岩石学报  2021, Vol. 37 Issue (8): 2465-2482, doi: 10.18654/1000-0569/2021.08.13   PDF    
中-晚二叠世上扬子地块(四川盆地区)裂解的沉积响应
邓莉1, 闫全人1, 宋博1,2, 高山林3     
1. 中国科学院大学地球与行星科学学院, 北京 100049;
2. 中国地质调查局西安地质调查中心, 西安 710054;
3. 中国石油化工股份有限公司油田勘探开发事业部, 北京 100728
摘要: 中-晚二叠世,上扬子(四川盆地区)碳酸盐岩台地内发育三条北西-南东走向的裂谷,它们是重要的油气储集区带,如普光和元坝气田就产于开江-梁平裂谷两侧。但是对这些裂谷的开始时代和构造成因等关键地质问题,还缺乏详细的沉积学研究,且存在较大争议。本文通过大比例露头剖面和钻井岩芯测量以及详细的沉积相分析对比,对开江-梁平裂谷的构造沉积过程进行了深入细致的研究。调查发现,在开江-梁平裂谷北缘,中二叠统栖霞组上段至茅口组2段发育大规模斜坡相碳酸盐岩滑塌堆积,揭上扬子地块四川盆地区于中二叠世栖霞晚期开始发生伸展裂解。茅口组3段至上二叠统长兴组为超覆于滑塌堆积之上的硅质岩和碳-硅质泥岩等深水盆地相沉积,表明开江-梁平裂谷从中二叠世茅口晚期开始由伸展裂解转变为区域沉降,即开江-梁平裂谷经历了伸展裂解和区域沉降两个构造沉积阶段。伸展裂解阶段,开江-梁平裂谷是一个发育于碳酸盐岩台地内的不对称海相半地堑盆地,北侧为发育大规模碳酸盐岩滑塌堆积的下盘断斜坡带,南侧为发育缓斜坡生物碎屑滩和礁灰岩的上盘缓斜坡带;区域沉降阶段,开江-梁平裂谷表现为东翘西降的不均匀沉降,发育自东向西不断进积的潮坪-潟湖相和高能浅滩相沉积等。本文研究成结果对分析和圈定四川盆地区中-晚二叠世油气储集相带的时空分布具有重要科学意义,也为研究碳酸盐岩滑塌堆积提供了一个新范例。
关键词: 上扬子地块    开江-梁平裂谷    中-晚二叠世    碳酸盐岩滑塌堆积    伸展裂解    不均匀沉降    
Sedimentary responses to rifting of the Upper Yangtze Block (Sichuan basin area) in the Middle-Late Permian
DENG Li1, YAN QuanRen1, SONG Bo1,2, GAO ShanLin3     
1. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. Xi'an Center, China Geological Survey, Xi'an 710054, China;
3. Exploration and Development Affairs Department, SINOPEC, Beijing 100728, China
Abstract: Three rift valleys in NW-SE strike have been outlined by the gas and oil explorations in the Upper Yangtze Block in the past 20 years. More importantly, these two rift valleys are the locations of proved gas fields in the present Sichuan Basin, such as the Puguang and Yuanba gas fields developed on both sides of the Kaijiang-Liangping (KL) rift valley. However, the initiating ages of these rift valleys and their tectono-sedimentary evolutionary processes are still unclear, mainly because of lacking the sedimentary constraints. Based on careful observations of field outcrops along three sections and a drill core, we analyzed the sequences of the KL rift valley in the Permian and reconstructed its tectonic and filling processes. The results presented in this paper show that carbonate olistostromes were highly developed in the upper section of the Qixia Formation to the second member of the Maokou Formation of the Middle Permian in the northern flank of the KL rift valley, floored by platform carbonates and overlapped by deep-water deposits, which indicates that the slope facies related to the rifting occurred in the Upper Yangtze carbonate platform in the Middle Permian. The lowest carbonate olistostromes suggest the rifting initiated at the Middle Qixia Stage (approximately the Early Wordian) and gradually developed from west to east. Overlapped deep basin deposits in the third member of the Maokou Formation to the Changhsing Formation of the Upper Permian demonstrate the change from the rifting to post-rift subsidence at the beginning of the Late Maokou Stage (approximately the Late Capitanian). In a word, the KL rift valley underwent the tectono-sedimentary processes of the rifting and then post-rift subsidence. During the rifting, the KL rift valley was a marine half-graben developed on the Upper Yangtze carbonate platform, and its northern flank was a fault-controlled slope and characterized by massive carbonate olistostromes. The drill core (Yuanba 8) shows that deeply buried southern flank of the half-graben was a gentle slope and deposited bioclastic and reef limestones. During the post-rift subsidence, the KL rift valley was characterized by cherts and cherty mudstones of the deep basin facies enriched the fossils such as Ammonites. The post-rift subsidence was highly uneven and therefore resulted in the lagoon-tidal flat facies and high-energy shoal facies progressively overlapping the deep basin sediments from east to west along the KL rift valley.
Key words: Carbonate olistostrome    Carbonate platform rifting    Post-rift subsidence    Kaijiang-Liangping rift valley    Middle-Late Permian    Upper Yangtze Block    

碳酸盐岩滑塌堆积(Carbonate Olistostrome)系由固结或半固结的碳酸盐岩,因重力失稳发生崩塌(Rock Fall)或沿斜坡发生蠕滑(Creep)、滑动(Slide)、滑塌(Slump),以块体方式搬运和堆积(Mass-Transport Deposition, MTD)而成的沉积体,并伴有碎屑流(Debris Flow)、颗粒流(Grain Flow)和灰泥流(Mud Flow)等重力流沉积,远端为浊流沉积(Middleton and Hampton, 1973Nardin et al., 1979王一刚,1984Stow,1986张抗,1994)。未完全固结的碳酸盐岩在沿斜坡发生滑动过程中,常形成滑动褶曲、滑塌断层、球状构造和钩状构造等同沉积变形构造(Kuenen,1948Naylor,1981Reading,1996Pini,1999),规模较大的滑来岩块(Olistolith)会发生褶曲(Naylor,1981)、张裂(Stow,1986)和错断(王一刚,1984)等变形现象。发育于斜坡裾的钙质颗粒流和灰泥流等重力流沉积同样会发生滑动或蠕滑并发育滑动扭曲(Contortion),即软沉积变形(Stow,1986Bourrouilh,1987)。

已有研究揭示,碳酸盐岩滑塌堆积一般发育于碳酸盐岩台地边缘斜坡(Naylor,1981Lehrmann et al., 2020)、礁前斜坡(Morgan and Kench, 2016Montaggioni et al., 2019)、裂谷盆地边缘断斜坡(Wendorff,2005Cieszkowski et al., 2012)、海山斜坡(Safonova et al., 2016)以及碳酸盐岩岸带(Carbonate Bank)边缘斜坡(Le Goff et al., 2020)等部位。这些边缘斜坡的形成受海平面升降、沉积物供给和加积速率等长期因素(Lee et al., 2007)以及构造活动和火山喷发等突发性因素(Graziano, 2000, 2001Lee et al., 2007)的控制。例如,大巴哈马碳酸盐岩岸带(Great Bahama Bank)边缘斜坡(Le Goff et al., 2020)和扬子地块边缘大贵州滩台地边缘斜坡(Lehrmann et al., 2020)的构造地形是台地向盆地自然演化过程中形成的。太平洋法属波利尼西亚(French Polynesia)岛礁前斜坡则受构造、海平面和礁生长速度等因素共同控制(Montaggioni et al., 2019)。而意大利南部Apulia碳酸盐岩台地边缘斜坡受控于伸展作用,同沉积正断层控制了滑塌堆积的物源供给、成分、沉积过程和分散模式(Graziano, 2000, 2001)。

作为一种特殊沉积,碳酸盐岩滑塌堆积不仅是重大构造事件的沉积响应,也可记录盆地演化过程及古构造环境(Cieszkowski,2006Festa et al., 2016)。如,加尔加诺海角碳酸盐岩滑塌堆积既是阿普利亚碳酸盐岩台地白垩纪早期同构造沉积的局部沉积响应,也是白垩纪地中海特提斯演化的沉积记录(Graziano, 2000, 2001)。对意大利西里西亚盆地的研究揭示,碳酸盐岩滑塌堆积的发育贯穿了该盆地演化的每个阶段。在该盆地演化初期的裂谷阶段,伸展作用使碳酸盐岩台地开始裂解垮塌,碳酸盐岩滑塌堆积充填于半地堑盆地中(Cieszkowski et al., 2012),规模较大的碳酸盐岩滑来块的发育标志着沿台缘构造抬升和断斜坡倾斜进一步加剧或增强(Ćlączka et al., 2012)。另外,碳酸盐岩滑塌堆积还是判断古斜坡(Cook,1979Naylor,1981张抗,1994)、分析盆地隐伏基底断裂(张世涛等,2000)等盆地岩相古地理格局的重要沉积载体(Naylor,1981Cieszkowski et al., 2012)。

资料揭示,中-晚二叠世,在上扬子地块碳酸盐岩台地内发育了几条向东南方向逐渐收窄尖灭的裂谷,前人将其定义为“海槽、陆棚、台内裂陷槽、碰撞成因裂谷、洼陷、坳拉槽和拉张槽”等(王一刚等,1998马永生等,2006卓皆文等,2009毛黎光等,2011肖安成等,2011罗志立等,2012李秋芬等,2015刘树根等,2016)。海槽一词最早出自“开江-梁平海槽”,指晚二叠世-早三叠世沿开江-梁平一带发育的海槽沉积区(王一刚等,1998)。后又陆续发现了德阳-武胜、城口-鄂西和荆门-当阳等海槽(卓皆文等,2009肖安成等,2011Li et al., 2012)。海槽(Trough)是一个海洋地貌术语,不能真实反映盆地构造成因。油气勘探显示,开江-梁平和德阳-武胜裂谷边缘发育的生物礁和高能浅滩相沉积是重要的油气储集体,如元坝气田储层主要是开江-梁平裂谷南缘缓斜坡相生物碎屑滩和生物礁(郭彤楼,2011黄仁春,2014)、普光气田储层则是其北缘台地与斜坡过渡相带的生物礁白云岩和鲕粒滩白云岩(马永生等,2005黄仁春,2014)。因此,这些裂谷是近三十年来石油地质学家们一直关注和研究的焦点,但对其构造成因的认识还存在很大争议,诚如前文的诸多命名。这主要因为对这些裂谷的开始时代、盆地性质和构造沉积演化过程等关键基础地质问题,一直缺乏深入细致的沉积学解剖与深入研究。

开江-梁平裂谷北缘的米仓-大巴山前区,是上扬子地块上古生界出露较完整且变形较弱的地区。本文完成的三条实测地质剖面(1:1000)揭示,该地区中二叠统栖霞组上段至茅口组中段(或茅口组2段)发育大套碳酸盐岩滑塌堆积。在详细观测碳酸盐岩滑塌堆积的宏观与显微组构特征、分析横纵向沉积相序变化规律的基础上,并与元坝8井岩芯对比,本文深入分析和探讨了开江-梁平裂谷的开始时代、盆地结构特征和构造沉积过程。研究表明,开江-梁平裂谷经历了伸展裂解和区域沉降两个构造沉积阶段。这一研究结果对分析开江-梁平裂谷中-晚二叠世沉积相带的时空分布、寻找有利油气储集相带等具有重要科学指导意义,也可为分析其他裂谷的构造沉积过程提供参照。本文也为研究碳酸盐岩滑塌堆积提供了一个新范例,丰富了碳酸盐岩滑塌堆积的发育环境或形成构造机制。

1 地质背景

中二叠世-早三叠世,上扬子地块四川盆地区内发育了三条规模不一、长轴均呈NW-SE向的裂谷,使四川盆地区呈现“隆凹相间”的构造古地理格局。晚二叠世长兴期,这些裂谷的发育规模达最大(图 1)。

图 1 区域大地构造简图(a)及上扬子地块四川盆地区长兴期岩相古地理格局(b,据中石化勘探分公司,2018修改) ARF-哀牢山-红河断裂;CE-城口-鄂西裂谷;DBF-大巴山前断裂;DW-德阳-武胜裂谷;ELIP-峨嵋山大火成岩省(据何斌等,2003Zhong et al., 2014);KL-开江-梁平裂谷;LMF-龙门山断裂;SEYF-扬子地块东南缘断裂;TLF-郯庐断裂;WYF-扬子地块西缘断裂;XEF-襄阳-鄂州断裂;XSHF-鲜水河断裂 Fig. 1 Sketch maps showing the relationship of the Upper Yangtze Block to the surrounding areas (a) and Changhsingian sedimenatry facies and paleogeography in the Sichuan Basin in Upper Yangtze Block (b, modified after SINOPEC Exploration Company, 2018) ARF-Ailaoshan-Red River fault; CE-Chengkou-Exi rift valley; DBF-Dabashan fault; DW-Deyang-Wusheng rift valley; ELIP-Emeishan large igneous province (after He et al., 2003; Zhong et al., 2014); KL-Kaijiang-Liangping rift valley; LMF-Longmenshan fault; SEYF-fault on southeast margin of Yangtze Block; TLF-Tancheng-Lujiang fault; WYF-fault on west margin of Yangtze Block; XEF-Xiangyang-Ezhou fault; XSHF-Xianshuihe River fault

① 中石化勘探分公司.2018.四川盆地区二叠纪长兴期岩相古地理图(内部资料)

本文研究区位于上扬子地块西北部(图 1a),中-晚二叠世时期属开江-梁平裂谷范围(图 1b)。据区调资料(四川省地质局,1966),研究区分布有中-下二叠统梁山组(P1-2l)、中二叠统栖霞组(P2q)和茅口组(P2m)、上二叠统吴家坪组(P3w,或龙潭组)、长兴组(P3c)和大隆组(P3d)。梁山组平行不整合覆盖于中志留统罗惹坪组之上,上部为石英砂岩,下部黑色炭质页岩夹煤线。栖霞组上部灰色厚层灰岩,下部深灰色含沥青质灰岩。茅口组为灰色厚层灰岩,含少量燧石结核,顶部为硅质岩夹炭质页岩和透镜状灰岩。吴家坪组为黑色燧石灰岩、黑色硅质岩夹炭质页岩,含黄铁矿结核。长兴组为浅灰色微晶灰岩。大隆组为黑色硅质岩夹炭质页岩及燧石灰岩。长兴组与大隆组已被统并为长兴组(中国地层典编委会,2000王泽九等,2014)。

① 四川省地质局. 1966. 1︰20万南江幅地质图(I-48-XXXV)及说明书

上扬子地块四川盆地区发育NW向和NE向两组基底断裂,形成于晚古生代(罗志立,1998王英民等,1991)。通南巴区块TNB-NW-04-138.5测线反射地震勘探资料揭示,米仓-大巴山前区的隐伏断裂主要是北倾的逆冲断裂,这些逆冲断裂无一例外地终止于中三叠统雷口坡组(T2l)下部。露头上,旺苍县五权镇以西的米仓-大巴山前区的宽缓褶皱变形中,只有下三叠统卷入其中,说明中三叠世以后这些隐伏断裂并未发生显著活动,即这些隐伏断裂的最晚活动发生于中三叠世早期,大约为Anisian期(247.2~242Ma)。

2 二叠系宏观相序及其变化特征

本文对开江-梁平裂谷北缘3处露头和南侧的元坝8井岩芯开展了大比例(1:1000~1:250)观测。露头剖面和钻井位置见图 1b

2.1 正源-双汇剖面

位于旺苍县北、开江-梁平裂谷北缘西部。中-下二叠统梁山组为间湾相粉砂岩和泥岩,夹石英砂岩条带,顶部为厚6.2m的滨岸相石英砂岩(图 2a)。中二叠统栖霞组下段为厚58.4m的台地相碳酸盐岩,上段发育三套厚度为3.8m、10.2m和21.1m的碳酸盐岩滑塌堆积,其间为两套厚10.8m和16m的台地相碳酸盐岩。茅口组下段(相当于茅口组1段)为厚110.1m的台地相碳酸盐岩,中段(茅口组2段)为厚达164.9m碳酸盐岩滑塌堆积,上段(茅口组3段)为深水盆地相硅质岩和硅质泥岩(图 3a)、斜坡底部与盆地边缘过渡相的钙质泥岩、泥晶灰岩和硅质灰岩(图 3b, c),顶部发育两层沉凝灰岩。上二叠统吴家坪组下段(吴家坪组1段)为一套厚3.7m的碳酸盐岩滑塌堆积,吴家坪组上段(吴家坪组2段)为斜坡相燧石结核灰岩,向上渐变为斜坡相角砾灰岩和泥晶灰岩,与深水盆地相泥岩呈指状交叉产出(图 3d),富含沉凝灰岩层。上二叠统长兴组为一套深水盆地相和盆地-斜坡过渡相组合(图 3d, e),深水盆地相为互层状黑色硅质岩和硅质泥岩,斜坡-盆地过渡相为指状交叉的或互层状硅质泥晶灰岩、硅质泥岩和硅质岩,含沉凝灰岩层。

图 2 二叠系实测剖面柱状图及元坝8井岩芯柱状图 Fig. 2 Stratigraphic columns showing Permian megasequences at different outcrops and the Yuanba 8 borehole

图 3 开江-梁平裂谷北缘二叠系沉积微相柱状图 Fig. 3 Logs showing sedimentary subfacies of the Permian in the north margin of the Kaijiang-Liangping rift valley
2.2 铁炉坝-大两剖面

位于旺苍县东、开江-梁平裂谷北缘中部。中-下二叠统梁山组底部为厚1.4m的含大量生物和植物化石的砾岩,其上为滨岸相石英细砂岩与泥岩,夹生物碎屑灰岩(图 2b)。中二叠统栖霞组顶部为厚16.1m的碳酸盐岩滑塌堆积,其下为厚93.8m的台地相碳酸盐岩。中二叠统茅口组1和2段为连续的厚189.4m的碳酸盐岩滑塌堆积,茅口组3段下部为厚10.4m的斜坡底相碳酸盐岩,上部为厚12m的深水盆地相硅质岩和炭-硅质泥岩(图 3f)。上二叠统吴家坪组1段为厚15.1m的斜坡-盆地过渡相指状交叉的硅质灰岩、硅质泥岩。吴家坪组2段为厚5.7m的斜坡相碳酸盐岩。上二叠统长兴组为厚42.3m的斜坡-盆地过渡相的硅质灰岩和钙质泥岩,与深水盆地相硅质岩和炭-硅质泥岩呈指状交叉产出,顶部为厚4.2m的潮坪-潟湖相薄层泥灰岩和钙质泥岩。

2.3 杨坝剖面

位于南江县北、开江-梁平裂谷北缘东部。中-下二叠统梁山组为厚85.48m的潮坪-潟湖相钙质泥岩和粉砂岩(图 2c),夹有很多潮沟微相的砾屑灰岩透镜体(图 3g)。中二叠统栖霞组顶部为厚20.15m的碳酸盐岩滑塌堆积(图 3h),其下为厚56.5m的台地相碳酸盐岩。中二叠统茅口组1段为厚99.6m的碳酸盐岩滑塌堆积(图 3i),茅口组2段为厚70m的台地相碳酸盐岩,茅口组3段下部为厚50m的深水盆地相硅质岩,上部为厚21.23m的滑塌堆积的硅质角砾岩(图 3j)。上二叠统吴家坪组1段为厚24m的斜坡相燧石结核灰岩,吴家坪组2段为厚31.5m的斜坡相硅质灰岩夹潮坪相薄层钙质泥岩。上二叠统长兴组为厚48.77m的潮坪-潟湖相灰岩、泥灰岩和钙质泥岩,夹潮沟微相的砾屑和砂屑灰岩透镜体,下部含沉凝灰岩层(图 3k, l)。

实测剖面横向对比揭示,开江-梁平裂谷北缘碳酸盐岩滑塌堆积的开始时代呈现西早东晚的特点,而结束时代则表现为东早西晚。深水盆地相沉积均开始于茅口组3段(茅口晚期),其结束的时间东早西晚,沉积厚度西厚东薄。

2.4 元坝8井岩芯

元坝8井取芯层位为茅口组3段至吴家坪组2段下部。自下而上,茅口组3段1亚段为生物碎屑灰岩,偶见垮塌礁灰岩块体,为缓斜坡生屑滩相(图 2d图 4a)。茅口组3段2亚段下部为缓斜坡相细碎屑流沉积,最大砾径 < 50mm×66mm(图 4b),间夹生屑灰岩。上部包含三个岩性组合,由下向上依次为:(1)发育软沉积变形(包卷构造)的缓斜坡相钙质砂岩和泥岩(图 4c, d),钙质砂岩中发育小型斜层理并含胶状黄铁矿集合体(图 4e);(2)富含黄铁矿集合体的深水斜坡相泥岩-粉砂岩,夹发育正粒序结构的含砾钙质砂岩;(3)缓斜坡相生屑灰岩。吴家坪组1段为深水斜坡相泥岩和粉砂质泥岩,富含植物化石碎片(图 4f),夹沉凝灰岩(图 4g)和发育正粒序结构(图 4h)和包卷构造的含砾砂岩。吴家坪组2段为角砾灰岩和含砾钙质砂岩,角砾成分是生屑灰岩,缓斜坡细碎屑流沉积。

图 4 元坝8井岩芯组构特征 (a)生物碎屑灰岩中的珊瑚和海百合茎等化石碎片;(b)缓斜坡相角砾灰岩,角砾为黑色灰岩,钙质胶结;(c、d)钙质砂岩与泥岩中的软沉积变形(箭头处)——包卷构造;(e)泥岩中发育小型斜层理(箭头)和胶状黄铁矿集合体的砂岩夹层;(f)富含植物化石碎片的泥岩;(g)泥岩中的胶状黄铁矿集合体,含沉凝灰岩层(箭头);(h)具正粒序结构的含砾钙质砂岩. Py-黄铁矿; 岩芯直径80mm Fig. 4 Photographs showing the compositions and structures of the rocks from the Yuanba 8 borehoole (a) coral, crinoid and other fragments in bioclastic limestone; (b) black limestone clasts and gray calcareous cement in breccia limestone of gentle slope facies; (c, d) soft-sediment deformation (convolute structure, arrow) in sandstone and mudstone; (e) cross bedding (arrow) and pyrite aggregate in sandstone interlayer; (f) plant fragments in mudstone; (g) pyrite aggregate in mudstone with tuff interlayer (arrow); (h) graded bedding in pebbly sandstone interlayer. Py-pyrite; Diameter of the core is 80mm

元坝8井钻井岩芯有沉积相序揭示,从茅口组3段至吴家坪组2段下部时期,开江-梁平裂谷南缘经历了一次从缓斜坡相沉积至深水斜坡相沉积的退积过程,尽管岩相明显有别于北缘同期或同层位的露头剖面,但这次退积事件基本上可与北缘的茅口组3段开始的深水盆地相沉积相呼应,反映了一次区域性沉降作用。

3 碳酸盐岩滑塌堆积

如前所述,开江-梁平裂谷北缘中二叠统中发育大套碳酸盐岩滑塌堆积,包括滑来岩块(灰岩或硅质岩块体)、块体-碎屑流(角砾灰岩和钙质砾岩)、颗粒流(钙质砂岩)和灰泥流(泥晶灰岩)四种亚相类型。各亚相呈不同组合形式产出(图 3h-j图 5)。

图 5 正源-双汇剖面层34~36滑塌堆积组构特征(位置见图 2a) Fig. 5 Field photographs showing the compositions of olistostromes of Bed 34~36 in the Zhengyuan-Shuanghui section (seen in Fig. 2a)
3.1 滑来岩块

根据岩性差异,米仓-大巴山前区碳酸盐岩滑塌堆积中的滑来岩块包括灰岩滑来块和硅质岩滑来块。

灰岩滑来岩块原岩类型包括生物碎屑灰岩、泥晶灰岩、颗粒灰岩和角砾灰岩。显微组构特征显示,生物碎屑灰岩中可见腕足类、有孔虫、、珊瑚及介形类等化石(图 6a)。颗粒灰岩滑来块体中的颗粒和生物碎片呈明显的定向排列(图 6b),展示了颗粒流动和沉积的特点,原岩应是一套颗粒流沉积的碳酸盐岩,再次发生滑动或滑塌。泥晶灰岩滑来块中发育软沉积变形和横向张裂隙,张裂隙仅局限于灰岩滑来块本身(图 6c),而滑来块间的钙质砂岩层表现了明显的滑动变形特征(图 6c)。角砾灰岩(块体-碎屑流)滑来块相互堆叠,其中的砾石成分为灰黑色泥晶灰岩,次棱角-浑圆状,颗粒-基质支撑,钙质胶结,且砾石发生软变形(图 6d),揭示角砾灰岩滑来块原岩为滑塌堆积成因。上述组构特征表明,这些碳酸盐岩滑来块形成于台地-台地边缘环境(如生物碎屑灰岩块),或为早期的碳酸盐岩滑塌堆积(如颗粒灰岩块、角砾灰岩块),在未完全固结情况下沿斜坡发生滑塌,在滑动过程中发生了定向或软变形,或在蠕滑过程形成与滑塌方向呈大角度相交的张裂隙。

图 6 滑来岩块组构特征 正源-双汇剖面层33生物碎屑灰岩块(a)和层18颗粒灰岩块(b)的显微组构特征;(c)杨坝剖面层13相互堆叠的泥晶灰岩块中发育大量张裂隙(红色箭头),其间钙质砂岩(黄色箭头)发育滑动变形;(d)正源-双汇剖面层14相互堆叠的透镜状角砾灰岩块;(e)杨坝剖面层36夹于块体-碎屑流中的硅质岩块;(f)杨坝剖面层39含灰岩砾石的硅质岩块 Fig. 6 Photographs showing the compositions and structures of olistoliths Photomicrographs showing the textures of bioclastic limestone (Bed 33 in Fig. 2a) and grainstone (Bed 18 in Fig. 2b); (c) tension fractures in stacked micritic limestone (red arrow) and internally disturbed or contorted calcarenite (yellow arrow) (Bed 13 in Fig. 2c); (d) stacked calcirudite olistolith (Bed 14 in Fig. 2a); (e) chert olistolith (Bed 36 in Fig. 2c) and (f) chert olistolith with limestone gravels (Bed 39 in Fig. 2c)

硅质岩滑来块只见于杨坝剖面,规模一般小于灰岩滑来块,呈透镜状(图 6e)。有的硅质岩滑来块中含浑圆状灰岩砾石,大多数砾石已风化掉落形成孔洞(图 6f)。硅质岩环绕灰岩砾石发育,表明灰岩砾石是在硅质岩沉淀过程中进入的,然后一起沿斜坡发生滑塌,同样揭示了多次滑塌过程。

3.2 块体-碎屑流沉积

块体-碎屑流沉积,即角砾灰岩或钙质砾岩,其最显著特点是砾石无分选、内部缺乏层理性(图 7a, b)。砾石呈不规则的次棱角-次圆状,砾径为2~50cm。角砾灰岩为颗粒支撑,钙质砾岩为颗粒或基质支撑。砾石成分包括生物碎屑灰岩、含生屑微/泥晶灰岩、含沥青灰岩、硅质灰岩和硅质岩。基质成分主要为褐色油浸状钙质砂岩和少量灰泥质(钙质泥岩)(图 7c)。局部钙质砾岩的砾石呈叠瓦状排列(图 7bd)。对叠瓦状砾石产状的测量统计揭示,古水流方向或古斜坡倾向为南西向(180°~243°)(图 2a),表明碳酸盐岩滑塌堆积的物源来自北侧。

图 7 正源-双汇剖面滑塌堆积组构特征 (a)正源-双汇剖面层34-36块体-碎屑流角砾灰岩中杂乱堆积的砾石(位置见图 5示);(b)正源-双汇剖面层19块体-碎屑流角砾灰岩中的叠瓦状砾石;(c)砾间的油浸状钙质砂岩(图 7b局部放大);(d)正源-双汇剖面层10首套滑塌堆积——角砾灰岩中的叠瓦状砾石 Fig. 7 Field photographs showing the compositions and structures of olistostromes in the Zhengyuan-Shuanghui section (a) chaotic limestone breccias of mass-debris flow (Bed 34-36 in Fig. 2a, location shown in Fig. 5); (b) imbricated limestone gravels at the base of mass-debris flow (Bed 19 in Fig. 2a); (c) oil-immersed calcarenite matrix in breccia limestone (close-up of Fig. 7b); (d) imbricated gravels in breccia limestone (Bed 10 in Fig. 2a)
3.3 颗粒流沉积

颗粒流沉积,即含砾钙质砂岩和钙质砂岩,以后者为主,多发育于块体-碎屑流沉积或滑来块之间(图 5图 6c图 8a),发育滑动变形(图 6c)或软沉积变形构造(图 8b)。局部含砾钙质砂岩中还含有小型泥晶灰岩滑来块,滑来块中发育横向张裂隙(图 8c),但不切穿围岩。含砾钙质砂岩中的砾石有泥灰岩砾和燧石砾。泥灰岩砾大小≤4cm,有定向排列或拉长变形的特征,最大扁平面大致平行于层理面(图 8c)。燧石砾大小≤11cm,呈团块状和球状(图 8d)。钙质砂岩中含有腕足、介形类等生物化石碎片。上述特征表明颗粒流是斜坡环境下的碳酸盐岩沉积物。前人认为钙质砂岩中的燧石砾,是上升流的产物,形成于斜坡带(周新平等,2012)。

图 8 不同地质剖面滑塌堆积组构特征对比 (a)铁炉坝-大两剖面层17~19块体-碎屑流间的颗粒流沉积(钙质砾岩夹钙质砂岩);(b)正源-双汇剖面软沉积变形的颗粒流(含砾钙质砂岩);(c)杨坝剖面层18颗粒流(含泥灰岩砾钙质砂岩)中的灰岩滑来块(图 2c层18);(d)铁炉坝-大两剖面层20含燧石砾颗粒流 Fig. 8 Photographs showing the compositions and structures of olistostromes in different sections (a) calcareous conglomerates (mass-debris flows) interlayered with calcarenite (grain flow) (Bed 17~19 in Fig. 2b); (b) soft-sediment deformation of grain flow (calcarenite) in Fig. 2a; (c) olistolith in pebbly calcarenite (Bed 18 in Fig. 2c); (d) calcarenite with chert pebbles (Bed 20 in Fig. 2b)
3.4 灰泥流沉积

灰泥流沉积一般发育于滑塌堆积的远端,即斜坡底-盆地边缘过渡部位,以薄层硅质灰岩和泥晶灰岩为主(图 9a),局部夹钙质泥岩、炭质泥岩和硅质泥岩以及沉凝灰岩层(图 9b),常与深水盆地相硅质岩和炭-硅质泥岩(图 9c, d)等呈指状交叉(图 3b-f)。硅质灰岩中富含菊石类等生物化石。

图 9 斜坡相灰泥流沉积和深水盆地相沉积野外特征 (a)正源-双汇剖面层45斜坡底-盆地边缘过渡相硅质灰岩夹钙质泥岩;(b)正源-双汇剖面层47斜坡底钙质砂岩与泥岩夹沉凝灰岩层;(c)正源-双汇剖面层46深水盆地相硅质岩和炭-硅质泥岩;(d)铁炉坝-大两剖面层41深水盆地相硅质岩 Fig. 9 Field photos showing the compositions and structures of slope facies slurry or mud flow and deep basin facies (a) siliceous limestone intercalated with calcareous mudstone (Bed 45 in Fig. 2a); (b) calcarenite and mudstone with tuff layer (Bed 47 in Fig. 2a); (c) chert and carbon-siliceous mudstone (Bed 46 in Fig. 2a); (d) chert of deep basin facies (Bed 41 in Fig. 2b)
4 讨论 4.1 碳酸盐岩滑塌堆积的沉积成因

一些学者将发育于开江-梁平裂谷北缘的具有特殊组构特征的中二叠统碳酸盐岩称为“眼球状灰岩”,并认为它们是差异成岩作用(金振奎和冯增昭,1994)或是频繁沉积相变与差异成岩综合作用(罗进雄和何幼斌,2010刘杰等,2011)所致。也有学者注意到“眼球状灰岩”这种特殊的岩石属于重力流沉积,而非差异压实成因(李双应等,2008万秋等,2011陈轩等,2013)。本文详细野外观测表明,前人所谓的“频繁沉积相变与差异成岩综合作用”实际上是滑塌堆积中滑来块、块体-碎屑流以及颗粒流等亚相沉积的不同组合形式(图 2a-c图 3h-j图 5图 6c-e图 8ac),特别是软沉积变形构造(图 6b-d图 8b)和角砾灰岩中叠瓦状砾石(图 7a-bd),展示了典型的块体搬运沉积特征。本文研究区中二叠统中发育的灰岩块体(滑来块)、角砾灰岩和钙质砾岩(块体-碎屑流沉积)、含砾钙质砂岩和钙质砂岩(颗粒流沉积)、泥晶灰岩(灰泥流沉积)等具有不同组构特征的碳酸盐岩,均属于碳酸盐岩滑塌堆积的组成部分,是典型斜坡环境的沉积产物,其相互关系见图 10所示。另一方面,传统观点一直认为上扬子地块二叠纪为广海碳酸盐岩台地沉积(冯增昭,1996)。本文调查发现的斜坡相碳酸盐岩滑塌堆积揭示,“上扬子地块广海碳酸盐岩台地”在中二叠世时期发生了明显的沉积相分异,即发育了局部的构造沉降。

图 10 台地-斜坡环境碳酸盐岩滑塌堆积沉积模式图(据Shanmugam and Moiola, 1994修改) Fig. 10 Model of sedimentary processes and facies of carbonate olistostromes in the platform-slope environment (modified after Shanmugam and Moiola, 1994)
4.2 构造沉降的开始时代

前人对上扬子地块内裂谷发育时代的认识,主要依据石油地震勘探和钻井岩芯资料。有学者认为它们开始于晚二叠世长兴期、早三叠世早期结束(王一刚等, 1998, 2006马永生等,2006)。也有研究者提出它们可能更早地开始于中二叠世茅口晚期(李乾,2018胡东风等,2019张玺华等,2019),但是都缺乏可靠的沉积记录。本文详细调查揭示,在开江-梁平裂谷北缘,斜坡相碳酸盐岩滑塌堆积首现于正源-双汇剖面的中二叠统栖霞组中部(图 2a图 3h图 6c图 7d)。作为同构造沉积的局部沉积响应(Graziano, 2000, 2001),首套碳酸盐岩滑塌堆积标志着沉积相带开始分异,也揭示了上扬子碳酸盐岩台地于栖霞中期开始发生局部构造沉降。

另外,本文实测剖面还揭示,自西向东,开江-梁平裂谷北缘的初始斜坡相碳酸盐岩滑塌堆积发育时间略有差异。西部旺苍县双汇一带的碳酸盐岩滑塌堆积首次出现于栖霞组中部(层10),距栖霞组上界56.9m(图 2a);中部旺苍县大两和东部南江县杨坝一带的初始斜坡相碳酸盐岩滑塌堆积均发育在栖霞组顶部,距栖霞组上界分别为16.1m和20.15m(图 2b, c)。这表明开江-梁平裂谷的构造沉降作用开始于中二叠世栖霞中期,是自西向东逐渐演进的,横向上具有穿时性。这也与开江-梁平裂谷向北西呈喇叭型开口、向东南收窄尖灭的几何形状(图 1b)相协调。

4.3 盆地结构和构造性质

尽管开江-梁平裂谷的初始沉降在时空上略有差异,但本文实测剖面显示,构造沉降作用是发育在中二叠统栖霞组下部(或下段)巨厚台地相碳酸盐岩之上的,即盆地的基底为碳酸盐岩台地。自西向东,三条实测剖面的栖霞组下段台地相碳酸盐岩基底厚分别为52.2m、95.7m和56.5m(图 2)。换言之,从中二叠世栖霞中期开始,上扬子碳酸盐岩台地内部开始发生构造沉降。

露头剖面(图 2a)和元坝8井钻井岩芯(图 2d)对比显示,开江-梁平裂谷南北两侧具有截然不同的沉积相序,揭示了不同的构造沉积环境。北侧以发育大规模斜坡相碳酸盐岩滑塌堆积为标志性特征,表明开江-梁平裂谷北缘为受断裂控制的断斜坡环境。虽然元坝8井岩芯钻揭的二叠系层位有限,但相比于北侧碳酸盐岩滑塌堆积,元坝8井岩芯揭示开江-梁平裂谷南侧的茅口组3段-吴家坪组2段下部为水动力较弱的缓斜坡-深水斜坡环境,以生屑滩、细碎屑流、砂泥质蠕滑沉积以及富含植物化石碎片的泥岩为特色(图 2d图 4)。

开江-梁平裂谷南北两侧所展示的不对称结构也被石油地震勘探数据所证实。如,DBS001和98WBC006测线地震剖面揭示,该裂谷北侧有切割二叠系和下三叠统飞仙关组的深层同沉积正断层及地堑组合,断层倾角多大于60°。而96-YP002和CDB89-D33测线地震剖面显示,该裂谷南侧二叠系内不发育断层,主要表现为由盆地向斜坡或由斜坡向台地的地层超覆、减薄或者尖灭(魏国齐等,2006毛黎光等,2011)以及发育缓斜坡礁滩(文龙等,2012徐安娜等,2014)。通南巴区块TNB-NW-04-138.5测线地震剖面揭示,控制北侧断斜坡发育的早期伸展断层发生了构造反转,反转构造总体以北倾的逆冲断裂为主,且断裂均终止于中三叠统雷口坡组下部。

因此,从盆地基底、结构特征和地震反射剖面综合分析,在斜坡相碳酸盐岩滑塌堆积发育阶段,开江-梁平裂谷是一个发育于上扬子碳酸盐岩台地内的、由伸展裂解作用形成的不对称海相半地堑盆地,北侧为伸展断层控制的下盘断斜坡、南侧为断裂不发育的上盘缓斜坡,沉降沉积中心靠近断斜坡。但是,从茅口组3段开始,开江-梁平裂谷北缘的沉积相发生了明显变化:由斜坡相碳酸盐岩滑塌堆积转变为退积的深水盆地相沉积(图 2a-c图 3a-f图 9a-d),揭示开江-梁平裂谷由伸展裂解转变为区域构造沉降。

4.4 构造沉积过程

由前文综合分析可知,开江-梁平裂谷的充填演化过程可分为两个不同构造沉积阶段:伸展裂解和区域沉降。

伸展裂解阶段中二叠世栖霞中期,上扬子碳酸盐岩台地局部发生伸展裂解,开江-梁平裂谷开始发育。该裂谷北缘发育控盆同沉积正断层及由之形成的断斜坡,沿断斜坡发育碳酸盐岩滑塌堆积,并充填于半地堑盆地中(图 11a-c)。如前文所述,从西向东,开江-梁平裂谷北缘的断斜坡滑塌堆积发育时间略有差异。西部正源-双汇剖面,碳酸盐岩滑塌堆积首现于栖霞组上段底部(时代上相当于栖霞中期),由下向上碳酸盐岩滑塌堆积规模渐大。但茅口组1段(相当于茅口早期),伸展裂解似乎停止活动,沉积了厚107m的台地相碳酸盐岩(图 11b)。强烈的伸展裂解作用在茅口组2段(相当于茅口中期)再次发生,碳酸盐岩滑塌堆积厚度达168m(图 2a图 11c)。西部正源-双汇剖面的碳酸盐岩滑塌堆积总厚229.12m。中部铁炉坝-大两剖面,碳酸盐岩滑塌堆积开始于栖霞组顶部,持续至茅口组2段末结束,厚205.5m(图 2b)。东部南江-杨坝剖面,碳酸盐岩滑塌堆积首见于栖霞组顶部,持续至茅口组1段末结束,厚119.75m(图 2c)。这种伸展裂解或碳酸盐岩滑塌堆积发育的差异,暗示开江-梁平裂谷北缘东西向不同地段可能为受横断层控制的断块,即在开江-梁平海相半地堑盆地发展过程中,发育与控盆的同沉积正断层呈大角度相交的捩断层(Tear fault)(图 11b, c)。另外,碳酸盐岩滑塌堆积中的叠瓦状砾石、软沉积变形(包卷构造)等统计分析揭示,块体搬运方向或古斜坡倾向为南东或南西向(150°~240°)。

图 11 开江-梁平裂谷中-晚二叠世演化模式图 Fig. 11 Cartons showing the evolution of the Kaijiang-Liangping rift valley in the Middle to Late Permian

西部正源-双汇剖面的初始碳酸盐岩滑塌堆积虽然发育早,但规模小(图 2a),亚相组合形式和结构简单。大规模滑塌堆积发生于栖霞晚期-茅口中期,普遍发育大型的滑来岩块和大量的块体-碎屑流沉积,亚相组合形式也多样。特别是广泛发育角砾灰岩滑来块,即早期的块体-碎屑流沉积发生二次或多次滑塌。Ćlączka et al.(2012)指出,规模较大的碳酸盐岩滑来块的发育标志着沿台缘构造抬升和断斜坡倾斜进一步加剧或增强。上述这些特征表明,栖霞晚期-茅口中期是开江-梁平海相半地堑盆地快速发展阶段(图 11a-c),受控于强烈的构造伸展作用。

区域沉降阶段从茅口组3段(时代相当于茅口晚期)开始,开江-梁平裂谷的沉积相发生了突变:由斜坡相碳酸盐岩滑塌堆积转变为退积的深水盆地相沉积,表明盆地构造性质发生了根本改变:由伸展裂解转变为区域构造沉降(图 11d)。

三条实测剖面显示,开江-梁平裂谷北缘的西中东不同地段均从茅口组3段开始发育海侵退积于碳酸盐岩滑塌堆积之上的深水盆地相沉积,以富含生物化石(主要为菊石类)深水盆地相黑色硅质岩和硅质泥岩(图 9c, d)、斜坡-盆地过渡相指状交叉的硅质泥晶灰岩、硅质泥岩和硅质岩为典型特征(图 3b-f图 9a, b),富含沉凝灰岩层(图 3c-e图 9b)。元坝8井所在的该裂谷南侧上盘缓斜坡带,茅口组3段至吴家坪2段下部为缓斜坡相-深水斜坡(盆地)相沉积,以生屑滩、细碎屑流和富含植物化石碎片的泥岩-粉砂质泥岩沉积为特色(图 2d图 4)。这表明沉降阶段的沉降沉积中心仍然靠近开江-梁平裂谷北缘断斜坡。

虽然开江-梁平裂谷的整体沉降作用均开始于茅口组3段,但自西向东,深水盆地相的持续时间和沉积厚度差异极大。西部正源-双汇剖面,沉降作用或深水盆地相从茅口组3段一直持续至长兴组(图 11d-e),深水盆地相沉积厚33.3m、指状交叉的深水盆地与斜坡过渡相沉积厚64.2m(图 2a),表明沉降过程有波动。吴家坪期的波动最大,以发育斜坡相富含沉凝灰层的燧石(硅质团块)灰岩为特色。中部铁炉坝-大两剖面,深水盆地相仅发育于茅口组3段,沉积厚度12m,其上为进积的斜坡-盆地过渡相指状交叉沉积,厚53.2m,长兴组顶部为4.2m厚的潮坪-潟湖相沉积(图 2b)。东部南江-杨坝剖面,仅在茅口组3段中下部发育厚50m的深水盆地相沉积,茅口组3段上部和吴家坪组为进积的斜坡相沉积,长兴组沉积相变为潮坪-潟湖沉积(图 2c图 11e)。

总体上,茅口组3段至长兴组时期,开江-梁平裂谷的区域构造沉降是不均匀的,西部沉降量大、东部沉降量小,即呈现“东翘西沉”的掀斜式沉降。深水盆地相沉积持续时间自西向东明显变短:西部持续时间为茅口组3段至长兴组、中部持续时间为茅口组3段至长兴组中段、东部持续时间仅为茅口组3段中下部。这也从另一角度揭示:开江-梁平裂谷东部相对较早抬升,进积的潮坪-潟湖相沉积逐渐自东向西演进。我们调查显示,正源-双汇剖面的中三叠统雷口坡组为蒸发坪相的含膏盐条带钙质泥岩和白云岩沉积,上三叠统须家河组渐变为海陆过渡相沉积。由此分析,开江-梁平裂谷西部可能于中三叠世雷口坡期被最终填平补齐。在区域沉降阶段,开江-梁平裂谷南侧的沉积表现,则需要参考地震勘探剖面和有限钻井岩芯分析。

如前文讨论,开江-梁平裂谷于中二叠世栖霞中期开始发育,可能于中三叠世雷口坡期最终结束。时代上,该裂谷开始发育的时代明显早于华南板块与华北板块的碰撞时间(如大别超高压变质时代242~221Ma),也早于峨眉山地幔柱(259.1±0.5Ma;何斌等,2003Zhong et al., 2014),因此不可能是碰撞成因的裂谷(Impactogen,肖安成等,2011毛黎光等,2011)或是地幔柱活动的产物。时空和构造上,它又与东侧的雪峰印支造山带、西侧的松潘-甘孜造山带以及南侧的特提斯造山带难以配套。有学者认为开江-梁平裂谷的形成可能与扬子地块顺时针旋转、撕裂有关。中-晚二叠世时期,上扬子地块碳酸盐岩台地内裂谷发育的大地构造背景和动力学机制,仍是一个需要深入探究的问题。

另外,在茅口晚期-长兴期的沉降阶段,本文研究区普遍发育硅质岩、硅质灰岩、硅质泥岩和礈石灰岩(图 9a-d)。详细的显微观察发现,在伸展裂解阶段(栖霞晚期-茅口中期)的斜坡相碳酸盐岩滑塌堆积中有大量石英颗粒或二氧化硅集合体,石英含量可达10%~15%(图 12)。二氧化硅集合体沉淀于方解石间隙中或绕内碎屑和生物壳边缘逐渐向内生长(图 12a-c)。还有的半自形晶单颗粒石英与方解石晶粒呈镶嵌状(图 12d)。这些显微组构特征表明,二氧化硅颗粒或集合体是与方解石同时沉淀并共生的。据前人的地球化学分析结果(李乾,2018),旺苍地区栖霞组-茅口组灰岩中的SiO2含量为4.39%~21.24%(平均值5.92%),远远大于纯灰岩中SiO2含量(0.1%~2.0%;Oates,1998)。前人研究认为这些二氧化硅主要有生物(刘新宇,2007周新平等,2012Dong et al., 2020)和热液(Lin et al., 2018Yu et al., 2020)两种来源。蒋裕强等(2018)研究发现,长兴组白云岩储层受到过热液改造,裂隙中充填鞍状白云石、黄铁矿、萤石、石英等热液矿物组合。这些矿物组合也是海湾半地堑热液成矿的典型蚀变矿物组合(Goodfellow and Lydon, 2007)。在开江-梁平裂谷侧翼的华蓥山(图 1b),出露有中二叠世碱性玄武岩(267±3Ma~268.3±7.2Ma,闫全人等, 待刊数据)。本文分析推测,由该基性岩浆活动驱动的热液沿控盆同沉积正断裂上升,进入盆地后形成富硅质和硫化物(SiO2、FeS、PbS、ZnS和BaSO4等)热液筏(Buoyant Hydrothermal Plume),为伸展裂解阶段和沉降阶段提供了同沉积的硅质物源。

图 12 正源-双汇剖面栖霞组-茅口组碳酸盐岩显微组构特征 (a、b)层18生屑砂屑灰岩;(c)层40泥晶灰岩;(d)层23生屑灰岩. Cal-方解石; Q-石英; Asp-沥青 Fig. 12 Photomicrographs showing the textures of middle Permian limestones in the Zhengyuan-Shuanghui section (Fig. 2a) (a, b) bioclastic calcarenite of Bed 18; (c) micritic limestone of Bed 40; (d) bioclastic limestone of Bed 23. Cal-calcite; Q-quartz; Asp-asphalt
5 结论

开江-梁平裂谷是一个发育在上扬子地块碳酸盐岩台地内的裂谷,经历了伸展裂解和不均匀沉降两个构造沉积阶段。中二叠世栖霞中期至茅口中期(层位上相当于栖霞组上段至茅口组2段)为伸展裂解阶段,该裂谷是一个发育于碳酸盐岩台地内的海相半地堑盆地,以北侧断斜坡发育大规模碳酸盐岩滑塌堆积为特色。茅口晚期至晚二叠世长兴期(层位上相当于茅口组3段至长兴组)为沉降阶段,以发育富生物化石的深水盆地相硅质岩和炭-硅质泥岩为特色。伸展裂解和沉降作用均表现了时空不均匀性。

致谢      感谢中国科学院大学侯泉林教授、吴春明教授和柴育成教授等在论文研究和写作过程中给予的悉心指导和帮助;感谢中石化勘探分公司黄仁春、段金宝、赵永庆和夏文谦等同行在项目研究过程中给予的热情帮助。感谢审稿人对本文细致的审阅和提出真知灼见的修改意见与建议。

谨以此文纪念我国杰出大地构造学家李继亮先生逝世一周年!让我(本文通讯作者)终生不能忘却的是先生对学生的悉心培养和爱护。今生能师从先生,幸运至极且受用不尽,尽管只得吾师为学之皮毛。

参考文献
Bourrouilh R. 1987. Evolutionary mass flow-megaturbidites in an interplate basin: Example of the north Pyrenean basin. Geo-Marine Letters, 7(2): 69-81 DOI:10.1007/BF02237986
Chen X, Zhao ZJ, Gao Y, Liu YH and Zhou H. 2013. Middle Permian Maokou carbonate slope deposition and its significances for petroleum exploration in northern part of Sichuan Basin. Marine Origin Petroleum Geology, 18(4): 9-14 (in Chinese with English abstract)
Cieszkowski M and Golonka J. 2006. Olistostroms as indicator of the geodynamic process (Northern Carpathians). GeoLines, 20(1): 27-28
Cieszkowski M, Golonka J, Ćlączka A and Was'kowska A. 2012. Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer West Carpathians. Tectonophysics, 568-569: 248-265 DOI:10.1016/j.tecto.2012.01.030
Cook HE. 1979. Ancient continental slope sequences and their value in understanding modern slope development. In: Doyle LJ and Pilkey OH(eds.). Geology of Continental Slopes. Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication, 287-305
Dong YX, Xu SL, Wen L, Chen HD, Fu SY, Zhong YJ, Wang JY, Zhu P and Cui Y. 2020. Tectonic control of Guadalupian-Lopingian cherts in northwestern Sichuan Basin, South China. Palaeogeography Palaeoclimatology Palaeoecology, 557: 109915 DOI:10.1016/j.palaeo.2020.109915
Feng ZZ, Yang YQ, Jin ZK, He YB, Wu SH, Bao ZD and Tan J. 1996. Lithofacies paleogeography of the Permian of South China. Acta Sedimentologica Sinica, 14(2): 3-12 (in Chinese with English abstract)
Festa A, Ogata K, Pini GA, Dilek Y and Alonso JL. 2016. Origin and significance of olistostromes in the evolution of orogenic belts: A global synthesis. Gondwana Research, 39: 180-203 DOI:10.1016/j.gr.2016.08.002
Goodfellow WD and Lydon JW. 2007. Sedimentary exhalative(SEDEX) deposits. In: Goodfellow WD (ed.). Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, No. 5: 163-183
Graziano R. 2000. The Aptian-Albian of the Apulia Carbonate Platform(Gargano Promontory, southern Italy): Evidence of palaeoceanographic and tectonic controls on the stratigraphic architecture of the platform margin. Cretaceous Research, 21(1): 107-126 DOI:10.1006/cres.2000.0201
Graziano R. 2001. The Cretaceous megabreccias of the Gargano Promontory(Apulia, southern Italy): Their stratigraphic and genetic meaning in the evolutionary framework of the Apulia Carbonate Platform. Terra Nova, 13(2): 110-116 DOI:10.1046/j.1365-3121.2001.00325.x
Guo TL. 2011. Reservoir characteristics and its controlling factors of the Changxing Formation reservoir in the Yuanba gas field, Sichuan basin, China. Acta Petrologica Sinica, 27(8): 2381-2391 (in Chinese with English abstract)
He B, Xu Y G, Xiao L, Wang KM and Shao SL. 2003. Generation and spatial distribution of the Emeishan large igneous province: New evidence from stratigraphic records. Acta Petrologica Sinica, 77(2): 194-202 (in Chinese with English abstract)
Hu DF. 2019. Breakthrough in natural gas exploration in the platform margin shoal at the Maokou Fm. in the Yuanba area, Sichuan Basin, and its implications. Natural Gas Industry, 39(3): 1-10 (in Chinese with English abstract)
Huang RC. 2014. Formation and evolution of Permian-Triassic Kaijiang-Liangping shelf and development of reef-shoal reservoirs in Sichuan Basin, China. Journal of Chengdu University of Technology(Science and Technology Edition), 41(4): 452-457 (in Chinese with English abstract)
Jiang YQ, Gu YF, Liu J, Deng JG, Zhang JW, Zhang H and Xu YX. 2018. The evidence of hydrothermal activity and its significance of Permian-Triassic strata, eastern Longgang area, northeastern Sichuan Basin. Acta Sedimentologica Sinica, 36(1): 1-11 (in Chinese with English abstract)
Jin ZK and Feng ZZ. 1994. The origin of the Permian nodular limestones in Yunnan-Guizhou region. Acta Petrologica et Mineralogica, 13(2): 133-137 (in Chinese with English abstract)
Kuenen PH. 1948. Slumping in the carboniferous rocks of Pembrokeshire. Quarterly Journal of the Geological Society, 104(1-4): 365-380 DOI:10.1144/GSL.JGS.1948.104.01-04.18
Le Goff J, Slootman A, Mulder T, Cavailhes T and Reijmer JJG. 2020. On the architecture of intra-formational Mass-Transport Deposits: Insights from the carbonate slopes of Great Bahama Bank and the Apulian carbonate platform. Marine Geology, 427: 106-205
Lee HJ, Locat J, Desgagnés P, Parsons JD, McAdoo BG, Orange DL, Puig P, Wong FL, Dartnell P and Boulanger E. 2007. Submarine mass movements on continental margins. In: Nittrouer CA, Austin JA, Field ME, Kravitz JH, Syvitski JPM and Wiberg PL(eds.). Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy. Washington DC: International Association of Sedimentologists, 213-274
Lehrmann DJ, Minzoni M, Enos P, Kelleher C, Stepchinski L, Li X, Payne JL and Yu M. 2020. Giant sector-collapse structures(scalloped margins) of the Yangtze Platform and Great Bank of Guizhou, China: Implications for genesis of collapsed carbonate platform margin systems. Sedimentology, 67(6): 1-32
Li Q. 2018. The depositional system characteristic of Middle Permian Maokou Formation in northwestern Sichuan Basin. Master Thesis. Chengdu: Chengdu University of Technology, 1-58(in Chinese)
Li QF, Wang ZC, Li J, Jiang QC, Wang TS, Yin JF, Xie F and Miao SD. 2012. Discovery of Yanting-Tongnan trough of Late Permian in Sichuan Basin and its significance. Journal of Earth Science, 23(4): 582-596 DOI:10.1007/s12583-012-0276-z
Li QF, Miao SD, Wang TS, Jiang QC, Wang ZC, Li J, Xie F, Ying JF and Gu ZD. 2015. Sedimentary filling configuration of Yanting-Tongnan trough under the background of intracratonic rift in Later Permian, Sichuan Basin. Earth Science Frontiers, 22(1): 67-76 (in Chinese with English abstract)
Li SY, Meng QR, Wan Q, Kong WL and He G. 2008. Deposition of carbonate slope and ore-forming in Permian strata in the Middle-Lower Reaches of the Yangtze River, East China. Acta Petrologica Sinica, 24(8): 1733-1744 (in Chinese with English abstract)
Lin LB, Yu Y, Gao J and Hong W. 2018. The origin and geochemical characteristics of Permian chert in the Eastern Sichuan Basin, China. Carbonates Evaporites, 33: 613-624 DOI:10.1007/s13146-017-0372-3
Liu J, Li WY and He YB. 2011. Genetic analysis of Lower Permian Maokou augen limestone in Wangcang Area, Sichuan Basin. Marine Origin Petroleum Geology, 16(1): 63-67 (in Chinese with English abstract)
Liu SG, Wang YG, Sun W, Zhong Y, Hong HT, Deng B, Xia ML, Song JM, Wen YC and Wu J. 2016. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China. Journal of Chengdu University of Technology(Science and Technology Edition), 43(1): 1-23 (in Chinese with English abstract)
Liu XY and Yan JX. 2007. Nodular chert of the Permian Chihsia Formation from South China and its geological implications. Acta Sedimentologica Sinica, 25(5): 730-736 (in Chinese with English abstract)
Luo JX, He YB, He MW and Chen XH. 2010. Thoughts on characteristics and origin of the Middle Permian eyeball-shaped limestone in South China. Geological Review, 56(5): 629-637 (in Chinese with English abstract)
Luo ZL, Sun W, Han JH and Wang RJ. 2012. Effect of Emei mantle plume on the conditions of Permian accumulation in Middle-Upper Yangtze area. Earth Science Frontiers, 19(6): 144-154 (in Chinese with English abstract)
Ma YS, Guo XS, Guo TL, Huang R, Cai XY and Li GQ. 2005. Discovery of the large-scale Puguang Gas Field in the Sichuan Basin and its enlightenment for hydrocarbon prospecting. Geological Review, 51(4): 477-480 (in Chinese with English abstract)
Ma YS, Mou CL, Tan QY and Yu Q. 2006. A discussion on Kaijiang-Liangping ocean trough. Oil and Gas Geology, 27(3): 326-331 (in Chinese with English abstract)
Mao LG, Xiao AC, Wei GQ, Shen ZY, Wang L, Zhang L and Qian JF. 2011. Distribution and origin of the Late Paleozoic-Mesozoic rift systems in the northern margin of the Yangtze block. Acta Petrologica Sinica, 27(3): 721-731 (in Chinese with English abstract)
Middleton GV and Hampton MA. 1973. Sediment gravity flows: Mechanics of flow and deposition. In: Middleton GV and Bouma AH(eds.). Turbidite and Deep-Water Sedimentation. Los Angeles, California: Pacific Section of the Society of Economic Paleontologist and Mineralogists, 1-38
Montaggioni LF, Collin A, James D, Salvat B, Martin-Garin B, Siu G, Taiarui M and Chancerelle Y. 2019. Morphology of fore-reef slopes and terraces, Takapoto Atoll(Tuamotu Archipelago, French Polynesia, central Pacific): The tectonic, sea-level and coral-growth control. Marine Geology, 417: 106027 DOI:10.1016/j.margeo.2019.106027
Morgan KM and Kench PS. 2016. Parrotfish erosion underpins reef growth, sand talus development and island building in the Maldives. Sedimentary Geology, 341: 50-57 DOI:10.1016/j.sedgeo.2016.05.011
Nardin TR, Hein FJ, Gorsline DS and Edwards BD. 1979. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. Society of Economic Paleontologists and Mineralogists Special Publication, 27: 61-73
Naylor MA. 1981. Debris flow(olistostromes) and slumping on a distal passive continental margin: The Palombini limestone-shale sequence of the northern Apennines. Sedimentology, 28(6): 837-852 DOI:10.1111/j.1365-3091.1981.tb01946.x
Oates JAH. 1998. Lime and Limestone: Chemistry and Technology, Production and Uses. Weinheim, New York: Wiley-VCH, 1-455
Pini GA. 1999. Tectonosomes and olistostromes in the Argille Scagliose of the Northern Apennines, Italy. Geological Society of America Special Paper, 335: 1-73
Reading HG. 1996. Sedimentary Environment: Processes, Facies and Stratigraphy. 3rd Edition. Oxford: Blackwell Science, 1-688
Safonova I, Maruyama S, Kojima S, Komiya T, Krivonogov S and Koshida K. 2016. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry. Gondwana Research, 33: 92-114 DOI:10.1016/j.gr.2015.06.013
Shanmugam G and Moiola RJ. 1994. An unconventional model for the deep-water sandstones of the Jackfork Group (Pennsylvanian), Ouachita Mountains, Arkansas and Oklahoma. In: Weimer P, Bouma AH and Perkins RF (eds.). Submarine Fans and Turbidite Systems: Gulf Coast Section SEPM 15th Annual Research Conference, 311-326
Ślączka A, Renda P, Cieszkowski M, Golonka J and Nigro F. 2012. Sedimentary basins evolution and olistoliths formation: The case of Carpathian and Sicilian regions. Tectonophysics, 568-569: 306-319 DOI:10.1016/j.tecto.2012.03.018
Stow DAV. 1986. Deep clastic seas. In: Reading HG(ed.). Sedimentary Environments and Facies. 3rd Edition. Oxford: Blackwell Science, 399-444
《Strata in China》Compile Group. 2000. Stratigraphy Dictionary of China: Permian. Beijing: Geological Publishing House (in Chinese)
Wan Q, Li SY, Wang S and Kong WL. 2011. Gravity flow sedimentary characteristics and environmental significance in Maokou Formation, western Hubei area. Acta Sedimentologica Sinica, 29(4): 704-711 (in Chinese with English abstract)
Wang YG. 1984. Discussion on sliding flow of carbonate and its depositional characteristics. Petroleum Geology and Experiment, 6(1): 18-23 (in Chinese with English abstract)
Wang YG, Wen YC, Zhang F, Yang Y and Zhang J. 1998. Distribution law of the organic reefs in Changxing Formation of Upper Permian in East Sichuan. Natural Gas Industry, 18(6): 10-15 (in Chinese with English abstract)
Wang YG, Wen YC, Hong HL, Xia ML and Song SJ. 2006. Dalong Formation found in Kaijiang-Liangping oceanic trough in the Sichuan basin. Natural Gas Industry, 26(9): 32-36 (in Chinese with English abstract)
Wang YM, Tong CG, Xu GQ and Fan SL. 1991. On the characteristics and mechanism of basement faults in central Sichuan basin. Journal of Chengdu College of Geology, 18(3): 52-60 (in Chinese with English abstract)
Wang ZJ, Huang ZG, Yao JX and Ma XL. 2014. Characteristics and main progress of the stratigraphic chart of China and directions. Acta Geoscientica Sinica, 35(3): 271-276 (in Chinese with English abstract)
Wei GQ, Chen GS, Yang W, Yang Y, Jia D, Zhang L, Xiao AC, Chen HL, Wu SX, Jin H and Shen JH. 2006. Preliminary study of the boundary of Kaijiang-Liangping trough in northern Sichuan basin and its characteristics. Oil and Gas Geology, 27(1): 99-105 (in Chinese with English abstract)
Wen L, Zhang Q, Yang Y, Liu HY, Che Q, Liu w, Zeng YX, Wei XW, Xu L, Liu M and Liu L. 2012. Factors controlling reef-bank reservoirs in the Changxing-Feixianguan formations in the Sichuan Basin and their play fairways. Natural Gas Industry, 32(1): 39-44 (in Chinese with English abstract)
Wendorff M. 2005. Lithostratigaphy of Neoproterozoic syn-rift sedimentary megabreccia from Mwambashi, Copperbelt of Zambia, and correlation with olistostrome succession from Mufulira. South African Journal of Geology, 108(4): 505-524 DOI:10.2113/108.4.505
Xiao AC, Wei GQ, Shen ZY, Wang L, Yang W and Qian JF. 2011. Basin-mountain system and tectonic coupling between Yangtze Block and South Qinling Orogen. Acta Petrologica Sinica, 27(3): 601-611 (in Chinese with English abstract)
Xu AN, Wang ZC, Jiang XF, Zhai XF and Ying JF. 2014. Morphological characteristics of platform margins along the Kaijiang-Liangping trough and their influences on reservoir development in the Sichuan Basin. Natural Gas Industry, 34(4): 37-43 (in Chinese with English abstract)
Yu Y, Lin LB, Deng XL, Wang YN, Li YH and Guo Y. 2020. Geochemical features of the Middle-Upper Permian cherts and implications for origin, depositional environment in the Sichuan Basin, SW China. Geological Journal, 55: 1493-1506 DOI:10.1002/gj.3511
Zhang K. 1994. Olistostromes and their tectonic significance. Sedimentary Facies and Palaeogeography, 14(6): 15-24 (in Chinese with English abstract)
Zhang ST, Feng QL and Wang YZ. 2000. Devonian deep-water sediments in Garze-Litang tectonic belt. Geological Science and Technology Information, 19(3): 17-20 (in Chinese with English abstract)
Zhang XH, Chen C, Huang J, Wen L, Xie C, Xu SW and Gao ZL. 2019. The discovery of Middle Permian Guangyuan-Bazhong extensional trough in the Sichuan Basin and its petroleum geological significance. China Petroleum Exploration, 24(4): 466-475 (in Chinese with English abstract)
Zhong YT, He B, Mundil R and Xu YG. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos, 204: 14-19 DOI:10.1016/j.lithos.2014.03.005
Zhou XP, He YB, Luo JX and Xu HM. 2012. Origin of the Permian nodular, striped and lump siliceous rock in eastern Sichuan Province. Journal of Palaeogeography, 14(2): 143-143 (in Chinese with English abstract)
Zhuo JW, Wang J, Wang ZJ, Xie Y, Yang P, Liu JQ and Zhao Z. 2009. Sedimentary characteristics of Late Permian in western Hubei Province and evolution of inter-platform rift. Xinjiang Petroleum Geology, 30(3): 300-303 (in Chinese with English abstract)
陈轩, 赵宗举, 高阳, 刘银河, 周慧. 2013. 四川盆地北部中二叠统茅口组碳酸盐岩斜坡沉积及其油气勘探意义. 海相油气地质, 18(4): 9-14. DOI:10.3969/j.issn.1672-9854.2013.04.002
冯增昭, 杨玉卿, 金振奎, 何幼斌, 吴胜和, 辛文杰, 鲍志东, 谭健. 1996. 中国南方二叠纪岩相古地理. 沉积学报, 14(2): 3-12.
郭彤楼. 2011. 元坝气田长兴组储层特征与形成主控因素研究. 岩石学报, 27(8): 2381-2391.
何斌, 徐义刚, 肖龙, 王康明, 沙绍礼. 2003. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据. 地质学报, 77(2): 194-202.
胡东风. 2019. 四川盆地元坝地区茅口组台缘浅滩天然气勘探的突破与启示. 天然气工业, 39(3): 1-10.
黄仁春. 2014. 四川盆地二叠纪-三叠纪开江-梁平陆棚形成演化与礁滩发育. 成都理工大学学报(自然科学版), 41(4): 452-457. DOI:10.3969/j.issn.1671-9727.2014.04.07
蒋裕强, 谷一凡, 刘均, 邓吉刚, 张洁伟, 张航, 徐艳霞. 2018. 川东北龙岗东地区二叠系-三叠系热液活动证据及意义. 沉积学报, 36(1): 1-11.
金振奎, 冯增昭. 1994. 云贵地区二叠系瘤石灰岩的成因. 岩石矿物学杂志, 13(2): 133-137.
李乾. 2018. 川西北中二叠统茅口组沉积体系特征. 硕士学位论文. 成都: 成都理工大学, 1-58
李秋芬, 苗顺德, 王铜山, 江青春, 汪泽成, 李军, 谢芬, 殷积锋, 谷志东. 2015. 四川盆地晚二叠世克拉通内裂陷作用背景下的盐亭-潼南海槽沉积充填特征. 地学前缘, 22(1): 67-76.
李双应, 孟庆任, 万秋, 孔为伦, 何刚. 2008. 长江中下游地区二叠纪碳酸盐斜坡沉积及其成矿意义. 岩石学报, 24(8): 1733-1744.
刘杰, 李葳洋, 何幼斌. 2011. 四川旺苍双汇下二叠统茅口组眼球状石灰岩成因分析. 海相油气地质, 16(1): 63-67. DOI:10.3969/j.issn.1672-9854.2011.01.009
刘树根, 王一刚, 孙玮, 钟勇, 洪海涛, 邓宾, 夏茂龙, 宋金民, 文应初, 吴娟. 2016. 拉张槽对四川盆地海相油气分布的控制作用. 成都理工大学学报(自然科学版), 43(1): 1-23. DOI:10.3969/j.issn.1671-9727.2016.01.01
刘新宇, 颜佳新. 2007. 华南地区二叠纪栖霞组燧石结核成因研究及其地质意义. 沉积学报, 25(5): 0-736.
罗进雄, 何幼斌. 2010. 中-上扬子地区二叠系眼球状石灰岩特征及成因研究. 地质论评, 56(5): 629-637.
罗志立. 1998. 四川盆地基底结构的新认识. 成都理工学院学报, 25(2): 191-200.
罗志立, 孙玮, 韩建辉, 王睿婧. 2012. 峨眉地幔柱对中上扬子区二叠纪成藏条件影响的探讨. 地学前缘, 19(6): 144-154.
马永生, 郭旭升, 郭彤楼, 黄锐, 蔡勋育, 李国雄. 2005. 四川盆地普光大型气田的发现与勘探启示. 地质论评, 51(4): 477-480. DOI:10.3321/j.issn:0371-5736.2005.04.017
马永生, 牟传龙, 谭钦银, 余谦. 2006. 关于开江-梁平海槽的认识. 石油与天然气地质, 27(3): 326-331. DOI:10.3321/j.issn:0253-9985.2006.03.006
毛黎光, 肖安成, 魏国齐, 沈中延, 王亮, 张林, 钱俊锋. 2011. 扬子地块北缘晚古生代-早中生代裂谷系统的分布及成因分析. 岩石学报, 27(3): 721-731.
万秋, 李双应, 王松, 孔为伦. 2011. 鄂西地区茅口组重力流沉积特征及古地理意义. 沉积学报, 29(4): 704-711.
王一刚. 1984. 关于碳酸盐岩滑动流及其沉积特征的探讨. 石油实验地质, 6(1): 18-23.
王一刚, 文应初, 张帆, 杨雨, 张静. 1998. 川东地区上二叠统长兴组生物礁分布规律. 天然气工业, 18(6): 10-15. DOI:10.3321/j.issn:1000-0976.1998.06.001
王一刚, 文应初, 洪海涛, 夏茂龙, 宋蜀筠. 2006. 四川盆地开江-梁平海槽内发现大隆组. 天然气工业, 26(9): 32-36. DOI:10.3321/j.issn:1000-0976.2006.09.010
王英民, 童崇光, 徐国强, 樊生利. 1991. 川中地区基底断裂的发育特征及成因机制. 成都地质学院学报, 18(3): 52-60.
王泽九, 黄枝高, 姚建新, 马秀兰. 2014. 中国地层表及说明书的特点与主要进展. 地球学报, 35(3): 271-276.
魏国齐, 陈更生, 杨威, 杨雨, 贾东, 张林, 肖安成, 陈汉林, 吴世祥, 金惠, 沈珏红. 2006. 四川盆地北部开江-梁平海槽边界及特征初探. 石油与天然气地质, 27(1): 99-105.
文龙, 张奇, 杨雨, 刘划一, 车琴, 刘微, 曾云贤, 魏小薇, 徐亮, 刘敏, 刘璐. 2012. 四川盆地长兴组-飞仙关组礁、滩分布的控制因素及有利勘探区带. 天然气工业, 32(1): 39-44.
肖安成, 魏国齐, 沈中延, 王亮, 杨威, 钱俊锋. 2011. 扬子地块与南秦岭造山带的盆山系统与构造耦合. 岩石学报, 27(3): 601-611.
徐安娜, 汪泽成, 江兴福, 翟秀芬, 殷积峰. 2014. 四川盆地开江-梁平海槽两侧台地边缘形态及其对储层发育的影响. 天然气工业, 34(4): 37-43.
张抗. 1994. 滑塌堆积及其构造意义. 岩相古地理, 14(6): 15-24.
张世涛, 冯庆来, 王义昭. 2000. 甘孜-理塘构造带泥盆系的深水沉积. 地质科技情报, 19(3): 17-20.
张玺华, 陈聪, 黄婕, 文龙, 谢忱, 徐诗薇, 高兆龙. 2019. 四川盆地中二叠世广元-巴中拉张槽的发现及其油气地质意义. 中国石油勘探, 24(4): 466-475.
中国地层典编委会. 2000. 中国地层典·二叠系. 北京: 地质出版社, 1-149.
周新平, 何幼斌, 罗进雄, 徐怀民. 2012. 川东地区二叠系结核状, 条带状及团块状硅岩成因. 古地理学报, 14(2): 143-143.
卓皆文, 王剑, 汪正江, 谢渊, 杨平, 刘建清, 赵瞻. 2009. 鄂西地区晚二叠世沉积特征与台内裂陷槽的演化. 新疆石油地质, 30(3): 300-303.