岩石学报  2021, Vol. 37 Issue (8): 2442-2464, doi: 10.18654/1000-0569/2021.08.12   PDF    
塔里木盆地西北缘二叠纪壳源型碳酸岩的发现及其地质意义
程小鑫1,2, 吴鸿翔1,2, 黄伟康1,2, 陈汉林1,2, 林秀斌1,2, 朱孔阳1, 李磐1,2, 章凤奇1,2     
1. 浙江大学地球科学学院, 浙江省地学大数据与地球深部资源重点实验室, 杭州 310027;
2. 教育部含油气盆地构造研究中心, 杭州 310027
摘要: 碳酸岩是自然界较为特殊的一类火成岩,由于其在上侵过程中不易受到地壳物质的混染,可以很好地保留源区原始特征,因而在揭示岩浆源区属性和地球深部碳循环等方面具有重要的研究价值。塔里木盆地西北缘阿克苏-乌什南部地区发育多条侵位到新元古界南华系中的火成碳酸岩岩墙或岩脉。这些岩脉的锆石U-Pb测年结果显示出多个年龄峰值,其中最年轻一组(3颗)岩浆锆石的谐和加权年龄为272±4Ma,另外还有400Ma、450Ma、790Ma、850Ma等年龄峰,而这些锆石可能均为碳酸岩岩浆捕获成因。结合区域上发育大量早二叠世辉绿岩岩床及岩墙等侵入事件,推测这些碳酸岩很可能形成于早二叠世(~270Ma)。碳酸岩主要由方解石(90%以上)构成,并含少量的白云石、重晶石、天青石、赤铁矿等其它矿物,可见方解石与白云石之间明显的出溶结构以及野外宏观上碳酸岩包裹围岩等现象。元素地球化学分析显示,碳酸岩CaO含量高(44.40%~50.40%),SiO2含量低(1.83%~7.97%);稀土元素总量很低(ΣREE=21.67×10-6~91.32×10-6),轻重稀土分异明显(LREE/HREE=3.90~8.40),具有中等负铕异常(δEu=0.61~0.68)和中等至弱负铈异常(δCe=0.59~0.98);大离子亲石元素Sr、Rb、Ba等相对富集,Nb、Ta、Ti等高场强元素相对亏损;稳定同位素δ13CV-PDB值高(-2.69‰~-2.93‰)、δ18OV-SMOW值高(17.33‰~17.86‰)。这些特征与壳源碳酸岩特征相似,而与幔源碳酸岩差别较大。Sr-Nd同位素结果显示高的(87Sr/86Sr)i值(0.710106~0.710558),低的εNd(t)值(-8.46~-12.80),也进一步证实碳酸岩为地壳来源。综合分析认为这些碳酸岩很可能是塔里木二叠纪大火成岩省晚期岩浆事件的组成部分,系由塔里木西北缘地幔柱减压熔融后形成高温的基性岩浆向上侵位运移时,导致下地壳的碳酸盐储库部分熔融形成碳酸岩岩浆,并沿着断裂快速向上侵位形成。本文研究不仅丰富了塔里木大火成岩省的岩石组成认识,而且有助于增进对二叠纪深部复杂壳幔作用过程的理解。
关键词: 塔里木大火成岩省    壳源型碳酸岩    二叠纪    地幔柱    壳幔作用    
Discovery of Permian crustal carbonatite in the northwestern margin of Tarim Basin and its geological significance
CHENG XiaoXin1,2, WU HongXiang1,2, HUANG WeiKang1,2, CHEN HanLin1,2, LIN XiuBin1,2, ZHU KongYang1, LI Pan1,2, ZHANG FengQi1,2     
1. Key Laboratory of Geoscience Big Data and Deep Earth Resources of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China;
2. Research Center for Structures in Oil&Gas Bearing Basins, Ministry of Education, Hangzhou 310027, China
Abstract: Igneous carbonatites is a kind of special igneous rock in nature. Because they are not easily contaminated by crustal materials in the process of upwelling, they can well retain the original characteristics of the magma source. Therefore, they have important research value in revealing the properties of the magma source and the carbon cycle of the deep earth. Several carbonatite dikes or dykes are found intruded into the Neoproterozoic Nanhua System in the southern Aksu-Wushi area, the northwestern margin of Tarim Basin. Zircon U-Pb geochronology dating of these carbonatites yield multiple peak ages, including a youngest one at 272±4Ma obtained by three zircons, and other ones at 400Ma, 450Ma, 790Ma, 850Ma, respectively. However, all these zircons were probably captured by carbonate magma. Considering the intrusive events of massive Early Permian diabase sills and dikes in the region, we speculate that these carbonatite dikes were probably formed in the Early Permian (~270Ma). The carbonatites are mainly composed of calcite (over 90%) and a small amount of dolomite, barite, celestite, hematite and other minerals. In addition, the carbonatites have obvious exsolution structures between calcite and dolomite, and the country rock breccias are found wrapped by the carbonatites in the field. The element geochemistry analysis results show that carbonatites have high CaO content (44.40%~50.40%), low SiO2 content (1.83%~7.97%), extremely low total rare earth elements content (21.67×10-6~91.32×10-6) with obvious differentiation of LREE and HREE (LREE/HREE=3.90~8.40) and weak negative Eu and Ce anomalies (δEu=0.61~0.68; δCe=0.59~0.98). And the large ion lithophile elements like Sr, Rb, Ba are relatively enriched, and high field-strength elements such as Nb, Ta, Ti are relatively depleted. The stable isotope of δ13CV-PDB and δ18OV-SMOW are high (-2.69~-2.93‰ and 17.33~17.86‰, respectively). All these characteristics are similar to the crustal carbonatite, but quite different from the mantle carbonatite. The Sr-Nd isotopic results of high (87Sr/86Sr)i values (0.710106~0.710558) and low εNd(t) values (-8.46~-12.80) also confirm that the Aksu carbonatites are derived from the crust. After comprehensive analysis, we propose that these carbonatites are probably the components of the late magmatic event in the Permian Tarim Large Igneous Province. When the mantle plume in the northwestern margin of Tarim was decompressed, it would form high-temperature basic magma and emplaced upward. These basic magma would heated the carbonate reservoir in the lower crust and partially melted it to form carbonatites magma, which was rapidly emplaced upward along the extension fault. This study not only enriched the petrological compositions of the Permian Tarim Large Igneous Province, but also promoted the understanding of the complex crust-mantle interaction processes in the deep area of Permian Tarim Basin.
Key words: Tarim Large Igneous Province    Crustal carbonatite    Permian    Mantle plume    Crust and mantle interaction    

碳酸岩是自然界较为特殊的一类岩浆岩,其碳酸盐矿物含量大于50%,二氧化硅含量小于20%,该岩类也是地球内部碳元素含量最高的岩石类型(Streckeisen,1980Woolley,1989; Woolley and Kempe, 1989Le Maitre et al., 2002刘焰,2012宋文磊等,2012)。其规模一般不大,常与碱性岩形成杂岩体,呈岩颈、岩墙、岩锥等形式广泛发育于大陆裂谷环境中(Woolley,1989; Woolley and Kempe, 1989田世洪等,2006王林均等,2011)。碳酸岩在全球各个大陆均有产出,已发现527处(Woolley and Kjarsgard, 2008),其形成与分布常受深大断裂控制,主要与板内构造伸展和造山后构造伸展等大地构造过程密切相关(Ray et al., 1999D’Orazio et al., 2007苟瑞涛等,2019)。由于碳酸岩在上侵过程中不易受到地壳物质的混染而得以很好地保留源区的原始特征,因而在揭示岩浆源区性质和地球深部碳循环等方面具有十分重要的研究价值(Simonetti et al., 1995杨学明等,1998Mitchell,2005Woolleyand Kjarsgard,2008Bell and Simonetti, 2010Woolley and Bailey, 2012Slezak and Spandler, 2019)。

碳酸岩既有幔源成因的,即由地幔岩部分熔融形成碱性岩浆、再经历演化分异形成(田世洪等,2006任建德等,2007陈华等,2010Weidendorfer et al., 2017),也有壳源成因。Lentz(1999)首先从理论上论证了沉积型碳酸盐岩可以部分熔融形成碳酸岩浆,并将其称为壳源碳酸岩。随后,各地陆续报道这类岩石(Le Bas et al., 2004Dostal et al., 2004赵斌等,2004Liu et al., 2006任建德等,2007Wan et al., 2008董春艳等,2009杨俊泉等,2012辛后田等,2012毛立全和马原,2017)。大量研究表明壳源型与幔源型碳酸岩不仅在岩石学、地球化学等特征上存在显著差异,而且两者在岩石成因机制上也明显不同(Liu et al., 2006任建德等,2007Wan et al., 2008杨俊泉等,2012辛后田等,2012)。例如Liu et al.(2006)在东喜马拉雅的高压麻粒岩杂岩体中发现的碳酸岩,其地化特征与幔源碳酸岩明显不同,而和沉积型碳酸盐岩相似,认为是含碳酸盐矿物的表壳岩石在强烈的区域变质作用产生的高温条件下部分熔融所形成;杨俊泉等(2012)报道了阿尔金北缘古元古代壳源碳酸岩,其稀土总量低、轻重稀土分离弱,并且锆石具有变质深熔特征,认为它们是高级变质作用下的大理岩深熔作用的产物;毛立全和马原(2017)在甘肃北山西三羊井东一带发现的碳酸盐质岩体,它们与围岩呈侵入接触关系,内部发育围岩捕虏体并与橄榄岩伴生,研究认为它们是沉积碳酸盐岩在幔源基性岩浆上侵形成的高温条件下发生部分熔融形成。

塔里木盆地是一个在前寒武纪变质基底上发育起来的大型海-陆相叠合型沉积盆地(何登发和李德生,1996贾承造,1997)。前人研究表明,塔里木盆地发育多期元古宙以来的火成碳酸岩岩浆事件。辛后田等(2012)在塔里木东南部阿克塔什地区发现了约19亿年前的壳源型碳酸岩侵入体,是新太古代基底变质岩在古元古代末期发生深熔作用的产物,指示了塔里木参与了哥伦比亚超大陆的汇聚事件;孙宝生和黄建华(2007)研究了塔里木东北缘库鲁克塔格地区且干布拉克超基性岩-碳酸岩杂岩体,获得了ca.802Ma的Sm-Nd等时线年龄,结合地球化学特征,他们认为该杂岩体形成于大陆裂谷环境,是新元古代Rodinia超大陆裂解的产物;近年来有学者则在塔里木西北缘巴楚地区发现二叠纪侵入的幔源型碳酸岩岩墙和岩脉,并认为他们是二叠纪大火成岩省的一部分(Cheng et al., 2017Song et al., 2017)。本次研究在塔里木西北缘乌什南部地区发现了多条侵入到新元古代沉积地层中的碳酸岩岩墙和岩脉,通过野外地质调查、锆石U-Pb年代学、岩石学、元素地球化学以及锶、钕、碳和氧同位素研究,明确了碳酸岩发育特征、侵位时代、岩浆特征及来源,进而探讨了其与塔里木二叠纪大火成岩省之间的成因联系。

1 研究区地质概况

塔里木盆地所在的塔里木板块是我国三个主要的克拉通板块之一(胡霭琴和罗杰斯,1992Lu et al., 2008Long et al., 2010Zhao and Cawood, 2012Zhang et al., 2012, 2013翟明国,2013Xu,2015)。本次研究区位于塔里木盆地西北缘的阿克苏-乌什南部(图 1a),该区出露最老的地层单元为阿克苏群,该群主要由绿片岩-蓝片岩和石英片岩组成,并被一组北西走向未变质的前寒武纪基性岩墙群所切割(图 1b杨树锋等,1998贾承造等,2004Zhang et al., 2009He et al., 2014Li et al., 2020);上覆南华系包括巧恩布拉克群及其上部的尤尔美那克组,其中巧恩布拉克群自下而上分为西方山组、东巧恩布拉克组、牧羊滩组和冬屋组。西方山组以灰绿色中厚层状中粗砂岩、含砾粗砂岩为主;东巧恩布拉克组主要为杂色块状复成分砾岩;牧羊滩组以绿灰色中厚层状中砂岩为主,并夹绿灰色薄层状粉砂质泥岩;冬屋组下段以红紫色中厚层块状冰碛砾岩为主,上段以紫红色厚层块状细砾岩、砂砾岩为主。震旦系主要呈平行不整合覆盖在南华系或者阿克苏群之上,自下而上可分为苏盖特布拉克组和奇格布拉克组。

图 1 塔里木盆地西北缘区域地质简图与采样剖面位置 (a)塔里木盆地及其邻区遥感影像图及研究区位置(据谷歌地球遥感影像修改);(b)塔里木盆地西北缘乌什南部地质简图(据Lu et al., 2017修改);(c)尤尔美那克剖面火成碳酸岩出露位置及样品分布图 Fig. 1 Regional geological sketch map of the northwestern Tarim Basin and location of the sampling section (a) Remote sensing image map of Tarim Basin and its adjacent areas and the location of the study area (modified after Google Earth remote sensing image); (b) geological map of the southern Wushi region in the northwestern margin of Tarim Basin (modified after Lu et al., 2017); (c) the location and distribution of carbonatite samples in the Yuermeinake section
2 火成碳酸岩野外产出和岩石学特征

本次研究的碳酸岩主要以岩墙或岩脉的形式侵入到新元古界南华系。岩墙或岩脉整体走向呈北东方向,其发育分布大致与一条北东向正断层密切相关(图 1c)。在其中一个露头发现碳酸岩侵入到断层的破碎带中,该断层破碎带宽度2~4m,内部可见断层活动形成的大小不一的棱角状断层角砾(角砾主要为南华系砂岩),砾径一般20~40cm,最大砾径可达3m左右,这些角砾被浅紫红色碳酸岩所胶结(图 2a, b, d, e)。断层破碎带附近可见大量碳酸岩岩脉,岩脉内部局部还包裹了来自东巧恩布拉克组砾岩中的片岩和花岗岩砾石,砾石直径径宽5~20cm不等,最大的可达50cm(图 2c)。

图 2 塔里木盆地西北缘乌什南部尤尔美那克剖面火成碳酸岩典型野外露头照片 (a)切穿牧羊滩组砂岩的正断层、断层角砾岩及沿着断层侵入的碳酸岩,断层角砾呈棱角状大小不一,被浅褐色的碳酸岩所胶结;(b)为图(a)的野外信手剖面图;(c)碳酸岩岩墙中局部包裹的变质岩砾石;(d、e)牧羊滩组的砂岩断层角砾被碳酸岩所胶结;(f)碳酸岩岩浆侵入南华系砂岩及二者接触面 Fig. 2 Typical outcrop photos of carbonatites from the Yuermeinake section in the southern Wushi, northwestern margin of Tarim Basin (a) a normal fault truncated the sandstone of the Muyangtan Formation, fault breccia and carbonatites intruded along fault, the fault breccia is angular in shape and varies in size and it was cemented by light brown carbonatite; (b) field profile sketch corresponding to Fig. 2a; (c) locally wrapped metamorphic gravel in carbonatite dykes; (d, e) the sandstone fault breccia of Muyangtan Formation was cemented by carbonatite; (f) carbonatite magma intrudes into the sandstone of Nanhua System and their contact surface

岩石薄片观察表明,浅紫红色碳酸岩结晶较细小,多为显微隐晶质结构(图 3a-c)。组成岩石的主要矿物是方解石(90%以上),呈自形-半自形,大多数粒径为0.2~0.8mm,极少数斑晶可达4mm(图 3d),为典型的细粒火成碳酸岩结构;次要矿物为白云山、重晶石、天青石和赤铁矿。重晶石呈现典型的柱状及片状结构,单偏光下可见一至两组解理、正中突起,正交偏光下可见一级干涉色、平行消光、正延性。重晶石可与天青石形成完全类质同象系列,但镜下难以发现二者区别,通过电子探针对单矿物进行测定时发现大多数柱状矿物为重晶石,少部分不含或含少量钡元素的为天青石。重晶石粒径为0.1~0.3mm,最大可达0.5mm(图 3a, b),与方解石呈镶嵌接触关系。赤铁矿多呈半自形结构,粒径为0.1~0.2mm,最大可达0.3mm(图 3c),反射光下具有金属光泽,浅黑至棕红色,加大光源,透射光下发现矿物边缘薄的地方为红色。值得注意的是,镜下还观察到多条由较粗的晶粒状方解石构成的脉体、脉宽3~5mm(图 3ab),脉体两侧为细粒的显微隐晶质方解石,并且重晶石和天青石这类低温热液矿物大多生长在脉体内部,自形且晶粒粗大,与粗粒方解石镶嵌状生长在一起(图 3ab)。

图 3 塔里木盆地西北缘乌什南部尤尔美那克剖面火成碳酸岩典型薄片照片 (a、b)中部为晶粒状方解石脉体,两侧为细粒的显微隐晶质方解石,脉体内部可见柱状重晶石晶体,自形且晶粒粗大,与粗粒方解石镶嵌状生长在一起;(c)长柱状的重晶石矿物粒径约0.4mm、赤铁矿呈半自形结构、基质主要为细粒的方解石微晶;(d)方解石晶体为高级白干涉色、他形,发育两组极完全解理,粗粒的径长约3mm,具有似斑状结构. (a)为单偏光下照片;(b-d)为正交偏光下的照片.Cal-方解石;Cal Vein-方解石脉;Brt-重晶石;Hem-赤铁矿;Cls-天青石 Fig. 3 Typical micrographs of carbonatites from the Yuermeinake section in the southern Wushi, northwestern margin of Tarim Basin (a, b) the crystalline calcite vein, with microaphanitic calcite on both sides of the photo, columnar barite crystals can be seen inside the veins which are self-formed and coarse-grained and grow together with coarse-grained calcite; (c) carbonatite shows long columnar barite mineral about 0.4mm in size, hematite mineral with semi-idiomorphic structure, and the matrix is mainly fine-grained calcite microcrystal; (d) carbonatite showing the calcite crystal is high-grade white interference color, it is shaped and has two groups of extremely complete cleavage, the diameter of coarse grain is about 3mm, and it has porphyroid texture. (a) is single polarized photo; (b-d) are orthogonal polarized photo. Cal-calcite; Cal-Vein-calcite vein; Brt-barite; Hem-hematite; Cls-celestite

本次研究在扫描电镜中发现方解石与白云石矿物之间存在明显的出溶结构,两种矿物呈条带状彼此之间交叉生长、相互嵌生(图 4ab),这种结构通常是由某一均匀的矿物固溶体在温度及压力改变时分离成两种或两种以上不同矿物相所产生的。此外,还观察到方解石基质包裹围岩捕虏体,捕虏体中可以看到他形粒状的金红石晶体和短柱状的石英晶体,金红石具有一定的磨圆度、粒径约10μm,石英晶体粒径约20~30μm(图 4c, d)。上述野外宏观产出和岩石显微结构特征指示了该火成碳酸岩的侵位与正断层的活动关系密切,并且可能经历了早期沿着断裂快速侵位冷却和晚期沿着裂缝缓慢冷却结晶两个阶段的岩浆结晶期次。

图 4 塔里木盆地西北缘乌什南部尤尔美那克剖面火成碳酸岩(样品号30-AKS-19)扫描电镜照片(a-d)和探针薄片扫描照片(e) (a)黑色白云石矿物晶体嵌生于灰色方解石矿物晶体中; (b)灰色方解石矿物晶体嵌生于黑色白云石矿物晶体中; (a)和(b)均展示了碳酸岩中方解石和白云石矿物的出溶结构,两种矿物呈条带状彼此之间交叉生长;(c)方解石基质包裹围岩捕虏体,捕虏体中可见白云石晶体为粒状、具有一定的磨圆度、粒径约10μm,石英晶体呈短柱状、粒径约20~30μm;(d)长柱状重晶石晶体自形程度高且晶粒粗大、粒径约0.1~0.2mm; (e)碳酸岩电子探针片的扫描照片及方解石原位激光测试区域(矩形黑框内).Dol-白云石; Rt-白云石; Qz-石英 Fig. 4 Stereo-scan (a-d) and electron probe slice scanning (e) photographs of carbonatite (Sample 30-AKS-19) from the Yuermeinake section in the southern Wushi, northwestern margin of Tarim Basin (a) the black dolomite mineral crystals are embedded in the gray calcite mineral crystals; (b) the gray calcite mineral crystals are embedded in the black dolomite mineral crystals; both (a) and (b) show the exsolution structure of calcite and dolomite minerals in carbonatite, and these two minerals grow intersecting with each other in the form of strips; (c) the wall rocks xenoliths are wrapped by calcite groundmass in carbonatite, the rutile crystals in xenoliths are granular, with a certain degree of roundness and about 10μm in size, and the quartz crystals in xenoliths are short columnar and about 20~30μm in size; (d) barite showing that long columnar barite crystals have high idiomorphic degree and large grain size of about 0.1~0.2mm; (e) scanning photo of carbonatite electron probe slice and in situ laser test area of calcite (inside the rectangular black box). Dol-dolomite; Rt-rutile; Qz-quartz
3 测试方法 3.1 锆石U-Pb测年方法

本次研究对阿克苏地区2件碳酸岩样品(样品号31-AKS-19、33-AKS-19;采样点位置见图 1c)进行了LA-ICP-MS锆石U-Pb年代学测试。锆石挑选、提纯由廊坊市诚信地质服务有限公司完成,分离锆石采用标准密度法和磁学等方法。锆石制靶、透、反射和阴极发光(CL)拍照由北京锆年领航科技有限公司完成,这些锆石照片用于综合分析锆石的形态及内部结构,从而选定最佳的测点位置。LA-ICP-MS锆石U-Pb定年实验在浙江大学地球科学学院的激光剥蚀电感耦合等离子体质谱实验室完成,使用仪器为Thermofisheri CAP RQ型ICP-MS及与之配套的Cetea Analyte HE激光剥蚀系统,实验中激光束斑直径为35μm,采用单点剥蚀法。锆石分析外标为标样91500,元素含量分析外标为NIST SRM610和NIST SRM612玻璃,内标为29Si,并且每两组样品测试完成会加测一次标样Plesovice用于监测年龄数据的准确性和稳定性(Sláma et al., 2008)。锆石数据处理运用ICP-MS DATACal软件获得U-Pb同位素比值(Liu et al., 2008Lin et al., 2016)。U-Pb年龄谐和图根据同位素比值通过Isoplot4.15程序获得(Ludwig, 2001, 2012),单个测点误差使用1σ,年龄计算采用206Pb/238U加权平均值,误差为2σ(95%的置信度)。所有样品分析结果见表 1

表 1 塔里木西北缘乌什南部碳酸岩样品LA-ICP-MS锆石U-Pb测年结果 Table 1 LA-ICP-MS zircon U-Pb data of carbonatite samples in the southern Wushi, northwestern margin of Tarim Basin
3.2 全岩主量、微量元素和方解石微量元素测试方法

研究样品均采自塔里木西北缘乌什南部尤尔美那克剖面出露的碳酸岩岩墙。同时为了与沉积碳酸盐岩进行地球化学对比,采集了1件震旦系奇格布拉克组灰岩样品(样品号89-AKS-19)。

全岩主量和微量元素的分析测试工作由广州澳实分析检测有限公司的矿物实验室完成,均使用荷兰PANalytical公司生产的型号为PW2424的X射线荧光光谱仪进行测试,仪器采用熔片X射线荧光光谱仪熔融法(XRF)测定,分析精密度和准确度均大于95%(郭宇飞等,2016张伟等,2018)。称取三份试样分别进行处理,一份试样用高氯酸、硝酸、氢氟酸和盐酸进行消解,蒸干后用稀盐酸溶解定容,使用XRF测定微量元素;一份试样用加入四硼酸锂-偏硼酸锂-硝酸锂混合熔剂混合均匀后使用高精密熔样机1050℃熔融,熔浆冷却形成熔片后再用X射线荧光光谱仪测定主量元素;另一份试样干燥后使用马弗炉1000℃有氧灼烧冷却后测定烧失量。所有样品分析结果见表 2

表 2 塔里木盆地西北缘乌什南部碳酸岩和震旦系灰岩的主量(wt%)与微量(×10-6)元素含量 Table 2 Major element (wt%) and trace element (×10-6) compositions of Aksu carbonatite and Sinian limestone in the southern Wushi, northwestern margin of Tarim Basin

此外,我们还对其中一件碳酸岩样品(样品号30-AKS-19)进行了方解石的原位激光烧蚀分析以获取单矿物的微量元素成分。测试使用的探针片由廊坊市诚信地质服务有限公司制作,厚度为80μm,测试过程在浙江大学地球科学学院的激光剥蚀电感耦合等离子体质谱实验室完成,使用仪器为Thermofisheri CAP RQ型ICP-MS及与之配套的Cetea Analyte HE激光剥蚀系统,烧蚀斑直径35μm,元素含量分析以NIST SRM610和NIST SRM612玻璃为校准标准,分析精度和准确度均优于5%。测试时均选取大于100μm的方解石斑晶进行测试,并在分析过程中监测指示性微量元素的运行信号强度,以确保烧蚀点被限制在一定区域内而不会接触其他矿物相或包裹体。探针片上方解石的分析测试区域见图 4e,测试结果见表 3

表 3 塔里木盆地西北缘乌什南部碳酸岩(样品号30-AKS-19)中方解石的微量元素(×10-6)分析结果 Table 3 Results of trace element (×10-6) compositions of calcites in carbonatite sample (Sample 30-AKS-19) in the southern Wushi, northwestern margin of Tarim Basin
3.3 全岩锶、钕、碳和氧同位素测试方法

全岩锶和钕同位素前处理和测试由武汉上谱分析科技有限责任公司完成。前处理在配备100级操作台的千级超净室完成。样品消解过程如下:首先将200目样品置于105℃烘箱中烘干12h;然后准确称取粉末样品50~200mg置于Teflon溶样弹中,依次缓慢加入1~3mL高纯HNO3和1~3mL高纯HF;接着将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热24h以上;待溶样弹冷却,开盖后置于140℃电热板上蒸干,然后加入1Ml HNO3并再次蒸干;最后用1.5mL的HCl(2.5M)溶解蒸干样品;再用离心机将样品离心后,取上清液上柱。柱子填充AG50W树脂,用2.5M HCl淋洗去除基体元素。最后用2.5M HCl将Sr从柱上洗脱并收集Sr溶液蒸干后等待上机测试。树脂残留物质通过4.0M HCl淋洗可获得REE溶液,接收的REE溶液蒸干后以0.18M HCl淋洗去除基体元素,用0.3M HCl将Nd从柱上洗脱并收集,Nd溶液蒸干后等待上机测试。

锶(Sr)同位素分析采用德国Thermo Fisher Scientific公司的MC-ICP-MS(Neptune Plus)。仪器配备9个法拉第杯接收器。83Kr+167Er++84Sr+85Rb+86Sr+173Yb++87Sr+88Sr+同时被L4、L3、L2、L1、C、H1、H2、H3等8个接收器接收。其中83Kr+85Rb+167Er++173Yb++被用于监控并校正Kr、Rb、Er和Yb对Sr同位素的同质异位素干扰。MC-ICP-MS采用了H+S锥组合和干泵以提高仪器灵敏度。根据样品中的Sr含量,50μl/min和100μL/min两种微量雾化器被选择使用。Alfa公司的Sr单元素溶液被用于优化仪器操作参数。Sr国际标准溶液(NIST 987,200 μg/L)的88Sr信号一般高于7V。数据采集由8个blocks组成,每个block含10个cycles,每个cycle为4.194s。Sr同位素的仪器质量分馏采用内标指数法则校正(Russell et al. 1978)。88Sr/86Sr被用于计算锶的质量分馏因子(8.375209,Lin et al. 2016)。由于前期有效的样品分离富集处理,干扰元素Ca、Rb、Er、Yb被分离干净。残余的83Kr+85Rb+167Er++173Yb++等干扰校正采用Lin et al.(2016)校正方法实验流程采用两个Sr同位素标样(NBS 987和AlfaSr)之间插入7个样品进行分析。全部分析数据采用专业同位素数据处理软件“Iso-Compass”进行数据处理(Zhang et al., 2020)。NBS 987的87Sr/86Sr分析测试值为0.710241±12(2SD, n=5),与推荐值0.710248±12(Zhang and Hu, 2020)在误差范围内一致,表明本仪器的稳定性和校正策略的可靠性满足高精度的Sr同位素分析。BCR-2(玄武岩)和RGM-2(流纹岩)(USGS)被选择作为流程监控标样,分别代表了基性岩和酸性岩,显示出显著的物理化学差异性。RGM-2具有较高的Rb含量(149×10-6)和适中的Sr含量(108×10-6),能有效监控Rb的分离过程和测试结果。BCR-2的87Sr/86Sr分析测试值为0.705019±8,与推荐值0.705012±20(Zhang and Hu, 2020)在误差范围内一致。RGM-2的87Sr/86Sr分析测试值为0.704153±10,与推荐值0.704184±10(Li et al. 2012)在误差范围内一致。数据表明,本实验流程可以对实验样品进行有效分离,分析准确度和精密度满足高精度的Sr同位素分析。

钕(Nd)同位素分析采用德国Thermo Fisher Scientific公司的MC-ICP-MS(Neptune Plus)。仪器配备9个法拉第杯接收器。142Nd+143Nd+144Nd+145Nd+146Nd+147Sm+148Nd+149Sm+150Nd+同时被L4、L3、L2、L1、C、H1、H2、H3、H4等9个接收器接收。其中147Sm+被用于监控并校正Sm对Nd同位素的同质异位素干扰。MC-ICP-MS采用了H+S锥组合和干泵以提高仪器灵敏度。根据样品中的Nd含量,50μL/min和100μL/min两种微量雾化器被选择使用。Alfa公司的Nd单元素溶液被用于优化仪器操作参数。Nd标准物质(GSB 04-3258-2015,200μg/L)的142Nd信号一般高于2.5V。数据采集由10个blocks组成,每个block含8个cycles,每个cycle为4.194s。Nd同位素的仪器质量分馏采用内标指数法则校正(Russell et al. 1978)。146Nd /144Nd被用于计算Nd的质量分馏因子(0.7219,Lin et al. 2016)。由于前期有效的样品分离富集处理,干扰元素Sm被分离干净。残留的144Sm+干扰校正采用Lin et al.(2016)校正方法。实验流程采用两个Nd同位素标样(GSB 04-3258-2015和AlfaNd)之间插入7个样品进行分析。全部分析数据采用专业同位素数据处理软件“Iso-Compass”进行数据处理(Zhang et al., 2020)。GSB 04-3258-2015的143Nd /144Nd分析测试值为0.512439±10(2SD, n=8)与推荐值0.512438±6(2SD)(Li et al., 2017)在误差范围内一致,表明本仪器的稳定性和校正策略的可靠性满足高精度的Nd同位素分析。BCR-2(玄武岩)和RGM-2(流纹岩)(USGS)同样被选择作为流程监控标样,分别代表基性岩和酸性岩,具有显著的物理化学差异性。BCR-2和RGM-2具有适中的Nd含量(28.7×10-6和19×10-6)。BCR-2的143Nd /144Nd分析测试值为0.512638±6,与推荐值0.512638±15(Wei et al. 2006)在误差范围内一致。RGM-2的143Nd /144Nd分析测试值为0.512808±5,与推荐值0.512803±10(Li et al. 2012)在误差范围内一致。数据表明,本实验流程可以对实验样品进行有效分离,分析准确度和精密度满足高精度的Nd同位素分析。

全岩碳和氧同位素分析测试工作由广州澳实分析检测有限公司完成。碳和氧同位素分析采用Thermo-Finnigan Deltaplus XP连续气流同位素质谱仪,利用CaCO3国际标样NBS18及NBS19进行校正,将200目样品烘干后用浓磷酸充分混合,而后置于72℃的恒温水浴中4h使其析出CO2从而测定δ13C和δ18O,其中C同位素测试数据(精度0.01%)基于V-PDB标准化得δ13C,O同位素测试数据(测试精度0.05%)基于V-SMOW标准化得δ18O,均以‰表示。

4 碳酸岩锆石U-Pb测年结果

目前对于碳酸岩形成时代,常见的是利用其岩浆中结晶出的氟碳铈矿、独居石等稀土矿物进行Th-Pb等同位素测年(Song et al., 2016, 2017Yang et al., 2019Zhang et al., 2019谢玉玲等,2020);而对壳源型碳酸岩也有通过锆石U-Pb或全岩Sm-Nd等时线方法等进行年龄测定(孙宝生和黄建华,2007Wan et al., 2008董春艳等,2009辛后田等,2012杨俊泉等,2012张利国等,2019)。在本次研究中使用锆石U-Pb法对碳酸岩开展同位素年代学研究。

样品31-AKS-19和33-AKS-19的部分锆石阴极发光(CL)图像见图 5b,两个样品的锆石特征基本一致,大多呈无色透明短柱状,粒径约为40~100μm,长宽比约1:1~2:1。大部分锆石自形程度高,具有明显的岩浆振荡环带结构,显示其为岩浆成因特征。锆石的Th/U比值分别为0.05~1.28和0.03~1.00,绝大部分谐和锆石的Th/U比都大于0.1指示锆石的岩浆成因,Th/U比小于0.1的锆石可能经历了变质事件(Belousova et al., 2002吴元保和郑永飞,2004)。

图 5 塔里木盆地西北缘乌什南部碳酸岩代表性锆石阴极发光(CL)图像 圆圈位置为测点位置和激光束斑大小,数字为测点年龄;年龄小于1000 Ma为206Pb/238U年龄,大于1000 Ma为207Pb/206U年龄;实线圆圈为锆石207Pb/235U与206Pb/238U年龄谐和测点,虚线圆圈体为年龄不谐和测点 Fig. 5 Representative zircon CL images of carbonatites in the southern Wushi, northwestern margin of Tarim Basin The circles positions represent dating spots and laser beam diameter, the numbers represent ages of dating spots; the ages less than 1000Ma are 206Pb/238U ages, while more than 1000Ma are 207Pb/235U ages; the solid circles represent dating spots with concordant 206Pb/238U and 207Pb/235U ages, the dotted circles represent dating spots with discordant ages

本次对这两个样品中的锆石完成了50个和67个测点的U-Pb年代学分析,它们分别有29组和48组锆石的206Pb/238U年龄和207Pb/235U年龄谐和度在90%以上(详细测试结果见表 1),两个样品中不谐和的21颗和19颗锆石可能存在Pb丢失或被后期地质事件改造。由于这两个碳酸岩样品采自同一个剖面露头点、处在同一个断裂带附近并且锆石年龄结果相似,所以将两个样品的测试结果合并进行讨论。这两个碳酸岩样品共77个锆石年龄谐和测点的207Pb/235U与206Pb/238U谐和图见图 6a、U-Pb年龄频谱见图 7。观察发现碳酸岩U-Pb年龄主要集中在634~1030Ma的年龄峰值区间以及270Ma、390Ma、460Ma、1270Ma、1580Ma、1930Ma和2466Ma的弱年龄峰(图 6)。其中共有3颗最年轻的谐和锆石年龄为270Ma左右,它们的206Pb/238U加权平均年龄为272.2±4.2Ma(图 6b)。

图 6 塔里木盆地西北缘乌什南部碳酸岩锆石U-Pb年龄谐和图 (a) 77个年龄谐和测点的207Pb/235U与206Pb/238U谐和图;(b) 3颗最年轻谐和锆石的207Pb/235U和206Pb/238U谐和图及加权平均年龄图 Fig. 6 Zircon U-Pb age concordia plots of carbonatite in the southern Wushi, northwestern margin of Tarim Basin (a) 207Pb/235U and 206Pb/238U concordia plot of 77 dating spots with concordant ages; (b) 207Pb/235U and 206Pb/238U concordia plot and weighted average age plot of three youngest concordant zircons

图 7 塔里木盆地西北缘乌什南部碳酸岩锆石与南华系砂岩碎屑锆石U-Pb年龄谱对比 (a)碳酸岩样品中77颗谐和锆石的U-Pb年龄频谱图;(b)阿克苏新元古代沉积地层中碎屑锆石U-Pb年龄谱图,数据引自Wu et al.(2018);(c)阿克苏新元古代沉积地层中碎屑锆石U-Pb年龄谱图,数据引自He et al.(2014);(d)阿克苏群变质岩中碎屑锆石U-Pb年龄谱图,数据引自Zhu et al.(2011) Fig. 7 The comparison of U-Pb age spectrums of carbonatite zircons in the southern Wushi, northwestern margin of Tarim Basin and detrital zircons from sandstones in the Nanhua System (a) U-Pb age spectrum of 77 concordantzircon in carbonatites samples; (b) U-Pb age spectrums of detrital zircon from Neoproterozoic sedimentary strata in Aksu, data from Wu et al.(2018); (c) U-Pb age spectrums of detrital zircon from Neoproterozoic sedimentary strata in Aksu, data from He et al.(2014); (d) U-Pb age spectrums of detrital zircon from meta-sedimentary samples in the Aksu Group, data from Wu et al.(2018)
5 岩石地球化学特征 5.1 全岩主量元素

本次5件碳酸岩样品的全岩主量分析结果(表 2)显示,碳酸岩烧失量较高,LOI介于38.10%~42.39%之间,主要成分为CaO,含量为44.40%~50.40%,其他主量元素SiO2含量为1.83%~7.97%,Al2O3含量为0.62%~2.01%,Fe2O3T含量为0.40%~1.14%,MgO含量为1.25%~5.58%,Na2O和K2O含量均低于1.0%。样品的CaO/(CaO+MgO+ FeO+Fe2O3+MnO)为0.82~0.98(>0.8),在CaO-MgO-(FeO+Fe2O3+MnO)三端元组分分类图中(Woolley, 1989, Woolley and Kempe, 1989),所有样品均落在钙质碳酸岩区域内(图 8)。用于对比分析的震旦系灰岩样品,其主要成分与碳酸岩基本一致,CaO=53.00%,LOI=41.61%,但其Al2O3、MgO和MnO含量明显低于碳酸岩样品。

图 8 塔里木盆地西北缘乌什南部碳酸岩主量元素分类图(据Le Maitre et al., 2002) Fig. 8 Major elements classification diagram of carbonatite in the southern Wushi, northwestern margin of Tarim Basin (after Le Maitre et al., 2002)
5.2 全岩稀土与微量元素

碳酸岩样品全岩稀土元素分析结果见表 2,稀土元素总量ΣREE(不含Y)低,介于21.67×10-6~91.32×10-6之间,平均为57.16×10-6。轻重稀土总量比值LREE/HREE=3.90~8.40,显示了轻稀土(LREE)相对富集、重稀土(HREE)相对亏损的特征。在球粒陨石标准化稀土元素配分图(图 9a)上,所有碳酸岩样品的曲线都呈平缓右倾的轻稀土富集型,具有弱负铕异常(δEu=0.61~0.68)和弱负铈异常(δCe=0.59~0.98),(La/Yb)N=5.0~13.8,反映轻重稀土存在一定的分异作用。此外,Sm/Nd比值也可以反映稀土分异程度,当Sm/Nd>0.333时表现为轻稀土亏损;Sm/Nd<0.333时则为轻稀土富集(李昌年,1992毛立全和马原,2017)。本次研究中样品的Sm/Nd比值介于0.20~0.25之间,显示出轻稀土富集特点。

图 9 塔里木盆地西北缘乌什南部碳酸岩全岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)及方解石单矿物(样品30-AKS-19)球粒陨石标准化稀土元素配分图(c)和原始地幔标准化微量元素蛛网图(d)(标准化值据Sun and McDonough, 1989) 其他地区碳酸岩数据来源于Wan et al.(2008)杨俊泉等(2012)Song et al.(2017) Fig. 9 Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) for whole rock carbonatite and chondrite-normalized REE pattern (c) and primitive mantle-normalized trace element spider diagrams (d) for calcite in carbonatite (Sample 30-AKS-19) in the southern Wushi, northwestern margin of Tarim Basin (normalization values after Sun and McDonough, 1989) Carbonatite data from other areas from Wan et al. (2008), Yang et al. (2012) and Song et al. (2017)

震旦系灰岩的球粒陨石标准化稀土元素配分图也具有平缓右倾、轻稀土富集型特点(图 9a),但其稀土元素总量更低一些(ΣREE=25.68×10-6)。并且灰岩的(La/Yb)N=22.3,表明其轻重稀土分异程度相较碳酸岩略高。

碳酸岩全岩微量元素测试结果见表 2,微量元素蛛网图见图 9b。碳酸岩样品之间的分布曲线特点基本一致,即富集大离子亲石元素Rb、Sr和Ba,显著亏损高场强元素Nb、Ta、Ti、Zr和Hf等。震旦系灰岩曲线特点与碳酸岩曲线大体相似。

5.3 方解石单矿物稀土与微量元素

碳酸岩样品(30-AKS-19)中方解石的稀土与微量元素分析结果见表 3,稀土元素总量ΣREE(不含Y)低,介于9.93×10-6~154.8×10-6之间,平均为49.95×10-6。轻重稀土总量比值LREE/HREE=3.70~19.93,Sm/Nd比值介于0.14~0.25之间,表明轻稀土(LREE)相对富集、重稀土(HREE)相对亏损。在球粒陨石标准化稀土元素配分图(图 9c)上,所有方解石的曲线都呈平缓右倾的轻稀土富集型,具有中等-弱负铕异常(δEu=0.58~0.80)和中等负铈异常(δCe=0.51~0.67),(La/Yb)N=10.48~78.96,反映轻重稀土分异明显。

在原始地幔标准化微量元素蛛网图(图 9d)上,所有方解石的分布曲线特点基本一致,即富集大离子亲石元素Rb、U,强烈亏损高场强元素Nb、Ta、Ti、Zr和Hf等。

6 锶、钕和碳、氧同位素特征 6.1 Sr和Nd同位素结果

全岩Sr和Nd同位素分析数据见表 487Rb/86Sr比值为0.0330和0.0403,远小于7.5,所以两个样品完全适合用于(87Sr/86Sr)i的讨论分析(Wu et al., 2002)。初始Sr同位素比值87Sr/86Sr分别为0.710685和0.710261,利用年龄(272Ma)计算的(87Sr/86Sr)i比值结果分别为0.710558和0.710106;143Nd/144Nd比值结果分别为0.511853和0.512090,用年龄(272Ma)计算的εNd(t)值为-12.80和-8.46,tDM等于2.18Ga和1.97Ga。将样品点投入εNd(t)-(87Sr/86Sr)i关系图中可见,本次研究的碳酸岩在锶和钕同位素组成上具有富集性岩石圈地幔特点,与塔里木二叠纪玄武岩、超基性-基性岩、正长岩差异明显,而是更加接近于塔里木北缘下地壳的特点(图 10a)。

表 4 塔里木盆地西北缘乌什南部碳酸岩Sr、Nd和C、O同位素测试结果 Table 4 Isotope results of Sr, Nd and C, O of the carbonatite in the southern Wushi, northwestern margin of Tarim Basin

图 10 塔里木西北缘乌什南部碳酸岩εNd(t)-(87Sr/86Sr)i关系图(a, 底图据Zhang et al., 2017b; Yang et al., 2018修改)和δ18OV-SMOWδ13CV-PDB关系图(b, 底图据Wan et al., 2008; Song et al., 2017修改) 巴楚幔源碳酸岩数据引自Song et al. (2017) Fig. 10 The (87Sr/86Sr)i vs. εNd(t) diagram (a, base map modified after Zhang et al., 2017b; Yang et al., 2018) and δ18OV-SMOW vs. δ13CV-PDB diagram (b, base map modified after Wan et al., 2008; Song et al., 2017) of carbonatite in the southern Wushi, northwestern margin of Tarim Basin The data of Bachu mantle carbonatite from Song et al. (2017)
6.2 C和O同位素结果

本次研究测试的C和O同位素分析结果见表 4,分析显示碳酸岩δ13CV-PDB值介于-2.69‰~-2.93‰之间,δ18OV-SMOW值为17.33‰~17.86‰。前人研究表明,δ13CV-PDBδ18OV-SMOW可用于判别碳酸盐岩和碳酸岩(潘美慧等,2014):原始的火成碳酸岩δ13CV-PDB值为-4‰~-8‰,δ18OV-SMOW值为6‰~10‰,比地幔值略宽(δ13CV-PDB=-5‰~7‰,δ18OV-SMOW=5‰~8‰);而沉积形成的碳酸盐岩具有更高的δ18OV-SMOW,通常>+20‰,甚至达到+30‰。δ13CV-PDB值分布范围主要反映灰岩的沉积时代与环境,显生宙正常海相碳酸盐岩的δ13CV-PDB值在0±2‰之间(Deines,1989冯伟民等,2003潘美慧等,2014)。从δ18OV-SMOW-δ13CV-PDB图解(图 10b)可以看出,本次研究的碳酸岩在碳和氧同位素组成上与大青山地区的壳源型碳酸岩(Wan et al., 2008)较为相似,而与塔里木巴楚地区的二叠纪幔源型碳酸岩显著不同(Song et al., 2017)。

7 讨论 7.1 碳酸岩的形成时代

本文发现的碳酸岩岩墙主要沿着断层侵入南华系。由于碳酸岩属于硅不饱和岩浆岩,一般难以结晶出锆石,虽然少数会在先存锆石或捕获锆石外围重新结晶(Wan et al., 2008董春艳等,2009杨俊泉等,2012Fan et al., 2014),但Zr元素大多以斜锆石(ZrO2)的形式存在(Heaman and Le Cheminant,1993Zhang et al., 2017a王生伟等,2020)。本次研究对两件碳酸岩样品进行了斜锆石挑选均未能成功,但从中分离获得了大量的锆石,因此推测这些锆石基本上是碳酸岩岩浆侵位过程中捕获所得。根据本文测年结果,识别出272Ma、390Ma、460Ma、630Ma、760Ma、858Ma、930Ma和1030Ma等主要的年龄峰,同时还有1270Ma、1580Ma、1930Ma和2466Ma等古老的锆石年峰(图 6)。将获得的碳酸岩年龄谱与阿克苏新元古代沉积地层碎屑锆石年龄结果(He et al., 2014Wu et al., 2018)以及阿克苏群变质岩碎屑锆石年龄结果(Zhu et al., 2011)进行对比(图 6),发现碳酸岩中丰富的前寒武纪锆石很可能是侵入这些地层时捕获所得;而显生宙两个年龄峰(390Ma和460Ma)大体上与塔里木北缘早古生代的岩浆热事件对应(Ge et al., 2014)。

考虑到显生宙期间三个显著的锆石年龄峰,因此推测该碳酸岩侵位时代应在显生宙,而最年轻的锆石年龄峰为272Ma,也暗示该碳酸岩可能是同期或者更晚侵入的,272Ma年龄峰正好对应于塔里木早二叠世大火成岩省晚期岩浆事件(Yang et al., 2017)的年龄。目前已研究的碳酸岩大多与碱性岩或超基性岩类共生,由于碳酸岩矿物组合简单难以提供充足的测年矿物,部分学者会测定共生岩石的同位素年龄从而对碳酸岩年龄进行间接限制(田世洪等,2006Liu et al., 2015王生伟等,2020)。最近有学者在本次研究的碳酸岩剖面附近的震旦系中识别出大量顺层侵入的辉绿岩岩床,其时代为ca.290Ma(吴鸿翔等,2020),并且我们在碳酸岩出露点附近发现了大量二叠纪辉绿岩岩墙,其侵位时代为287±2Ma(课题组未发表资料)。因此,考虑到碳酸岩中捕获锆石的最晚年龄峰值与塔里木早二叠世大火成岩省晚期岩浆事件的年龄基本一致,并和研究区发育的辉绿岩岩床及露头点附近发育的辉绿岩岩墙的侵位时代接近。因此我们认为该碳酸岩很可能形成于早二叠世,大致与塔里木早二叠世大火成岩省事件同期。

7.2 碳酸岩岩浆的成因与来源

目前对碳酸岩的成因存在两种认识:一是幔源成因,即由地幔岩石部分熔融形成的岩浆再经分异演化而成;二是壳源成因,即成岩物质来源于地壳,由沉积型碳酸盐岩发生部分熔融形成碳酸岩浆(Lentz, 1999; Le Bas et al., 2004; 赵斌等, 2004; Liu et al., 2006; 刘焰等, 2012; Wan et al., 2008; 董春艳等, 2009)。但两者在岩石共生组合、结晶矿物组合、主微量元素特征、同位素组成特征上都有显著差异。幔源碳酸岩常与霓霞岩、金伯利岩等碱性岩共生,岩石内部含有丰富的矿物类型,并且稀土元素总量很高、富集高场强元素、轻重稀土强烈分离;在同位素组成上又可以细分成来源于亏损地幔者和富集地幔者,前者87Sr/86Sr比值小,大多介于0.7025~0.7036之间,初始εNd(t)值介于0~+4,δ13CV-PDB值一般为-4‰~-8‰,δ18OV-SMOW值常在6‰~10‰之间;后者的87Sr/86Sr比值较大,常介于0.706~0.708之间且初始εNd(t)值常小于0,并且由于地壳混染等作用使得碳氧同位素数值范围更加宽泛,一般δ13CV-PDB值在-10‰~0‰、δ18OV-SMOW值常在10‰~20‰之间(杨晓勇等,2000Woolley and Kjarsgard, 2008郑硌等,2017王凯怡等,2018Simandl and Paradis, 2018李胜虎等,2021谢玉玲等,2020)。壳源碳酸岩常产出于矽卡岩周边或独立产出,并且矿物组合相对简单、一般不含稀土矿物;元素组成上稀土元素总量较低、大离子亲石元素Sr、Rb、Ba等相对富集,Nb、Ta、Ti等高场强元素相对亏损,并且轻重稀土分异较弱;在锶(Sr)和钕(Nd)同位素组成上,其87Sr/86Sr比值变化较大,常大于0.706且初始εNd(t)值常小于0;碳(C)和氧(O)同位素组成上与沉积型碳酸盐岩相似,一般δ13CV-PDB值小于0‰,δ18OV-SMOW值的变化范围较大,常大于10‰,甚至大于20‰(喻学惠等, 2003, 2004Liu et al., 2006任建德等,2007Wan et al., 2008董春艳等,2009辛后田等,2012杨俊泉等,2012毛立全和马原,2017)。

本次研究的碳酸岩独立产出,并未见与碱性岩类共生,同时矿物组合简单,未见稀土矿物,稀土总量低(平均为57.16×10-6),轻重稀土存在一定分异(LREE/HREE=3.90~8.40;(La/Yb)N=5.0~13.8)(图 9a),具有中等的负铕异常(δEu=0.61~0.68)和中等-弱的负铈异常(δCe=0.59~0.98)。在微量元素蛛网图上,大离子亲石元素Rb、Sr和Ba相对富集;高场强元素Nb、Ta和Ti强烈亏损,Zr和Hf元素相对亏损(图 9b)。上述特点与大青山地区及阿尔金北缘等典型壳源碳酸岩(Wan et al., 2008杨俊泉等,2012)十分相似,而与典型的幔源型碳酸岩在矿物组合及地球化学组成上都具有明显差异。此外,碳酸岩中方解石的稀土、微量元素特征与碳酸岩全岩特征基本一致,而与巴楚二叠纪幔源型碳酸岩中方解石的特征(稀土元素曲线为重稀土富集型、铕正异常)存在差异(图 9a, b),同样显示本文碳酸岩应为壳源型。同位素结果也表明其为壳源成因,样品(87Sr/86Sr)i比值为0.710558和0.710106,εNd(t)值为-12.80和-8.46,特点接近下地壳(图 10a),δ13CV-PDB小于0 (-2.69‰~-2.93‰)和δ18OV-SMOW值高(17.33‰~17.86‰)的特征也与壳源型碳酸岩相似,而与幔源型碳酸岩及海相沉积灰岩差异较大(图 10b)。综上,本文研究的碳酸岩很可能是沉积型碳酸盐岩熔融后形成的壳源型碳酸岩。

7.3 碳酸岩形成的构造背景

大量研究表明碳酸岩在时空上多与大火成岩省密切相关(Woolley,1989; Woolley and Kempe, 1989Ray et al., 1999D’Orazio et al., 2007苟瑞涛等,2019王生伟等,2020),并且地幔柱对于碳酸岩的形成至关重要(Nelson et al., 1988Bell, 2001, 2005Pirajno,2015Simandl and Paradis, 2018)。前人在巴楚地区发现了二叠纪塔里木大火成岩省晚期形成的幔源型碳酸岩,并认为是地幔柱在上升过程中捕获榴辉岩等再循环物质然后发生部分熔融产生碳酸岩岩浆(程志国,2016);也有学者认为它们是再循环沉积岩与地幔橄榄岩混合后减压熔融的产物(Song et al., 2017)。

虽然本次研究的乌什南部壳源型碳酸岩与典型的幔源型碳酸岩有显著差异,但它们的形成演化过程可能也与二叠纪大火成岩省及地幔柱活动有关。前人研究显示,碳酸盐矿物在含水条件下,600~700℃及1~2kbar就可以发生部分熔融(Wyllieand Tuttle,1960)。近些年对壳源型碳酸岩的研究进一步证实含碳酸盐矿物的表壳岩石在含水和高温条件下就可以发生部分熔融形成碳酸岩岩浆(Thomsen and Schmidt, 2008),这使得壳源碳酸岩的形成背景更加多元化。例如有学者依据实验证明沉积型灰岩在600~675℃和1kbar的条件下就能部分熔融生成碳酸岩浆,并且他认为当碱性岩浆侵入碳酸盐岩时,会在近端形成矽卡岩,而在远端形成壳源型碳酸岩(Lentz,1999);也有学者认为壳源碳酸岩有两种形成机制,第一种是当水岩比较大的情况下,中酸性岩浆侵入灰岩,在840~750℃和1kbar条件下就会形成矽卡岩和硅酸盐熔融体,而低温的碳酸岩岩浆在低于750℃时形成。第二种形成机制为大理岩的重熔作用,即岩浆侵入作用带来的热量先使灰岩变成大理岩,随着温度升高再部分熔融形成碳酸岩岩浆(赵斌等,2004)。还有学者认为,当幔源基性岩浆上倾时,由于其自身温度高(1100~1300℃),基性岩浆内侵体的热量会使沉积的碳酸盐岩部分熔融从而形成碳酸岩岩浆(任建德等,2007毛立全和马原,2017)。值得注意的是,前两种形成机制中的壳源碳酸岩大多与矽卡岩或中酸性岩浆岩相伴生,而第三种形成机制中的壳源碳酸岩露点头附近都能发现大量镁铁质-超镁铁质岩。

基于年代学分析结果,本文的碳酸岩很可能形成于早二叠世,可能大致对应于塔里木大火成岩省岩浆作用的晚期。前人研究提出塔里木大火成岩省存在三阶段熔融模式,即第一阶段岩浆作用(~300Ma)是地幔柱引起已被交代的岩石圈地幔部分熔融从而形成金伯利岩,第二阶段岩浆作用(~290Ma)是岩石圈地幔部分熔融形成的岩浆与地幔柱部分熔融形成的岩浆混合后产生大规模的大陆溢流玄武岩,第三阶段岩浆作用(~280Ma)主要为地幔柱部分熔融形成基性-超基性侵入岩以及中酸性侵入岩(Yang et al., 2017; Liu et al., 2019)。最近有学者在本研究区附近的震旦系中识别了大量的早二叠世辉绿岩岩床(吴鸿翔等,2020),并且我们在碳酸岩出露点附近发现了大量二叠纪辉绿岩岩墙(课题组未发表资料),证实了塔里木西北缘也受到了二叠纪大火成岩省和地幔柱活动的影响。综合上述分析,我们推测这些壳源型碳酸岩很可能是塔里木早二叠世大火成岩省晚期岩浆事件的产物,系地幔柱减压熔融后形成基性岩浆向上侵位时加热下地壳的碳酸盐储库,使其部分熔融形成碳酸岩岩浆,并沿着伸展断裂快速向上侵位形成(图 11)。

图 11 塔里木盆地西北缘乌什南部碳酸岩成因演化模式图(据Liu et al., 2019修改) Fig. 11 Genesis and evolution model of carbonatite in the southern Wushi, northwestern margin of Tarim Basin (modified after Liu et al., 2019)
8 结论

(1) 塔里木盆地西北缘阿克苏-乌什南部地区发现火成碳酸岩岩墙和岩脉,碳酸岩的锆石U-Pb测年结果显示出多个峰值年龄,表明这些锆石均为碳酸岩岩浆捕获成因,其中最年轻一组(3颗)岩浆锆石的谐和加权年龄为272±4Ma,另外还有400Ma、450Ma、790Ma、850Ma等年龄峰,它们与塔里木北部新元古代和古生代多期岩浆热事件时代一致,结合与塔里木早二叠世大火成岩省形成年龄对比和研究区存在早二叠世辉绿岩岩床的证据,认为这些碳酸岩很可能形成于早二叠世(~270Ma)。

(2) 阿克苏碳酸岩矿物组成以方解石为主,可见方解石与白云石之间明显的出溶结构以及方解石基质包裹围岩等现象。地球化学结果显示,CaO含量高,SiO2含量低,稀土元素总量很低,轻重稀土分异明显,具有中等负铕异常和中等-弱负铈异常,大离子亲石元素Sr、Rb、Ba等相对富集,Nb、Ta、Ti等高场强元素相对亏损,高的稳定同位素δ13CV-PDB值和δ18OV-SMOW值,上述特征与壳源碳酸岩特征相似,而与幔源碳酸岩差别较大。碳酸岩Sr-Nd同位素结果显示高的(87Sr/86Sr)i值,低的εNd(t)值,也进一步证实碳酸岩为地壳来源。

(3) 综合分析后我们推测这些壳源型碳酸岩是塔里木早二叠世大火成岩省晚期岩浆事件的产物,系地幔柱减压熔融后形成基性岩浆向上侵位时加热下地壳的碳酸盐储库,使其部分熔融形成碳酸岩岩浆,并沿着伸展断裂快速向上侵位形成的。本文的研究不仅丰富了塔里木二叠纪大火成岩省的岩石成因类型,而且有助于增进对早二叠世深部复杂的壳幔作用过程的理解。

致谢      感谢浙江大学地球科学学院郝艳涛副教授、邱素文老师和刘艳老师在锆石U-Pb测年、扫描电镜实验以及单矿物元素分析以及武汉上谱分析科技有限责任公司和广州澳实分析检测有限公司分别在锶、钕和碳、氧同位素分析等方面提供的帮助。感谢浙江大学地球科学学院研究生李春阳、李荣艳、苏玉萌、辛文、余宏甸等人在论文修改期间提供的帮助。两位匿名审稿专家提出了宝贵且富有建设性的修改意见和建议,显著提升了本文的质量,在此对他们表示衷心的感谢!

谨以此文深切缅怀我们敬爱的李继亮老师!李老师淡泊名利、毕生追求学术、提携后学的崇高品格将永远激励我们学生前行,我们也会代代相传、薪火不断。

参考文献
Bell K. 2001. Carbonatites: Relationships to mantle plume activity. In: Ernst R and Buchan KL (eds.). Mantle Plumes: Their Identification through Time. Geological Society of America, Special Paper, 352: 267-290
Bell K. 2005. Carbonatites. In: Selley RC, Cocks LRM and Plimer IR (eds.). Encyclopedia of Geology. Amsterdam: Elsevier, 217-233
Bell K and Simonetti A. 2010. Source of parental melts to carbonatites-critical isotopic constraints. Mineralogy and Petrology, 98(1-4): 77-89 DOI:10.1007/s00710-009-0059-0
Belousova E, Griffin W, O'Reilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Chen H, Qu XM, Xin HB and Jiang JH. 2010. A tentative discussion on the genesis of Ni-bearing carbonatites in Bangong Lake area, Tibet. Mineral Deposits, 29(6): 1029-1042 (in Chinese with English abstract)
Cheng ZG. 2016. Study on the kimberlitic rocks, nephelinites, and carbonatites within Tarim large igneous province. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Cheng ZG, Zhang ZC, Hou T, Santosh M, Chen LL, Ke S and Xu LJ. 2017. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159-178 DOI:10.1016/j.gca.2016.12.036
Deines P. 1989. Stable isotope compositions in carbonatites. In: Bell K (ed.). Carbonatites: Genesis and Evolution. London: Unwin Hyman, 278-300
Dong CY, Liu DY, Wan YS, Xu ZY, Liu ZH and Yang ZS. 2009. Crustally derived carbonatite from the Daqinshan area: Zircon features and SHRIMP dating. Acta Geologica Sinica, 83(3): 388-398 (in Chinese with English abstract)
D'Orazio M, Innocenti F, Tonarini S and Doglioni C. 2007. Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos, 98(1-4): 313-334
Dostal J, Keppie JD, Macdonald H and Ortega-Gutiérrez F. 2004. Sedimentary origin of calcareous intrusions in the ~1Ga Oaxacan Complex, Southern Mexico: Tectonic implications. International Geology Review, 46(6): 528-541 DOI:10.2747/0020-6814.46.6.528
Fan HR, Hu FF, Yang KF, Pirajno F, Liu X and Wang KY. 2014. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, Northern China. Ore Geology Reviews, 63: 510-519 DOI:10.1016/j.oregeorev.2014.03.005
Feng WM, Zhen YF and Zhou JB. 2003. Carbon and oxygen isotope geochemistry of marbles from the Dabie-Sulu orogenic belt. Acta Petrologica Sinica, 19(3): 468-478 (in Chinese with English abstract)
Ge RF, Zhu WB, Wilde SA, He JW, Cui X, Wang X and Zheng BH. 2014. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics, 33(3): 302-329 DOI:10.1002/2013TC003501
Gou RT, Zeng PS, Liu SW, Ma J, Wang JJ, Dai YJ and Wang ZQ. 2019. Distribution characteristics of carbonatites of the world and its metallogenic significance. Acta Geologica Sinica, 93(9): 2348-2361 (in Chinese with English abstract)
Guo YF, Yang YC, Han SJ, Tan Y and Bo JW. 2016. Geochemistry and zircon U-Pb dating of the tonalite from Fenghuangshan area in Northern Daxing'anling. Journal of Jilin University (Earth Science Edition), 46(5): 1406-1417 (in Chinese with English abstract)
He DF and Li DS. 1996. Tectonic Evolution and Petroleum Accumulation of Tarim Basin. Beijing: Geological Publishing House, 1-173 (in Chinese with English abstract)
He JW, Zhu WB, Ge RF, Zheng BH and Wu HL. 2014. Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: Implications for supercontinent reconstruction and crustal evolution. Precambrian Research, 254: 194-209 DOI:10.1016/j.precamres.2014.08.016
Heaman LM and Le Cheminant AN. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110(1-3): 95-126 DOI:10.1016/0009-2541(93)90249-I
Hu AQ and Graeme R. 1992. Discovery of 3.3Ga Archaean rocks in North Tarim Block of Xinjiang, western China. Chinese Science Bulletin, 37(18): 1546-1549
Jia CZ. 1997. Tectonic Characteristics and Oil and Gas in Tarim Basin, China. Beijing: Petroleμm Industry Press, 1-165 (in Chinese)
Jia CZ, Zhang SB and Wu SZ. 2004. Stratigraphy of the Tarim Basin and Adjacent Areas. Beijing: Science Press, 1-1063 (in Chinese with English abstract)
Le Bas MJ, Ba-Bttat MAO, Taylor RN, Milton JA, Windley BF and Evins PM. 2004. The carbonatite-marble dykes of Abyan Province, Yemen Republic: The mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Mineralogy and Petrology, 82(1-2): 105-135 DOI:10.1007/s00710-004-0056-2
Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B and Bateman P. 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge: Cambridge University Press, 1-236
Lentz DR. 1999. Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology, 27(4): 335-338 DOI:10.1130/0091-7613(1999)027<0335:CGAROT>2.3.CO;2
Li CF, Li XH, Li QL, Guo JH and Yang YH. 2012. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Analytica Chimica Acta, 727(10): 54-60
Li CN. 1992. Trace Elements in Igneous Petrology. Wuhan: China University of Geosciences Publishing House, 1-195 (in Chinese)
Li HX, Zhang ZC, Santosh M, Wang ZC, Jin SK, Zhang Q and Liu LH. 2020. Ferrodoleritic dykes in the Tarim Craton signal Neoproterozoic breakup of Rodinia supercontinent. Journal of Asian Earth Sciences, 200: 104476 DOI:10.1016/j.jseaes.2020.104476
Li J, Tang SH, Zhu XK and Pan CX. 2017. Production and certification of the reference material GSB 04-3258-2015 as a 143Nd/144Nd isotope ratio reference. Geostandards and Geoanalytical Research, 41: 255-262 DOI:10.1111/ggr.12151
Li SH, Yu XF, Tian JX, Shan W and Shen K. 2021. A review of the research status and prospect of the evolution mechanism of ore-forming fluids in carbonatite type REE deposits. Geology in China, 48(2): 447-459 (in Chinese with English abstract)
Lin J, Liu YS, Yang YH and Hu ZC. 2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1(1): 5-27 DOI:10.1016/j.sesci.2016.04.002
Liu HQ, Xu YG, Zhong YT, Luo ZY, Roland M, Teal RR, Zhang L and Xie W. 2019. Crustal melting above a mantle plume: Insights from the Permian Tarim large igneous province, NW China. Lithos, 326-327: 370-383 DOI:10.1016/j.lithos.2018.12.031
Liu Y, Berner Z, Massonne HJ and Zhong DL. 2006. Carbonatite-like dykes from the eastern Himalayan syntaxis: Geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. Journal of Asian Earth Sciences, 26(1): 105-120 DOI:10.1016/j.jseaes.2004.10.003
Liu Y. 2012. Deep carbon cycling: Enlightenment from carbonatites. Chinese Journal of Nature, 34(4): 201-207 (in Chinese with English abstract)
Liu Y, Hou ZQ, Tian SH, Zhang QC, Zhu ZM and Liu JH. 2015. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: Constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Reviews, 64: 554-568 DOI:10.1016/j.oregeorev.2014.03.017
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Long XP, Yuan C, Sun M, Zhao GC, Xiao WJ, Wang YJ, Yang YH and Hu AQ. 2010. Archean crustal evolution of the northern Tarim Craton, NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180(3-4): 272-284 DOI:10.1016/j.precamres.2010.05.001
Lu SN, Li HK, Zhang CL and Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160(1-2): 94-107 DOI:10.1016/j.precamres.2007.04.025
Lu YZ, Zhu WB, Ge RF, Zheng BH, He JW and Diao ZP. 2017. Neoproterozoic active continental margin in the northwestern Tarim Craton: Clues from Neoproterozoic (meta)sedimentary rocks in the Wushi area, northwest China. Precambrian Research, 298: 88-106 DOI:10.1016/j.precamres.2017.06.002
Ludwig KR. 2001. SQUID Version 1.02: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, Special Publication, No. 2
Ludwig KR. 2012. User's Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, Special Publication No. 5
Mao LQ and Ma Y. 2017. Geochemical characteristics and genesis of carbonate intrusive mass in East Xisanyangjing of Beishan. Gansu Geology, 26(2): 31-37 (in Chinese with English abstract)
Mitchell RH. 2005. Carbonatites and carbonatites and carbonatites. The Canadian Mineralogist, 43(6): 2049-2068 DOI:10.2113/gscanmin.43.6.2049
Nelson DR, Chivas AR, Chappell BW and MuCulloch MT. 1988. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1): 1-17 DOI:10.1016/0016-7037(88)90051-8
Pan MH, Jia ZL and Hou PB. 2014. Characteristics of C, O isotopes in the Upper Carboniferous Keluke Formation in South Qilian Mountains. Gold Science and Technology, 22(5): 39-44 (in Chinese with English abstract)
Pirajno F. 2015. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Research, 27(3): 1181-1216 DOI:10.1016/j.gr.2014.09.008
Ray JS, Ramesh R and Pande K. 1999. Carbon isotopes in Kerguelen plume-derived carbonatites: Evidence for recycled inorganic carbon. Earth and Planetary Science Letters, 170(3): 205-214 DOI:10.1016/S0012-821X(99)00112-0
Ren JD, Lu SW, Pei ZC, Yang JF, Fang HB, Li CY and Chao HL. 2007. Igneous carbonatite in the Muji area, Artux, Xinjiang, China: Evidence from geological and geochemical analyses. Geological Bulletin of China, 26(12): 1665-1670 (in Chinese with English abstract)
Russell WA, Papanastassiou DA and Tombrello TA. 1978. Ca isotope fractionation on the earth and other solar system materials. Geochimica et Cosmochimica Acta, 42(8): 1075-1090 DOI:10.1016/0016-7037(78)90105-9
Simandl GJ and Paradis S. 2018. Carbonatites: Related ore deposits, resources, footprint, and exploration methods. Applied Earth Science, 127(4): 123-152 DOI:10.1080/25726838.2018.1516935
Simonetti A, Bell K and Viladkar SG. 1995. Isotopic data from the Amba Dongar carbonatite complex, west-central India: Evidence for an enriched mantle source. Chemical Geology, 122(1-4): 185-198 DOI:10.1016/0009-2541(95)00004-6
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Slezak P and Spandler C. 2019. Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: An example of the Gifford Creek carbonatite complex. Western Australia. Lithos, 328-329: 212-227
Song WL, Xu C, Liu Q, Wang LJ, Wu M and Zeng L. 2012. Experimental petrological study of carbonatite and its significances on the earth deep carbon cycle. Geological Review, 58(4): 726-744 (in Chinese with English abstract)
Song WL, Xu C, Smith MP, Kynicky J, Huang KJ, Wei CW, Zhou L and Shu QH. 2016. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Scientific Reports, 6: 37377 DOI:10.1038/srep37377
Song WL, Xu C, Chakhmouradian AR, Kynicky J, Huang KJ and Zhang ZL. 2017. Carbonatites of Tarim (NW China): First evidence of crustal contribution in carbonatites from a large igneous province. Lithos, 282-238: 1-9
Streckeisen A. 1980. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks by IUGS Subcommission on the systematics of igneous rocks. Geologische Rundschau, 69(1): 194-207 DOI:10.1007/BF01869032
Sun BS and Huang JH. 2007. Sm-Nd isotopic age of Qieganbulak ultrabasic-carbonatite complex in Xinjiang, China and its geological significance. Acta Petrologica Sinica, 23(7): 1611-1616 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Thomsen TB and Schmidt MW. 2008. Melting of carbonated pelites at 2.5~5.0GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth and Planetary Science Letters, 267(1-2): 17-31 DOI:10.1016/j.epsl.2007.11.027
Tian SH, Hou ZQ, Yuan ZX, Xie YL, Fei HC, Yin SP, Yi LS and Yang ZM. 2006. Mantle source characteristics of magmatic carbonatites from the Himalayan Collision Zone in western Sichuan, SW China: Evidence of Pb-Sr-Nd isotopes. Acta Petrologica Sinica, 22(3): 669-677 (in Chinese with English abstract)
Wan YS, Liu DY, Xu ZY, Dong CY, Wang ZJ, Zhou HY, Yang ZS, Liu ZH and Wu JS. 2008. Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqinshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence. American Journal of Science, 308(3): 351-378 DOI:10.2475/03.2008.07
Wang JC, Zhao B, Zhao JS, Lu TS and Shao JZ. 2006. Magmatogenic marble discovered in contact zone of Daye iron deposit. Journal of Guilin University of Technology, 26(2): 302-303 (in Chinese with English abstract)
Wang KY, Zhang JE, Fang AM, Dong C and Hu FY. 2018. Genesis of the Bayan Obo deposit, Inner Mongolia: The fenitized mineralization in the ore bodies and its relation to the ore-bearing dolomite. Acta Petrologica Sinica, 34(3): 785-798 (in Chinese with English abstract)
Wang LJ, Xu C, Wu M and Song WL. 2011. A study of fluid inclusion from Huayangchuan carbonatite. Acta Mineralogica Sinica, 31(3): 372-379 (in Chinese with English abstract)
Wang SW, Sun XM, Zhou Q, Li YG, Fu Y, Zhu SB, Wang K, Guo Y, Liu YJ, Ma L and Huang JH. 2020. Discovery and identification of the carbonatites in Panzhihua iron deposit, Sichuan: Eviedences of geological characteristics, U-Pb ages of baddeleyite and C-O isotopic composition. Geological Review, 66(5): 1299-1320 (in Chinese with English abstract)
Weidendorfer D, Schmidt MW and Mattsson HB. 2017. A common origin of carbonatite magmas. Geology, 45(6): 507-510 DOI:10.1130/G38801.1
Woolley AR. 1989. The spatial and temporal distribution of carbonatites. In: Bel K (ed.). Carbonatites: Genesis and Evolution. London, UK: Unwin Hyman, 15-37
Woolley AR and Kempe DRC. 1989. Carbonatites: Nomenclature, average chemical compositions, and element distribution. In: Bell K (ed.). Carbonatites: Genesis and Evolution. London: Unwin Hyman, 1-14
Woolley AR and Kjarsgaard BA. 2008. Carbonatite occurrences of the world: Map and database. Geological Survey of Canada, Open File, 5796: 1-21
Woolley AR and Bailey DK. 2012. The crucial role of lithospheric structure in the generation and release of carbonatites: Geological evidence. Mineralogical Magazine, 76(2): 259-270 DOI:10.1180/minmag.2012.076.2.02
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173 DOI:10.1016/S0009-2541(02)00018-9
Wu GH, Xiao Y, Bonin B, Ma DB, Li X and Zhu GY. 2018. Ca. 850Ma magmatic events in the Tarim Craton: Age, geochemistry and implications for assembly of Rodinia supercontinent. Precambrian Research, 305: 489-503 DOI:10.1016/j.precamres.2017.10.020
Wu HX, Huang WK, Li YQ, Lin XB, Chen HL, Cheng XG and Zhang FQ. 2020. Discovery of Permian mafic sills intrusion event in the Sinian System, Northwest Tarim block. Acta Geologica Sinica, 94(6): 1869-1882 (in Chinese with English abstract)
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 DOI:10.1007/BF03184122
Wyllie PJ and Tuttle OF. 1960. The system CaO-CO2-H2O and the origin of carbonatites. Journal of Petrology, 1(1): 1-46 DOI:10.1093/petrology/1.1.1
Xie YL, Xia JM, Cui K, Qu YW, Liang P and Zhong RC. 2020. Rare earth elements deposits in China: Spatio-temporal distribution and ore-forming processes. Science Bulletin, 65(33): 3794-3808 (in Chinese)
Xin HT, Luo ZH, Liu YS, Wang SQ and Zhang LZ. 2012. Geological features and significance of Palaeoproterozoic carbonatite of crustal origin in Aqtashtagh area of Southeast Tarim Basin, China. Earth Science Frontiers, 19(6): 167-178 (in Chinese with English abstract)
Xu B. 2015. The Precambrian tectonic evolution of the Tarim craton. In: Zhai MG (ed.). Precambrian Geology of China. Berlin, Heidelberg: Springer-Verlag, 345-350
Yang JQ, Wan YS, Liu YS, Xin HT, Zhang SR and Li MZ. 2012. Discovery of Paleoproterozoic crustally derived carbonatite in the northern Altyn Tagh. Earth Science (Journal of China University of Geosciences), 37(5): 929-936 (in Chinese with English abstract)
Yang SF, Chen HL, Li ZL, Li YQ and Yu X. 2017. The Early Permian Tarim Large Igneous Province in Northwest China: Tectonics, Petrology, Geochemistry, and Geophysics. Hangzhou: Zhejiang University Press
Yang SF, Chen HL, Dong CW, Zhao DD, Jia CZ and Wei GQ. 1998. Geochemical properties of Late Sinian basalt in the northwestern boundary of Tarim basin and its tectonic setting. Journal of Zhejiang University (Natural Science), 32(6): 105-112 (in Chinese with English abstract)
Yang XM, Yang XY and Le Bas MJ. 1998. Carbonatite: A probe rock for the tectonic settings of continental lithosphere and mantle metasomatism. Acta Geophysica Sinica, 41(Suppl.1): 228-235 (in Chinese with English abstract)
Yang XY, Zhang YX, Zheng YF, Yang XM, Xu BL, Zhao YB, Peng Y and Hao ZG. 2000. Carbon and oxygen isotope compositions of ore-bearing dolostone in the Bayan Obo deposit as well as two typical micrite mounds and a carbonatite dyke. Acta Geologica Sinica, 74(2): 168-180 (in Chinese with English abstract)
Yang YH, Wu FY, Li QL, Rojas-Agramonte Y, Yang JH, Li Y, Ma Q, Xie LW, Huang C, Fan HR, Zhao ZF and Xu C. 2019. In situ U-Th-Pb dating and Sr-Nd isotope analysis of Bastnäsite by LA-(MC)-ICP-MS. Geostandards and Geoanalytical Research, 43(4): 543-565 DOI:10.1111/ggr.12297
Yu XH, Mo XX, Su SG, Dong FL, Zhao X and Wang C. 2003. Discovery and significance of Cenozoic volcanic carbonatite in Lixian, Gansu Province. Acta Petrologica Sinica, 19(1): 105-112 (in Chinese with English abstract)
Yu XH, Zhao ZD, Mo XX, Wang YL, Xiao Z and Zhu DQ. 2004. Trace elements, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugite and carbonatite from West Qinling, Gansu Province: Implication of plume-lithosphere interaction. Acta Petrologica Sinica, 20(3): 483-494 (in Chinese with English abstract)
Zhai MG. 2013. The main old lands in China and assembly of Chinese unified continent. Science China (Earth Sciences), 56(11): 1829-1852 DOI:10.1007/s11430-013-4665-7
Zhang CL, Li ZX, Li XH and Ye HM. 2009. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 35(2): 167-179 DOI:10.1016/j.jseaes.2009.02.003
Zhang CL, Zou HB, Li HK and Wang HY. 2013. Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315 DOI:10.1016/j.gr.2012.05.009
Zhang LG, Tan JJ, Liu CP, Yang HM, Qiu XF and Jiang T. 2019. Sm-Nd isochron dating technique for carbonatites. Geology and Mineral Resources of South China, 35(2): 254-260 (in Chinese with English abstract)
Zhang SH, Zhao Y, Li QL, Hu ZC and Chen ZY. 2017a. First identification of baddeleyite related/linked to contact metamorphism from carbonatites in the world's largest REE deposit, Bayan Obo in North China Craton. Lithos, 284-285: 654-665 DOI:10.1016/j.lithos.2017.05.015
Zhang W, Wu HX, Zhu KY, Zhang KF, Xing XL, Chen DX, Chen HL and Zhang FQ. 2018. The Jurassic magmatism and its tectonic setting in the eastern margin of South China: Evidence from the volcanic rocks of the Maonong Formation in the SE Zhejiang. Acta Petrologica Sinica, 34(11): 3375-3398 (in Chinese with English abstract)
Zhang W, Chen WT, Gao JF, Chen HK and Li JH. 2019. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: In-situ U-Th-Pb dating of bastnäsite and monazite. Mineralium Deposita, 54(8): 1265-1280 DOI:10.1007/s00126-019-00875-7
Zhang W and Hu ZC. 2020. Estimation of isotopic reference values for pure materials and geological reference materials. Atomic Spectroscopy, 41(3): 93-102 DOI:10.46770/AS.2020.03.001
Zhang W, Hu ZC and Liu YS. 2020. Iso-Compass: New freeware software for isotopic data reduction of LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35: 1087-1096 DOI:10.1039/D0JA00084A
Zhang Y, Wei X, Xu YG, Long XP, Shi XF, Zhao JX and Feng YX. 2017b. Sr-Nd-Pb isotopic compositions of the lower crust beneath northern Tarim: Insights from igneous rocks in the Kuluketage area, NW China. Mineralogy and Petrology, 111(2): 237-252 DOI:10.1007/s00710-016-0470-2
Zhang ZC, Kang JL, Kusky T, Santosh M, Huang H, Zhang DY and Zhu J. 2012. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, Northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research, 220-221: 158-176 DOI:10.1016/j.precamres.2012.08.002
Zhao B, Zhao JS, Wang JC, Ni P, Li ZL, Rao B, Lu TS, Shao JZ, Zhang CZ, Wang R, Peng ZL, Tu XL and Chen LL. 2004. A possible new carbonatite type: Crust-derived carbonatite. Geochimica, 33(6): 649-662 (in Chinese with English abstract)
Zhao GC and Cawood PA. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13-54 DOI:10.1016/j.precamres.2012.09.017
Zheng L, Zhang YM, Gu XX, Gao HJ, He G and Dong SY. 2017. Lithogeochemistry and carbon-oxygen isotopic study of mineralized carbonatite from the Bonga niobium deposit, Angola. Acta Petrologica Sinica, 33(8): 2633-2647 (in Chinese with English abstract)
Zhu WB, Zheng BH, Shu LS, Ma DS, Wu HL, Li YX, Huang WT and Yu JJ. 2011. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: Insights from LA-ICP-MS zircon U-Pb ages and geochemical data. Precambrian Research, 185(3-4): 215-230 DOI:10.1016/j.precamres.2011.01.012
陈华, 曲晓明, 辛洪波, 江军华. 2010. 西藏班公湖地区含镍碳酸岩成因探讨. 矿床地质, 29(6): 1029-1042. DOI:10.3969/j.issn.0258-7106.2010.06.007
程志国. 2016. 塔里木大火成岩省金伯利质岩石-霞石岩-碳酸岩研究. 博士学位论文. 北京: 中国地质大学
董春艳, 刘敦一, 万渝生, 徐仲元, 刘正宏, 杨振升. 2009. 大青山地区古元古代壳源碳酸岩: 锆石特征及SHRIMP定年. 地质学报, 83(3): 388-398. DOI:10.3321/j.issn:0001-5717.2009.03.008
冯伟民, 郑永飞, 周建波. 2003. 大别-苏鲁造山带大理岩碳氧同位素地球化学研究. 岩石学报, 19(3): 468-478.
苟瑞涛, 曾普胜, 刘斯文, 麻菁, 王聚杰, 代艳娟, 王兆全. 2019. 碳酸岩分布特征及成矿意义. 地质学报, 93(9): 2348-2361. DOI:10.3969/j.issn.0001-5717.2019.09.016
郭宇飞, 杨言辰, 韩世炯, 谈艳, 薄军委. 2016. 大兴安岭北部凤凰山地区英云闪长岩地球化学特征与锆石U-Pb定年. 吉林大学学报(地球科学版), 46(5): 1406-1417.
何登发, 李德生. 1996. 塔里木盆地构造演化与油气聚集. 北京: 地质出版社, 1-173.
胡霭琴, 格雷姆·罗杰斯. 1992. 新疆塔里木北缘首次发现33亿年的岩石. 科学通报, 37(7): 627-630.
贾承造. 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社, 1-165.
贾承造, 张师本, 吴绍祖. 2004. 塔里木盆地及周边地层. 北京: 科学出版社, 1-1063.
李昌年. 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社, 1-195.
李胜虎, 于学峰, 田京祥, 单伟, 沈昆. 2021. 碳酸岩型稀土矿床成矿流体演化机制研究现状及展望. 中国地质, 48(2): 447-459.
刘焰. 2012. 深部碳循环: 来自火成碳酸岩的启示. 自然杂志, 34(4): 201-207.
毛立全, 马原. 2017. 北山西三羊井东碳酸岩地球化学特征及成因初探. 甘肃地质, 26(2): 31-37.
潘美慧, 贾志磊, 侯鹏博. 2014. 南祁连化石沟铜矿区上石炭统克鲁克组大理岩C、O同位素特征. 黄金科学技术, 22(5): 39-44.
任建德, 卢书炜, 裴中朝, 杨俊峰, 方怀宾, 李春艳, 晁红丽. 2007. 新疆阿图什地区木吉一带的火成碳酸岩——来自地质、地球化学分析的证据. 地质通报, 26(12): 1665-1670. DOI:10.3969/j.issn.1671-2552.2007.12.020
宋文磊, 许成, 刘琼, 王林均, 吴敏, 曾亮. 2012. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义. 地质论评, 58(4): 726-744. DOI:10.3969/j.issn.0371-5736.2012.04.014
孙宝生, 黄建华. 2007. 新疆且干布拉克超基性岩-碳酸岩杂岩体Sm-Nd同位素年龄及其地质意义. 岩石学报, 23(7): 1611-1616. DOI:10.3969/j.issn.1000-0569.2007.07.006
田世洪, 侯增谦, 袁忠信, 谢玉玲, 费红彩, 尹淑苹, 衣龙升, 杨志明. 2006. 川西喜马拉雅期碰撞造山带岩浆碳酸岩的地幔源区特征——Pb-Sr-Nd同位素证据. 岩石学报, 22(3): 669-677.
王凯怡, 张继恩, 方爱民, 董策, 胡辅佑. 2018. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系. 岩石学报, 34(3): 785-798.
王林均, 许成, 吴敏, 宋文磊. 2011. 华阳川碳酸岩流体包裹体研究. 矿物学报, 31(3): 372-379.
王生伟, 孙晓明, 周清, 李艳广, 付宇, 朱斯豹, 王坤, 郭阳, 刘宇杰, 马龙, 黄景厚. 2020. 四川攀枝花铁矿碳酸岩的发现和确认——地质特征、斜锆石U-Pb年龄、C-O同位素组成证据. 地质论评, 66(5): 1299-1320.
吴鸿翔, 黄伟康, 励音骐, 林秀斌, 陈汉林, 程晓敢, 章凤奇. 2020. 塔里木地块西北缘震旦系发现二叠纪基性岩床侵入事件. 地质学报, 94(6): 1869-1882. DOI:10.3969/j.issn.0001-5717.2020.06.015
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
谢玉玲, 夏加明, 崔凯, 曲云伟, 梁培, 钟日晨. 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程. 科学通报, 65(33): 3794-3808.
辛后田, 罗照华, 刘永顺, 王树庆, 张利忠. 2012. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义. 地学前缘, 19(6): 167-178.
杨俊泉, 万渝生, 刘永顺, 辛后田, 张素荣, 李名则. 2012. 阿尔金北缘古元古代壳源火成碳酸岩的发现. 地球科学(中国地质大学学报), 37(5): 929-936.
杨树锋, 陈汉林, 董传万, 赵冬冬, 贾承造, 魏国齐. 1998. 塔里木盆地西北缘晚震旦世玄武岩地球化学特征及大地构造背景. 浙江大学学报(自然科学版), 32(6): 105-112.
杨学明, 杨晓勇, Le Bas MJ. 1998. 碳酸岩是大陆岩石圈构造背景和地幔交代作用的指示岩石. 地球物理学报, 41(增1): 228-235.
杨晓勇, 章雨旭, 郑永飞, 杨学明, 徐宝龙, 赵彦冰, 彭阳, 郝梓国. 2000. 白云鄂博赋矿白云岩与微晶丘和碳酸岩墙的碳氧同位素对比研究. 地质学报, 74(2): 168-180. DOI:10.3321/j.issn:0001-5717.2000.02.008
喻学惠, 莫宣学, 苏尚国, 董方浏, 赵欣, 王晨. 2003. 甘肃礼县新生代火山喷发碳酸岩的发现及意义. 岩石学报, 19(1): 105-112.
喻学惠, 赵志丹, 莫宣学, 王永磊, 肖振, 朱德勤. 2004. 甘肃西秦岭新生代钾霞橄黄长岩和碳酸岩的微量、稀土和Sr, Nd, Pb同位素地球化学: 地幔柱-岩石圈交换的证据. 岩石学报, 20(3): 483-494.
翟明国. 2013. 中国主要古陆与联合大陆的形成——综述与展望. 中国科学(地球科学), 43(10): 1583-1606.
张利国, 谭娟娟, 刘重芃, 杨红梅, 邱啸飞, 江拓. 2019. 火成碳酸岩Sm-Nd等时线定年技术. 华南地质与矿产, 35(2): 254-260. DOI:10.3969/j.issn.1007-3701.2019.02.011
张伟, 吴鸿翔, 朱孔阳, 张科峰, 邢新龙, 陈东旭, 陈汉林, 章凤奇. 2018. 华南东部陆缘侏罗纪岩浆作用特征及其构造背景——来自浙东南毛弄组火山岩的新证据. 岩石学报, 34(11): 3375-3398.
赵斌, 赵劲松, 汪劲草, 倪培, 李兆麟, 饶冰, 芦铁山, 邵俊智, 张重泽, 王冉, 彭卓伦, 涂湘林, 陈林丽. 2004. 一种可能的新碳酸岩类型: 壳源成因碳酸岩. 地球化学, 33(6): 649-662. DOI:10.3321/j.issn:0379-1726.2004.06.014
郑硌, 章永梅, 顾雪祥, 高海军, 何格, 董树义. 2017. 安哥拉Bonga铌矿床成矿碳酸岩岩石地球化学和C-O同位素研究. 岩石学报, 33(8): 2633-2647.