2009; Levresse et al., 2004)。整体来说,特提斯成矿域仍具有寻找岩浆热液型银矿的潜力。

3 岩浆热液型银矿床及银矿省的控制因素 3.1 银的地球化学行为

银在元素周期表中位于第一副族(IB)。银在自然界中多为Ag+。根据酸碱软硬理论,Ag+属于软阳离子,倾向于和S2-形成强健(Railsback, 2003)。在所有储库中,海相沉积物的银含量最高(图 6)。在地球的圈层中,地核最高,其次为大陆下地壳,地幔的银含量最低(图 6,数据来源GERM database:https://earthref.org)。

图 6 银在地球储库中的丰度(数据来源GERM database, https://earthref.org) Fig. 6 The abundance of silver in the Earth's reservoirs (data are collected from the GERM database, https://earthref.org)

虽然银多以伴生矿床出现,但在矿床中主要呈独立矿物的形式产出,少量呈离子吸附银、类质同象和非晶态(王静纯和简晓忠, 1996)。常见的银矿物可以分为以下几类:自然元素及合金(Au、Hg),硫、硒、碲、锑化物,硫盐(As、Sb、Bi),卤化物(Cl、Br、I)以及其他的硫酸盐类(李绥远等, 1996; 黄崇轲和朱裕生, 2002)。由于银矿物种类众多,并具有一定的演化关系,通过银矿物的成分研究可以限制成矿热液的成分及成矿环境(Sack and Lichtner, 2009),其时空的分布特征也将对矿产勘查起到指导作用。

3.2 富银基底和演化的岩浆

从全球尺度来看,大量岩浆热液型银矿出现在环太平洋成矿带东部并且与高度结晶分异的酸性岩浆岩密切相关,而环太平洋成矿带西部主要是更基性的火山岩,银矿分布非常有限(图 4; Albinson et al., 2001及其中的参考文献)。从世界典型岩浆热液银成矿省可以发现,银成矿省和长英质大火成岩省、酸性火山岩带密切相关(图 4图 5),这些长英质大火成岩省往往发育大量的酸性熔结凝灰岩。酸性熔结凝灰岩是由底侵到下地壳的基性岩浆加热下地壳引发重熔,随后富挥发分的高粘度酸性岩浆喷发沉降而成(徐夕生和邱检生, 2010)。通过对全球五个长英质大火成岩省的对比研究,发现这些中酸性岩石可能是富水下地壳熔融的产物(薄弘泽和张招崇, 2020)。中国东北白音查干矿床和甲乌拉-查干布拉根矿田成矿岩体或近同期岩体的研究表明,岩浆来源于新生(下)地壳(Niu et al., 2017; 姚磊等, 2017)。在地球的储库中,大陆地壳银的含量较高,尤其大陆下地壳,要比大洋地壳、亏损地幔高(图 6),故大陆下地壳是相对富银的源区。源区相对富水和富银可能是岩浆热液型银矿床均产于陆壳基底之上的控制因素之一。

岩浆演化过程对银的富集也十分重要。很多超大型岩浆热液型银矿床为银锡等元素组合,而银锡矿化往往和较高分异的花岗岩有密切关系(李真真等, 2019)。墨西哥和美国西部虽然银锡矿床不发育,但是区域上发育同时期的富锡流纹岩和黄玉流纹岩(Christiansen et al., 1983; Huspeni et al., 1984; Orozco-Esquivel et al., 2002; Zamora-Vega et al., 2018)。墨西哥西马德雷长英质大火成岩省在32~30Ma发育大量的富锡流纹岩,形成所谓的“墨西哥锡矿带”(Huspeni et al., 1984)。同时期发育Fresnillo、Zacatecas、Guanajuato和San Francisco-Santa Barbara四个万吨级银矿床。“墨西哥锡矿带”空间上的分布范围与银矿省基本相同(图 5c),含有大量的锡矿化(约超过1000个锡矿化点),但含锡石的脉体长宽一般小于15m×0.25m(Huspeni et al., 1984)。火成岩相关的萤石矿化、黄玉流纹岩等富氟流纹岩与潜在的Sn、Be、U、Mo、Ag多金属的关系已受到很多学者的关注(图 5c; Burt et al., 1982; Ruiz et al., 1985; McPhie et al., 2011)。岩浆热液型银矿和萤石矿的时空关系可能是由于二者都与区域高分异的岩浆作用或者成熟度较高的地壳有关。因为高分异花岗岩、流纹岩等一个重要特征是富F等挥发分(吴福元等, 2017)。目前已知的是F可以降低岩石的熔点(Manning, 1981),换句话说氟可以使岩浆结晶的温度变低,进而演化时间更长,这对银在岩浆演化系统中富集可能是有利的。至于氟在岩浆热液型银矿富集机制中的其它作用还有待进一步研究。

Wilkinson et al. (2013)通过对Fresnillo流体包裹体的研究,富银卤水可能是由长英质大火成岩省相关的高分异熔体产生,并且可能是墨西哥大量银矿形成的原因。玻利维亚斑岩锡(银)系统同样具有类似的现象,石英中熔融包裹体为流纹质,相比英安质全岩显示出更强的结晶分异,表明导致成矿的可能是深部岩浆房未揭露的富锡花岗质岩浆(Dietrich et al., 2000)。斑岩钼银铅锌系统也被认为和高演化的花岗岩相关(金露英等, 2020)。最近有学者通过对Cerro de Pasco(深部为钼矿化)热液石英中硅酸盐熔融包裹体的研究表明热液流体来自高度结晶分异的上地壳岩浆房,岩浆房中的残余熔体也经过了高度分异(Rottier et al., 2020)。故高分异的岩浆作用是大规模银成矿事件的控制因素之一,成熟度高的陆壳对银大规模成矿具有重要意义(秦克章等, 2017; Wang et al., 2019)。

3.3 银的运移

对于酸性岩来说,高分异的花岗岩作用会导致岩石的铝饱和指数增加,挥发分不断增加,出现萤石、黄玉、电气石和磷灰石等富挥发分矿物(吴福元等, 2017)。实验结果表明,铝饱和指数ASI(=Al/(Na+K+2Ca))超过1后,随着ASI值的增加,银在过铝质流纹岩熔体中的溶解度将会发生显著的增加,金的溶解度则呈相反趋势(Zajacz et al., 2013)。此外在相同温度下,熔体从玄武质变为英安质,金铜都会更倾向于进入熔体共存的磁黄铁矿中,而银几乎保持不变(Zajacz et al., 2013)。与岩浆共存的磁黄铁矿、磁铁矿等对银在岩浆中的含量影响并不大(Simon et al., 2008a; Zajacz et al., 2013)。即岩浆分异演化过程中,深部饱和的硫化物或者结晶的磁铁矿带走的银很少,银相对于铜和金更倾向于进熔体中。这可能是银在高分异岩浆中能够被富集的两个重要因素。

挥发分可以把银从岩浆中大量萃取富集。只有在硅酸盐熔体足够酸性(流纹质和英安流纹质)的情况下,银才能高效的分配进入到岩浆流体中(Yin and Zajacz, 2018)。这也从另一个方面表明高分异岩浆对银富集作用。压力降低也会促进银分配进入出溶的挥发分中,进而增加正在演化的岩浆的成矿潜力(Simon et al., 2008b)。石英中共存的流体和硅酸盐熔体包裹体的研究表明,Ag、Pb、Zn、Fe、Mn更倾向在流体相中,并且分配系数与流体中Cl的含量呈线性正相关;Mo倾向于进入低盐度的流体中;Sn随着流体中Cl含量增长而增长,同时也会受到氧逸度或者ASI的影响(Zajacz et al., 2008)。流体包裹体数据表明,Au-Ag矿床盐度一般小于5% NaCleqv,而Ag-Pb-Zn矿床的盐度在 < 10%~>20% NaCleqv之间(Simmons et al., 2005)。对墨西哥浅成低温热液矿床的研究表明,富银矿床要比富金矿床具有更高的流体盐度(Albinson et al., 2001)。高盐度的流体对银成矿也很关键。

银在溶液中主要以HS-和Cl-的络合物形式迁移(Akinfiev and Zotov, 2001; Stefánsson and Seward, 2003)。通过对共生的气相、液相流体包裹体的LA-ICPMS分析,在相分离过程中,Ag、Sn、Pb、Zn、Mn、Fe主要倾向于以Cl络合物的形式进入卤水中,而非气相中(Heinrich et al., 1999)。但较新的实验数据表明,银在蒸气相中的溶解度可能被大大低估,银在低密度水溶液流体中会形成氯化物的水化团簇,使得银氯化物的溶解度迁移随着水活度的增加而成指数性增加(Migdisov and Williams-Jones, 2013)。

3.4 银的沉淀

高效的金属沉淀机制对岩浆热液型矿床的形成十分重要(Simmons and Brown, 2007)。温度、压力、pH、氧逸度和配体种类与活度等的变化都会导致银的沉淀。在地质过程中,主要包括降温、流体混合、水岩反应、沸腾(Williams-Jones and Migdisov, 2014)。

降温是银沉淀的重要控制因素。在矿床分带中,银倾向在最远端的晚期低温阶段沉淀(Hui et al., 2021)。流体混合是浅成低温热液型和五元素矿床的重要沉淀机制。不同成分的流体混合会导致成矿流体的稀释、降温甚至会改变氧逸度和pH等。通过对Fresnillo矿区流体包裹体的研究发现,矿化是由深部岩浆结晶形成的高盐卤水储库通过脉冲式上涌至浅部低盐度中性(pH)地热流体中形成(Simmons, 1991)。而成矿流体和还原性气体(比如CH4)或者含还原性气体的流体混合,则会产生更有效的沉淀(Markl et al., 2016)。水岩反应是矽卡岩型和浅成低温热液型矿床中金属沉淀的重要机制。成矿流体与沉积岩等围岩反应会导致氧逸度和温度降低、pH升高,进而导致大量金属沉淀。沸腾会导致浅成低温热液体系中H2、CO2、H2S和SO2等挥发分的分离。CO2和SO2分离会导致流体的pH值升高;而H2S的分离会使配体HS-的活度降低,进而导致以硫氢化物络合物形式迁移的银发生沉淀,而银的氯络合物所受影响较小(Williams-Jones and Migdisov, 2014)。

3.5 次生富集

后期淋滤对银矿的富集有着重要的作用。玻利维亚Cerro Rico de Potosi银锡矿床氧化矿石的银品位达30%~40%,并且开采超过25年(图 2g; Cunningham et al., 1996; Bartos, 2000)。在表生作用中,银在次生富集带以自然银、螺状硫银矿以及一些银的硫盐矿物的形式存在,而在铁锰帽中以银铁矾、银的卤化物、含银的黄钾铁矾残留下来。氧化矿床中银的颗粒一般都会比硫化物矿石中的大,这可能与后期溶解再沉淀有关(王静纯和简晓忠, 1996)。

新桥铁帽在剖面上展现一个很好的分带(图 7; 陈伯林, 1988)。在自然界中,金的稳定性高,所以不会有较大的迁移,而银的地球化学性质相对活泼,在自然界中可迁移较远,因而可以在氧化还原界面富集成矿。在氧化还原界面,Fe2+、Cu+等的还原作用以及生物作用,可将Ag+还原为自然银等(李绥远等, 1996)。锰帽与铁帽不同,银被Mn2+还原后会被锰矿物就近吸附,从而富集在锰帽上部,而不是铁帽中的次生富集带(黄崇轲和朱裕生, 2002)。这对勘查找矿工作具有一定的指导性。

图 7 新桥铁帽剖面(据陈伯林, 1988修改) Fig. 7 The schematic section of gossan at Xinqiao deposit in China (modifed after Chen, 1988)
3.6 成矿环境和控矿构造

岩浆热液型银矿主要产于俯冲和碰撞后。俯冲挤压背景下主要为高硫型、中硫型浅成低温热液矿床,如玻利维亚银锡成矿省;而在俯冲、碰撞后的伸展背景下主要为中硫型、低硫型浅成低温热液银矿,如墨西哥西北银成矿省、中国兴蒙银成矿省。岩浆热液型银矿床几乎都在陆壳基底之上,与区域上大规模的酸性侵入岩和中酸性火山岩密切共生,尤其是流纹质熔结凝灰岩。从世界典型银成矿省来看,这些大规模的岩浆热液活动往往对应区域上大地构造环境的转变,比如板块回撤引起从挤压向伸展的变化(墨西哥),碰撞后从挤压向伸展的变化(中国额尔古纳),板块低角度俯冲导致从伸展变为挤压(玻利维亚)。流纹质熔结凝灰岩大规模分布除了表明可能存在高分异的岩浆作用,还表明这个地方未经受大规模的抬升剥蚀,对矿床的保存有利。虽然大兴安岭北段有大面积花岗岩出露区,但是并没有大型的岩浆热液型银矿发育(图 5a),其中一个原因可能是花岗岩大面积出露代表该区域经历了强烈的抬升与剥蚀,导致岩浆热液型银矿无法保存下来。岩浆热液型银矿床多处于区域次级构造中,并且常受控于火山机构,尤其是爆破角砾岩筒、隐爆角砾岩、岩穹以及次火山相的岩株等火山相的控制。这些构造可为成矿流体的迁移提供了较为集中的通道。

4 存在问题及展望

虽然岩浆热液型银矿床已取得上述诸多进展,但目前仍存在许多问题:

(1) 虽然前文已经提到很多岩浆热液型银矿的成矿岩体或者深部的斑岩成矿系统已被发现,但是由于岩浆热液银矿床(田)范围可能较大、矿化类型多、热液中心多、岩浆热液活动期次多、周期长等原因导致确定浅成低温热液型矿床、远端矽卡岩型矿床的成矿岩体和深部成矿系统仍然较为困难,并且可能将为成矿流体提供运移通道的地质体误认为是成矿岩体。对中-低硫型浅成低温热液银铅锌矿床而言,中硫型和低硫型矿化之间是否存在成因上的演化关系,侧方和深部是否具有与其成因相关的高硫型、斑岩型矿床?这些问题制约着单个矿床乃至整个成矿省的成因解释和靶区预测。详细的地质、蚀变、流体包裹体填图,结合统一的、高精度的测年手段和测年对象(辉钼矿Re-Os、锆石U-Pb和含K矿物Ar-Ar),原位稳定同位素以及单个流体包裹体成分分析等综合判断,可以提供较为可靠的证据。

(2) 对于岩浆热液型银矿床中银的来源,前面已经论述了下地壳来源岩浆的作用。但是,在地球不同储库中,海相等沉积物的银含量最高(图 6),甚至会出现沉积型银矿床,比如湖北白果园银钒矿床和波兰Lubin银铜矿。产于海相地层或者基底之上的浅成低温热液矿床会有明显的富银特征(Titley, 1991; Mosier et al., 1986);同位素地球化学研究也表明海相地层可能是银等金属的来源之一(Li et al., 2013; Mlynarczyk and Williams-Jones, 2005)。综上,沉积地层是否为富银矿床的重要金属来源,是作为成矿岩浆的源区还是被热液淋滤的围岩还有待进一步研究。目前主要通过对银共生的元素和矿物来探讨银的来源和富集机制,增大了结果的不确定性。银矿物以及主要的含银矿物是很好的研究对象,银矿物学、银同位素可能提供更好的解释。

(3) 前文已经论述了高分异岩浆作用对银成矿的控制作用。但值得注意的是,喜马拉雅发育大量高分异的淡色花岗岩(吴福元等, 2015),但是目前尚未有一例高品位(平均品位>100g/t)大型-超大型岩浆热液型银矿床的报道;代表更高分异作用的Li、Be、Nb、Ta等岩浆热液型矿床中也并未出现银的大量共生富集。所以,岩浆演化分异程度与银的富集可能不是简单的正相关关系。目前来说,锡矿化所对应的花岗岩分异程度对银成矿是最有利的,但机制仍然需要进一步探寻。

(4) 如何在区域上确定银矿靶区以及矿田尺度寻找银矿体(床)仍是具有挑战性的工作。在全球长英质大火成岩省中,南美Chon Aike酸性大火成岩省可能是全球潜力最大的银成矿区,目前已发现Navidad超大型银矿(Ag:23400t @ 117g/t, Lhotka, 2010)。注意不同类型银矿化和矿床,会为寻找银矿提供突破,尤其是独立银矿体以及深部斑岩型Mo/Sn矿体。目前独立银矿体勘查并没有得到足够的重视。如何建立高效简单的野外鉴定指标是下步工作的关键。蚀变-矿化分带是追索矿体的重要信息。

(5) 岩浆热液型银矿床根据深部成矿系统可分为斑岩钼-浅成低温热液银铅锌和斑岩锡-浅成低温热液银铅锌系统两大类。这两类银矿在金属来源、岩浆热液富集过程、勘查指标有何异同,受何种因素控制?

(6) 中国兴蒙成矿带位于中亚造山带东段,是中国最大的银成矿省,区内主要为浅成低温热液矿床,但是中亚造山带西段银矿资源量较少,并且鲜有浅成低温热液银矿产出,主要为五元素矿床。是何种因素控制着两种差异?

5 结论

(1) 岩浆热液型银矿床可以分为浅成低温热液型、矽卡岩型、斑岩型和五元素型四种成因类型。

(2) 岩浆热液型银矿床在全球范围可以划分六大银成矿省:墨西哥西北银成矿省、玻利维亚银锡成矿省、秘鲁中部银多金属成矿省、中国兴蒙银成矿省、美国西部盆岭银成矿省和俄罗斯远东银锡成矿省。银成矿省与大规模酸性岩浆活动密切相关。

(3) 相对富银的含水大陆下地壳源区、大规模高分异的岩浆作用、银对熔体共存硫化物和磁铁矿相对弱的相容性、高盐度的流体、成矿流体集中迁移的通道和高效的沉淀机制是银大规模成矿的有利控制因素。

(4) 岩浆热液型银矿的研究对于丰富斑岩-矽卡岩-浅成低温热液系统成矿理论具有重要意义,其金属来源、富集机制、勘查指标的建立等仍需要进一步工作。

致谢      在问题思考与论文撰写过程中,受益于与李光明副研究员、赵超博士和金露英博士的讨论。感谢江思宏研究员、翟德高教授和李真真高工对本文提出的建设性评审意见,以及期刊编辑的耐心指导和精心修改。

笔者深受李继亮老师严谨治学态度及渊博知识体系的激励和鼓舞,谨以此文纪念李继亮老师。

参考文献
Ahmed AH, Arai S and Ikenne M. 2009. Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco. Economic Geology, 104(2): 249-266 DOI:10.2113/gsecongeo.104.2.249
Akinfiev NN and Zotov AV. 2001. Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(Ⅰ), Cu(Ⅰ), and Au(Ⅰ) at temperatures of 25~500℃ and pressures of 1~2000bar. Geochemistry International, 39(10): 990-1006
Albinson T, Norman DI, Cole D and Chomiak B. 2001. Controls on formation of low-sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data. In: Albinson T and Nelson CE (eds.). New Mines and Discoveries in Mexico and Central America. Society of Economic Geologists, 8: 1-31
Andrews AJ. 1986. Silver vein deposits: Summary of recent research. Canadian Journal of Earth Sciences, 23(10): 1460-1462 DOI:10.1139/e86-140
Bartos PJ. 2000. The pallacos of Cerro Rico de Potosi, Bolivia: A new deposit type. Economic Geology, 95(3): 645-654 DOI:10.2113/gsecongeo.95.3.645
Baumgartner R, Fontbote L and Vennemann T. 2008. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3): 493-537 DOI:10.2113/gsecongeo.103.3.493
Berger BR and Henley RW. 1989. Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States. Economic Geology Monograph, 6: 405-423
Bissig T, Ullrich TD, Tosdal RM, Friedman R and Ebert S. 2008. The time-space distribution of Eocene to Miocene magmatism in the central Peruvian polymetallic province and its metallogenetic implications. Journal of South American Earth Sciences, 26(1): 16-35 DOI:10.1016/j.jsames.2008.03.004
Blakely RJ, John DA, Box SE, Berger BR, Fleck RJ, Ashley RP, Newport GR and Heinemeyer GR. 2007. Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada. Geosphere, 3(2): 91-107 DOI:10.1130/GES00071.1
Bo HZ and Zhang ZC. 2020. Genesis of silicic large igneous provinces and effects of resources and environment. Acta Petrologica Sinica, 36(7): 1973-1985 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.07.03
Bromfield CS, Erickson AJ, Haddadin MA and Mehnert HH. 1977. Potassium-argon ages of intrusion, extrusion, and associated ore deposits, Park City mining district, Utah. Economic Geology, 72(5): 837-848 DOI:10.2113/gsecongeo.72.5.837
Bryan S. 2007. Silicic large igneous provinces. Episodes, 30(1): 20-31 DOI:10.18814/epiiugs/2007/v30i1/004
Burt DM, Sheridan MF, Bikun JV and Christiansen EH. 1982. Topaz rhyolites; distribution, origin, and significance for exploration. Economic Geology, 77(8): 1818-1836 DOI:10.2113/gsecongeo.77.8.1818
Bussell MA, Alpers CN, Petersen U, Shepherd TJ, Bermudez C and Baxter AN. 1990. The Ag-Mn-Pb-Zn vein, replacement, and skarn deposits of Uchucchacua, Peru: Studies of structure, mineralogy, metal zoning, Sr isotopes, and fluid inclusions. Economic Geology, 85(7): 1348-1383 DOI:10.2113/gsecongeo.85.7.1348
Camprubí A, Ferrari L, Cosca MA, Cardellach E and Canals A. 2003. Ages of epithermal deposits in Mexico: Regional significance and links with the evolution of tertiary volcanism. Economic Geology, 98(5): 1029-1037 DOI:10.2113/gsecongeo.98.5.1029
Camprubí A, González-Partida E and Torres-Tafolla E. 2006. Fluid inclusion and stable isotope study of the Cobre-Babilonia polymetallic epithermal vein system, Taxco district, Guerrero, Mexico. Journal of Geochemical Exploration, 89(1-3): 33-38 DOI:10.1016/j.gexplo.2005.11.011
Camprubí A and Albinson T. 2007. Epithermal deposits in México: Update of current knowledge, and an empirical reclassification. In: Alaniz-álvarez SA and Nieto-Samaniego áF (eds. ). Geology of México: Celebrating the Centenary of the Geological Society of México. Geological Society of America, 422: 377-415
Catchpole H, Kouzmanov K, Putlitz B, Seo JH and Fontboté L. 2015. Zoned base metal mineralization in a porphyry system: Origin and evolution of mineralizing fluids in the Morococha district, Peru. Economic Geology, 110(1): 39-71 DOI:10.2113/econgeo.110.1.39
Chang SQ. 2018. Geological characteristics and prospecting signs of the Fuxingtun Ag-Pb-Zn polymetallic ore deposit in Inner Mongolia. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-79 (in Chinese with English summary)
Chen BL. 1988. The epigenetic zonation and gold-silver enrichment characteristics of the Xinqiao gossan type gold deposit. Gold Geotechnology, (4): 18-23 (in Chinese)
Christiansen EH, Burt DM, Sheridan MF and Wilson RT. 1983. The petrogenesis of topaz rhyolites from the western United States. Contributions to Mineralogy and Petrology, 83(1-2): 16-30 DOI:10.1007/BF00373075
Cunningham CG, McNamee J, Pinto Vasquez J and Ericksen GE. 1991. A model of volcanic dome-hosted precious metal deposits in Bolivia. Economic Geology, 86(2): 415-421 DOI:10.2113/gsecongeo.86.2.415
Cunningham CG, Zartman RE, McKee EH, Rye RO, Naeser CW, Sanjinés VO, Ericksen GE and Tavera VF. 1996. The age and thermal history of Cerro Rico de Potosi, Bolivia. Mineralium Deposita, 31(5): 374-385 DOI:10.1007/BF00189185
Dai ZX, Ma JF, Wu CG, Gu F, Li SZ, Wang JS, Cao MF, Liu Y and Tian SJ. 2002. World Silver Resource Potential and Availability Study. Beijing: Seismological Press, 1-175 (in Chinese)
De los Rios HC, Noble DC and Mckee EH. 1990. Geologic setting and epithermal silver veins of the Arcata-district, Southern Peru. Economic Geology, 85(7): 1473-1490 DOI:10.2113/gsecongeo.85.7.1473
Dietrich A, Lehmann B and Wallianos A. 2000. Bulk rock and melt inclusion geochemistry of bolivian tin porphyry systems. Economic Geology, 95(2): 313-326 DOI:10.2113/gsecongeo.95.2.313
Dreier JE. 2005. The environment of vein formation and ore deposition in the Purisima-Colon vein system, Pachuca Real del Monte district, Hidalgo, Mexico. Economic Geology, 100(7): 1325-1347 DOI:10.2113/gsecongeo.100.7.1325
Echavarria L, Nelson E, Humphrey J, Chavez J, Escobedo L and Iriondo A. 2006. Geologic evolution of the Caylloma epithermal vein district, southern Peru'. Economic Geology, 101(4): 843-863 DOI:10.2113/gsecongeo.101.4.843
Einaudi MT, Hedenquist JW and Inan E. 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In: Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Society of Economic Geologists, 10: 285-313
Feng R, Zhang YM, Uribe H and Mao ZH. 2021. A newly explored world-class Silver Sand super large silver deposit, Bolivia: Geological characteristics and assessment. Mineral Deposits, 40(1): 65-81 (in Chinese with English abstract)
Ferrari L, Orozco-Esquivel T, Bryan SE, López-Martínez M and Silva-Fragoso A. 2018. Cenozoic magmatism and extension in western Mexico: Linking the Sierra Madre Occidental silicic large igneous province and the Comondú Group with the Gulf of California rift. Earth-Science Reviews, 183: 115-152 DOI:10.1016/j.earscirev.2017.04.006
Filimonova LG, Trubkin NV and Chugaev AV. 2014. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia. Geology of Ore Deposits, 56(3): 169-199 DOI:10.1134/S1075701514030015
Gao SB, Zheng YY, Jiang XJ, Li WL and Jiang JS. 2020. Discovery, genesis and significances of first sliver-tin polymetal deposit in western Gangdese belt. Earth Science, 45(12): 4463-4480 (in Chinese with English abstract)
Ghasemi Siani M, Lentz DR and Nazarian M. 2020. Geochemistry of igneous rocks associated with mineral deposits in the Tarom-Hashtjin metallogenic province, NW Iran: An analysis of the controls on epithermal and related porphyry-style mineralization. Ore Geology Reviews, 126: 103753 DOI:10.1016/j.oregeorev.2020.103753
Gilmer AL, Clark KF, Conde CJ, Hernandez CI, Figueroa SJI and Porter EW. 1988. Sierra de Santa Maria, Velardeña mining district, Durango. Economic Geology, 83(8): 1802-1829 DOI:10.2113/gsecongeo.83.8.1802
González-Partida E and Camprubí A. 2006. Evolution of mineralizing fluids in the Zn-Pb-Cu(-Ag±Au) skarn and epithermal deposits of the world-class San Martín district, Zacatecas, Mexico. Journal of Geochemical Exploration, 89(1-3): 138-142 DOI:10.1016/j.gexplo.2005.11.050
Grant GJ and Ruiz J. 1988. The Pb-Zn-Cu-Ag deposits of the Granadena Mine, San Francisco del Oro-Santa Barbara district, Chihuahua. Economic Geology, 83(8): 1683-1702 DOI:10.2113/gsecongeo.83.8.1683
Graybeal FT and Vikre PG. 2010. A review of silver-rich mineral deposits and their metallogeny. Society of Economic Geologists Special Publication, 15(1): 85-117
Han R, Qin KZ, Su SQ, Groves DI, Zhao C, Hui KX and Meng ZJ. 2020. An Early Cretaceous Ag-Pb-Zn mineralization at Halasheng in the south Erguna Block, NE China: Constraints from U-Pb and Rb-Sr geochronology, geochemistry and Sr-Nd-Hf isotopes. Ore Geology Reviews, 122: 103526 DOI:10.1016/j.oregeorev.2020.103526
Hedenquist J. 1987. Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin. In: Transactions of the Fourth Circum-Pacific Energy and Mineral Resources Conference. Singapore: American Association of Petroleum Geologists, 513-524
Hedenquist J, Arribas A and Gonzalez-Urien E. 2000. Exploration for epithermal gold deposits. Reviews in Economic Geology, 13(2): 245-277
Heinrich CA, Günther D, Audétat A, Ulrich T and Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8): 755-758 DOI:10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
Hildreth SC and Hannah JL. 1996. Fluid inclusion and sulfur isotope studies of the Tintic mining district, Utah: Implications for targeting fluid sources. Economic Geology, 91(7): 1270-1281 DOI:10.2113/gsecongeo.91.7.1270
Huang CK and Zhu YS. 2002. The Spatial and Temporal Distribution of Silver Deposits in China. Beijing: Seismological Press, 1-447 (in Chinese)
Hudson DM. 2003. Epithermal alteration and mineralization in the Comstock District, Nevada. Economic Geology, 98(2): 367-385 DOI:10.2113/gsecongeo.98.2.367
Hui KX, Qin KZ, Li ZZ, Wang FY, Gao S, Han R, Kan J, Zhao JX and Li GM. 2021. The linkage between the Jiawula-Chaganbulagen Ag-Pb-Zn and adjacent porphyry Mo-Cu mineralization, Inner Mongolia, Northeast China. Ore Geology Reviews, 134: 104153 DOI:10.1016/j.oregeorev.2021.104153
Huspeni JR, Kesler SE, Ruiz J, Tuta Z, Sutter JF and Jones LM. 1984. Petrology and geochemistry of rhyolites associated with tin mineralization in northern Mexico. Economic Geology, 79(1): 87-105 DOI:10.2113/gsecongeo.79.1.87
Jiang B, Zhang T, Wang DH, Chen YC, Zhang DQ, Huang CK, Bai G, Wang CH and Huang F. 2020. Factors controlling ore formation, regularity and some prospecting strategies for silver deposits in China. Acta Geologica Sinica, 94(1): 113-126 (in Chinese with English abstract)
Jiang SH, Zhang LL, Liu YF, Liu CH, Kang H and Wang FX. 2018. Metallogeny of Xing-Meng Orogenic Belt and some related problems. Mineral Deposits, 37(4): 671-711 (in Chinese with English abstract)
Jin LY, Qin KZ, Li GM, Zhao JX and Li ZZ. 2020. Characteristics, controlling factors and exploration implications of porphyry molybdenum-hydrothermal vein-style lead-zinc-silver metallogenic systems. Acta Petrologica Sinica, 36(12): 3813-3839 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.12.15
John DA, Garside LJ and Wallace AR. 1999. Magmatic and tectonic setting of late Cenozoic epithermal gold-silver deposits in northern Nevada, with an emphasis on the Pah Rah and Virginia Ranges and the northern Nevada rift. Geological Society of Nevada Special Publication, 29: 65-158
John DA. 2001. Miocene and Early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to magmatism. Economic Geology, 96(8): 1827-1853 DOI:10.2113/gsecongeo.96.8.1827
John DA, Bray EA, Henry CD and Vikre PG. 2016. Cenozoic magmatism and epithermal gold-silver deposits of the southern ancestral Cascade arc, western Nevada and eastern California. In: Geological Society of Nevada 2015 Symposium New Concepts and Discoveries. Reno/Sparks, Nevada, 611-645
Kissin SA. 1992. Five-element (Ni-Co-As-Ag-Bi) veins. Geoscience Canada, 19(3): 113-124
Kotková J, Kullerud K, Šrein V, Drábek M and Škoda R. 2018. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits. Mineralium Deposita, 53(4): 531-545 DOI:10.1007/s00126-017-0757-1
Kreissl S, Gerdes A, Walter BF, Neumann U, Wenzel T and Markl G. 2018. Reconstruction of a >200Ma multi-stage "five element" Bi-Co-Ni-Fe-As-S system in the Penninic Alps, Switzerland. Ore Geology Reviews, 95: 746-788 DOI:10.1016/j.oregeorev.2018.02.008
Layer PW, Newberry R, Fujita K, Parfenov L, Trunilina V and Bakharev A. 2001. Tectonic setting of the plutonic belts of Yakutia, Northeast Russia, based on 40Ar/39Ar and trace element geochemistry. Geology, 29(2): 167-170 DOI:10.1130/0091-7613(2001)029<0167:TSOTPB>2.0.CO;2
Lehmann B, Ishihara S, Michel H, Miller J, Rapela CW, Sanchez A, Tistl M and Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes: A reassessment. Economic Geology, 85(5): 1044-1058 DOI:10.2113/gsecongeo.85.5.1044
Levresse G, Cheilletz A, Gasquet D, Reisberg L, Deloule E, Marty B and Kyser K. 2004. Osmium, sulphur, and helium isotopic results from the giant Neoproterozoic epithermal Imiter silver deposit, Morocco: Evidence for a mantle source. Chemical Geology, 207(1-2): 59-79 DOI:10.1016/j.chemgeo.2004.02.004
Lhotka PG. 2010. Discovery history of the Navidad silver deposits, Chubut, Argentina: One thousand years in the waiting. In: Goldfarb RJ, Marsh EE and Monecke T (eds. ). The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Society of Economic Geologists, 15(1): 181-201
Li CY, Liu TG, Ye L, Zhu WG and Deng HL. 2003. Large and superlarge silver deposits associated with volcanic rocks in China. Science in China (Series D), 46(1): 84-98 DOI:10.1360/03yd9008
Li SY, Li Y, Lai LR, Zhou WN and Yang SD. 1996. Technological Mineralogy of Silver in Argentiferous Deposits of China. Beijing: Geological Publishing House, 1-157 (in Chinese)
Li YJ, Wei JH, Tan J, Fu LB, Li H and Ke KJ. 2020. Albian-Cenomanian A-type granite-related Ag-Pb-Zn veins in the central Yidun Terrane, SW China: Constraints from the Xiasai deposit. Mineralium Deposita, 55(6): 1047-1070 DOI:10.1007/s00126-019-00920-5
Li ZK, Li JW, Zhao XF, Zhou MF, Selby D, Bi SJ, Sui JX and Zhao ZJ. 2013. Crustal-extension Ag-Pb-Zn veins in the Xiong'ershan District, southern North China Craton: Constraints from the Shagou deposit. Economic Geology, 108(7): 1703-1729 DOI:10.2113/econgeo.108.7.1703
Li ZZ, Qin KZ, Zhao JX, Li GM and Su SQ. 2019. Basic characteristics, research progresses and prospects of Sn-Ag-base metal metallogenic system. Acta Petrologica Sinica, 35(7): 1979-1998 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.07.03
Lindgren W. 1933. Mineral Deposits. 4th Edition. New York: McGraw-Hill, 930
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148 DOI:10.1016/j.gr.2016.03.013
Luo YJ. 1985. Geological characteristics of the Lengshuikeng porphyry type Pb-Zn deposit in Guixi County, Jiangxi Province. Mineral Deposits, 4(4): 15-24 (in Chinese with English abstract)
Macario RR. 2016. Metallogenesis of the Peñasquito polymetallic deposit: A contribution to the understanding of the magmatic ore system. Ph. D. Dissertation. Reno: University of Nevada, 1-310
Mango H, Arehart G, Oreskes N and Zantop H. 2014. Origin of epithermal Ag-Au-Cu-Pb-Zn mineralization in Guanajuato, Mexico. Mineralium Deposita, 49(1): 119-143 DOI:10.1007/s00126-013-0478-z
Manning AH and Hofstra AH. 2017. Noble gas data from Goldfield and Tonopah epithermal Au-Ag deposits, ancestral Cascades Arc, USA: Evidence for a primitive mantle volatile source. Ore Geology Reviews, 89: 683-700 DOI:10.1016/j.oregeorev.2017.06.023
Manning DAC. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76(2): 206-215 DOI:10.1007/BF00371960
Markl G, Burisch M and Neumann U. 2016. Natural fracking and the genesis of five-element veins. Mineralium Deposita, 51(6): 703-712 DOI:10.1007/s00126-016-0662-z
Mckee EH, Dreier JE and Noble DC. 1992. Early Miocene hydrothermal activity at Pachuca-Real Del Monte, Mexico: An example of space-time association of volcanism and epithermal Ag-Au vein mineralization. Economic Geology, 87(6): 1635-1637 DOI:10.2113/gsecongeo.87.6.1635
McPhie J, Kamenetsky V, Allen S, Ehrig K, Agangi A and Bath A. 2011. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39(11): 1003-1006 DOI:10.1130/G32205.1
Megaw PKM, Ruiz J and Titley SR. 1988. High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico. Economic Geology, 83(8): 1856-1885 DOI:10.2113/gsecongeo.83.8.1856
Megaw PKM. 1990. Geology and geochemistry of the Santa Eulalia mining district, Chihuahua, Mexico. Ph. D. Dissertation. Tucson, Arizona: University of Arizona, 1-461
Meng XJ, Hou ZQ, Dong GY, Liu JG, Zuo LY, Yang ZS and Xiao MZ. 2009. Geological characteristics and mineralization timing of the Lengshuikeng porphyry Pb-Zn-Ag deposit, Jiangxi Province. Acta Geologica Sinica, 83(12): 1951-1967 (in Chinese with English abstract)
Migdisov AA and Williams-Jones AE. 2013. A predictive model for metal transport of silver chloride by aqueous vapor in ore-forming magmatic-hydrothermal systems. Geochimica et Cosmochimica Acta, 104: 123-135 DOI:10.1016/j.gca.2012.11.020
Mlynarczyk MSJ and Williams-Jones AE. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth and Planetary Science Letters, 240(3-4): 656-667 DOI:10.1016/j.epsl.2005.09.047
Montoya-Lopera P, Levresse G, Ferrari L, Orozco-Esquivel T, Hernández-Quevedo G, Abdullin F and Mata L. 2020. New geological, geochronological and geochemical characterization of the San Dimas mineral system: Evidence for a telescoped Eocene-Oligocene Ag/Au deposit in the Sierra Madre Occidental, Mexico. Ore Geology Reviews, 118: 103195 DOI:10.1016/j.oregeorev.2019.103195
Mosier DL, Singer DA, Sato T and Page NJ. 1986. Relationship of grade, tonnage, and basement lithology in volcanic-hosted epithermal precious-and base-metal quartz-adularia-type districts. Mining Geology, 36(198): 245-264
Nie FJ, Jiang SH, Bai DM, Hou WR and Liu YF. 2010. Types and temporal-spatial distribution of metallic deposits in southern Mongolia and its neighboring areas. Acta Geoscientica Sinica, 31(3): 267-288 (in Chinese with English abstract)
Niu SD, Li SR, Huizenga JM, Santosh M, Zhang DH, Zeng YJ, Li ZD and Zhao WB. 2017. Zircon U-Pb geochronology and geochemistry of the intrusions associated with the Jiawula Ag-Pb-Zn deposit in the Great Xing'an Range, NE China and their implications for mineralization. Ore Geology Reviews, 86: 35-54 DOI:10.1016/j.oregeorev.2017.02.007
Orozco-Esquivel MT, Nieto-Samaniego AF and Alaniz-Alvarez SA. 2002. Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. Journal of Volcanology and Geothermal Research, 118(1-2): 37-56 DOI:10.1016/S0377-0273(02)00249-4
Pavlova GG and Borisenko AS. 2009. The age of Ag-Sb deposits of Central Asia and their correlation with other types of ore systems and magmatism. Ore Geology Reviews, 35(2): 164-185 DOI:10.1016/j.oregeorev.2008.11.006
Petruk W. 1968. Mineralogy and origin of the Silverfields silver deposit in the Cobalt area, Ontario. Economic Geology, 63(5): 512-531 DOI:10.2113/gsecongeo.63.5.512
Prokopiev AV, Borisenko AS, Gamyanin GN, Pavlova GG, Fridovsky VY, Kondrat'eva LA, Anisimova GS, Trunilina VA, Ivanov AI, Travin AV, Koroleva OV, Vasiliev DA and Ponomarchuk AV. 2018. Age constraints and tectonic settings of metallogenic and magmatic events in the Verkhoyansk-Kolyma folded area. Russian Geology and Geophysics, 59(10): 1237-1253 DOI:10.1016/j.rgg.2018.09.004
Qin KZ. 1998. Mesozoic porphyry-subvolcanic-epithermal Cu, Mo, Pb, Zn, Ag mineralization system in the southern Erguna. Mineral Deposits, 17(Suppl.1): 201-206 (in Chinese)
Qin KZ, Zhai MG, Li GM, Zhao JX, Zeng QD, Gao J, Xiao WJ, Li JL and Sun S. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract)
Railsback LB. 2003. An earth scientist's periodic table of the elements and their ions. Geology, 31(9): 737-740 DOI:10.1130/G19542.1
Rice CM, Steele GB, Barfod DN, Boyce AJ and Pringle MS. 2005. Duration of magmatic, hydrothermal, and supergene activity at Cerro Rico de Potosi, Bolivia. Economic Geology, 100(8): 1647-1656 DOI:10.2113/gsecongeo.100.8.1647
Rottier B, Kouzmanov K, Bouvier AS, Baumgartner LP, Wälle M, Rezeau H, Bendezú R and Fontboté L. 2016. Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic-hydrothermal transition (Cerro de Pasco district, Peru). Chemical Geology, 447: 93-116 DOI:10.1016/j.chemgeo.2016.10.032
Rottier B, Kouzmanov K, Casanova V, Bouvier AS, Baumgartner LP, Wälle M and Fontboté L. 2018. Mineralized breccia clasts: A window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru). Mineralium Deposita, 53(7): 919-946 DOI:10.1007/s00126-017-0786-9
Rottier B, Kouzmanov K, Ovtcharova M, Ulianov A, Wälle M, Selby D and Fontboté L. 2020. Multiple rejuvenation episodes of a silicic magma reservoir at the origin of the large diatreme-dome complex and porphyry-type mineralization events at Cerro de Pasco (Peru). Lithos, 376-377: 105766
Rubin JN and Kyle JR. 1988. Mineralogy and geochemistry of the San Martin skarn deposit, Zacatecas. Economic Geology, 83(8): 1782-1801 DOI:10.2113/gsecongeo.83.8.1782
Ruiz J, Kesler SE and Jones LM. 1985. Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from the Sierra Madre Occidental, Mexico: Possible exploration significance. Economic Geology, 80(1): 33-42 DOI:10.2113/gsecongeo.80.1.33
Sack RO and Lichtner PC. 2009. Constraining compositions of hydrothermal fluids in equilibrium with polymetallic ore-forming sulfide assemblages. Economic Geology, 104(8): 1249-1264 DOI:10.2113/gsecongeo.104.8.1249
Scharrer M, Kreissl S and Markl G. 2019. The mineralogical variability of hydrothermal native element-arsenide (five-element) associations and the role of physicochemical and kinetic factors concerning sulfur and arsenic. Ore Geology Reviews, 113: 103025 DOI:10.1016/j.oregeorev.2019.103025
Seedorff E and Einaudi MT. 2004. Henderson porphyry molybdenum system, Colorado: Ⅱ. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Economic Geology, 99(1): 39-72
Shimizu T and Morishita Y. 2012. Petrography, chemistry, and near-infrared microthermometry of indium-bearing sphalerite from the Toyoha polymetallic deposit, Japan. Economic Geology, 107(4): 723-735 DOI:10.2113/econgeo.107.4.723
Sillitoe RH. 1977. Metallic mineralization affiliated to subaerial volcanism: A review. In: Volcanic Processes in Ore Genesis. London: Institution of Mining and Metallurgy and Geological Society, 99-116
Sillitoe RH and Lorson RC. 1994. Epithermal gold-silver-mercury deposits at Paradise Peak, Nevada: Ore controls, porphyry gold association, detachment faulting, and supergene oxidation. Economic Geology, 89(6): 1228-1248 DOI:10.2113/gsecongeo.89.6.1228
Sillitoe RH, Steele GB, Thompson JFH and Lang JR. 1998. Advanced argillic lithocaps in the Bolivian tin-silver belt. Mineralium Deposita, 33(6): 539-546 DOI:10.1007/s001260050170
Sillitoe RH and Hedenquist JW. 2003. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In: Simmons SF and Graham I (eds. ). Volcanic, Geothermal, and Ore-forming Fluids: Rulers and Witnesses of Processes within the Earth. Society of Economic Geologists, 315-343
Simmons SF. 1991. Hydrologic implications of alteration and fluid inclusion studies in the Fresnillo district, Mexico: Evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn orebodies. Economic Geology, 86(8): 1579-1601 DOI:10.2113/gsecongeo.86.8.1579
Simmons SF, White NC and John DA. 2005. Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds. ). One Hundredth Anniversary Volume. Society of Economic Geologists, 485-522
Simmons SF and Brown KL. 2007. The flux of gold and related metals through a volcanic arc, Taupo volcanic zone, New Zealand. Geology, 35(12): 1099-1102 DOI:10.1130/G24022A.1
Simon AC, Candela PA, Piccoli PM, Mengason M and Englander L. 2008a. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag. American Mineralogist, 93(8-9): 1437-1448 DOI:10.2138/am.2008.2812
Simon AC, Pettke T, Candela PA and Piccoli PM. 2008b. The partitioning behavior of silver in a vapor-brine-rhyolite melt assemblage. Geochimica et Cosmochimica Acta, 72(6): 1638-1659 DOI:10.1016/j.gca.2008.01.003
Slater ET, Kontak DJ, McDonald AM and Fayek M. 2021. Origin of a multi-stage epithermal Ag-Zn-Pb-Sn deposit: The Miocene Cortaderas breccia body, Pirquitas mine, NW Argentina. Mineralium Deposita, 56(2): 381-406 DOI:10.1007/s00126-020-00976-8
Staude S, Werner W, Mordhorst T, Wemmer K, Jacob DE and Markl G. 2012. Multi-stage Ag-Bi-Co-Ni-U and Cu-Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: Geological setting, ore mineralogy, and fluid evolution. Mineralium Deposita, 47(3): 251-276 DOI:10.1007/s00126-011-0365-4
Stefánsson A and Seward TM. 2003. Experimental determination of the stability and stoichiometry of sulphide complexes of silver (Ⅰ) in hydrothermal solutions to 400℃. Geochimica et Cosmochimica Acta, 67(7): 1395-1413 DOI:10.1016/S0016-7037(02)01093-1
Sugaki A, Shimada N, Ueno H and Kano S. 2003. K-Ar ages of tin-polymetallic mineralization in the Oruro mining district, central Bolivian tin belt. Resource Geology, 53(4): 273-282 DOI:10.1111/j.1751-3928.2003.tb00176.x
Titley SR. 1991. Correspondence of ores of silver and gold with basement terranes in the American southwest. Mineralium Deposita, 26(1): 66-71 DOI:10.1007/BF00202368
Turneaure FS. 1971. The Bolivian tin-silver province. Economic Geology, 66(2): 215-225 DOI:10.2113/gsecongeo.66.2.215
Velador JM, Heizler MT and Campbell AR. 2010. Timing of magmatic activity and mineralization and evidence of a long-lived hydrothermal system in the Fresnillo silver district, Mexico: Constraints from 40Ar/39Ar geochronology. Economic Geology, 105(7): 1335-1349 DOI:10.2113/econgeo.105.7.1335
Volkov VN, Lebedev VA, Gol'tsman YV, Arakelyants MM, Golubev VN and Bairova ED. 1999. Magmatic associations and ore mineralization of the Aktepe ore field (Kuraminsk ridge, Uzbekistan): Formation sequence and isotope age. Geology of Ore Deposits, 41(3): 238-251
Wang DZ and Zhou JC. 2005. New progress in studying the large igneous provinces. Geological Journal of China Universities, 11(1): 1-8 (in Chinese with English abstract)
Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY and Zhu RX. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198 DOI:10.1016/j.epsl.2006.09.007
Wang JC and Jian XZ. 1996. On occurrence of silver. Geological Exploration for Non-Ferrous Metals, 5(2): 89-93 (in Chinese with English abstract)
Wang L, Qin KZ, Song GX and Li GM. 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434-456 DOI:10.1016/j.oregeorev.2019.02.023
Warren I, Archibald DA and Simmons SF. 2008. Geochronology of epithermal Au-Ag mineralization, magmatic-hydrothermal alteration, and supergene weathering in the El Penon district, northern Chile. Economic Geology, 103(4): 851-864 DOI:10.2113/gsecongeo.103.4.851
White NC, Zhang DY, Hong HL, Liu LJ, Sun WA and Zhang MM. 2019. Epithermal gold deposits of China: An overview. In: Chang ZS and Goldfarb RJ (eds. ). Mineral Deposits of China. Society of Economic Geologists, Special Publication, 22: 235-262
Wilkinson JJ, Simmons SF and Stoffell B. 2013. How metalliferous brines line Mexican epithermal veins with silver. Scientific Reports, 3: 2057 DOI:10.1038/srep02057
Williams-Jones AE and Migdisov AA. 2014. Experimental constraints on the transport and deposition of metals in ore-forming hydrothermal systems. In: Kelley KD and Golden HC (eds. ). Building Exploration Capability for the 21st Century. Littleton: Society of Economic Geologists, 77-95
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1
Xu XS and Qiu JS. 2010. Igneous Petrology. Beijing: Science Press, 1-346 (in Chinese)
Yang FT. 2016. Geologic features of Erdaohe silver polymetallic deposit and its ore finding prediction in middle Daxing'anling Mountains. Master Degree Thesis. Beijing: China University of Geosciences, 1-89 (in Chinese with English summary)
Yao L, Lü ZC, Ye TZ, Pang ZS, Jia HX, Zhang ZH, Wu YF and Li RH. 2017. Zircon U-Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range, China. Acta Petrologica Sinica, 33(10): 3183-3199 (in Chinese with English abstract)
Yigit O. 2009. Mineral deposits of turkey in relation to Tethyan metallogeny: Implications for future mineral exploration. Economic Geology, 104(1): 19-51 DOI:10.2113/gsecongeo.104.1.19
Yin YW and Zajacz Z. 2018. The solubility of silver in magmatic fluids: Implications for silver transfer to the magmatic-hydrothermal ore-forming environment. Geochimica Et Cosmochimica Acta, 238: 235-251 DOI:10.1016/j.gca.2018.06.041
Zajacz Z, Halter WE, Pettke T and Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta, 72(8): 2169-2197 DOI:10.1016/j.gca.2008.01.034
Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C and Wälle M. 2013. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochimica et Cosmochimica Acta, 112: 288-304 DOI:10.1016/j.gca.2013.02.026
Zamora-Vega O, Richards JP, Spell T, Dufrane SA and Williamson J. 2018. Multiple mineralization events in the Zacatecas Ag-Pb-Zn-Cu-Au district, and their relationship to the tectonomagmatic evolution of the Mesa Central, Mexico. Ore Geology Reviews, 102: 519-561 DOI:10.1016/j.oregeorev.2018.09.010
Zhai DG, Williams-Jones AE, Liu JJ, Selby D, Voudouris PC, Tombros S, Li K, Li PL and Sun HJ. 2020. The genesis of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, northeastern China. Economic Geology, 115(1): 101-128 DOI:10.5382/econgeo.4695
Zhang DQ, Jiang B, Wang DH, Wang CH, Chen YC and Bai G. 2015. A summary of resources characteristics and metallogenic regularity of silver deposits in China. Acta Geologica Sinica, 89(6): 1008-1025 (in Chinese with English abstract)
Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH and Liu XM. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China. Lithos, 102(1-2): 138-157 DOI:10.1016/j.lithos.2007.08.011
Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA and Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination. Chemical Geology, 276(3-4): 144-165 DOI:10.1016/j.chemgeo.2010.05.013
Zhu Q and Liu B. 2014. Geology and Minerals of the Southern Northeast Asia Region. Wuhan: China University of Geosciences Press, 1-248 (in Chinese)
Zuo LY. 2008. Research on mineralization of the Lengshuikeng porphyry silver-lead-zinc deposit in Jiangxi Province, China. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-134 (in Chinese with English summary)
薄弘泽, 张招崇. 2020. 硅质大火成岩省的形成机制及其与资源环境的关系. 岩石学报, 36(7): 1973-1985.
常时旗. 2018. 内蒙古复兴屯银铅锌多金属矿矿床地质特征及找矿标志. 博士学位论文. 北京: 中国地质大学, 1-79
陈伯林. 1988. 新桥铁帽型金矿床表生分带及金银的富集特征. 黄金地质科技, (4): 18-23.
戴自希, 马江芬, 吴初国, 古方, 李树枝, 王家枢, 曹美芳, 刘勇, 田素军. 2002. 世界银矿资源潜力和可供性研究. 北京: 地震出版社, 1-175.
冯锐, 张永明, Uribe H, 毛志昊. 2021. 新探明的玻利维亚银沙(Silver Sand)超大型银矿床地质特征和找矿评价. 矿床地质, 40(1): 65-81.
高顺宝, 郑有业, 姜晓佳, 李伟良, 姜军胜. 2020. 冈底斯西段首例银锡多金属矿床的发现、成因及意义. 地球科学, 45(12): 4463-4480.
黄崇轲, 朱裕生. 2002. 中国银矿床及其时空分布. 北京: 地震出版社, 1-447.
江彪, 张通, 王登红, 陈毓川, 张大权, 黄崇轲, 白鸽, 王成辉, 黄凡. 2020. 中国银矿床地质控矿规律及若干找矿方向. 地质学报, 94(1): 113-126.
江思宏, 张莉莉, 刘翼飞, 刘春花, 康欢, 王丰翔. 2018. 兴蒙造山带成矿规律及若干科学问题. 矿床地质, 37(4): 671-711.
金露英, 秦克章, 李光明, 赵俊兴, 李真真. 2020. 斑岩钼-热液脉状铅锌银矿成矿系统特征、控制因素及勘查指示. 岩石学报, 36(12): 3813-3839. DOI:10.18654/1000-0569/2020.12.15
李朝阳, 刘铁庚, 叶霖, 朱维光, 邓海琳. 2003. 我国与火山岩有关的大型、超大型银矿床. 中国科学(D辑), 32(增2): 69-77.
李绥远, 李艺, 赖来仁, 周卫宁, 杨树德. 1996. 中国伴生银矿床银的工艺矿物学. 北京: 地质出版社, 1-157.
李真真, 秦克章, 赵俊兴, 李光明, 苏仕强. 2019. 锡-银多金属成矿系统的基本特征、研究进展与展望. 岩石学报, 35(7): 1979-1998.
罗诒爵. 1985. 冷水坑斑岩型铅锌矿床地质特征. 矿床地质, 4(4): 15-24.
孟祥金, 侯增谦, 董光裕, 刘建光, 左力艳, 杨竹森, 肖茂章. 2009. 江西冷水坑斑岩型铅锌银矿床地质特征、热液蚀变与成矿时限. 地质学报, 83(12): 1951-1967. DOI:10.3321/j.issn:0001-5717.2009.12.011
聂凤军, 江思宏, 白大明, 侯万荣, 刘翼飞. 2010. 蒙古国南部及邻区金属矿床类型及其时空分布特征. 地球学报, 31(3): 267-288.
秦克章. 1998. 额尔古纳南段中生代斑岩-次火山岩-浅成低温Cu、Mo、Pb、Zn、Ag成矿系统. 矿床地质, 17(增1): 201-206.
秦克章, 翟明国, 李光明, 赵俊兴, 曾庆栋, 高俊, 肖文交, 李继亮, 孙枢. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325.
王德滋, 周金城. 2005. 大火成岩省研究新进展. 高校地质学报, 11(1): 1-8. DOI:10.3969/j.issn.1006-7493.2005.01.001
王静纯, 简晓忠. 1996. 银的赋存特征研究. 有色金属矿产与勘查, 5(2): 89-93.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
徐夕生, 邱检生. 2010. 火成岩岩石学. 北京: 科学出版社, 1-346.
杨发亭. 2016. 大兴安岭中段二道河银多金属矿床地质特征及找矿预测. 硕士学位论文. 北京: 中国地质大学, 1-89
姚磊, 吕志成, 叶天竺, 庞振山, 贾宏翔, 张志辉, 吴云峰, 李睿华. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义. 岩石学报, 33(10): 3183-3199.
张大权, 江彪, 王登红, 王成辉, 陈毓川, 白鸽. 2015. 中国银矿的资源特征及成矿规律概要. 地质学报, 89(6): 1008-1025. DOI:10.3969/j.issn.0001-5717.2015.06.002
朱群, 刘斌. 2014. 东北亚南部地区地质与矿产. 武汉: 中国地质大学出版社, 1-248.
左力艳. 2008. 江西冷水坑斑岩型银铅锌矿床成矿作用研究. 博士学位论文. 北京: 中国地质科学院, 1-134