岩石学报  2021, Vol. 37 Issue (8): 2401-2418, doi: 10.18654/1000-0569/2021.08.09   PDF    
青藏高原东北缘宗务隆构造带天峻南山早古生代残余洋盆的识别和地质意义
付长垒1,2, 闫臻1, 肖文交3,4, 王秉璋2, 牛漫兰5, 李秀财5, 俞良军4     
1. 中国地质科学院地质研究所, 北京 100037;
2. 青海省地质调查院, 青藏高原北部地质过程与矿产资源重点实验室, 西宁 810012;
3. 中国科学院新疆生态与地理研究所, 乌鲁木齐 830011;
4. 中国科学院地质与地球物理研究所, 北京 100029;
5. 合肥工业大学资源与环境工程学院, 合肥 230009
摘要: 宗务隆构造带夹于中央造山带原特提斯构造域内,发育与古特提斯洋演化相关的天峻南山蛇绿岩,是研究原特提斯向古特提斯转换的关键地质体。该蛇绿岩由超基性岩(蛇纹岩)、辉绿岩、玄武岩和硅质岩组成。蛇纹岩中尖晶石具高Mg#(58.6~64.5)和低Cr#(38.9~43.9)的特征。玄武岩和辉绿岩属于拉斑玄武岩系列,轻稀土元素左倾和重稀土元素平坦,富集Th而亏损Ti,总体上与弧后扩张脊熔岩具有一致的球粒陨石标准化稀土元素以及N-MORB标准化微量元素配分模式,同时这些基性岩具较高的Th/Yb值和εNd(t)值(+7.5~+9.6),显示岩浆来自受洋壳沉积物混染的亏损地幔源区。这些特征均与弧后盆地蛇绿岩类似。最新LA-ICP-MS锆石U-Pb测年结果显示辉绿岩形成于509±4Ma。结合野外接触关系表明,部分天峻南山蛇绿岩形成于寒武纪,早于不整合其上的石炭纪复理石和晚奥陶世花岗岩脉(444.9±4.7Ma)。天峻南山寒武纪蛇绿岩作为早古生代残余洋盆被石炭纪复理石不整合覆盖,并在三叠纪洋盆闭合过程中通过构造方式就位于上覆石炭纪地层中。上述结果表明宗务隆构造带并非一个晚古生代-早中生代构造带,而是原特提斯洋和古特提斯洋相继闭合形成的早古生代-早中生代复合构造带。
关键词: 早古生代    弧后盆地    残余洋盆    宗务隆构造带    复合构造带    中央造山带    
Identification and geological significance of the Early Paleozoic Tianjunnanshan remnant ocean basin in the Zongwulong belt, NE Tibetan Plateau
FU ChangLei1,2, YAN Zhen1, XIAO WenJiao3,4, WANG BingZhang2, NIU ManLan5, LI XiuCai5, YU LiangJun4     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key Laboratory of the Northern Qinghai-Tibet Plateau Geological Processes and Mineral Resources, Qinghai Geological Survey Institute, Xining 810012, China;
3. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
5. Department of Resources and Environment, Hefei University of Technology, Hefei 230009, China
Abstract: The Zongwulong belt is sandwiched in the Proto-Tethyan tectonic domain of Chinese Central Orogenic Belt and contains Tianjunnanshan ophiolite which formed during the evolution of the Paleo-Tethyan Ocean. The Tianjunnanshan ophiolite is the key geological unit to study the transition process from Proto-Tethyan to Paleo-Tethyan. It is composed of ultramafic rocks, doleite, basalt, and chert. Spinels from the serpentinite have high Mg# values (58.6~64.5) and low Cr# values (38.9~43.9). The basalt and dolerite belong to tholeiitic series and are characterized by left-inclined LREE, flat HREE, enrichment in Th, and depletion in Ti. Their chondrite-normalized REE and N-MORB-normalized trace element patterns are consistent with those of back-arc basin lavas. In addition, the mafic rocks have relatively high Th/Yb and low εNd(t) values (+7.5~+9.6), suggesting a depleted mantle source contaminated by subducted sediment. New LA-ICP-MS zircon U-Pb dating of dolerite yields a weighted mean 206Pb/238U age of 509±4Ma. Combined with field occurrences, it is concluded that some ophiolitic rocks in the Zongwulong belt formed during the Cambrian Period and prior to the unconformably overlying Carboniferous flysch and the granite vein (444.9±4.7Ma). These Cambrian ophiolitic rocks occur as a remnant ocean basin overlain unconfromably by the Carboniferous flysch. They are structurally injected into the overlying strata during closure of the ocean basin in Trassic. These results indicate that the Zongwulong belt is not a Late Paleozoic to Early Messozoic orogenic belt but an Early Paleozoic to Early Messozoic composite orogenic belt formed after the closure of the Proto-Tethyan Ocean and Paleo-Tethyan Ocean.
Key words: Early Paleozoic    Back-arc basin    Remnant ocean basin    Zongwulong belt    Composite orogenic belt    Chinese Central Orogenic Belt    

蛇绿岩是一套时间上和成因上相互联系的以镁铁质-超镁铁质岩为主的岩石组合,具有类似大洋岩石圈的典型“彭罗斯型”组成序列,从底到顶依次为超镁铁质岩、辉长岩、席状岩墙、枕状玄武岩和远洋沉积(Anonymous, 1972),被认为是代表消失大洋岩石圈的残片(Dewey and Bird, 1971; Coleman, 1977; Nicolas, 1989),通常可形成于洋中脊、初始弧前和弧后盆地等构造环境(Miyashiro, 1975; Leitch, 1984; Shervais, 2001; 张旗等, 2003; Wakabayashi et al., 2010; Dilek and Furnes, 2011; Stern et al., 2012; 吴福元等, 2014; Ishizuka et al., 2014),记录了洋盆扩张、初始俯冲直至洋盆闭合的诸多信息,它们常呈不完整的大型逆冲岩席或裹夹于蛇纹岩/泥质岩基质中的岩块形式(蛇绿混杂岩)普遍发育于造山带中(Gansser, 1974; Wakabayashi and Dilek, 2003; 王根厚等, 2009; Festa et al., 2010; 王国灿和张攀, 2019; 肖文交等, 2019a, b),被作为示踪古板块或增生地体边界以及确定古洋盆存在的重要识别标志之一,是研究洋-陆转换和增生造山过程的关键地质体。

中央造山带是横贯中国中部的一条东西向展布,长约5000km的巨型构造带(图 1a),它夹持于中国塔里木、华北和华南地块之间,自西向东包括西昆仑、阿尔金、东昆仑、柴北缘、祁连、秦岭、大别以及苏鲁等造山带,被认为是早古生代和早中生代增生-碰撞造山作用以及白垩纪以来陆内造山作用叠加而形成的复合造山带(殷鸿福和张克信, 1998; 姜春发等, 2000; 张国伟等, 2001; 陆松年等, 2006; 许志琴等, 2006; 王宗起等, 2009; 杨经绥等, 2010; Yan et al., 2015; Dong and Santosh, 2016; Zhang et al., 2017; Li et al., 2018a; 裴先治等, 2018),其中发育多条早古生代和晚古生代蛇绿岩带并夹持于大量前寒武纪微陆块之间。根据蛇绿岩和其他地质单元的时空分布,中央造山带可被划分为北部的早古生代造山带和南部的早中生代造山带两部分(图 1a, b),也可分别称为原特提斯构造域和古特提斯构造域。中央造山带的形成并非两大构造域的简单拼合,而是存在复杂的叠加和转换过程(杨经绥等, 2010)。

图 1 中央造山带大地构造格架(a, 据杨经绥等, 2010修改)、秦岭-祁连-阿尔金-东昆仑造山带构造分区和新元古代-早古生代蛇绿岩分布图(b, 据付长垒等, 2019修改)以及宗务隆构造带和邻区地质图(c, 据Fu et al., 2018修改) Fig. 1 Tectonic framework of the Chinese Central Orogenic Belts (a, modified after Yang et al., 2010), tectonic framework of the Qinling-Qilian-Altun-East Kunlun orogenic belts showing the spatial distribution of the Late Neoproterozic-Early Paleozoic ophiolite (b, modified after Fu et al., 2019), and geological map of the Zongwulong belt and adjacent areas (c, modified after Fu et al., 2018)

宗务隆构造带夹于原特提斯构造域内,带内发育与古特提斯洋演化相关的晚古生代、二叠纪-三叠纪沉积岩以及石炭纪蛇绿岩(图 1c),是研究原特提斯向古特提斯转换的关键窗口。前人研究认为,宗务隆构造带是欧龙布鲁克微陆块与南祁连地块共同构筑的早古生代地体之上发育起来的晚古生代-早中生代构造带(郭安林等, 2009),它经历了早泥盆世原有地体的伸展裂解(孙延贵等, 2004),石炭纪-中二叠世裂谷小洋盆扩张(王毅智等, 2001),晚二叠世-中三叠世洋盆俯冲、闭合(郭安林等, 2009),以及后期隆升和陆内造山过程(孙娇鹏等, 2015)。然而已有地质资料显示,宗务隆构造带南侧欧龙布鲁克微陆块和北侧南祁连地区泥盆纪之前的岩石地层单元截然不同,例如欧龙布鲁克地块之上发育寒武纪-奥陶纪台地相和斜坡相碳酸盐岩沉积(孙娇鹏等, 2016; Sun et al., 2020),而北侧南祁连地块仅发育大量志留纪复理石沉积(Yan et al., 2020)。近期,宗务隆构造带内也识别出一些早古生代岩浆岩(孙娇鹏等, 2015; 孙健等, 2018)。因此,早古生代时期欧龙布鲁克微陆块和南祁连地块是否构成一个统一地体以及宗务隆构造带是否为晚古生代-早中生代构造带仍有待进一步商榷,这些关键地质问题制约了中央造山带复杂造山过程重建和特提斯构造转换研究。

为解决上述关键地质问题,本研究在对宗务隆构造带蛇绿岩开展野外地质调查、岩石学、矿物学、地球化学和Sr-Nd同位素以及锆石U-Pb年龄研究基础上,综合分析了宗务隆构造带蛇绿岩的形成时代、构造属性和就位方式,结合前人对原特提斯向古特提斯转换研究成果,探讨了宗务隆构造带早古生代-早中生代复合造山演化过程。

1 区域地质背景和蛇绿岩地质特征

宗务隆构造带位于青藏高原东北缘,它西起土尔根达坂山,向东南依次经达肯大坂山、宗务隆山,延伸至青海南山地区,全长约500km,宽5~10km,是柴达木地块和祁连造山带之间的狭长构造带(图 1b)。其南侧以宗务隆南缘断裂与欧龙布鲁克地块分割,北侧以青海南山断裂与南祁连地块相邻(图 1b, c图 2)。南侧欧龙布鲁克地块是由古-中元古代变质基底和新元古代的沉积盖层组成(陆松年等, 2002; 郝国杰等, 2004; 王惠初等, 2006; 陈能松等, 2007),被认为是塔里木地块分离出来的大陆残片(Lu et al., 2008; Chen et al., 2012),该地块也遭受了早古生代-早中生代岩浆、变质和沉积作用的叠加(康珍等, 2015; 李秀财等, 2015; 吴才来等, 2016; Li et al., 2018b, 2019; Sun et al., 2020)。而北侧祁连地块则主要由中-新元古代结晶基底、早古生代褶皱基底和晚古生代-早中生代沉积盖层组成,与华南地块具有较强的亲缘性(万渝生等, 2003; Tung et al., 2007; 徐旺春等, 2007; Yan et al., 2015; Fu et al., 2019; Li et al., 2020),祁连地块发育有大量早古生代原特提斯洋俯冲和闭合过程中形成的中酸性岩浆岩(郭周平等, 2015; Yan et al., 2015; Fu et al., 2019),南祁连地块西段被大量志留纪和三叠纪沉积岩不整合覆盖(Yan et al., 2020)。

图 2 天峻南山地质图(青海省地质调查院, 2001)和剖面图 数据来源:基性岩Rb-Sr等时线年龄为331±88Ma和318±3Ma(王毅智等, 2001);辉绿岩锆石U-Pb年龄为509±4Ma(本文);侵入玄武安山岩的花岗岩锆石U-Pb年龄为444.9±4.7Ma(本文) Fig. 2 Geological map and cross sections of the Tianjunnanshan Data sources: Rb-Sr isochron ages of mafic rocks are 331±88Ma and 318±3Ma (Wang et al., 2001); Zircon U-Pb age of dolerite is 509±4Ma (this paper); Zircon U-Pb age of granite intruding the basaltic andesite is 444.9±4.7Ma (this paper)

① 青海省地质调查院. 2001. 1:50000中华人民共和国地质图(高捷根好饶幅)

与南北两侧前寒武纪地块内发育的岩石地层单元不同,宗务隆构造带主要由石炭纪宗务隆群和蛇绿岩组成(青海省地质矿产局, 1991; 王毅智等, 2001)。其中,宗务隆群包括土尔根大坂组和果可山组,两者为断层接触(图 2)。土尔根大坂组为半深海-深海相长石石英砂岩、岩屑石英砂岩夹灰岩和泥岩组成的复理石沉积,其中产有珊瑚(Bradyphyllum sp.)和类(Pseudoschwagerina sp.)等化石;果可山组发育浅海相岩屑石英砂岩夹灰岩组合,产有腕足类(Gigantoproductus cf. latissimus, Megachonetes sp., Overtonia elegans)和珊瑚(Srigopora sp., Dibunophyllum sp.)等化石(青海省地质矿产局, 1991)。

天峻南山蛇绿岩是1998年青海省地质调查院在地质填图过程中首次发现,它沿北西西向展布,长约5km,宽度最大处可达1km(图 2)。天峻南山蛇绿岩与周围石炭纪土尔根大坂组主要表现为断层接触,而在蛇绿岩内部可见少量石炭纪沉积岩,野外局部可见灰黑色互层砂岩和泥岩不整合于辉绿岩或玄武岩之上(图 2图 3a),不整合面起伏不平,总体与沉积岩层面产状一致。同时可见少量花岗岩脉侵入于片理化玄武岩中(图 3b),岩脉宽数米不等,露头上东西向延伸数十米。

图 3 天峻南山蛇绿岩蛇绿岩组成特征 (a)辉绿岩被石炭纪沉积岩不整合覆盖;(b)片理化玄武岩中花岗岩脉体;(c)辉绿岩墙;(d)斑状结构辉绿岩;(e)枕状玄武岩;(f)硅质岩夹于枕状玄武岩之间 Fig. 3 The components of the ophiolite in Tianjunnanshan area (a) dolerite overlain nonconformably by the Carboniferous sedimentary rocks; (b) foliated basalt intruded by late granite; (c) dolerite dykes; (d) dolerite with a porphyritic texture; (e) pillow basalt; (f) chert interlayer within pillow basalt

天峻南山蛇绿岩主要由超基性岩、辉绿岩、玄武岩和硅质岩等组成(图 2; 王毅智等, 2001),大部分岩石已被构造肢解,同类岩石内部以及不同岩石间多表现为断层接触(图 2)。部分橄榄岩已蚀变为蛇纹岩;数米到数十米的辉绿岩呈岩墙形式侵入玄武岩中(图 2图 3c),辉绿岩具斑状结构,普遍发育2~15mm的长石斑晶(图 3d);玄武岩保留较好的枕状构造(图 3e),岩枕顶面总体指向南西,单个岩枕长轴约10~50cm,岩枕间常见灰黑色硅质泥岩和硅质岩(图 3f);部分玄武岩已发生强烈片理化(图 3b),枕状玄武岩沿片理方向被拉长(图 3e)。

显微结构分析表明,天峻南山蛇纹岩由蛇纹石、菱镁矿以及少量尖晶石和磁铁矿组成(图 4a),单偏光镜下尖晶石核部为浅棕色,边部已被蚀变为黑色铬铁矿。辉绿岩具斑状结构,斑晶主要为斜长石,已发生钠黝帘石化,仍保留自形-半自形晶体形态,含量约20%。基质主要由斜长石和辉石组成,具辉绿结构和嵌晶含长结构(图 4b)。其中斜长石为自形-半自形晶,普遍发生钠黝帘石化,单偏光下为黑色,粒度为1~2mm;单斜辉石为半自形-自形晶,干涉色为一级橙到二级蓝,粒度为0.5~1.5mm,填充于自形斜长石围成的格架中。枕状玄武岩具间粒-间隐结构,主要由斜长石(55%~60%)组成,斜长石呈半自形-自形晶体,发育聚片双晶,粒径为0.4~1mm,颗粒间镁铁矿物普遍发生绿泥石化(图 4c)。呈脉状产出的花岗岩具似斑状花岗结构(图 4d),斑晶为石英和钾长石,石英斑晶含量约15%,为他形晶,粒度为1~1.5mm,可见波状消光,钾长石斑晶含量约10%,为他形晶,粒度为0.5~1mm,可见一组解理或夹角为90°的两组解理;基质含量约75%,由石英和钾长石微晶共同组成。

图 4 天峻南山蛇绿岩和花岗岩显微结构照片 (a)蛇纹岩(单偏光和背散射);(b)辉绿岩(单偏光);(c)玄武岩(单偏光);(d)花岗岩(正交偏光).Chr-铬铁矿;Spl-尖晶石;Srp-蛇纹石;Cpx-单斜辉石;Pl-斜长石;Chl-绿泥石;Kfs-钾长石;Qz-石英 Fig. 4 Photomicrographs of the ophiolitic rocks and granite in Tianjunnanshan area (a) serpentinite (PPL and BSE); (b) dolerite (PPL); (c) basalt (PPL); (d) granite (CPL). Chr-chromite; Spl-spinel; Srp-serpentine; Cpx-clinopyroxene; Pl-plagioclase; Chl-chlorite; Kfs-K-feldspar; Qz-quartz
2 蛇纹岩矿物学特征

为查明超基性岩的矿物成分特征,采集蛇纹岩样品并对所含尖晶石进行了电子探针分析。矿物成分分析在中国地质科学院地质研究所JEOL JXA-8100型电子探针上完成,分析时的加速电压为15kV,电流束电流为2.0×10-8A,电子束斑为5μm。电子探针分析结果见表 1图 5

表 1 天峻南山蛇纹岩(14DD49)中尖晶石和铬铁矿电子探针分析结果(wt%) Table 1 Representative electron micro probe analyses of spinel and chromite in serpentinite in Tianjunnanshan area (wt%)

图 5 天峻南山蛇纹岩中尖晶石Cr2O3-Al2O3(a, 底图据Lian et al., 2016)和Mg#-Cr#图解(b, 底图据Metcalf and Shervais, 2008) Fig. 5 Cr2O3 vs. Al2O3 (a, base map after Lian et al., 2016) and Mg# vs. Cr# (b, base map after Metcalf and Shervais, 2008) diagrams of spinels from serpentinite in the Tianjunnanshan area

天峻南山蛇纹岩中尖晶石以副矿物的形式出现,含量较低。背散射电子图像显示核部残余原生尖晶石,边部已发生蚀变(图 4a)。其中核部Al2O3含量为31.0%~35.1%,Cr2O3含量为33.0%~36.2%,FeO含量为15.9%~18.7%,MgO含量为13.0%~14.5%,Cr#在38.9~43.9,Mg#为58.6~64.5(图 5),属于铬尖晶石。边部Cr2O3含量为29.01%~30.10%,FeO含量为55.0%~55.9%,属于铬铁矿。

3 基性岩地球化学特征

为进一步限定天峻南山蛇绿岩形成的构造背景,选择相对新鲜的5件玄武岩和10件辉绿岩样品进行全岩地球化学分析。主量和微量元素含量测试工作在中国地质科学院国家地质实验测试中心完成。主量元素利用Phillips 4400 X-荧光光谱仪进行测试,检测限 < 0.01%,分析精度优于1%且误差小于5%;FeO含量利用重铬酸钾滴定法测定;微量元素和稀土元素利用VG Elemental PQⅡPlus电感耦合等离子体质谱仪(ICP-MS)来测定,检测限为(1~0.05)×10-6,分析误差为5%~10%。

玄武岩和辉绿岩主微量元素分析结果见表 2。天峻南山基性岩样品在Nb/Y-Zr/Ti图解中投在玄武岩范围内(图 6a),在(Na2O+K2O)-FeOT-MgO图解中(图 6b),分析样品均落在拉斑玄武岩系列区域。玄武岩SiO2含量为48.67%~49.51%,MgO含量为5.20%~7.78%,FeOT为7.76%~11.38%,TiO2含量较高为1.27%~2.94%,Mg#值为48~64,烧失量为1.91%~2.82%。玄武岩稀土元素总量较低为49.3×10-6~120×10-6,LREE/HREE为1.61~1.87,(La/Yb)N为0.81~1.01,轻、重稀土元素分异不明显,δEu为0.68~0.95,具有较弱的Eu负异常。球粒陨石标准化稀土元素配分曲线呈现轻稀土元素左倾和重稀土元素平坦的分布特征(图 7a),N-MORB标准化微量元素配分曲线中玄武岩富集Th而亏损Ti(图 7b),与已报道玄武岩的稀土元素和微量元素配分特征相一致(图 7c, d)。

表 2 天峻南山玄武岩和辉绿岩主量(wt%)和稀土、微量(×10-6)元素分析结果 Table 2 Major (wt%) and trace (×10-6) element data for the basalts and dolerites in Tianjunnanshan area

图 6 天峻南山基性岩Nb/Y-Zr/Ti(a, 底图据Pearce, 2014)和(b) (Na2O+K2O)-FeOT-MgO(b, 底图据Irvine and Baragar, 1971)图解 Fig. 6 Nb/Y vs. Zr/Ti (a, base map after Pearce, 2014) and (Na2O+K2O)-FeOT-MgO (b, base map after Irvine and Baragar, 1971) diagrams of mafic rocks in Tianjunnanshan area

图 7 天峻南山基性岩球粒陨石标准化稀土元素配分曲线(a、c、e)和N-MORB标准化微量元素蛛网图(b、d、f)(标准化值据Sun and McDonough, 1989) 马里亚纳弧后扩张脊数据引自Pearce et al. (2005) Fig. 7 Chondrite-normalized REE diagrams (a, c, e) and N-MORB-normalized trace element spider diagrams (b, d, f) of mafic rocks in Tianjunnanshan area (normalization values after Sun and McDonough, 1989) Data of the Mariana Trough lavas from Pearce et al. (2005)

辉绿岩SiO2含量为46.21%~51.13%,MgO含量为4.89%~8.36%,FeOT为7.75%~10.31%,TiO2含量较高为1.18%~2.17%,Mg#值为51~66,烧失量为1.78%~3.08%。辉绿岩稀土元素总量较低为42.1×10-6~88.9×10-6,LREE/HREE为1.31~1.83,(La/Yb)N为0.71~1.11,轻、重稀土元素分异不明显,δEu为0.76~1.01,表现出较弱Eu负异常。球粒陨石标准化稀土元素配分曲线呈现轻稀土元素左倾和重稀土元素平坦的分布模式(图 7e),N-MORB标准化微量元素配分曲线中辉绿岩略富集Th而亏损Ti(图 7f)。

4 蛇绿岩锆石U-Pb年龄

为确定天峻南山蛇绿岩形成时代,对1件辉绿岩(14DD72)和1件花岗岩(脉)(14DD11)样品分别开展LA-ICP-MS和SHRIMP锆石U-Pb测年。锆石分选在河北省区域地质矿产调查研究所实验室完成。

LA-ICP-MS锆石U-Pb同位素测试在北京科荟测试技术有限公司使用ESI NWR 193nm激光剥蚀系统和Analytikjena PlasmaQuant MS Elite电感耦合等离子体质谱仪完成,激光剥蚀所用束斑直径为24μm,频率为6Hz,能量密度约为6J/cm2。锆石U-Pb定年以标样GJ-1为外标。数据处理采用ICPMSDataCal程序(Liu et al., 2010),并使用Isoplot(ver3.0)程序绘制谐和图和计算加权平均年龄(Ludwig, 2003),测试分析结果见表 3图 8a

表 3 天峻南山辉绿岩锆石LA-ICP-MS U-Pb测年数据 Table 3 LA-ICP-MS zircon U-Pb data of dolerite in Tianjunnanshan area

图 8 天峻南山辉绿岩(a)和花岗岩(b)锆石阴极发光图像和U-Pb年龄谐和图 Fig. 8 Cathodoluminescence (CL) images and U-Pb concordia diagrams of zircons from dolerite (a) and granite (b) in Tianjunnanshan area

SHRIMP锆石U-Pb测年在中国地质科学院北京离子探针中心SHRIMP Ⅱ上完成,样品分析流程及原理参见Williams (1998)宋彪等(2002)。测定的206Pb/238U比值用TEMORA1(417Ma)标准样品进行校正。测试过程中每隔3个样品点测定1次标样。普通Pb采用204Pb校正,单次测量的数据点误差为1σ,数据处理使用ISOPLOT软件(Ludwig, 2003),置信度为95%,测试分析结果见表 4图 8b

表 4 天峻南山花岗岩(脉)锆石SHRIMP U-Pb测年数据 Table 4 SHRIMP zircon U-Pb data of grantie in Tianjunnanshan area

辉绿岩中分离出的锆石较少(41粒),锆石为无色透明、半自形-自形粒状,粒度较小,长度为20~100μm,长度/宽度比率为1~1.5。阴极发光图像显示,锆石总体呈灰白色-灰黑色,具较弱岩浆震荡环带或扇状分带(图 8a),与基性岩锆石特征相似。选取其中9粒较大的锆石进行LA-ICP-MS锆石U-Pb测年,测试结果显示锆石Th和U含量变化较大(Th=99×10-6~830×10-6和U=161×10-6~1079×10-6),Th/U比值介于0.30~0.96之间,这些锆石U-Pb年龄谐和度较好且206Pb/238U年龄集中在503~519Ma之间,206Pb/238U加权平均年龄为509±4Ma(n=9;MSWD=1.2)(图 8a),该年龄代表了辉绿岩的形成时代。

花岗岩中分离出1000粒锆石,锆石为无色透明,粒状或柱状自形晶,长度为80~200μm,长度/宽度比率为1~2。阴极发光图像显示锆石呈灰白色,发育密集岩浆震荡环带(图 8b)。SHRIMP锆石U-Pb测年结果显示,11粒锆石Th和U含量变化较小,其中Th含量为39×10-6~255×10-6,U含量为102×10-6~295×10-6,Th/U比值为0.36~0.96,这些锆石206Pb/238U年龄介于430.5±6.9Ma~461.0±7.9Ma之间,谐和度较好且均落在谐和线上,其206Pb/238U加权平均年龄为444.9±4.7Ma(n=11;MSWD=1.04)(图 8b),代表花岗岩的结晶年龄。

5 基性岩Sr-Nd同位素特征

天峻南山基性岩Sr-Nd同位素组成分析在北京科荟测试技术有限公司完成,Sr和Nd同位素经分离和提纯后,使用Neptune Plus型多接收电感耦合等离子体质谱仪进行Sr、Nd同位素组成测试,Sr、Nd同位素比值分别采用88Sr/86Sr=8.375209和146Nd/144Nd=0.7219进行质量分馏校正,实验过程中同时测得标样NBS-987的87Sr/86Sr值为0.710248±0.000011(2SD;n=27),标样GSB的143Nd/144Nd值为0.512194±0.000012(2SD;n=12),标样测试结果与推荐值十分吻合。研究区辉绿岩以岩墙形式侵入玄武岩中,另外辉绿岩和玄武岩具有相似的全岩主微量和Sr-Nd同位素组成,表明辉绿岩和玄武岩为近同期岩浆作用产物。玄武岩和辉绿岩同位素初始比值根据辉绿岩墙年龄(509Ma)计算,Sr-Nd同位素测试数据和计算结果见表 5

表 5 天峻南山基性岩Sr-Nd同位素分析结果 Table 5 Sr-Nd isotopic composition of the mafic rocks in Tianjunnanshan area

玄武岩和辉绿岩的初始87Sr/86Sr比值为0.70325~0.70427,部分偏离地幔演化线,呈增加趋势,表现出受海水蚀变影响(Nohda et al., 1992),玄武岩初始143Nd/144Nd介于0.512376~0.512472之间,εNd(t)值为+7.7~+9.6;辉绿岩初始143Nd/144Nd介于0.512365~0.512452之间,εNd(t)值介于+7.5~+9.2之间,天峻南山基性岩总体具有较高的全岩εNd(t)值。

6 讨论 6.1 蛇绿岩形成时代

自天峻南山蛇绿岩被发现后,前人对其开展了年代学分析测试。王毅智等(2001)获得的基性岩全岩Rb-Sr等时线年龄为331±88Ma和318±3Ma,该年龄与蛇绿岩周围石炭纪果可山组地层时代基本一致,因此认为天峻南山蛇绿岩形成于早石炭世(王毅智等, 2001)。

为进一步限定天峻南山蛇绿岩形成时代,本研究对辉绿岩开展了LA-ICP-MS锆石U-Pb测年,获得206Pb/238U加权平均年龄为509±4Ma(n=9;MSWD=1.2),该年龄明显老于前人获得的基性岩全岩Rb-Sr等时线年龄。

野外露头和地质剖面均显示辉绿岩局部被土尔根大坂组沉积岩不整合覆盖,同时可见花岗岩脉体侵入蛇绿岩中,说明部分蛇绿岩形成时代要早于果可山组沉积时代以及花岗岩脉体形成时代。果可山组沉积岩中多种古生物化石种属鉴定结果显示其沉积于石炭纪(青海省地质矿产局, 1991);花岗岩中锆石SHRIMP U-Pb测年获得206Pb/238U加权平均年龄为444.9±4.7Ma(n=11;MSWD=1.04),显示花岗岩于晚奥陶世侵入蛇绿岩。因此,本研究认为天峻南山部分蛇绿岩形成时代要早于晚奥陶世,以寒武纪为主,该年龄与中央造山带原特提斯构造域蛇绿岩的形成时代总体一致(Xiao et al., 2009; Xia et al., 2016; Song et al., 2013; 朱小辉等, 2015; Fu et al., 2018; 付长垒等, 2019; Yan et al., 2019),而该地区石炭纪蛇绿岩是否存在以及其与寒武纪蛇绿岩的关系仍有待进一步厘定。

6.2 蛇绿岩构造属性

根据蛇绿岩形成构造环境,可将其划分为洋中脊、弧后盆地和初始弧前等类型(Shervais, 2001; Pearce, 2008; Wakabayashi et al., 2010; Dilek and Furnes, 2011; Stern et al., 2012),不同构造环境形成的蛇绿岩具有截然不同的矿物学、全岩地球化学和同位素地球化学特征,且总体上从洋中脊、弧后盆地到弧前环境,俯冲作用影响逐渐增加。

本研究对天峻南山蛇绿岩开展了矿物成分、地球化学和Sr-Nd同位素分析,结果显示蛇纹岩中尖晶石具高Mg#(58.6~64.5)和低Cr#(38.9~43.9),在构造判别图解中位于深海橄榄岩与弧前橄榄岩叠加的弧后橄榄岩范围内(图 5)。玄武岩和辉绿岩具有一致的主、微量元素地球化学特征(表 2),均属于拉斑玄武岩系列(图 6b),具有轻稀土元素左倾和重稀土元素平坦的稀土元素配分模式(图 7a, c, e),且略富集Th而亏损Ti(图 7b, d, f),受俯冲作用影响较弱。球粒陨石标准化稀土元素以及N-MORB标准化微量元素配分模式与弧后扩张脊熔岩基本一致(图 7)。玄武岩和辉绿岩εNd(t)值(+7.5~+9.6)相对较高,与弧后盆地玄武岩同位素组成一致(图 9; Ishizuka et al., 2009)。在Th/Yb-Nb/Yb构造判别图解中处于地幔演化边部,投在弧后扩张脊范围内(图 10a),在Th-Ta-Hf/3构造判别图解中处于洋中脊玄武岩和弧后扩张脊叠加区域。综合上述分析表明天峻南山蛇绿岩的矿物成分、全岩主微量元素和Sr-Nd同位素均表现出较弱俯冲作用影响特征,属于弧后盆地蛇绿岩。目前宗务隆构造带暂无其他寒武纪岩石的报道,与天峻南山寒武纪弧后盆地蛇绿岩对应的岩浆弧仍有待进一步厘定。已有地质资料表明,寒武纪时期宗务隆构造带北侧的南祁连洋盆存在向南的俯冲(Fu et al., 2018; Yan et al., 2019),而南侧的柴北缘洋盆沿欧龙布鲁克地块南缘向北俯冲(Zhang et al., 2017; Li et al., 2018b, 2019),因此推测宗务隆构造带弧后盆地的形成可能与早古生代时期南祁连洋盆或柴北缘洋盆俯冲有关。

图 9 天峻南山基性岩εNd(t)-(87Sr/86Sr)t图解 地幔演化线据DePaolo and Wasserburg (1977);MORB和OIB据DePaolo and Wasserburg (1977)Hart and Zindler (1986);弧后扩张脊熔岩据Gamble and Wright (1995)Ishizuka et al. (2009) Fig. 9 εNd(t) vs. (87Sr/86Sr)t diagram for mafic rocks in Tianjunnanshan area Mantle array after DePaolo and Wasserburg (1977); MORB and OIB fields after DePaolo and Wasserburg (1977), Hart and Zindler (1986); BABB field is compiled from Gamble and Wright (1995), Ishizuka et al. (2009)

图 10 天峻南山基性岩Th/Yb-Nb/Yb(a, 底图据Pearce, 2008)和Th-Ta-Hf/3(b, 底图据Wood, 1980)图解 弧后扩张脊熔岩数据引自Pearce et al. (2005)Ishizuka et al. (2010) Fig. 10 Th/Yb vs. Nb/Yb (a, base map after Pearce, 2008) and Th-Ta-Hf/3 (b, base map after Wood, 1980) diagrams for mafic rocks in Tianjunnanshan area Data of lavas in the back-arc spreading center from Pearce et al. (2005) and Ishizuka et al. (2010)
6.3 蛇绿岩就位方式

造山带中蛇绿岩代表古洋壳的陆上残片,被作为示踪古板块汇聚边界的重要标志之一。然而前人研究表明并非所有的蛇绿岩都具有缝合带的大地构造含义,王国灿和张攀(2019)依据蛇绿岩的大地构造属性将蛇绿岩分为缝合带型和非缝合带型,缝合带型蛇绿岩于洋盆俯冲和闭合过程中通过俯冲、仰冲或碰撞3种方式就位(Dewey, 1976; 朱云海等, 2000; Robertson, 2002; 马冲等, 2011; Wakabayashi and Dilek, 2003),而非缝合带型蛇绿岩被认为是残余洋盆通过多种形式构造就位于上覆碎屑沉积地层中(王国灿和张攀, 2019)。

本研究所获得的基性岩全岩地球化学、Sr-Nd同位素地球化学和同位素年龄数据显示该蛇绿岩形成于寒武纪弧后盆地扩张环境。虽然蛇绿岩与周围石炭纪复理石总体呈断层接触(图 2),局部可见寒武纪蛇绿岩与石炭纪沉积岩之间的不整合面(图 3a),而该洋盆的闭合普遍被认为发生于晚三叠世(王毅智等, 2001; 郭安林等, 2009; 王洪强, 2014)。因此,推测宗务隆构造带弧后盆地形成于早古生代,早古生代俯冲和碰撞造山作用致使原特提斯构造域形成后,该地区洋盆未完全闭合,残余的早古生代蛇绿岩被石炭纪复理石不整合覆盖,最终在三叠纪时期洋盆消亡过程中,因发生挤压缩短,下伏的寒武纪和可能存在的石炭纪蛇绿岩被构造肢解,并通过构造方式就位于上覆石炭纪复理石中,从而呈现现今蛇绿混杂岩的状态(图 2)。由此可见,天峻南山寒武纪蛇绿岩代表早古生代残余洋盆(Yan et al., 2020),其就位方式可能与前人报道的非缝合带型蛇绿岩一致(王国灿和张攀, 2019)。

6.4 宗务隆构造带洋盆复合演化的启示

前人研究表明,中央造山带原特提斯构造域发育大量早古生代蛇绿岩、岛弧岩浆岩、高压-超高压变质岩、俯冲-增生杂岩以及弧前/弧后盆地沉积等(殷鸿福和张克信, 1998; 姜春发等, 2000; 张国伟等, 2001; 陆松年等, 2006; 许志琴等, 2006; 王宗起等, 2009; Xiao et al., 2009; 杨经绥等, 2010; Yan et al., 2015, 2019; Dong and Santosh, 2016; Xia et al., 2016; Zhang et al., 2017; 裴先治等, 2018; Fu et al., 2018; Li et al., 2018a),广泛分布于北祁连、祁连、柴北缘和昆仑造山带,它们共同记录了原特提斯洋俯冲到闭合的整个演化过程。然而在原特提斯构造域内部的宗务隆构造带主要发育石炭纪蛇绿岩、石炭纪复理石和三叠纪俯冲相关岩浆岩(青海省地质矿产局, 1991; 王毅智等, 2001; 王洪强, 2014; 彭渊等, 2016),欧龙布鲁克地块之上发育晚古生代-早中生代俯冲和碰撞相关岩浆岩(强娟, 2008; 吴才来等, 2016; 牛漫兰等, 2018)。前人研究认为宗务隆构造带于早泥盆世发生裂解,石炭纪发育裂谷小洋盆,二叠纪时期洋盆向南侧欧龙布鲁克地块之下俯冲,形成岩浆弧相关火山岩和侵入岩,洋盆最终于晚三叠世闭合(王毅智等, 2001; 孙延贵等, 2004; 郭安林等, 2009; 孙娇鹏等, 2015)。因此,宗务隆构造带被认为是在原特提斯构造域之上发育的一个具有独立演化历史的印支期造山带,经历了晚古生代-早中生代地体裂解、洋盆俯冲和闭合演化全过程(孙延贵等, 2004; 强娟, 2008; 郭安林等, 2009; 王洪强, 2014)。

然而区域地质资料表明,宗务隆构造带南北两侧泥盆纪之前的岩石地层单元存在如下差异:其南侧欧龙布鲁克地块具有古-中元古代变质结晶基底以及新元古代以来的沉积盖层,被认为是塔里木地块分离出来的大陆残片(Lu et al., 2008; Chen et al., 2012),而北侧祁连地块则主要由中-新元古代结晶基底、早古生代(志留纪)褶皱基底和晚古生代-早中生代(二叠纪-三叠纪)沉积盖层组成,与华南地块具有较强亲缘性(万渝生等, 2003; Tung et al., 2007; 徐旺春等, 2007; Yan et al., 2015; Fu et al., 2019; Li et al., 2020);另外,欧龙布鲁克地块之上发育大量寒武纪-奥陶纪台地相和斜坡相碳酸盐岩沉积(孙娇鹏等, 2016; Sun et al., 2020),而南祁连地块之上则直接被大量志留纪复理石沉积覆盖(Yan et al., 2020)。由此可见,欧龙布鲁克地块和南祁连地块在泥盆纪以前并未形成一个统一地体,而更可能是两个分离的地块。近年来,一些研究曾报道宗务隆构造带存在早古生代岩浆岩(孙娇鹏等, 2015; 孙健等, 2018),本研究进一步证明该构造带发育有寒武纪蛇绿岩,这些地质资料表明欧龙布鲁克地块和南祁连地块之间存在早古生代洋盆。因此,宗务隆构造带并非晚古生代的裂谷,而是原特提斯洋和古特提斯洋相继闭合且经历漫长地质演化形成的复合构造带。

区域上,宗务隆构造带向东通过西秦岭与东昆南构造带相连(孙延贵等, 2004; 郭安林等, 2007, 2009),相比于宗务隆构造带的寒武纪和石炭纪两期蛇绿岩,东昆南构造带发育寒武纪、奥陶纪和石炭纪三期蛇绿岩,同时含有中元古代变质基底岩石、奥陶纪中酸性弧岩浆岩、石炭纪洋岛玄武岩以及晚三叠世河流相砾岩(殷鸿福和张克信, 1997; 郭正府等, 1998; Zhang et al., 2012; 李瑞保等, 2014; Xiong et al., 2014; 裴先治等, 2018),这些岩石共同记录了特提斯洋盆自新元古代晚期开启、晚寒武世-中三叠世长期俯冲消减直至中三叠世晚期洋盆闭合整个复杂演化过程,最终形成了东昆南构造带复合增生构造格局(裴先治等, 2018; Dong et al., 2018)。

综上所述,宗务隆构造带并非一个晚古生代-早中生代造山带,其中还发育寒武纪弧后盆地蛇绿岩,代表早古生代残余洋盆,该构造带与东昆南构造带相似,记录了早古生代-早中生代原特提斯洋和古特提斯洋复合演化过程。

7 结论

(1) 青藏高原东北缘宗务隆构造带天峻南山蛇绿岩由超基性岩、辉绿岩、玄武岩和硅质岩等组成,矿物学、全岩地球化学和Sr-Nd同位素分析结果显示该蛇绿岩形成于弧后盆地环境。

(2) 野外接触关系和最新锆石U-Pb测年结果显示,天峻南山部分蛇绿岩形成时代早于不整合其上的石炭纪复理石和侵入其中的花岗岩脉(444.9±4.7Ma),与辉绿岩年龄(509±4Ma)一致,主体形成于寒武纪。

(3) 天峻南山寒武纪蛇绿岩被石炭纪复理石不整合覆盖,并在三叠纪洋盆消亡过程中通过构造方式就位于上覆的石炭纪复理石中,代表早古生代残余洋盆。

(4) 宗务隆构造带并非一个晚古生代-早中生代造山带,而是原特提斯洋和古特提斯洋相继闭合形成的早古生代-早中生代复合构造带。

致谢      野外样品采集和室内分析工作得到了曹泊、赵齐齐、杨梅和陈雷等的帮助;侯泉林教授、裴先治教授和期刊编辑对本文提出了建设性修改意见;在此一并表示感谢!

谨以此文纪念师爷李继亮研究员!第一作者有幸得到李老先生悉心指导和大地构造相理论熏陶,在此向李老师致以崇高的敬意和深深的思念。

参考文献
Anonymous. 1972. Penrose field conference on ophiolites. Geotimes, 17: 24-25
Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Regional Geology of Qinghai Province. Beijing: Geological Publishing House, 1-662 (in Chinese)
Chen NS, Wang QY, Chen Q and Li XY. 2007. Components and metamorphism of the basements of the Qaidam and Oulongbuluke micro-continental blocks, and a tentative interpretation of paleocontinental evolution in NW-Central China. Earth Science Frontiers, 14(1): 43-55 (in Chinese with English abstract)
Chen NS, Zhang L, Sun M, Wang QY and Kusky TM. 2012. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history. Journal of Asian Earth Sciences, 54-55: 110-130 DOI:10.1016/j.jseaes.2012.04.006
Coleman RG. 1977. Ophiolites. New York: Springer-Verlag, 1-220
DePaolo DJ and Wasserburg GJ. 1977. The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophysical Research Letters, 4(10): 465-468 DOI:10.1029/GL004i010p00465
Dewey JF and Bird JM. 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76(14): 3179-3206 DOI:10.1029/JB076i014p03179
Dewey JF. 1976. Ophiolite obduction. Tectonophysics, 31(1-2): 93-120 DOI:10.1016/0040-1951(76)90169-4
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123(3-4): 387-411 DOI:10.1130/B30446.1
Dong YP and Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40 DOI:10.1016/j.gr.2015.06.009
Dong YP, He DF, Sun SS, Liu XM, Zhou XH, Zhang FF, Yang Z, Cheng B, Zhao GC and Li JH. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261 DOI:10.1016/j.earscirev.2017.12.006
Festa A, Pini GA, Dilek Y and Codegone G. 2010. Mélanges and mélange-forming processes: A historical overview and new concepts. International Geology Review, 52(10-12): 1040-1105 DOI:10.1080/00206810903557704
Fu CL, Yan Z, Wang ZQ, Buckman S, Aitchison JC, Niu ML, Cao B, Guo XQ, Li XC, Li YS and Li JL. 2018. Lajishankou ophiolite complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian Belt. Tectonics, 37(5): 1321-1346 DOI:10.1029/2017TC004740
Fu CL, Yan Z, Guo XQ, Niu ML, Cao B, Wu Q, Li XC and Wang ZQ. 2019. Assembly and dispersal history of continental blocks within the Altun-Qilian-North Qaidam mountain belt, NW China. International Geology Review, 61(4): 424-447 DOI:10.1080/00206814.2018.1428831
Fu CL, Yan Z and Wang BZ. 2019. Discussion on the age and tectonic affinity of the mafic rocks in Qingshui-Zhangjiachuan of the conjunction area between the Qinling and Qilian orogenic belts. Acta Petrologica Sinica, 35(10): 3141-3160 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.10.12
Gamble JA and Wright IC. 1995. The Southern Havre Trough geological structure and magma petrogenesis of an active backarc rift complex. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. Boston, MA: Springer, 29-62
Gansser A. 1974. The ophiolitic mélange, a world-wide problem on tethyan examples. Eclogae Geologicae Helvetiae, 67(3): 479-507
Guo AL, Zhang GW, Sun YG, Cheng SY and Qiang J. 2007. Sr-Nd-Pb isotopic geochemistry of Late-Paleozoic mafic volcanic rocks in the surrounding areas of the Gonghe basin, Qinghai Province and geological implications. Acta Petrologica Sinica, 23(4): 747-754 (in Chinese with English abstract)
Guo AL, Zhang GW, Qiang J, Sun YG, Li G and Yao AP. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1): 1-12 (in Chinese with English abstract)
Guo ZF, Deng JP, Xu ZQ, Mo XX and Luo ZH. 1998. Late Palaeozoic Mesozoic intracontinental orogenic process and intermedate acidic igneous rocks from the eastern Kunlun Mountains of northwestern China. Geoscience, 12(3): 344-352 (in Chinese with English abstract)
Guo ZP, Li WY, Zhang ZW, Gao YB, Zhang JW, Li K, Kong HL and Qian B. 2015. Petrogenisis of Lumanshan granites in Hualong area of southern Qilian Mountain: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Geology in China, 42(4): 864-880 (in Chinese with English abstract)
Hao GJ, Lu SN, Xin HT and Wang HC. 2004. The constitution and importance geological events of Pre-Devonian in the Dulan, Qinghai. Journal of Jilin University (Earth Science Edition), 34(4): 495-501, 516 (in Chinese with English abstract)
Hart SR and Zindler A. 1986. In search of a bulk-Earth composition. Chemical Geology, 57(3-4): 247-267 DOI:10.1016/0009-2541(86)90053-7
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 DOI:10.1139/e71-055
Ishizuka O, Yuasa M, Taylor RN and Sakamoto I. 2009. Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chemical Geology, 266(3-4): 274-296 DOI:10.1016/j.chemgeo.2009.06.014
Ishizuka O, Yuasa M, Tamura Y, Shukuno H, Stern RJ, Naka J, Joshima M and Taylor RN. 2010. Migrating shoshonitic magmatism tracks Izu-Bonin-Mariana intra-oceanic arc rift propagation. Earth and Planetary Science Letters, 294(1-2): 111-122 DOI:10.1016/j.epsl.2010.03.016
Ishizuka O, Tani K and Reagan MK. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10(2): 115-120 DOI:10.2113/gselements.10.2.115
Jiang CF, Wang ZQ and Li JY. 2000. Opening-Closing Tectonics of Central Orogenic Belt. Beijing: Geological Publishing House, 1-154 (in Chinese)
Kang Z, Jiang CY, Ling JL, Zhao YF, Song YF and Zhou W. 2015. Petrogenesis and ore genesis of the ilmenite-rich Kendelong mafic-ultramafic intrusion in Wulan, Qinghai. Acta Petrologica Sinica, 31(8): 2193-2210 (in Chinese with English abstract)
Leitch EC. 1984. Island arc elements and arc-related ophiolites. Tectonophysics, 106(3-4): 177-203 DOI:10.1016/0040-1951(84)90176-8
Li RB, Pei XZ, Li ZC, Pei L, Chen GC, Liu CJ, Chen YX and Liu ZQ. 2014. Geochemical characteristics of Gerizhuotuo OIB and its tectonic significance in Buqingshan tectonic mélange belt, southern margin of East Kunlun Orogen. Earth Science Frontiers, 21(1): 183-195 (in Chinese with English abstract)
Li RB, Pei XZ, Li ZC, Pei L, Chen GC, Li XB, Chen YX, Liu CJ and Wei B. 2018. Geochemistry and tectonic setting of Qingquangou forearc basalts in central tectonic mélange of East Kunlun Orogen. Earth Science, 43(12): 4521-4535 (in Chinese with English abstract)
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018a. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Li XC, Niu ML, Yan Z, Da LC, Han Y and Wang YS. 2015. LP/HT metamorphic rocks in Wulan County, Qinghai Province: An Early Paleozoic paired metamorphic belt on the northern Qaidam Basin?. Chinese Science Bulletin, 60(35): 3501-3513 (in Chinese) DOI:10.1360/N972015-00558
Li XC, Niu ML, Yakymchuk C, Yan Z, Fu CL and Zhao QQ. 2018b. Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the North Wulan gneiss complex. Gondwana Research, 61: 128-149 DOI:10.1016/j.gr.2018.04.016
Li XC, Niu ML, Yakymchuk C, Wu Q and Fu CL. 2019. A paired metamorphic belt in a subduction-to-collision orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China. Journal of Metamorphic Geology, 37(4): 479-508 DOI:10.1111/jmg.12468
Li ZY, Li YL, Xiao WJ, Zheng JP and Brouwer FM. 2020. Geochemical and zircon U-Pb-Hf isotopic study of metasedimentary rocks from the Huangyuan Group of the Central Qilian block (NW China): Implications for paleogeographic reconstruction of Rodinia. Precambrian Research, 351: 105947 DOI:10.1016/j.precamres.2020.105947
Lian DY, Yang JS, Robinson PT, Liu F, Xiong FH, Zhang L, Gao J and Wu WW. 2016. Tectonic evolution of the western Yarlung Zangbo ophiolitic belt, Tibet: Implications from the petrology, mineralogy, and geochemistry of the peridotites. The Journal of Geology, 124(3): 353-376 DOI:10.1086/685510
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt peridotite interactions in the trans-North China Orogen: U-Pb dating, Hf Isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Lu SN, Wang HC, Li HK, Yuan GB, Xin HT and Zheng JK. 2002. Redefinition of the "Dakendaban Group" on the northern margin of the Qaidam basin. Geological Bulletin of China, 21(1): 19-23 (in Chinese with English abstract)
Lu SN, Yu HF, Li HK, Chen ZH, Wang HC, Zhang CL and Xiang ZQ. 2006. Early Paleozoic suture zones and tectonic divisions in the "Central China Orogen". Geological Bulletin of China, 25(12): 1368-1380 (in Chinese with English abstract)
Lu SN, Li HK, Zhang CL and Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160(1-2): 94-107 DOI:10.1016/j.precamres.2007.04.025
Ludwig KR. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-70
Ma C, Zhao GP, Xiao WJ, Han CM, Luo J and Wang ZM. 2011. Emplacement of ophiolites: Mechanisms and timing. Chinese Journal of Geology, 46(3): 865-874 (in Chinese with English abstract)
Metcalf RV and Shervais JW. 2008. Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? In: Wright JE and Shervais JW (eds.). Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson. Geological Society of America Special Paper, 438: 191-222
Miyashiro A. 1975. Classification, characteristics, and origin of ophiolites. The Journal of Geology, 83(2): 249-281 DOI:10.1086/628085
Nicolas A. 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Springer, 1-367
Niu ML, Zhao QQ, Wu Q, Li XC, Yan Z, Li JL, Sun Y and Yuan XY. 2018. Magma mixing identified in the Guokeshan pluton, northern margin of the Qaidam basin: Evidences from petrography, mineral chemistry, and whole-rock geochemistry. Acta Petrologica Sinica, 34(7): 1991-2016 (in Chinese with English abstract)
Nohda S, Tatsumi Y, Yamashita S and Fujii T. 1992. Nd and Sr isotopic study of Leg 127 basalts: Implications for the evolution of the Japan Sea backarc basin. In: Tamaki K, Suyehiro K, Allan J et al. (eds.). Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 127-128: 899-904
Pearce JA, Stern RJ, Bloomer SH and Fryer P. 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q7006
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48 DOI:10.1016/j.lithos.2007.06.016
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108 DOI:10.2113/gselements.10.2.101
Pei XZ, Li RB, Li ZC, Liu CJ, Chen YX, Pei L, Liu ZQ, Chen GC, Li XB and Wang M. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520 (in Chinese with English abstract)
Peng Y, Ma YS, Liu CL, Li ZX, Sun JP and Shao PC. 2016. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in North Qaidam. Earth Science Frontiers, 23(2): 206-221 (in Chinese with English abstract)
Qiang J. 2008. The granitoids in Zongwulong tectonic zone on the northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance. Master Degree Thesis. Xi'an: Northwest University, 1-76 (in Chinese with English summary)
Robertson AHF. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67 DOI:10.1016/S0024-4937(02)00160-3
Shervais JW. 2001. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2: 1010
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl. 1): 26-30 (in Chinese with English abstract)
Song SG, Niu YL, Su L and Xia XH. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research, 23(4): 1378-1401 DOI:10.1016/j.gr.2012.02.004
Stern RJ, Reagan M, Ishizuka O, Ohara Y and Whattam S. 2012. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 4(6): 469-483 DOI:10.1130/L183.1
Sun J, Yang ZZ, Zhao ZY, Tian Z, Sun DL, Li DL, Yang QS and Li XM. 2018. LA-ICP-MS zircon U-Pb ages and geological significance of granodiorite from Zongwulong tectonic belt in Delingha, Qinghai Province. Geological Bulletin of China, 37(4): 604-612 (in Chinese with English abstract)
Sun JP, Chen SY, Peng Y, Shao PC, Ma S and Liu J. 2015. Determination of Early Cambrian zircon SHRIMP U-Pb datings in Zongwulong tectonic belt, northern margin of Qaidam Basin, and its geological significance. Geological Review, 61(4): 743-751 (in Chinese with English abstract)
Sun JP, Chen SY, Ma YS, Peng Y, Shao PC, Ma S, Dai K and Zheng C. 2016. Early Ordovician continental-arc collision and retroarc foreland basin on the northern margin of Qaidam Basin: Geochemical evidence from clastic rocks. Acta Geologica Sinica, 90(1): 80-92 (in Chinese with English abstract)
Sun JP, Dong YP, Jiang W, Ma LC, Chen SY, Du JJ and Peng Y. 2020. Reconstructing the Olongbuluke Terrane (northern Tibet) in the end-Neoproterozoic to Ordovician Indian margin of Gondwana. Precambrian Research, 348: 105865 DOI:10.1016/j.precamres.2020.105865
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Sun YG, Zhang GW, Guo AL and Wang J. 2004. Qinling-Kunlun triple junction and isotope chronological evidence of its tectonic process. Geology in China, 31(4): 372-378 (in Chinese with English abstract)
Tung KA, Yang HJ, Yang HY, Liu DY, Zhang JX, Wan YS and Tseng CY. 2007. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chinese Science Bulletin, 52(19): 2687-2701 DOI:10.1007/s11434-007-0356-0
Wakabayashi J and Dilek Y. 2003. What constitutes 'emplacement' of an ophiolite? Mechanisms and relationship to subduction initiation and formation of metamorphic soles. Geological Society, London, Special Publications, 218(1): 427-447 DOI:10.1144/GSL.SP.2003.218.01.22
Wakabayashi J, Ghatak A and Basu AR. 2010. Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: A perspective from geochemistry, metamorphism, geochronology, and regional geology. GSA Bulletin, 122(9-10): 1548-1568 DOI:10.1130/B30017.1
Wan YS, Xu ZQ, Yang JS and Zhang JX. 2003. The Precambrian high-grade basement of the Qilian terrane and neighboring areas: Its ages and compositions. Acta Geoscientia Sinica, 24(4): 319-324 (in Chinese with English abstract)
Wang GC and Zhang P. 2019. A new understanding on the emplacement of ophiolitic mélanges and its tectonic significance: Insights from the structural analysis of the remnant oceanic basin-type ophiolitic mélanges. Earth Science, 44(5): 1688-1704 (in Chinese with English abstract)
Wang GH, Han FL, Yang YJ, Li YQ and Cui JL. 2009. Discovery and geologic significance of Late Paleozoic accretionary complexes in central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1181-1187 (in Chinese with English abstract)
Wang HC, Li HK, Lu SN, Yuan GB and Xin HT. 2006. Geological characteristics and tectonic setting of the Dakendaba group in Iqe area, northern margin of Qaidam Basin. Geological Survey and Research, 29(4): 253-262 (in Chinese with English abstract)
Wang HQ. 2014. Research Tianjun Nanshan features of ophiolite of Qinghai Province. Master Degree Thesis. Xi'an: Chang'an University, 1-59 (in Chinese with English summary)
Wang YZ, Bai YS and Lu HL. 2001. Geological characteristics of Tianjunnanshan ophiolite in Qinghai and its forming environment. Qinghai Geology, (1): 29-35 (in Chinese with English abstract)
Wang ZQ, Yan QR, Yan Z, Wang T, Jiang CF, Gao LD, Li QG, Chen JL, Zhang YL, Liu P, Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic Belt, central China. Acta Geologica Sinica, 83(11): 1527-1546 (in Chinese with English abstract)
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology, 7: 1-35 DOI:10.1080/07474938808800138
Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30 DOI:10.1016/0012-821X(80)90116-8
Wu CL, Lei M, Wu D and Li TX. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam. Acta Geoscientica Sinica, 37(4): 493-516 (in Chinese with English abstract)
Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite: A critical updated view. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract)
Xia LQ, Li XM, Yu JY and Wang GQ. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilianshan, NW China. GeoResJ, 9-12: 1-41 DOI:10.1016/j.grj.2016.06.001
Xiao WJ, Windley BF, Yong Y, Yan Z, Yuan C, Liu CZ and Li JL. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323-333 DOI:10.1016/j.jseaes.2008.10.001
Xiao WJ, Li JL, Song DF, Han CM, Wan B, Zhang JE, Ao SJ and Zhang ZY. 2019. Structural analyses and spatio-temporal constraints of accretionary orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract)
Xiao WJ, Song DF, Windley BF, Li JL, Han CM, Wang B, Zhang JE, Ao SJ and Zhang ZY. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Science China (Earth Sciences), 63(3): 329-361 DOI:10.1007/s11430-019-9524-6
Xiong FH, Ma CQ, Zhang JY, Liu B and Jiang HA. 2014. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863 DOI:10.1144/jgs2013-038
Xu WC, Zhang HF and Liu XM. 2007. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications. Chinese Science Bulletin, 52(4): 531-538 DOI:10.1007/s11434-007-0082-7
Xu ZQ, Yang JS, Li HB and Yao JX. 2006. The early Palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806 (in Chinese with English abstract)
Yan Z, Aitchison J, Fu CL, Guo XQ, Niu ML, Xia WJ and Li JL. 2015. Hualong Complex, South Qilian terrane: U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin. Precambrian Research, 266: 65-85 DOI:10.1016/j.precamres.2015.05.001
Yan Z, Fu CL, Aitchison JC, Niu ML, Buckman S and Cao B. 2019. Early Cambrian Muli arc-ophiolite complex: A relic of the Proto-Tethys oceanic lithosphere in the Qilian Orogen, NW China. International Journal of Earth Sciences, 108(4): 1147-1164 DOI:10.1007/s00531-019-01699-6
Yan Z, Fu CL, Aitchison JC, Zhou RJ, Buckman S and Chen L. 2020. Silurian sedimentation in the South Qilian Belt: Arc-continent collision-related deposition in the NE Tibet Plateau?. Acta Geologica Sinica, 94(4): 901-913
Yang JS, Xu ZQ, Ma CQ, Wu CL, Zhang JX, Wang ZQ, Wang GC, Zhang HF, Dong YP and Lai SC. 2010. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China. Geology in China, 37(1): 1-11 (in Chinese with English abstract)
Yin HF and Zhang KX. 1997. Characteristics of the eastern Kunlun Orogenic Belt. Earth Science, 22(4): 339-342 (in Chinese with English abstract)
Yin HF and Zhang KX. 1998. Evolution and characteristics of the Central Orogenic Belt. Earth Science, 23(5): 438-442 (in Chinese with English abstract)
Zhang GW, Zhang BR and Yuan XC, et al. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-855 (in Chinese with English abstract)
Zhang JX, Yu SY and Mattinson CG. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research, 41: 267-289 DOI:10.1016/j.gr.2015.11.009
Zhang JY, Ma CQ, Xiong FH and Liu B. 2012. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892-908 DOI:10.1017/S0016756811001142
Zhang Q, Zhou GQ and Wang Y. 2003. The distribution of time and space of Chinese ophiolites, and their tectonic settings. Acta Petrologica Sinica, 19(1): 1-8 (in Chinese with English abstract)
Zhu XH, Chen DL, Wang C, Wang H and Liu L. 2015. The initiation, development and termination of the Neoproterozoic-Early Paleozoic ocean in the northern margin of Qaidam Basin. Acta Geologica Sinica, 89(2): 234-251 (in Chinese with English abstract)
Zhu YH, Pan YM, Zhang KX, Wang GC, Chen NS and Hou GJ. 2000. Emplacement mechanisms of ophiolites and their characteristics. Geological Science and Technology Information, 19(1): 16-18 (in Chinese with English abstract)
陈能松, 王勤燕, 陈强, 李晓彦. 2007. 柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探. 地学前缘, 14(1): 43-55. DOI:10.3321/j.issn:1005-2321.2007.01.004
付长垒, 闫臻, 王秉璋. 2019. 秦祁结合部清水-张家川基性岩形成时代和构造归属探讨. 岩石学报, 35(10): 3141-3160. DOI:10.18654/1000-0569/2019.10.12
郭安林, 张国伟, 孙延贵, 程顺有, 强娟. 2007. 青海省共和盆地周缘晚古生代镁铁质火山岩Sr-Nd-Pb同位素地球化学及其地质意义. 岩石学报, 23(4): 747-754.
郭安林, 张国伟, 强娟, 孙延贵, 李广, 姚安平. 2009. 青藏高原东北缘印支期宗务隆造山带. 岩石学报, 25(1): 1-12.
郭正府, 邓晋福, 许志琴, 莫宣学, 罗照华. 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 344-352.
郭周平, 李文渊, 张照伟, 高永宝, 张江伟, 李侃, 孔会磊, 钱兵. 2015. 南祁连化隆地区鲁满山花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 中国地质, 42(4): 864-880. DOI:10.3969/j.issn.1000-3657.2015.04.006
郝国杰, 陆松年, 辛后田, 王惠初. 2004. 青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件. 吉林大学学报(地球科学版), 34(4): 495-501, 516.
姜春发, 王宗起, 李锦轶. 2000. 中央造山带开合构造. 北京: 地质出版社, 1-154.
康珍, 姜常义, 凌锦兰, 赵彦锋, 宋艳芳, 周伟. 2015. 青海省乌兰地区肯得隆富钛铁矿镁铁-超镁铁质岩体的岩石与矿石成因. 岩石学报, 31(8): 2193-2210.
李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 刘成军, 陈有炘, 刘战庆. 2014. 东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义. 地学前缘, 21(1): 183-195.
李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 李小兵, 陈有炘, 刘成军, 魏博. 2018. 东昆中构造混杂岩带清泉沟弧前玄武岩地质、地球化学特征及构造环境. 地球科学, 43(12): 4521-4535.
李秀财, 牛漫兰, 闫臻, 笪梁超, 韩雨, 王玉松. 2015. 青海省乌兰县早古生代低压高温变质岩: 柴北缘存在双变质带?. 科学通报, 60(35): 3501-3513.
陆松年, 王惠初, 李怀坤, 袁桂邦, 辛后田, 郑健康. 2002. 柴达木盆地北缘"达肯大坂群"的再厘定. 地质通报, 21(1): 19-23. DOI:10.3969/j.issn.1671-2552.2002.01.004
陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林, 相振群. 2006. "中央造山带"早古生代缝合带及构造分区概述. 地质通报, 25(12): 1368-1380. DOI:10.3969/j.issn.1671-2552.2006.12.004
马冲, 赵桂萍, 肖文交, 韩春明, 罗军, 王忠梅. 2011. 蛇绿岩就位机制及时限. 地质科学, 46(3): 865-874.
牛漫兰, 赵齐齐, 吴齐, 李秀财, 闫臻, 李继亮, 孙毅, 苑潇宇. 2018. 柴北缘果可山岩体的岩浆混合作用: 来自岩相学、矿物学和地球化学证据. 岩石学报, 34(7): 1991-2016.
裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520.
彭渊, 马寅生, 刘成林, 李宗星, 孙娇鹏, 邵鹏程. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义. 地学前缘, 23(2): 206-221.
强娟. 2008. 青藏高原东北缘宗务隆构造带花岗岩及其构造意义. 硕士学位论文. 西安: 西北大学, 1-76
青海省地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社, 1-752.
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增1): 26-30.
孙健, 杨张张, 赵振英, 田振, 孙东亮, 李大磊, 杨强晟, 李小明. 2018. 青海石底泉地区宗务隆构造带花岗闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 37(4): 604-612.
孙娇鹏, 陈世悦, 彭渊, 邵鹏程, 马帅, 刘金. 2015. 柴达木盆地北缘宗务隆构造带早古生代锆石SHRIMP年龄的测定及其地质意义. 地质论评, 61(4): 743-751.
孙娇鹏, 陈世悦, 马寅生, 彭渊, 邵鹏程, 马帅, 代昆, 郑策. 2016. 柴达木盆地北缘早奥陶世陆-弧碰撞及弧后前陆盆地——来自碎屑岩地球化学的证据. 地质学报, 90(1): 80-92. DOI:10.3969/j.issn.0001-5717.2016.01.005
孙延贵, 张国伟, 郭安林, 王瑾. 2004. 秦-昆三向联结构造及其构造过程的同位素年代学证据. 中国地质, 31(4): 372-378. DOI:10.3969/j.issn.1000-3657.2004.04.005
万渝生, 许志琴, 杨经绥, 张建新. 2003. 祁连造山带及邻区前寒武纪深变质基底的时代和组成. 地球学报, 24(4): 319-324. DOI:10.3321/j.issn:1006-3021.2003.04.005
王国灿, 张攀. 2019. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示. 地球科学, 44(5): 1688-1704.
王根厚, 韩芳林, 杨运军, 李元庆, 崔江利. 2009. 藏北羌塘中部晚古生代增生杂岩的发现及其地质意义. 地质通报, 28(9): 1181-1187. DOI:10.3969/j.issn.1671-2552.2009.09.003
王惠初, 李怀坤, 陆松年, 袁桂邦, 辛后田. 2006. 柴北缘鱼卡地区达肯大坂岩群的地质特征与构造环境. 地质调查与研究, 29(4): 253-262. DOI:10.3969/j.issn.1672-4135.2006.04.004
王洪强. 2014. 青海省天峻南山蛇绿岩套特征研究. 硕士学位论文. 西安: 长安大学, 1-59
王毅智, 拜永山, 陆海莲. 2001. 青海天峻南山蛇绿岩的地质特征及其形成环境. 青海地质, (1): 29-35.
王宗起, 闫全人, 闫臻, 王涛, 姜春发, 高联达, 李秋根, 陈隽璐, 张英利, 刘平, 谢春林, 向忠金. 2009. 秦岭造山带主要大地构造单元的新划分. 地质学报, 83(11): 1527-1546. DOI:10.3321/j.issn:0001-5717.2009.11.001
吴才来, 雷敏, 吴迪, 李天啸. 2016. 柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因. 地球学报, 37(4): 493-516.
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩——事实与臆想. 岩石学报, 30(2): 293-325.
肖文交, 李继亮, 宋东方, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019a. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687.
肖文交, 宋东方, Windley BF, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019b. 中亚增生造山过程与成矿作用研究进展. 中国科学(地球科学), 49(10): 1512-1545.
徐旺春, 张宏飞, 柳小明. 2007. 锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义. 科学通报, 52(10): 1174-1180. DOI:10.3321/j.issn:0023-074X.2007.10.014
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. DOI:10.3321/j.issn:0001-5717.2006.12.002
杨经绥, 许志琴, 马昌前, 吴才来, 张建新, 王宗起, 王国灿, 张宏飞, 董云鹏, 赖绍聪. 2010. 复合造山作用和中国中央造山带的科学问题. 中国地质, 37(1): 1-11.
殷鸿福, 张克信. 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 339-342. DOI:10.3321/j.issn:1000-2383.1997.04.001
殷鸿福, 张克信. 1998. 中央造山带的演化及其特点. 地球科学, 23(5): 438-442. DOI:10.3321/j.issn:1001-8166.1998.05.004
张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855.
张旗, 周国庆, 王焰. 2003. 中国蛇绿岩的分布、时代及其形成环境. 岩石学报, 19(1): 1-8.
朱小辉, 陈丹玲, 王超, 王红, 刘良. 2015. 柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡. 地质学报, 89(2): 234-251.
朱云海, 潘元明, 张克信, 王国灿, 陈能松, 侯光久. 2000. 蛇绿岩就位机制研究. 地质科技情报, 19(1): 16-18. DOI:10.3969/j.issn.1000-7849.2000.01.004