岩石学报  2021, Vol. 37 Issue (8): 2303-2323, doi: 10.18654/1000-0569/2021.08.04   PDF    
欧亚大陆东部白垩纪两期伸展穹隆构造及其动力学机制探讨
林伟1,2, 李金雁1     
1. 岩石圈演化国家重点实验室, 中国科学院地质与地球物理研究所; 中国科学院地球科学研究院, 北京 100029;
2. 中国科学院大学地球与行星科学学院, 北京 100049
摘要: 以变质核杂岩或伸展穹隆为代表的晚中生代伸展构造在欧亚大陆东部广泛发育。与北美西部的科迪勒拉型变质核杂岩既相似,又存在很大的不同。区域上可以进一步划分为次一级的伸展构造带,由北向南依次为泛贝加尔-蒙古-鄂霍茨克带、华北西部带、华北东部带、华北南缘及秦岭-大别带及华南中部带。与北美地区显著不同的是它们并非平行于俯冲带展布,而是呈面状分布于太平洋西部广大的地区,不仅发育在岩石圈薄弱带或造山带相关的构造单元之上,而且还发育在稳定的"克拉通"之上。这些穹隆构造记录了NW-SE向的区域伸展方向,构成了全球最大的伸展构造发育区。通过对各带伸展穹隆的结构样式、时空分布和发育过程的系统分析、归纳和总结,我们将这些伸展穹隆分为早晚两期。两期伸展构造所具有的不同特点决定了他们的动力学机制的不同。早期伸展构造发生在早白垩世早期,其具有"对称性"、"等时性"和"等深性"的特点,决定了其动力学机制以"沉坠"作用(foundering)为主导,是对华北克拉通破坏的峰期响应。晚期伸展构造形成时间为早白垩世晚期-晚白垩世早期,时空分布上具有向S或SW迁移的规律,或指示了古太平洋板块的俯冲回撤(roll-back)过程对欧亚大陆板块的渐次影响。
关键词: 两期伸展穹隆构造    白垩纪    欧亚大陆东部    板片沉坠    俯冲板块回撤    
Cretaceous two stage extensional tectonic in eastern Eurasia continent and its geodynamics
LIN Wei1,2, LI JinYan1     
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The Cretaceous tectonics of the North China Craton (NCC) and its adjacent regions were characterized by a general lithospheric extension and remarked by extensional dome structures. This makes the largest crustal scale extensional tectonic realm in the world. Based on our field and laboratory work, five extensional domains have been delineated, namely Transbaikalia-Mongol-Okhotsk, western part of NCC, eastern part of NCC and Korea, Qinling-Dabie and its neighbouring, and the interior of South China Block (SCB), respectively. These domains are featured by a NW-SE extensional direction with intensive extensional exhumation of middle to lower crust rocks to the surface along detachment faults. Two stage extension tectonics have been suggested, which took place at ca. 130~120Ma and ca. 118~85Ma. The early stage constrains a narrow activity period, and the foundering of the lower part of the lithosphere could be a possible mechanism for this continent-scale extensional tectonics. This geodynamic model could help us to enhance the knowledge of the time, scale, and mechanism of the NCC destruction from the view of structural analysis. The timing of late-stage extensional tectonics is suggested by a younging trend from the northeast (Liaodong Peninsula) to the southwest (Yuechengling massif in SW Hunan Province). The slab roll-back of westward subducted 'Palaeo-Pacific' or Izanagi plate may lead to this regional extension event.
Key words: Two stage extensional dome    Cretaceous    Eastern Eurasia continent    Slab Foundering    Subduction plate roll back    

中国东部中生代经历了复杂的挤压和伸展的构造演化。以“燕山运动”为代表的幕式挤压构造将中生代的伸展构造分成晚三叠世-早侏罗世、中侏罗世-晚侏罗世、早白垩世早期和早白垩世晚期-晚白垩世早期四个阶段,其中白垩纪两阶段伸展构造影响范围最广、表现形式多样、岩石圈减薄最为显著(林伟等, 2021)。这一时期,中国东部表现为广泛发育的岩浆活动、火山作用、地堑-半地堑盆地、巨型走滑断裂、伸展穹隆或变质核杂岩等,代表了岩石圈尺度上的强烈伸展(Wang et al., 2011a; 索艳慧等, 2012, 2017; 林伟等, 2013a, 2019; Liu et al., 2013; Lin and Wei, 2020; 李三忠等, 2018)。其中,伸展穹隆或变质核杂岩是在地壳厚度较厚(约为60km)、地表热流值非常高(100mW/m2)的背景下形成的一种特殊的宽裂谷,反映了中下地壳具有较大的伸展幅度和强度。同时,作为“华北克拉通破坏”最为典型的地壳尺度上的响应,位于中国东部的伸展穹隆或变质核杂岩得到了国际地质学界的广泛关注,也是目前研究程度较高的一类伸展构造,二十余年来积累了大量的研究成果(Davis et al., 1996, 2002; Liu et al., 2005a, 2013; Lin and Wang, 2006; Lin et al., 2007, 2008, 2013; Wang et al., 2011a, 2012; Li et al., 2013; Zhu et al., 2015; Yin et al., 2017; Lin and Wei, 2020; Chu et al., 2019, 2020; Wu et al., 2020; Meng and Lin, 2021)。作为伸展构造的典型样式,科迪勒拉型变质核杂岩具有明确的指代性,且具有一定的解释成分,易引起争议。因而,本文中对“变质核杂岩”使用描述性的“伸展穹隆构造(extensional domal structure或extensional dome)”来表述其几何学形态(林伟等, 2019)。事实上,代表广域NW-SE向伸展穹隆构造广泛分布在从俄罗斯的泛贝加尔地区到我国的华南南岭地区。正是这种类型的伸展构造使地壳深部岩石沿穹隆边缘的拆离断层折返至地表,使中下地壳结构发生了强烈的改造,构成了全球最为典型的“克拉通不稳定”地区。本文综合现有的研究成果及我们的最新认识,将欧亚大陆东部晚中生代中下地壳尺度的伸展构造发育区划分为泛贝加尔-蒙古-鄂霍茨克带、华北西部带、华北东部带、华北南缘及秦岭-大别带和华南中部带,并对各带伸展穹隆的结构样式、时空分布和发育过程进行了系统分析、归纳和总结,进而讨论这一大规模岩石圈尺度上的伸展构造形成的动力学机制。

值得指出的是,前人笼统地将白垩纪的伸展构造作为一个从135Ma到90Ma的持续过程(Dong et al., 2018及其相关的参考文献)。事实上,早白垩世晚期(120Ma左右)的收缩构造可以将白垩纪的伸展构造及其伴随的岩浆作用划分为两个较为鲜明的不同阶段(张岳桥等, 2004; Zhu et al., 2018)。这两个阶段的伸展构造在野外的表现不易区分,均为NW-SE向伸展构造体系下产生的应变。早期的伸展构造发生在早白垩世早期(130~120Ma),以伸展穹隆为主要表现,具有“对称性”、“等时性”和“等深性”的特点(Lin and Wei, 2020)。而早白垩世晚期到晚白垩世早期(118~85Ma)的伸展构造以拆离断层为主,时空分布上具有从NE向SW迁移的趋势,即从辽东地区经胶东-胶南-大别山-大云山-衡山至越城岭地区,伸展构造形成时间从118Ma渐变为85Ma左右(图 1)。

图 1 欧亚大陆东部晚中生代伸展穹隆构造展布图(据Lin and Wei, 2020修改) 各项相关数据的参考文献参见正文.MCC-变质核杂岩 Fig. 1 Setting and distribution of the Late Mesozoic extension at the eastern part of Eurasia continent (modified after Lin and Wei, 2020) Data come from references that are mentioned in the text. MCC-metamorphic core complex
1 欧亚大陆东部白垩纪伸展构造特征

早白垩世,欧亚大陆东部发育有众多伸展穹隆构造,从俄罗斯泛贝加尔-鄂霍茨克地区到蒙古国乃至中俄边境地区,经我国东北的松辽盆地,华北北部的阴山-燕山地区及华北南缘、秦岭-大别-苏鲁超高压造山带至华南中部地带(图 1)。从区域上,欧亚大陆东部晚中生代伸展构造由北向南大致可以分为以下几个区域:(1)泛贝加尔-蒙古-鄂霍茨克带;(2)华北西部带;(3)华北东部及朝鲜半岛北部带;(4)华北南缘及秦岭-大别带;(5)华南中部带。不同地区伸展穹隆的构造特点既有相似性,又存在一定的差别。

1.1 白垩纪伸展穹隆构造

大量晚中生代伸展穹隆构造(变质核杂岩、岩浆穹隆、滚动枢纽构造)在贝加尔湖南、蒙古国北部和中部、中俄边境及松辽盆地北部广泛发育(Van der Beek et al., 1996; Zorin, 1999; 张晓东等, 2000; Donskaya et al., 2008; Mazukabzov et al., 2011; Wang et al., 2011a, 2012)。从其发育的构造位置来看,它们主要位于中亚造山带(CAOB)内,少量发育在西伯利亚地盾(Shield)的南缘,由NW向SE依次为Ulan-Ude(Selenga)变质核杂岩(Mazukabzov et al., 2011; Wang et al., 2011a, 2012)、Buteel-Burgutui变质核杂岩(Mazukabzov et al., 2006; Donskaya et al., 2008)、Zagan变质核杂岩(Donskaya et al., 2008)、Yablonovy变质核杂岩(Zorin, 1999)、Ereendavaa变质核杂岩(Daoudene et al., 2009, 2013)、Nartyn岩浆穹隆(Daoudene et al., 2009)、Altanshiree岩浆穹隆(Daoudene et al., 2009)、松辽盆地中央隆起和新开岭穹隆(张晓东等, 2000; 赵海滨等, 2007; 图 1)。伴随着这些中下地壳尺度上的伸展穹隆的发育,上地壳尺度上的伸展构造样式表现为发育地堑-半地堑盆地(例如:泛贝加尔盆地群、东戈壁盆地群、二连和海拉尔盆地、松辽盆地;图 1),这些盆地中充填了白垩纪陆相红色碎屑沉积(Traynor and Sladen, 1995; van der Beek et al., 1996; Lamb et al., 2008; Donskaya et al., 2008; Daoudene et al., 2009)。这些伸展构造表现为近NE-SW长轴方向的穹隆,核部杂岩由变质程度较高的岩石(变砂岩-火山岩、云母片岩及片麻状花岗质岩石)组成,并伴随有同构造花岗岩的侵入(Zorin, 1999; Donskaya et al., 2008; Daoudene et al., 2009)。穹隆边缘通常发育有超过百米厚的低角度强应变带将核部杂岩与变质程度较低的岩石分隔开来,体现了拆离断层的特点,同时,强应变带具有一致的NW-SE向矿物拉伸线理(Mazukabzov et al., 2006; Donskaya et al., 2008; Daoudene et al., 2009)。沿着NW-SE向的矿物拉伸线理,泛贝加尔-蒙古-鄂霍茨克带不同部位体现出不同的运动学特征。具有上部向SE的岩石剪切变形的伸展穹隆在其西北部发育,如贝加尔湖南部地区的Ulan-Ude变质核杂岩、Buteel-Burgutui变质核杂岩、Zagan变质核杂岩和Yablonovy变质核杂岩(Zorin, 1999; Mazukabzov et al., 2006, 2011; Donskaya et al., 2008; Wang et al., 2011a, 2012);上部向NW的运动学特征则表现在东南部的伸展穹隆中,如蒙古和俄罗斯边境地区发育的Ereendavaa变质核杂岩、Nartyn和Altanshiree岩浆穹隆(Daoudene et al., 2009, 2013)。因此,从几何学和运动学的表现上看,该区伸展构造似乎具有沿蒙古-鄂霍茨克带中部“对称性”展布的特征(图 2)。但是,对于我国境内的松辽盆地中央隆起和新开岭穹隆,目前缺乏对其周缘发育的拆离断层运动学的研究,使得这种空间分布上的“对称性”需要进一步研究和证实。

图 2 欧亚大陆东部晚中生代伸展构造时空展布图(据Lin and Wei, 2020修改) 相关40Ar/39Ar年代学资料的参考文献参见正文 Fig. 2 The spatial and temporal distribution of Late Mesozoic extensional structures (extensional dome, syntectonic plutons, detachment faults and basins) at the eastern part of Eurasia continent (modified after Lin and Wei, 2020) Geochronological data come from references that are mentioned in the text

一般地,伸展穹隆快速隆升的过程被核部杂岩的快速冷却所记录,进而可以从其冷却史推断拆离断层活动的时间或是伸展穹隆形成的时间(Lin et al., 2011a, 2013)。相应的研究结果指示130~125Ma为这些伸展穹隆构造快速冷却时间(图 3a)。这与我们在这些伸展穹隆的拆离断层带中收集到的17个黑云母40Ar/39Ar定年给出的130~122Ma的年龄范围相吻合(图 2)。这一时限可能代表着泛贝加尔-蒙古-鄂霍茨克带伸展构造发生的峰期时间,体现了这些伸展构造具有“等时性”的特点(图 2)。

图 3 欧亚大陆代表性伸展穹隆冷却史及相关年代学图解 (a)泛贝加尔-蒙古-鄂霍茨克带;(b)华北西部带;(c)华北东部及朝鲜半岛北部带;(d)华北南缘和秦岭-大别及华南中部带 Fig. 3 Cooling paths and related geochronological data from representative extensional domes at the eastern part of Eurasia continent (a) Transbaikalia-Mongol-Okhotsk belt; (b) western part of the NCC; (c) eastern part of the NCC and Korea Peninsula; (d) Qingling-Dabie belt and interior of SCB

核部杂岩折返的幅度是衡量伸展穹隆的一个重要指标。矿物平衡温压计算表明Buteel-Burgutui变质核杂岩核部含夕线石黑云角闪片麻岩形成的温压条件为T=590~640℃,P=3.2~4.0kbar,且由全岩+夕线石+黑云母Rb-Sr定年的结果为129±9.3Ma,标示角闪岩相变质作用发生时间(Izbrodin et al., 2010)。Mazukabzov et al. (2006)也进行了相似的研究,给出的变质温度较为相似(T=620~650℃),但是压力稍高(P=5.2~6.8kbar),并推断角闪岩相的峰期变质作用发生时间稍老,为134~126Ma。无论如何,以上结果均表明Buteel-Burgutui变质核杂岩的拆离正断层将位于中下地壳大约20km深的核部岩石拆离-折返至地表。相似的研究方法表明Ulan-Ude核部杂岩从超过15km(P=3.5~4.6kbar)的深度折返到了地表(Mazukabzov et al., 2006)。令人遗憾的是,蒙古-鄂霍茨克带SE部的伸展穹隆核部杂岩的折返历史缺乏相应的研究工作,但是从角闪石40Ar/39Ar体系的封闭温度可以推算Nartyn和Ereendavaa穹隆的核部杂岩在白垩纪早期(约130Ma)从超过18km的深度折返至地表(Daoudene et al., 2012, 2013)。以上数据表明,核部杂岩折返的历程具有“等深性”的特点,即由于拆离断层的作用使核部杂岩从中-下地壳的深度回返至浅表。

1.2 华北西部带白垩纪伸展穹隆构造

从内蒙古西部地区到燕辽地区西部,白垩纪伸展穹隆构造不仅发育于阴山-燕山褶冲带所代表的陆内构造带之中,同样发育在华北稳定克拉通的内部,我们命名为华北西部带(林伟等, 2013a)。由西向东依次为亚干变质核杂岩(Zheng et al., 1991; Webb et al., 1999; Wang et al., 2004)、英巴变质核杂岩(Zhou et al., 2012; Yin et al., 2017)、呼和浩特变质核杂岩(Davis et al., 2002; Davis and Darby, 2010; Guo et al., 2012)、云蒙山变质核杂岩(Zheng et al., 1988; Davis et al., 1996, 2001; 刘翠等, 2004; Zhu et al., 2015)、喀喇沁穹隆(Han et al., 2001; 王新社和郑亚东, 2005; 林少泽等, 2014; Yang et al., 2020),并包含沿太行山展布的西山(房山)同构造岩浆穹隆(Yang et al., 2005; Yan et al., 2006; Wang et al., 2011b)和紫荆关同构造岩浆穹隆等(Wang and Li, 2008; 图 1)。

华北西部带的伸展穹隆构造几何形态呈NE-SW向椭圆状(图 1)。穹隆核部主要由不同时代的斜长角闪片麻岩、变质火山岩-沉积岩及花岗岩或片麻状花岗岩组成。最为典型的特征是核部的二叠纪-侏罗纪花岗岩的边缘发育了较为明显的面理化,局部甚至糜棱岩化;而岩体内部呈块状,局部面理化或未变形(Han et al., 2001; Wang et al., 2004; Zhou et al., 2012; Yin et al., 2017)。早白垩世花岗岩体边缘则发育与拆离断层相关的高温韧性剪切变形,并被后期脆性破裂所改造,被解释为“同构造岩体”(Han et al., 2001; Wang and Li, 2008)。这些糜棱岩化岩石构成了伸展穹隆边缘不同厚度的糜棱岩带(米级到百米级不等),糜棱岩面理呈中-低角度倾角,并使不同变质级别和年代相差很大的岩石并置在一起,显示出了典型拆离断层的特点(Davis et al., 1996, 2002; Webb et al., 1999; Wang et al., 2004, 2011a; Davis and Darby, 2010; Lin and Wang, 2006)。其典型特征是与伸展穹隆相关的拆离断层中发育了一致的NW-SE向矿物拉伸线理(喀喇沁穹隆除外, Wang et al., 2011a; 林伟等, 2013a)。拆离断层的上盘主要由未变质的二叠纪-侏罗纪火山岩和沉积岩构成(Davis et al., 1996; Han et al., 2001; Wang et al., 2004; Davis and Darby, 2010; Guo et al., 2012)。浅部高角度正断层叠加在韧性剪切带之上,使穹隆核部杂岩和拆离断层中的岩石发生破碎并充填在早白垩世上叠半地堑盆地(supradetachment basin)之中,值得指出的是,这些盆地主要分布在伸展穹隆的SE侧(Ren et al., 2002; Meng et al., 2003; Meng, 2003; Lin and Wang, 2006; 图 1)。

伸展过程中的不均一性在华北西部带晚中生代伸展构造中表现最为突出。拆离断层常表现为NE-SW向的“弧形(arching)构造”,表明拆离断层在核部杂岩的折返过程中发生弯曲(Davis et al., 2002; 图 1),这一特征在内蒙阿拉善地区的亚干穹隆、英巴穹隆和大青山地区的呼和浩特穹隆中表现最为典型。具体表现为拆离断层分布在这些穹隆的NW翼和SE翼,且发育NW-SE向矿物拉伸线理。沿此线性构造,岩石表现出较一致的运动学特征,亚干和呼和浩特穹隆表现为上部向SE的剪切变形(Webb et al., 1999; Davis et al., 2002; Wang et al., 2004; Guo et al., 2012; 图 1),而英巴穹隆却体现了上部向NW的运动学特点(Zhou et al., 2012; Yin et al., 2017; 图 1)。与上述穹隆构造不同,位于更东部的云蒙山穹隆具有单侧拆离的特点,其拆离断层仅在SE翼发育,具有NW-SE向的矿物拉伸线理和上部指向SE的运动学特征(Davis et al., 1996, 2001; Lin and Wang, 2006; 图 1)。此外,虽然喀喇沁穹隆同样具有单侧拆离的特点,但其东缘的拆离断层发育与穹隆的延伸方向近直交的NE-SW向的矿物拉伸线理和上部指向NE的剪切变形(Han et al., 2001; 王新社和郑亚东, 2005)。

亚干穹隆边缘强应变带中糜棱岩产出的黑云母具有129~126Ma的40Ar/39Ar年龄(Webb et al., 1999; Wang et al., 2012),与核部杂岩的快速冷却时间(130~125Ma)相吻合,代表了拆离断层的发育时间(Wang et al., 2012; 林伟等, 2013a; 图 2图 3b)。英巴穹隆拆离断层中仅有132~117Ma的白云母40Ar/39Ar年龄报道,单一种类的矿物定年和宽泛的年龄结果很难揭示穹隆快速冷却的过程(Zhou et al., 2012; 图 2)。呼和浩特穹隆拆离断层给出了122~119Ma的40Ar/39Ar年龄,代表了穹隆在折返过程中的快速冷却时代(Davis et al., 2002; Davis and Darby, 2010; Guo et al., 2012; 林伟等, 2013a; 图 2图 3b)。此外,喀喇沁穹隆、西山穹隆和紫荆关穹隆也分别记录了134~125Ma、133~125Ma和129~128Ma的的快速冷却过程(Zhang et al., 2002a; 王新社和郑亚东, 2005; Wang and Li, 2008; 纪新林等, 2010; Wang et al., 2011b; 图 2图 3b)。总体而言,以上年代学工作揭示了位于华北西部带的伸展穹隆形成峰期为130~120Ma,体现了“等时性”的特征,并不具有向SE变年轻的趋势(Wang et al., 2012)。

云蒙山伸展穹隆核部晚侏罗世闪长岩和花岗闪长岩的温压条件计算结果为T=662~772℃,P=6~12kbar,表明其侵位深度在21~42km(张家声等, 2007)。此外,前人通过计算获得云蒙山伸展穹隆东侧糜棱岩的变形条件为T=450~630℃,P=4.3~6.9kbar(张慧等, 2018)。结合以上结果,我们认为云蒙山伸展穹隆东部的拆离正断层将位于中下地壳15~25km的岩石折返至地壳。显微构造观察、石英c-轴组构分析和二长石温度计计算指示了英巴穹隆西北缘韧性剪切带的变形温度为400~650℃,以33℃/km的正常地温梯度为参照,英巴穹隆拆离断层的发育深度为12~19km(Yin et al., 2017)。尽管呼和浩特伸展穹隆缺乏相关的温压计算,但是冷却曲线表明其在早白垩世(122~119Ma)从角闪石40Ar/39Ar体系的封闭温度(约550℃)快速冷却至黑云母40Ar/39Ar体系的封闭温度(约350℃),同样揭示了核部岩石从超过18km的深度折返至近地表(Davis et al., 2002; Davis and Darby, 2010; 林伟等, 2013a; 刘江等, 2014)。基于Al角闪石压力计的分析,西山(房山)同构造岩浆穹隆核部早白垩闪长岩和花岗闪长岩的结晶压力为2.5~4.5kbar,对应于9~16km的侵位深度(张哲坤, 2020)。同样地,针对紫荆关同构造岩浆穹隆核部晚三叠世中-基性捕掳体开展的Al角闪石压力计工作揭示其结晶压力为3.8~6.3kbar,表明早白垩世岩体侵位时将位于13~22km的中-基性岩包裹其中(翟媛媛等, 2014)。以上结果说明华北西部带伸展穹隆核部杂岩的折返同样具有“等深性”的特点,即在伸展构造的作用下使得中-下地壳的岩石折返至近地表。

1.3 华北东部及朝鲜半岛北部带白垩纪伸展穹隆构造

华北东部带指分布在郯庐断裂附近和朝鲜半岛北部地区的伸展穹隆构造,由北向南依次为辽西地区的医巫闾山变质核杂岩(Darby et al., 2004; Lin et al., 2013)、辽东中部的岫岩岩浆穹隆(Lin et al., 2007, 2011b)、古道岭和饮马湾山同构造岩浆穹隆(关会梅等, 2008)、辽南变质核杂岩(Liu et al., 2005a; Yang et al., 2007)、朝鲜北部的Nampho穹隆(同构造岩浆穹隆,Wu et al., 2007a)、山东半岛的玲珑-郭家岭穹隆(Wu et al., 2020)、鹊山伸展穹隆(夏增明等, 2016)及胶南滚动枢纽构造(Lin et al., 2015; 图 1)。这些长轴呈NE-SW向展布的伸展穹隆核部主要由新太古代-古元古代片麻岩、云母片岩及不同程度面理化的中生代花岗岩组成。胶南穹隆内部主要由经历了晚三叠世高压-超高压变质的片麻岩和榴辉岩组成。这些伸展穹隆核部均被早白垩世岩浆岩侵入,岩体表现为不同程度的面理化,具有“同构造岩体”的特征(Zhai et al., 2004; 杨进辉等, 2008; Lin et al., 2011b)。在穹隆边缘,面理化甚至糜棱岩化岩石构成的低角度强应变带将核部杂岩同未变质-浅变质的沉积岩分隔开来,被认为是拆离断层(Yin and Nie, 1996; Liu et al., 2005a; Lin et al., 2007, 2008, 2013, 2015; Charles et al., 2011, 2012; Wu et al., 2020; Meng and Lin, 2021)。早白垩世地堑-半地堑阜新-义县盆地、瓦房店盆地和胶莱盆地构成了NW侧与伸展穹隆相耦合的上叠盆地(李思田, 1988; 图 1)。

与华北西部带一样,东部带的伸展穹隆也体现出了不均一性。在最北部的医巫闾山穹隆中,拆离断层表现出明显的单侧拆离的特征,即以中等-缓倾面理、NW-SE向的矿物拉伸线理和上部向NW的剪切指向为特征的强应变带仅发育在穹隆NW翼(Lin et al., 2013)。尽管南部的辽南穹隆和岫岩穹隆边缘的韧性剪切带也具有NW-SE向的矿物拉伸线理和上部向NW的剪切变形,但其分布于二者的NW翼和SE翼,体现了拆离断层呈“弧形(arching)构造”的特征(Lin and Wang, 2006; Lin et al., 2007, 2008; 林伟等, 2013a; 图 1)。位于胶东半岛的玲珑-郭家岭穹隆的SE翼和NNW翼均有糜棱岩带的出露,且均具有NW-SE向的矿物拉伸线理,但运动学截然相反(Charles et al., 2011; Wu et al., 2020)。穹隆SE翼拆离断层具有上部向SE的运动学特征; 而NNW翼早白垩世郭家岭花岗岩发育上部向NW的剪切变形,体现了同构造岩体的特征(Charles et al., 2011)。鹊山穹隆和胶南滚动枢纽构造表现出单侧拆离的特点,即拆离断层仅在穹隆西缘发育,表现为近水平的面理、NW-SE向的矿物拉伸线理和上部向NW的剪切变形(Lin et al., 2015; 夏增明等, 2016; Meng and Lin, 2021)。从几何学和运动学上看,华北东部带和西部带的伸展穹隆构成非常“完美”的镜像对称,体现出区域上的“对称性”。几何学的“对称性”表现为华北西部带的拆离断层及相关的上叠盆地多数发育在伸展穹隆的SE翼,而在华北东部带,其主要发育在伸展穹隆的NW翼;运动学的“对称性”体现为华北西部带多数伸展穹隆具有上部向SE的剪切变形,东部带伸展穹隆则以上部向NW的剪切变形为主(Charles et al., 2011, 2012)。

医巫闾山穹隆西缘糜棱岩40Ar/39Ar年代学研究表明其在125~120Ma经历了一个明显的快速冷却过程,揭示了伸展穹隆的折返历史(Zhang et al., 2002b; Darby et al., 2004; 张岳桥等, 2012; Lin et al., 2013; 图 2图 3c)。岫岩穹隆边缘强应变带中糜棱岩的白云母和黑云母40Ar/39Ar年龄为130~122Ma(林伟等, 2011)。40Ar/39Ar年代学研究也揭示了辽南穹隆经历了118~110Ma的快速冷却过程(Lin et al., 2011a; 图 3c)。郭家岭岩体的榍石U-Pb和黑云母40Ar/39Ar年龄分别为130Ma和120Ma,反映了其同构造侵位过程中的快速冷却(Charles et al., 2013; Jiang et al., 2016; 图 3c)。玲珑穹隆SE翼糜棱岩中含K矿物40Ar/39Ar年代学结果也记录了该穹隆在130~120Ma的快速冷却历史(Charles et al., 2013; Yang et al., 2014; 图 3c)。胶南背形带中已有的40Ar/39Ar定年也给出了128~115Ma的结果,代表了穹隆折返过程中的快速冷却(图 3c)。通过对上述东部带伸展穹隆年代学结果的统计与分析,这些穹隆似乎经历了130~120Ma和118~110Ma两期冷却过程(图 2),且早期伸展构造发生的时代具有“等时性”的特点(图 1)。

矿物平衡温压计算指示辽南穹隆边缘卷入韧性变形的侏罗纪花岗闪长岩的结晶温度和压力分别为T=569±8℃、P=8.7±0.4kbar,表明该岩体侵位深度为29~32km,并由早白垩世拆离断层折返至近地表(Lin et al., 2011a)。古道岭穹隆边部糜棱岩中新生矿物(角闪石)的出现指示了岩体韧性变形过程中伴随着角闪岩相变质作用,也表明其边缘的拆离断层发育于中下地壳层次(杨进辉等, 2008)。基于矿物平衡温压计算,玲珑-郭家岭穹隆核部晚侏罗世黑云母二长花岗岩和早白垩世似斑状花岗闪长岩的结晶压力分别为3~4kbar和4.2~5.4kbar,分别对应于10~15km和15~19km的侵位深度;同样地,位于鹊山穹隆核部的晚侏罗世黑云母二长花岗岩的结晶压力为3~4kbar,对应于10~15km的侵位深度(张华锋等, 2006; 豆敬兆等, 2015; 赛盛勋等, 2016; Dou et al., 2018)。这些结果表明玲珑-郭家岭穹隆和鹊山穹隆边缘早白垩世拆离断层的活动使得位于中地壳的花岗岩体折返至近地表。位于胶南拆离断层下盘的榴辉岩的锆石U-Pb年龄表明超高压变质作用发生在晚三叠世(232~208Ma; Leech et al., 2006),早白垩世的年龄也为金红石的U-Pb定年所揭示(Lin et al., 2015)。鉴于金红石U-Pb体系的封闭温度为500~600℃,该榴辉岩被认为在早白垩世之前位于中-下地壳(15~20km),随后被早白垩世胶南拆离断层折返至近地表(Lin and Wei, 2020)。依据医巫闾山穹隆西缘韧性剪切带(拆离断层)中-低温(300~400℃)的变形温度及其角闪石、白云母40Ar/39Ar封闭温度和年代学结果,我们认为其同样形成于中地壳尺度(~15km; Lin et al., 2013)。以上数据表明“等深性”的特征在华北东部带同样表现鲜明。

1.4 华北南缘及秦岭-大别带白垩纪伸展穹隆构造

与其他带的伸展构造不同的是,华北南缘及秦岭-大别带中展布的伸展穹隆总体呈椭圆状,沿WNW-ESE方向延伸,由NW向SE依次为小秦岭变质核杂岩(Zhang et al., 1996)、熊耳山岩浆穹隆(王志光和张录星, 1999)、桐柏山变质核杂岩(许光和王二七, 2010; Cui et al., 2012)和北大别变质核杂岩(Wang et al., 1998, 2011c; 冀文斌等, 2011; 图 1)。其中,小秦岭和熊耳山穹隆发育在华北克拉通之上,而桐柏山和北大别穹隆发育在高压-超高压造山带之中(图 1)。

以上穹隆核部由变质程度较高的岩石组成,主要包括变沉积-火山岩、花岗质片麻岩、混合岩和少量榴辉岩,并发育大量早白垩世花岗质岩石。伸展穹隆周缘则主要出露浅变质-未变质的沉积岩,并以较厚的糜棱岩带与核部杂岩所分隔。糜棱岩带具有使不同变质级别岩石并置的特征,故而被解释为伸展穹隆的拆离断层(Zhang et al., 1996; Wang et al., 2011c; 冀文斌等, 2011)。平行于穹隆长轴方向的NW-SE向矿物拉伸线理广泛分布于强应变带的糜棱岩中,记录了区域伸展方向(图 1),且体现了上部指向NW的运动学特征(Zhang et al., 1996; 许光和王二七, 2010; Wang et al., 2011c; 冀文斌等, 2011; Cui et al., 2012)。伴随着伸展穹隆的形成,浅部层次发育的早白垩世半地堑盆地也沿着伸展穹隆的周缘展布,并充填了红色陆相碎屑岩(许光和王二七, 2010; 冀文斌等, 2011)。从运动学的角度来看,华北南缘及秦岭-大别带伸展穹隆表现出的上部向NW的剪切变形与华北东部带及泛贝加尔-蒙古-鄂霍茨克带SE部具有很好的一致性,但并未表现出其余两带具有的“对称性”特点。

在华北南缘及秦岭-大别带中获得的绝大多数早白垩世年龄被认为是超高压造山带晚期热事件的重置(Ratschbacher et al., 2000及相关的参考文献)。但是,目前越来越多的学者将其与东亚地区早白垩世的伸展构造相对应(Wang et al., 2011c; Ji et al., 2014, 2017, 2018)。结合我们与前人的构造地质学和年代学研究,小秦岭、桐柏山和北大别穹隆均记录了伸展方向相似、构造层次截然不同的两期伸展事件(图 3d):早期(142~130Ma)伸展构造以伸展穹隆为表现形式,且伴随着混合岩和岩浆岩的发育,代表了中地壳尺度的伸展(许光和王二七, 2010; 冀文斌等, 2011; Lin et al., 2015; Ji et al., 2017; Li et al., 2020); 晚期(110~100Ma)滚动枢纽构造形成于较浅的地壳层次,与郯庐断裂的脆性正断层形成于统一的构造背景(Ratschbacher et al., 2000)。同时,早期伸展穹隆构造同华北东西部带及泛贝加尔-蒙古-鄂霍茨克带内发育的伸展穹隆一样,也表现出“等时性”的特点,进一步说明这一巨型伸展体系的广域性(图 2图 3d)

北大别伸展穹隆核部出露的岩石主要为早白垩世花岗岩和混合岩,以及晚三叠世的高压-超高压榴辉岩(Liu et al., 2005b)。其中,榴辉岩中金红石的U-Pb年龄为130~127Ma(李秋立等, 2013);麻粒岩相的变质作用在榴辉岩中也有体现(Liu et al., 2005b)。依据以上特征,我们认为榴辉岩在晚三叠世处于中-下地壳(25~30km),随后在早白垩世伸展构造的作用下折返至近地表。同时,Ratschbacher et al. (2000)利用角闪石压力计获得了北大别穹隆核部早白垩世花岗岩的结晶压力为5.1kbar左右,也说明了拆离断层将位于中地壳尺度(18km)的岩体折返至地表。桐柏穹隆核部混合岩的年龄为135~131Ma,表明核部岩石在早白垩世处于中下地壳尺度,并发生过深熔作用(刘晓春等, 2011; 林伟等, 2013b)。同时,混合岩中包裹了一定数量的晚三叠世退变榴辉岩,角闪岩相退变质的温压条件为T=600~700℃、P=8~10kbar(Liu et al., 2010; 刘晓春等, 2011),暗示榴辉岩在晚三叠世(232~220Ma)折返至中-下地壳(28~35km)的位置,随后在早白垩世伸展构造的作用下折返至近地表。综合以上结果,分布于华北南缘及秦岭-大别带内的穹隆构造也体现出了“等深性”的特征。

1.5 华南中部带白垩纪伸展穹隆构造

与华北克拉通一样,华南在晚中生代处于岩浆活动的峰期,反映了区域性的伸展(Li et al., 2007)。但前人对华南地区晚中生代伸展构造关注较少,主要集中在同构造岩浆穹隆和拉张程度有限的伸展盆地,而代表强烈伸展作用的变质核杂岩鲜有报道(舒良树和周新民, 2002; 舒良树等, 2004; 舒良树和王德滋, 2006; 张岳桥等, 2012及其相关的参考文献)。同时,华南中部带也有伸展穹隆构造为学者所关注,由北向南依次为洪镇伸展穹隆(Zhu et al., 2010)、庐山同构造岩浆底劈穹隆(Lin et al., 2000)、大云山滚动枢纽构造(Ji et al., 2018)、连云山穹隆(Li et al., 2016)、衡山滚动枢纽构造(张岳桥等, 2012; Li et al., 2013; Wei et al., 2016)、浒坑同构造岩浆穹隆(Faure et al., 1996)、邓阜仙穹隆(宋超等, 2016; Wei et al., 2018)和越城岭穹隆(Chu et al., 2019, 2020)。这些伸展穹隆在华南中部带的郴州-临武断裂附近分布,展布区域由北向南逐渐变窄,整体呈现出一个向NE开口的“V”型,表明华南晚中生代伸展构造分布的区域向SW逐渐变小(图 1)。

华南中部带多数伸展穹隆呈长轴为NE-SW向的近椭圆状(除大云山穹隆长轴呈NW-SE向以外,图 1)。穹隆核部岩石主要为花岗质片麻岩,少量元古界浅变质沉积岩,并被晚志留世到早白垩世的花岗岩侵入(Lin et al., 2000; Zhu et al., 2007; 张岳桥等, 2012; Wei et al., 2016, 2018; Ji et al., 2018; Chu et al., 2019, 2020)。核部岩石的边缘存在不同程度的面理化,而内部面理化较弱或未变形(Faure et al., 1996; 喻爱南等, 1998; 张岳桥等, 2012; Li et al., 2013; Wei et al., 2016)。华南中部带的伸展穹隆具有单侧拆离的特点,除邓阜仙穹隆的拆离断层发育在SE翼以外,其余穹隆的拆离断层主体上分布在穹隆的NW翼(图 1)。与其它构造带相比,该带内伸展穹隆边缘的强应变带只有几米到十几米厚,反映了其有限的发育规模。典型的拆离断层在连云山穹隆、邓阜仙穹隆和庐山穹隆的边缘发育不明显,这些穹隆主体发育形成于较浅地壳层次的正断层或低温的上部向NW的滑脱构造(Lin et al., 2000; Li et al., 2016; Wei et al., 2018)。大多数的伸展穹隆具有NW-SE向矿物拉伸线理和上部向NW或W的运动学特征(Faure et al., 1996; 张岳桥等, 2012; Li et al., 2016; Wei et al., 2016; Ji et al., 2018)。洪镇穹隆和浒坑岩浆穹隆较为特殊,二者发育NE-SW向的矿物拉伸线理和上部向S或SW的剪切变形,似乎表明NE-SW向伸展也在该带局部发育(Faure et al., 1996; 舒良树等, 1998; Zhu et al., 2007, 2010; 图 1)。伴随着有限拉张的同构造岩浆穹隆和局部发育的拆离断层之外,穹隆的NW侧常分布有规模有限的早白垩世半地堑盆地,盆地受控于东部的正断层,并充填了典型的红色的陆相碎屑岩(Ren et al., 2002; 张岳桥等, 2012)。早白垩世伸展幅度的不均一性在华南中部带具有明显的表现。华南中部带西部的大云山-幕阜山、衡山和越城岭等伸展穹隆,其边缘发育的拆离断层说明伸展幅度较大(Li et al., 2016; Ji et al., 2018; Chu et al., 2019)。伸展幅度向东减弱,华南中部带东部较浅层次伸展构造的发育证明了这一点。其中,庐山穹隆为经历复杂演化的岩浆底辟和低温的顺层拆离-滑脱构造(Lin et al., 2000),浒坑岩浆穹隆为典型的同构造花岗岩(Faure et al., 1996),邓阜仙穹隆东部的强应变带表现出脆-韧性剪切的特点(Wei et al., 2018)。从几何学的角度来看,华南中部带的伸展穹隆均未体现出“弧形”拆离断层的特征,似乎表明了该带的伸展幅度十分有限。从运动学的角度来看,上部向NW的剪切变形同华北南缘及秦岭-大别带具有很好的一致性,但并没有表现出典型的“对称性”特点。

年代学研究表明华南中部带在晚中生代发育了两期伸展构造,其发育时间分别为140~125Ma和110~80Ma。庐山穹隆中的126Ma同构造岩浆活动代表了早期伸展,而其东部韧性剪切带40Ar/39Ar年龄为98Ma,代表了更晚期的伸展(Lin et al., 2000; 图 3d)。洪镇穹隆西缘强应变带中糜棱岩的白云母40Ar/39Ar定年结果为126Ma,代表了拆离断层的形成时间(Zhu et al., 2007, 2010; 图 2)。大云山穹隆的年代学研究表明其存在两期冷却过程,分别发生在132Ma和95Ma左右(图 3d),西缘韧性剪切带黑云母和白云母40Ar/39Ar定年给出了109~92Ma的年龄结果(Ji et al., 2018)。连云山西部变形岩石白云母和钾长石40Ar/39Ar定年分别给出了128Ma和92Ma的结果,似乎暗示了该穹隆经历了两阶段的冷却过程(Li et al., 2016; 图 2)。依据锆石U-Pb和云母40Ar/39Ar的年代学研究,两期冷却过程在更南部的衡山地区也表现明显,其发育时间分别为~136Ma和~90Ma。值得指出的是,衡山穹隆晚期伸展构造发育的时间(108~86Ma)也为拆离断层中白云母和黑云母40Ar/39Ar定年结果所揭示(Li et al., 2013; 图 3d)。浒坑穹隆边缘的糜棱岩则给出了一个131.7±1.7Ma的40Ar/39Ar年龄(Faure et al., 1996; 舒良树等, 1998),指示了同构造岩体就位的时间(图 2)。越城岭穹隆同样表现为两期伸展构造,其中穹隆东缘的韧性剪切带中记录了140~120Ma的中低温韧性变形(~350℃),而穹隆西部的拆离断层记录了晚期(100~85Ma)的中温韧性变形(400~500℃; Chu et al., 2019; 图 2)。综合以上年代学特征,华南中部带早期伸展构造发育的峰期大致为130~120Ma,与其他构造带的伸展穹隆一致,体现出了“等时性”的特征。晚期伸展构造的发育时间则随空间展布发生变化,即从庐山、大云山、连云山、衡山、邓阜仙至越城岭穹隆,晚期伸展构造的时间呈现出从NE向SW逐渐变年轻的特征(图 2)。

在华南中部带,衡山穹隆西缘和越城岭穹隆西缘的韧性剪切带变形温度均为400~500℃,暗示拆离断层形成于中地壳尺度(Li et al., 2013; Chu et al., 2019)。通过角闪石压力计获得的大云山穹隆内部晚侏罗世花岗闪长岩(幕阜山岩体)的结晶压力约为4.05kbar,大致对应14km的侵位深度(邹慧娟等, 2011)。尽管华南中部带关于穹隆折返过程的数据有限,但是典型的早白垩世伸展构造(如衡山、越城岭和大云山穹隆)同样具有“等深性”的特征,即伸展构造的发育使得中下地壳的岩石折返至近地表。

2 白垩纪两期伸展构造的识别和表现——以北大别穹隆为例

从已有的年代学数据来看,华北东部带、秦岭-大别带和华南中部带发育的早白垩世伸展穹隆明显经历了两期伸展构造,即早白垩世早期(130~120Ma)和早白垩世晚期-晚白垩世早期(118~85Ma)。如何从伸展穹隆的几何学和运动学的角度来区分这两期构造事件,前人对此的研究程度并不高。因此,我们以北大别穹隆为例,结合我们开展的构造解析工作和前人已有年代学数据对穹隆中记录的两期伸展构造进行简要概述。

大别山地体中部被混合岩-片麻岩(称之为北大别杂岩,残留有高压-超高压变质岩石)以及大规模早白垩世花岗岩体所占据,在几何学形态上形成地壳尺度上的穹隆构造,即北大别穹隆(王国灿和杨巍然, 1996; Wang et al., 1998, 2011c; Xu et al., 2001; 侯泉林等, 2007)。详细的野外及室内构造分析表明,北大别穹隆为我国东部伸展构造区少见的科迪勒拉型变质核杂岩,穹隆的两翼发育非常完整的拆离断层,形成于欧亚大陆东部总体的NW-SE向伸展构造体制(图 4; Hacker et al., 1998; Ratschbacher et al., 2000)。

图 4 大别山早白垩世伸展穹隆的构造要素和运动学图解(据Ji et al., 2017修改) XMF:晓天-磨子潭断裂;SMF:商-麻断裂;SWF:水吼-五河剪切带;XSF-N和XSF-S:浠水剪切带北支和南支;XGF:襄樊-广济断裂;UHP:超高压单元;HP:高压单元;SS:宿松群;ZBL:张八岭群 Fig. 4 The structural elements with kinematics of the Early Cretaceous extensional dome in the Dabieshan (modified after Ji et al., 2017) XMF: Xiaotian-Mozitan fault; SMF: Shangchang-Machang fault; SWF: Shuihou-Wuhe fault; XSF-N and XSF-S: north-Xishui fault and south-Xishui fault; XGF: Xiangfan-Guangji fault; UHP: Ultra-high pressure metamorphic unit; HP: High pressure metamorphic unit; SS: Susong Group; ZBL: Zhangbaling Group

北大别杂岩的混合岩化程度总体上从穹隆边部向核部增强,而变形程度则由穹隆核部向边部增强,核部岩石主要表现出部分熔融状态下的塑性流变特征,而边部则发育强烈的片麻理及糜棱岩化。早白垩世的拆离断层体系环绕北大别杂岩发育,包括北界的晓天-磨子潭断裂(XMF),西界的商-麻断裂(SMF),东南界的水吼-五河断裂(SWF)以及西南界呈马尾状的浠水断裂(分为北支XSF-N和南支XSF-S)。这些具拆离断层性质的边界断裂或剪切带虽不同程度受到晚期脆性变形的叠加,但其早期韧性变形均表现为一致的NW-SE向矿物拉伸线理和上部指向NW的运动学(图 4)。

相关年代学研究表明,晓天-磨子潭断裂和水吼-五河断裂韧性变形主要发生在142~130Ma,而商-麻断裂则可能经历了~131Ma和~108Ma两期韧性变形(Wang et al., 2011c; Ji et al., 2017及其参考文献)。值得指出的是,商-麻断裂中段的白鸦山花岗岩于~120Ma侵入到糜棱岩化-片麻岩化的早白垩世早期混合岩之中,同时白鸦山岩体的西部边缘也发生了糜棱岩化,内部则未变形,明确指示了该断裂在岩体侵位之前和之后均发生过韧性剪切活动。正是白鸦山花岗岩同构造侵位的表现使我们认识到虽然两期伸展构造均为NW-SE向,但是从同位素年代学上可以很好地区分出变形期次。类似地,尽管浠水剪切带北支XSF-N和南支XSF-S具有相同的运动学特点,但总体上北支表现出比南支更深的构造变形层次,因而两者在活动时间上可能存在先后次序。同时,从北大别杂岩到南大别超高压片麻岩单元韧性变形的温压条件也具有降低的趋势。结合年代学研究结果,我们推断浠水剪切带北支XSF-N的韧性变形发生在125Ma之前,而南支XSF-S的活动时间约为112~102Ma(Ji et al., 2017)。热演化史研究也显示出北大别伸展穹隆的快速冷却及折返主要发生在130~120Ma,并在约105Ma经历了晚期的抬升和冷却(图 3d)。此外,北大别伸展穹隆的形成过程中伴随着大量的岩浆活动,依据年代学和地球化学研究可大致将其分为两期(Wang et al., 2007; Xu et al., 2007, 2013; Zhao et al., 2007, 2011a; He et al., 2011): 早期的花岗岩类(143~130Ma)叠加了不同程度的变形, 多具埃达克质特征,从地球化学的角度似乎暗示着加厚下地壳部分熔融成因;晚期岩浆作用(130~115Ma)以未变形的块状花岗岩类和一定程度的基性-超基性岩侵入体为主,似乎对应着地球化学家所倾向于解释的造山带山根垮塌后软流圈上涌的响应(Zheng et al., 2011)。同样地,两期部分熔融事件也为广泛发育在北大别中~140Ma和~125Ma的混合岩化作用所揭示,对应于上述两期岩浆事件(Wu et al., 2007b)。

考虑到北大别穹隆及其拆离断层系具有协调一致的构造特点,我们认为该穹隆两期伸展构造共用了部分早期拆离断层,并有新生拆离断层的形成。从构造解析的角度,我们推断早白垩世早期北大别所代表的中国东部伸展构造带中,中地壳存在一近水平的强应变带(拆离面)。其构成了早白垩世早期部分熔融并塑性流动的中下地壳物质与上部早中生代折返的高压/超高压变质岩(榴辉岩相岩石)之间的间断面。具体表现为早期(145~130Ma)高温条件下的近水平拆离,代表了北大别穹隆的主期变形;在核部杂岩折返过程中,拆离面发生了弧形褶曲从而形成环绕北大别杂岩的拆离断层系。在晚期(110~90Ma)递进变形过程中拆离断层系还可能发生了调整或二次拆离,具体表现为商麻断裂晚期韧性变形的发育和浠水剪切带南支XSF-S的形成。

我们将大别山伸展作用所表现的穹隆构造划分为两个阶段。(1)大别山地区NW-SE向伸展构造可能始于~145Ma,附带有大规模混合岩化并伴随埃达克质岩浆岩的侵位;同时,近水平的拆离面在中地壳尺度发育,表现为中高温韧性剪切变形,并使得核部杂岩发生快速折返。(2)在120Ma之后,晚期的地壳均衡调整作用可能还导致了部分拆离断层系的二次活动及较浅层次拆离断层的发育。其中,白鸦山同构造岩体的侵位使我们认识到穹隆西部的商-麻韧性剪切带是两期拆离断层共同作用的结果。浠水剪切带的南北分支及其不同的冷却年龄也使我们认识到伸展穹隆核部杂岩的年代学数据是区分两期伸展构造的有效方法。

3 白垩纪两期伸展构造时空展布特点

在欧亚大陆东部晚中生代伸展穹隆中,绝多数呈NE-SW向展布并发育NW-SE向的矿物拉伸线理,记录了广域的NW-SE向的伸展构造,反映了伸展构造空间展布的“一致性”(Ratschbacher et al., 2000; Wang et al., 2011a)。通过区域上含K矿物40Ar/39Ar冷却年龄的统计,早期的伸展穹隆在形成时间上具有“等时性”的特征,即主要集中在130~120Ma(图 2图 3)。华北克拉通及周缘地区所代表的欧亚大陆东部大规模的岩浆作用也发生在这一阶段,显示其岩石圈尺度的动力学过程(Wu et al., 2005)。正如我们近期研究工作所表明的那样:早期伸展穹隆在几何学和运动学上存在“对称性”拆离的特点。在伸展构造域最北部的泛贝加尔-蒙古-鄂霍茨克带,这种“对称性”表现为向NW拆离(运动学特征为上部指向SE)的伸展穹隆主要分布在伸展构造带NW部的贝加尔湖及贝加尔盆地群地区,伸展构造带SE部的俄蒙边境地区及蒙古国中部地区的伸展构造则表现为上部向NW的剪切变形(图 1)。似乎沿蒙古-鄂霍茨克断裂带具有“轴对称拆离”的构造表现(图 1)。从这个角度分析,蒙古-鄂霍茨克断裂带并不能直接代表西伯利亚板块同蒙古微陆块之间的缝合带。华北西部带多数伸展构造相关的拆离断层和上叠盆地发育在穹隆的SE翼,并具上部向SE的剪切变形(图 1)。相反,华北东部及朝鲜半岛北部带伸展穹隆的拆离断层和上叠盆地多数位于穹隆的NW翼,运动学特征为上部指向NW(图 1)。这种伸展构造的变化沿渤海湾盆地中残余的白垩纪盆地、阜新盆地、松辽盆地呈现“对称性”展布并体现了相反的拆离方向(图 1)。与同期伸展构造相关的拆离断层上叠盆地也沿轴线“对称”展布。这种“对称性”同样表现在拆离断层的构造几何学的空间展布上,具有单侧拆离特征的“旋转枢纽”构造发育在靠近对称中心的穹隆边缘(如医巫闾山和云蒙山),而具有弯曲“弧形构造”的拆离断层发育稍远的位置(如位于西部带的呼和浩特、英巴、亚干穹隆和东部带的岫岩、辽南穹隆)。总体而言,东亚晚中生代伸展穹隆呈面状分布,具有“对称性”、“等时性”及“等深性”的特点(Lin and Wang, 2006)。相反南部伸展构造域(华北南缘-秦岭-大别带-华南中部)并没有表现出上述讨论的“对称性”,这似乎体现了欧亚大陆东部早白垩世早期这个巨型的伸展构造发育的核心构造部位位于北部伸展构造域(泛贝加尔-蒙古-鄂霍茨克带、华北西部带和华北东部-朝鲜半岛北部带)。向S或SW伸展构造体现出伸展幅度和范围减弱的趋势,华南中部带向NE开口的“V”型伸展构造展布区为其具体的表现(图 1图 2)。

华北东部晚期的伸展穹隆主要形成于118~110Ma,而且与早期伸展构造相比,伸展的幅度明显减弱,主要表现为岩浆穹隆,如古道岭、海阳和韦德山岩浆穹隆(图 1图 2)。秦岭-大别带的晚中生代伸展穹隆具有100~90Ma的快速冷却过程,也指示了晚期伸展构造的叠加(图 2图 3)。从岩石变形所代表的构造深度上看,早期伸展构造可以认为发育在中地壳或中下地壳尺度;而晚期伸展发生在上地壳或中上地壳的构造部位,表现为脆-韧性的滚动枢纽构造;同时伸展发生的幅度也明显弱于早期的表现。华南中部带晚期伸展穹隆的发育时间主要集中在100~85Ma(图 2图 3)。与秦岭-大别带不同的是,华南中部带的晚期伸展构造似乎比早期伸展构造层次更深,伸展的幅度更大,如越城岭穹隆(Chu et al., 2019, 2020)。总体而言,古道岭穹隆晚期伸展时间为118~114Ma,辽南穹隆拆离断层晚期活动的时间为118~110Ma;胶东半岛北部的玲珑穹隆中郭家岭同构造花岗岩黑云母给出了103Ma的冷却年龄(胡世玲等, 1987),而更南部的胶南伸展背形构造黑云母给出了100Ma的冷却年龄(李锦轶等, 2004)。继续向南,北大别、桐柏山穹隆晚期伸展的时间在100Ma左右,体现了更加年轻的特点(图 1图 2)。在华南中部带,从拆离断层的冷却年龄来看,大云山、连云山、衡山和越城岭穹隆晚期伸展构造发育的时间分别为95Ma、92Ma、90Ma和88Ma,体现了向SW逐渐变年轻的趋势(图 2图 3)。总体而言,不同于早期伸展穹隆表现出“等时性”的特点,晚期伸展穹隆的发育时间具有自辽东半岛向华南中部带逐渐变年轻的趋势(图 5)。

图 5 欧亚大陆东部早白垩世晚期-晚白垩世早期伸展穹隆时空迁移图解 箭头指示穹隆年龄向SW变年轻,东北地区块体旋转参见Lin et al. (2003). Gdl:古道岭穹隆;LN:辽南穹隆;Gjl:郭家岭穹隆;Hy:海阳穹隆;Wds:韦德山穹隆;Jn:胶南穹隆;Tbs:桐柏山穹隆;Bdb:北大别穹隆;Dys:大云山穹隆;Lys:连云山穹隆;Hs:衡山穹隆;Ycl:越城岭穹隆 Fig. 5 The spatial and temporal migration of late stage of Early Cretaceous to early stage of Late Cretaceous extensional domes at the eastern part of Eurasia continent The arrow showing the southwestward younging of the ages of domes, the block rotation modified from Lin et al. (2003), Gdl: Gudaoling dome; LN: Liaonan dome; Gjl: Guojialing dome; Hy: Haiyang dome; Wds: Weideshan dome; Jn: Jiaonan dome; Tbs: Tongbaishan dome; Bdb: Beidabie dome; Dys: Dayunshan dome; Lys: Lianyunshan dome; Hs: Hengshan dome; Ycl: Yuechengling dome
4 白垩纪两期伸展构造动力学机制的讨论 4.1 早期(早白垩世早期)伸展构造动力学机制

广泛分布于欧亚大陆东部早期(早白垩世早期)伸展构造所体现出来的“对称性”、“等时性”和“等深性”的特点似乎揭示了它们具有相似成因的构造背景或力学机制(mechanism)。事实上,研究和讨论这期伸展构造的动力学机制历来为诸多地质学家所关注,并提出多种模式和假说(索艳慧等, 2012, 2017; Lin et al., 2013; 李三忠等, 2018及其相关的参考文献),如:(1)古太平洋或依泽奈崎(Izanagi)板块向西俯冲导致板内或弧后扩张(Watson et al., 1987; Traynor and Sladen, 1995; Ren et al., 2002; Zhu et al., 2012),或古太平洋向西的俯冲板块发生回撤(roll-back),使先期存在的加厚地壳发生垮塌(Davis et al., 2001; 李三忠等, 2018);(2)蒙古-鄂霍茨克洋在晚中生代向S和SE俯冲,导致仰冲板块一侧深部收缩和浅部伸展(Wang et al., 2002, 2011a, 2012)。科迪勒拉变质核杂岩被广泛认为是受大洋俯冲影响的典型实例,表现为变质核杂岩平行俯冲带呈带状分布,变形时间上与区域火山活动一样表现出从大陆边缘向内陆逐渐迁移的特点(Lister and Davis, 1989)。而东亚地区晚中生代的伸展穹隆呈面状分布,其中贝加尔湖的伸展穹隆远离古太平洋俯冲带,而华南中部带的伸展穹隆远离蒙古-鄂霍茨克带。而且伸展穹隆的变形时间具有等时性(130~120Ma),并不具有向西或向南变年轻的趋势(图 2)。不少学者也提出多板块的相互作用,认为拉萨-缅甸西部板块同羌塘-印支板块碰撞作用而产生向东放射状的“逃逸”和在古太平洋或依泽奈崎(Izanagi)向西俯冲导致的弧后扩张综合作用(Schmid et al., 1999; Ratschbacher et al., 2000)。但这一结论并没有被近期的地球物理深部结构勘测所支持(Zhao et al., 2011b, 2013)。此外,一些学者提出华北南北碰撞造山产生南北向的缩短进而导致E-W向的伸展(Yin and Nie, 1996; Gao et al., 2002; Zhang and Sun, 2002),或者造山后发生重力垮塌而产生的伸展作用(Zorin, 1999; Webb et al., 1999; Graham et al., 2001; Meng et al., 2003; Yang et al., 2005); 抑或由于地幔柱或岩浆作用等(Zhao et al., 2004; Deng et al., 2004; Darby et al., 2004)。很显然,直接的板缘的动力学机制很难解释前面论述的巨型伸展构造域所展现的“对称性”、“等时性”及“等深性”特点。

从动力学角度分析,我们更倾向于利用岩石圈地幔对流移离或沉坠作用(foundering)来解释上述构造表现,这或许可以将地壳不同层次上发生的伸展构造与岩石圈尺度上的华北克拉通破坏建立直接的关联性(图 6)。通过我们的总结,欧亚大陆东部各个研究区伸展穹隆发育时间均在130~120Ma。这种短时间内发育广域的NW-SE向伸展构造的特征,表明华北克拉通破坏峰期发生在早白垩世,并为以岩石圈沉坠作用为主导的动力学机制提供了支持。深部岩石圈地幔的丢失势必会造成岩石圈地壳反弹,进而在地表形成隆起(Turner et al., 1996)。虽然一些学者认为地理上的远东地区东部(我国东北及蒙古国东部)在早白垩世晚期之前存在一个规模巨大的高原,正如埃达克岩的研究工作所揭示的那样(Yin and Nie, 1996; 张旗等, 2001; Meng et al., 2003)。但并没有同期的古生物和沉积记录来约束高原的存在(李思田, 1997),这就使得欧亚大陆东部白垩纪的古地理恢复具有重要意义。同时,深部结构探测将有助于我们理解地幔在大陆演化中的重要作用。

图 6 欧亚大陆东部早白垩世早期伸展构造动力学成因机制的三维示意图 图中展示了伸展穹隆、岩浆穹隆和地堑-半地堑的位置(为了突出穹隆构造, 图中所示位置与实际位置有所偏差,并省略了新生代构造的叠加) Fig. 6 Geodynamic diagram of early stage of Early Cretaceous extensional tectonics at the eastern part of Eurasia continent The diagram showing the distribution of Early Cretaceous extensional dome, magmatic dome and graben-half graben basins (dome locations have been displaced to make it clear, the Cenozoic tectonics is neglected)
4.2 晚期(早白垩世晚期-晚白垩世早期)伸展构造动力学机制

在120Ma左右,中国东部经历了一次明显的挤压构造,发育位置集中在郯庐断裂及其附近,表现为NW-SE挤压体制形成的一系列压扭断层(Zhang et al., 2003; Mercier et al., 2007; Vergely et al., 2007)。在胶东半岛,NW-SE向的挤压形成的NE-SW向断裂则构成了玲珑金矿的容矿构造(Lu et al., 2007),并造成了早白垩世晚期沉积盆地(八仙墩盆地)的沉降(Wang et al., 2016)。这期挤压构造的动力学机制则归结为古太平洋俯冲对内陆造成的影响(Mercier et al., 2007; Sun et al., 2007; Wang et al., 2016)。在短暂的挤压构造结束之后,早白垩世晚期-晚白垩世早期欧亚大陆东部再次发育了一次显著的NW-SE向伸展构造。

从华北东部带到华南中部带,晚期伸展穹隆具有向SW逐渐变年轻的趋势。辽东和胶东的这些代表晚期构造发生的时间多集中在118~110Ma,桐柏山和北大别则体现在105~95Ma,华南中部带(大云山、连云山、衡山、越城岭)主要集中在95~85Ma(图 2图 3)。这显然与早白垩世早期沉坠作用(foundering)所引起的伸展构造所具有的“对称性”、“等时性”和“等深性”明显不同。相反这一构造过程同美国西部科迪勒拉变质核杂岩的迁移规律相类似(Dickinson, 2002, 2006)。俯冲大洋板片的回撤会造成上覆大陆板块岩石圈的伸展,形成大规模的伸展构造,如变质核杂岩、盆岭省构造及剧烈的岩浆活动(索艳慧等, 2012; 李三忠等, 2018)。北美科迪勒拉第三纪变质核杂岩及爱琴海晚中新世变质核杂岩通常被解释为受这一过程的影响(Dickinson, 2002; Ring et al., 2010)。尤其是,北美科迪勒拉变质核杂岩的发育体现出穿时性的特点,即表现出从美加边境地区向南到Snake River平原逐渐变年轻的规律;结合北美西海岸中酸性火山弧(55~20Ma)向南迁移的规律,Dickinson(2002, 2006)认为北美变质核杂岩的穿时性与法拉隆板块的回撤有关。从古板块重建的角度来看,124Ma之后作用于欧亚大陆的古太平洋板块的洋壳生长最为明显(Engebretson et al., 1985; Northrup et al., 1995; Maruyama et al., 1997),可能为欧亚大陆东部早白垩世晚期-晚白垩世早期的伸展构造提供了动力学成因。古太平洋板块对欧亚大陆东部影响最强的区域集中在我国东部的图们江口及其NW延伸的地区。正是由于这种洋-陆相互作用造就了辽东半岛-朝鲜地块(EKL block)顺时针22.5°的旋转,并使得松辽盆地张开(Lin et al., 2003; 图 5)。同时,日本的古地磁学者Otofuji et al. (2006)用这个模型建立了东北亚地区白垩纪块体旋转的“双开门”模型。我们推断这一作用造成了岩石圈尺度的伸展构造在空间上沿郯庐断裂及湘中断裂(修水-永州断裂)向SW延伸,时间上具有向SW变年轻的趋势(118~85Ma; 图 5)。从板块尺度来看,可能正是由于俯冲板块的“回撤”,为块体旋转或弧后扩张提供了空间,进而造成了“旋转拉张”的效果。同时,在朝鲜半岛上广泛分布的早白垩世晚期-晚白垩早期(114~90Ma)花岗岩显示出了向东变年轻的特征; 在华南地区主要分布有135~100Ma和100~70Ma两个阶段的A型花岗岩,同样显示出向东变年轻的趋势(李三忠等, 2018; Li et al., 2019)。对应美国西部盆岭省伸展构造发育的动力学背景,我们认为西向俯冲的古太平洋板块在早白垩世晚期发生的板片回撤(roll-back)对上覆仰冲的欧亚大陆板块的作用可以解释辽东半岛-朝鲜地块的旋转和伸展构造、岩浆作用的迁移规律(图 7)。

图 7 欧亚大陆东部早白垩世晚期-晚白垩世早期伸展构造动力学成因机制的三维示意图 图中展示了伸展穹隆、岩浆穹隆和地堑-半地堑的位置(为了突出穹隆构造, 图中所示位置与实际位置有所偏差,并省略了新生代构造的叠加) Fig. 7 Geodynamic diagram of late stage of Early Cretaceous-early stage of Late Cretaceousextensional tectonics at the eastern part of Eurasia continent The diagram showing the distribution of Early Cretaceous extensional dome, magmatic dome and graben-half graben basins (dome locations have been displaced to make it clear, the Cenozoic tectonics is neglected)
5 结论

晚中生代,以穹隆抑或变质核杂岩为代表的伸展构造广泛分布于俄罗斯泛贝加尔到我国华南地区,它们“呈面状”分布于欧亚大陆东部。其绝大多数发育在岩石圈薄弱带之上,如中亚造山带,阴山-燕山陆内褶冲带、华北南缘的超高压造山带及郯庐断裂带;少数发育在“克拉通”之上,如紫荆关穹隆、西山穹隆和华南中部穹隆体系。这些穹隆构造记录了区域上一致的NW-SE伸展方向,从时间上可以划分为早晚两期。两期伸展构造所具有不同的特点决定了他们的动力学机制的不同。早期(早白垩世早期)伸展构造所具有的“对称性”、“等时性”和“等深性”的特点,揭示了华北克拉通破坏峰期为早白垩世早期,动力学机制以“沉坠”作用为主导。这一巨型伸展构造表明,在华北克拉通岩石圈性质和厚度发生变化的过程中,地壳的结构受到强烈的改造,为华北克拉通破坏提供了独立的构造地质学证据。晚期(早白垩世晚期-晚白垩世早期)伸展构造向S或SW的迁移规律类似于美国西部盆岭省变质核杂岩的时空分布规律,或指示了古太平洋板块的俯冲回撤(roll-back)过程对仰冲的欧亚大陆板块渐次影响。

致谢      作者十分感谢李三忠教授、侯泉林教授及方爱民博士对文稿所提出建设性的修改意见和大力帮助。

本文作者深深缅怀李继亮老师。第一作者第一次见到李老师是在南京大学读研的时候在大别山跑野外,在短短的十几分钟的交流中,李老师的教导至今历历在目;来所工作后,时不时去李老师办公室聆听先生教诲。本文的第二作者追随李老师多年,曾经单车同李老师十余次闯荡藏北无人区。李老师的谦逊、豁达与严谨使晚辈永生难忘。值此之际,表达对李老师的深深哀悼,李继亮老师千古!

参考文献
Charles N, Gumiaux C, Augier R, Chen Y, Zhu RX and Lin W. 2011. Metamorphic core complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences, 40(1): 261-278
Charles N, Gumiaux C, Augier R, Chen Y, Faure M, Lin W and Zhu RX. 2012. Metamorphic core complex dynamics and structural development: Field evidences from the Liaodong Peninsula (China, East Asia). Tectonophysics, 560-561: 22-50 DOI:10.1016/j.tecto.2012.06.019
Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M and Zhu RX. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia). Gondwana Research, 24(1): 412-428 DOI:10.1016/j.gr.2012.10.011
Chu Y, Lin W, Faure M, Xue ZH, Ji WB and Feng ZT. 2019. Cretaceous episodic extension in the South China Block, East Asia: Evidence from the Yuechengling Massif of Central South China. Tectonics, 38(10): 3675-3702 DOI:10.1029/2019TC005516
Chu Y, Lin W, Faure M, Allen MB and Feng ZT. 2020. Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed unroofing of an orogenic plateau across the South China Block?. Tectonophysics, 793: 228592 DOI:10.1016/j.tecto.2020.228592
Cui JJ, Liu XC, Dong SW and Hu JM. 2012. U-Pb and 40Ar/39Ar geochronology of the Tongbai complex, central China: Implications for Cretaceous exhumation and lateral extrusion of the Tongbai-Dabie HP/UHP terrane. Journal of Asian Earth Sciences, 47: 155-170 DOI:10.1016/j.jseaes.2011.12.014
Daoudene Y, Gapais D, Ledru P, Cocherie A, Hocquet S and Donskaya TV. 2009. The Ereendavaa Range (north-eastern Mongolia): An additional argument for Mesozoic extension throughout eastern Asia. International Journal of Earth Sciences, 98(6): 1381-1393 DOI:10.1007/s00531-008-0412-2
Daoudene Y, Gapais D, Ruffet G, Gloaguen E, Cocherie A and Ledru P. 2012. Syn-thinning pluton emplacement during Mesozoic extension in eastern Mongolia. Tectonics, 31: TC3001
Daoudene Y, Ruffet G, Cocherie A, Ledru P and Gapais D. 2013. Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia)-U-Pb and 40Ar/39Ar constraints. Journal of Asian Earth Sciences, 62: 98-116 DOI:10.1016/j.jseaes.2011.04.009
Darby BJ, Davis GA, Zhang X, Wu F, Wilde S and Yang J. 2004. The newly discovered Waziyu metamorphic core complex, Yiwulüshan, western Liaoning Province, Northwest China. Earth Science Frontiers, 11(3): 145-155
Davis GA, Qian X, Zheng Y, Tong HM, Yu H, Wang C, Gehrels GE, Shafiquallah M and Fryxell JE. 1996. Mesozoic deformation and plutonism in the Yunmeng Shan: A metamorphic core complex north of Beijing, China. World and Regional Geology, 1(8): 253-280
Davis GA, Zheng YD, Wang C, Darby BJ, Zhang CH and Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. In: Hendrix MS and Davis GA (eds. ). Paleozoic and Mesozoic Tectonic Evolution of Central and Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of American Memoir, 194: 171-197
Davis GA, Darby BJ, Zheng YD and Spell TL. 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology, 30(11): 1003-1006 DOI:10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2
Davis GA and Darby BJ. 2010. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China. Geoscience Frontiers, 1(1): 1-20 DOI:10.1016/j.gsf.2010.08.001
Deng JF, Mo XX, Zhao HL, Wu ZX, Luo ZH and Su SG. 2004. A new model for the dynamic evolution of Chinese lithosphere: 'Continental roots-plume tectonics'. Earth-Science Reviews, 65(3-4): 223-275 DOI:10.1016/j.earscirev.2003.08.001
Dickinson WR. 2002. The basin and range province as a composite extensional domain. International Geology Review, 44(1): 1-38 DOI:10.2747/0020-6814.44.1.1
Dickinson WR. 2006. Geotectonic evolution of the Great Basin. Geosphere, 2(7): 353-368 DOI:10.1130/GES00054.1
Dong SW, Zhang YQ, Li HL, Shi W, Xue HM, Li JH, Huang SQ and Wang YC. 2018. The Yanshan orogeny and Late Mesozoic multi-plate convergence in East Asia: Commemorating 90th years of the "Yanshan Orogeny". Science China (Earth Sciences), 61(12): 1888-1909 DOI:10.1007/s11430-017-9297-y
Donskaya TV, Windley BF, Mazukabzov AM, Kröner A, Sklyarov EV, Gladkochub DP, Ponomarchuk VA, Badarch G, Reichow MK and Hegner E. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society, 165(1): 405-421 DOI:10.1144/0016-76492006-162
Dou JZ, Fu S and Zhang HF. 2015. Consolidation and cooling paths of the Guojialing granodiorites in Jiaodong Peninsula: Implication for crustal uplift and exhumation. Acta Petrologica Sinica, 31(8): 2325-2336 (in Chinese with English abstract)
Dou JZ, Zhang HF, Tong Y, Wang F, Chen FK and Li SR. 2018. Application of geothermo-barometers to Mesozoic granitoids in the Jiaodong Peninsula, eastern China: Criteria for selecting methods of pressure estimation and implications for crustal exhumation. Journal of Asian Earth Sciences, 160: 271-286 DOI:10.1016/j.jseaes.2018.01.019
Engebretson DC, Cox A and Gordon RG. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Special Paper, 206: 1-60
Faure M, Sun Y, Shu L, Monié P and Charvet J. 1996. Extensional tectonics within a subduction-type orogen. The case study of the Wugongshan dome (Jiangxi Province, southeastern China). Tectonophysics, 263(1-4): 77-106
Gao S, Rudnick RL, Carlson RW, McDonough WF and Liu YS. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307-322 DOI:10.1016/S0012-821X(02)00489-2
Graham SA, Hendrix MS, Johnson CL, Badamgarav D, Badarch G, Amory J, Porter M, Barsbold R, Webb LE and Hacker BR. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geological Society of America Bulletin, 113(12): 1560-1579 DOI:10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
Guan HM, Liu JL, Ji M, Zhao SJ, Hu L and Davis GA. 2008. Discovery of the Wanfu metamorphic core complex in southern Liaoning and its regional tectonic implication. Earth Science Frontiers, 15(3): 199-208 (in Chinese with English abstract)
Guo L, Wang T, Zhang JJ, Liu J, Qi GW and Li JB. 2012. Evolution and time of formation of the Hohhot metamorphic core complex, North China: New structural and geochronologic evidence. International Geology Review, 54(11): 1309-1331 DOI:10.1080/00206814.2011.638438
Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Dong SW. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230 DOI:10.1016/S0012-821X(98)00152-6
Han BF, Zheng YD, Gan JW and Chang ZS. 2001. The Louzidian normal fault near Chifeng, Inner Mongolia: Master fault of a quasi-metamorphic core complex. International Geology Review, 43(3): 254-264 DOI:10.1080/00206810109465012
He YS, Li SG, Hoefs J, Huang F, Liu SA and Hou ZH. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838 DOI:10.1016/j.gca.2011.04.011
Hou QL, Liu Q, Li J and Zhang HY. 2007. Late Mesozoic Shear zones and its chronology in the Dabie mountains, central China. Chinese Journal of Geology, 42(1): 114-123 (in Chinese with English abstract)
Hu SL, Wang SS, Sang HQ, Qiu J and Zhang RK. 1987. Isotopic ages of Linglong and Guojialing batholiths in Shandong Province and their geological implication. Acta Petrologica Sinica, (3): 83-89 (in Chinese with English abstract)
Izbrodin IA, Ripp GS, Doroshkevich AG, Sergeev SA, Matukov DI and Posokhov VF. 2010. The age of metamorphism of sillimanite-bearing schists at the Kyakhtinskoe deposit (southwestern Transbaikalia). Russian Geology and Geophysics, 51(2): 186-189 DOI:10.1016/j.rgg.2009.12.015
Ji WB, Lin W, Shi YH, Wang QC and Chu Y. 2011. Structure and evolution of the Early Cretaceous Dabieshan metamorphic core complex. Chinese Journal of Geology, 46(1): 161-180 (in Chinese with English abstract)
Ji WB, Lin W, Faure M, Chu Y, Wu L, Wang F, Wang J and Wang QC. 2014. Origin and tectonic significance of the Huangling massif within the Yangtze craton, South China. Journal of Asian Earth Sciences, 86: 59-75 DOI:10.1016/j.jseaes.2013.06.007
Ji WB, Lin W, Faure M, Shi YH and Wang QC. 2017. The Early Cretaceous orogen-scale Dabieshan metamorphic core complex: Implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China. International Journal of Earth Sciences, 106(4): 1311-1340 DOI:10.1007/s00531-016-1311-6
Ji WB, Chen Y, Chen K, Wei W, Faure M and Lin W. 2018. Multiple emplacement and exhumation history of the Late Mesozoic Dayunshan-Mufushan batholith in Southeast China and its tectonic significance: 2. Magnetic fabrics and gravity survey. Journal of Geophysical Research: Solid Earth, 123(1): 711-731 DOI:10.1002/2017JB014598
Ji XL, Wang L and Pan YX. 2010. Magnetic fabrics of the Fangshan pluton in Beijing and constraints on its emplacement. Chinese Journal of Geophysics, 53(7): 1671-1680 (in Chinese with English abstract)
Jiang P, Yang KF, Fan HR, Liu X, Cai YC and Yang YH. 2016. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton. Lithos, 258-259: 197-214 DOI:10.1016/j.lithos.2016.04.028
Lamb MA, Badarch G, Navratil T and Poier R. 2008. Structural and geochronologic data from the Shin Jinst area, eastern Gobi Altai, Mongolia: Implications for Phanerozoic intracontinental deformation in Asia. Tectonophysics, 451(1-4): 312-330 DOI:10.1016/j.tecto.2007.11.061
Leech ML, Webb LE and Yang TN. 2006. Diachronous histories for the Dabie-Sulu orogen from high-temperature geochronology. In: Hacker BR, McClelland WC and Liou JG (eds. ). Ultra-High Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Paper, 403: 77-92
Li JH, Zhang YQ, Dong SW, Su JB, Li Y, Cui JJ and Shi W. 2013. The Hengshan low-angle normal fault zone: Structural and geochronological constraints on the Late Mesozoic crustal extension in South China. Tectonophysics, 606: 97-115 DOI:10.1016/j.tecto.2013.05.013
Li JH, Dong SW, Zhang YQ, Zhao GG, Johnston ST, Cui JJ and Xin YJ. 2016. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048-3080 DOI:10.1002/2015JB012778
Li JH, Cawood PA, Ratschbacher L, Zhang YQ, Dong SW, Xin YJ, Yang H and Zhang PX. 2020. Building Southeast China in the Late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Science Reviews, 201(11-12): 103056
Li JY, Yang TN, Chen W and Zhang SH. 2004. 40Ar/39Ar dating of deformation events and reconstruction of exhumation of ultrahigh-pressure metamorphic rocks in Donghai, East China. Acta Geologica Sinica, 78(1): 97-108 (in Chinese with English abstract)
Li QL, Yang YN, Shi YH and Lin W. 2013. Eclogite rutile U-Pb dating: Constraint for formation and evolution of continental collisional orogen. Chinese Science Bulletin, 58(23): 2279-2284 (in Chinese) DOI:10.1360/972013-590
Li ST. 1988. Analysis of Graben Basin and Law of Coal Accumulation. Beijing: Chinese Geological Publishing House, 1-125 (in Chinese)
Li ST. 1997. Evolution of Mesozoic and Cenozoic Basins in Eastern China and Their Geodynamic Background. Wuhan: China University of Geosciences Press, 239 (in Chinese with English abstract)
Li SZ, Suo YH, Li XY, Wang YM, Cao XZ, Wang PC, Guo LL, Yu SY, Lan HY, Li SJ, Zhao SJ, Zhou ZZ, Zhang Z and Zhang GW. 2018. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone. Chinese Science Bulletin, 63(16): 1550-1593 (in Chinese) DOI:10.1360/N972017-01113
Li SZ, Suo YH, Li XY, Zhou J, Santosh M, Wang PC, Wang GZ, Guo LL, Yu SY, Lan HY, Dai LM, Zhou ZZ, Cao XZ, Zhu JJ, Liu B, Jiang SH, Wang G and Zhang GW. 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137 DOI:10.1016/j.earscirev.2019.03.003
Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?. Lithos, 96(1-2): 186-204 DOI:10.1016/j.lithos.2006.09.018
Lin SZ, Zhu G, Zhao T, Song LH and Liu B. 2014. Structural characteristics and formation mechanism of the Kalaqin metamorphic core complex in the Yanshan area, China. Chinese Science Bulletin, 59(32): 3174-3189 (in Chinese) DOI:10.1360/N972014-00100
Lin W, Faure M, Monié P, Schärer U, Zhang LS and Sun Y. 2000. Tectonics of SE China: New insights from the Lushan massif (Jiangxi Province). Tectonics, 19(5): 852-871 DOI:10.1029/2000TC900009
Lin W, Chen Y, Faure M and Wang QC. 2003. Tectonic implications of new Late Cretaceous paleomagnetic constraints from eastern Liaoning Peninsula, NE China. Journal of Geophysical Research: Solid Earth, 108(B6): 2313
Lin W and Wang QC. 2006. Late Mesozoic extensional tectonics in North China Block: Response to the Lithosphere removal of North China Craton?. Bulletin de la Société Géologique de France, 177(6): 287-297 DOI:10.2113/gssgfbull.177.6.287
Lin W, Faure M, Monié P and Wang QC. 2007. Polyphase Mesozoic tectonics in the eastern part of the North China Block: Insights from the eastern Liaoning Peninsula massif (NE China). In: Zhai MG, Windley BF, Kusky TM and Meng QR (eds. ). Mesozoic Sub-continental Lithospheric Thinning Under Eastern Asia. Geological Society, London, Special Publications, 280(1): 153-169
Lin W, Faure M, Monié P, Schärer U and Panis D. 2008. Mesozoic extensional tectonics in eastern Asia: The South Liaodong Peninsula metamorphic core complex (NE China). The Journal of Geology, 116(2): 134-154 DOI:10.1086/527456
Lin W, Monié P, Faure M, Schärer U, Shi YH, Le Breton N and Wang QC. 2011a. Cooling paths of the NE China crust during the Mesozoic extensional tectonics: Example from the South-Liaodong Peninsula metamorphic core complex. Journal of Asian Earth Sciences, 42(5): 1048-1065 DOI:10.1016/j.jseaes.2010.09.007
Lin W, Wang QC, Wang J, Wang F, Chu Y and Chen K. 2011b. Late Mesozoic extensional tectonics of the Liaodong Peninsula massif: Response of crust to continental lithosphere destruction of the North China Craton. Science China (Earth Sciences), 54(6): 843-857 DOI:10.1007/s11430-011-4190-5
Lin W, Faure M, Chen Y, Ji WB, Wang F, Wu L, Charles N, Wang J and Wang QC. 2013. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt. Part I: Structural analyses and geochronological constraints. Gondwana Research, 23(1): 54-77 DOI:10.1016/j.gr.2012.02.013
Lin W, Wang J, Liu F, Ji WB and Wang QC. 2013a. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics. Acta Petrologica Sinica, 29(5): 1791-1810 (in Chinese with English abstract)
Lin W, Jin WB, Shi YH, Chu Y, Li QL, Chen ZC, Liu F and Wang QC. 2013b. Multi-stage exhumation processes of the UHP metamorphic rocks: Implications from the extensional structure of Tongbai-Hong'an-Dabieshan orogenic belt. Chinese Science Bulletin, 58(23): 2259-2265 (in Chinese) DOI:10.1360/972013-636
Lin W, Ji WB, Faure M, Wu L, Li QL, Shi YH, Scharer U, Wang F and Wang QC. 2015. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China. Tectonophysics, 662: 256-270 DOI:10.1016/j.tecto.2015.05.028
Lin W, Xu DR, Hou QL, Li SJ, Meng LT, Ren ZH, Qiu HB and Chu Y. 2019. Early Cretaceous extensional dome and related polymetallic mineralization in the central and eastern China. Geotectonica et Metallogenia, 43(3): 409-430 (in Chinese with English abstract)
Lin W and Wei W. 2020. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: A review and synthesis. International Geology Review, 62(7-8): 811-839 DOI:10.1080/00206814.2018.1477073
Lin W, Zeng JP, Meng LT, Qiu HB, Wei W, Ren ZH, Chu Y, Li SJ, Song C and Wang QC. 2021. Extensional Tectonics and North China Craton Destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and extensional dome. Scientia Sinica (Terrae), doi. org/10.1360/SSTe-2020-0306 (in Chinese)
Lister GS and Davis GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. Journal of Structural Geology, 11(1-2): 65-94 DOI:10.1016/0191-8141(89)90036-9
Liu C, Deng JF, Su SG, Xiao QH, Luo ZH, Wang QH and Xu LQ. 2004. Zircon SHRIMP dating of Yunmengshan gneissic granite and its geological significance. Acta Petrologica et Mineralogica, 23(2): 141-146 (in Chinese with English abstract)
Liu J, Zhang JJ, Guo L and Qi GW. 2014. 40Ar-39Ar dating of the detachment fault of the Hohhot metamorphic core complex, Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1899-1908 (in Chinese with English abstract)
Liu JL, Davis GA, Lin ZY and Wu FY. 2005a. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2): 65-80 DOI:10.1016/j.tecto.2005.07.001
Liu JL, Shen L, Ji M, Guan HM, Zhang ZC and Zhao ZD. 2013. The Liaonan/Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China craton. Tectonics, 32(5): 1121-1141 DOI:10.1002/tect.20064
Liu XC, Jahn BM, Cui JJ, Li SZ, Wu YB and Li XH. 2010. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai complex, central China: Implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos, 119(3-4): 211-237 DOI:10.1016/j.lithos.2010.06.005
Liu XC, Jiang BM, Li SZ, Cui JJ, Liu X, Lou YX and Qu W. 2011. The Tongbai HP metamorphic terrane: Constraints on the architecture and subduction/exhumation of the Tongbai-Dabie-Sulu HP/UHP metamorphic belt. Acta Petrologica Sinica, 27(4): 1151-1162 (in Chinese with English abstract)
Liu YC, Li SG, Xu ST, Jahn BM, Zheng YF, Zhang ZQ, Jiang LL, Chen GB and Wu WP. 2005b. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. Journal of Asian Earth Sciences, 25(3): 431-443 DOI:10.1016/j.jseaes.2004.04.006
Lu HZ, Archambault G, Li YS and Wei JX. 2007. Structural geochemistry of gold mineralization in the Linglong-Jiaojia district, Shandong Province, China. Chinese Journal of Geochemistry, 26(3): 215-234 DOI:10.1007/s11631-007-0215-3
Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750Ma to the present. Island Arc, 6(1): 121-142 DOI:10.1111/j.1440-1738.1997.tb00043.x
Mazukabzov AM, Donskaya TV, Gladkochub DP, Sklyarov EV, Ponomarchuk VA and Sal'nikova EB. 2006. Structure and age of the metamorphic core complex of the Burgutui ridge (Southwestern Transbaikal region). Doklady Earth Sciences, 407(1): 179-183 DOI:10.1134/S1028334X06020048
Mazukabzov AM, Gladkochub DP, Donskaya TV, Sklyarov EV, Ripp GS, Izbrodin IA, Tao V and Zeng LS. 2011. The Selenga metamorphic core complex (Western Transbaikalian Region). Doklady Earth Sciences, 440(1): 1212-1215 DOI:10.1134/S1028334X11090066
Meng LT and Lin W. 2021. Episodic crustal extension and contraction characterizing the Late Mesozoic tectonics of East China: Evidence from the Jiaodong Peninsula, East China. Tectonics, 40(3): e2020TC006318
Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?. Tectonophiyscs, 369(3-4): 155-174 DOI:10.1016/S0040-1951(03)00195-1
Meng QR, Hu JM, Jin JQ, Zhang Y and Xu DF. 2003. Tectonics of the Late Mesozoic wide extension basin system in the China-Mongolia border region. Basin Research, 15(3): 397-415 DOI:10.1046/j.1365-2117.2003.00209.x
Mercier JL, Hou MJ, Vergély P and Wang YM. 2007. Sructural and stratigraphical constraints on the kinematics history of the southern Tan-Lu fault zone during the Mesozoic in Anhui Province, China. Tectonophysics, 439(1-4): 33-66 DOI:10.1016/j.tecto.2007.03.001
Northrup CJ, Royden LH and Burchfiel BC. 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 23(8): 719-722 DOI:10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2
Otofuji Y, Miura D, Takaba K, Takemoto K, Narumoto K, Zaman H, Inokuchi H, Kulinich RG, Zimin PS and Sakhno VG. 2006. Counter-clockwise rotation of the eastern part of the Mongolia block: Early Cretaceous palaeomagnetic results from Bikin, Far East Russia. Geophysical Journal International, 164(1): 15-24 DOI:10.1111/j.1365-246X.2005.02790.x
Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong SW, Calvert A, Chateigner D and Wenk HR. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research: Solid Earth, 105(B6): 13303-13338 DOI:10.1029/2000JB900040
Ren JY, Tamaki K, Li ST and Zhang JX. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205 DOI:10.1016/S0040-1951(01)00271-2
Ring U, Glodny J, Will T and Thomson S. 2010. The Hellenic subduction system: High-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Annual Review of Earth and Planetary Sciences, 38(1): 45-76 DOI:10.1146/annurev.earth.050708.170910
Sai SX, Zhao TM, Wang ZL, Huang SY and Zhang L. 2016. Petrogenesis of Linglong biotite granite: Constraints from mineralogical characteristics. Acta Petrologica Sinica, 32(8): 2477-2493 (in Chinese with English abstract)
Schmid JC, Ratschbacher L, Hacker BR, Gaitzsch I and Dong S. 1999. How did the foreland react? Yangtze foreland fold-and-thrust belt deformation related to exhumation of the Dabie Shan ultrahigh-pressure continental crust (eastern China). Terra Nova, 11(6): 266-272 DOI:10.1046/j.1365-3121.1999.00254.x
Shu LS, Sun Y, Wang DZ, Faure M, Monie P and Charvet J. 1998. Mesozoic doming extensional tectonics of Wugongshan, South China. Science in China (Series D), 41(6): 601-608 DOI:10.1007/BF02878742
Shu LS and Zhou XM. 2002. Late Mesozoic tectonism of Southeast China. Geological Review, 48(3): 249-260 (in Chinese with English abstract)
Shu LS, Zhou XM, Deng P, Yu XQ, Wang B and Zu FP. 2004. Geological features and tectonic evolution of Meso-Cenozoic basins in southeastern China. Geological Bulletin of China, 23(9): 876-884 (in Chinese with English abstract)
Shu LS and Wang DZ. 2006. A comparison study of basin and range tectonics in the western North America and southeastern China. Geological Journal of China Universities, 12(1): 1-13 (in Chinese with English abstract)
Song C, Wei W, Hou QL, Liu Q, Zhang HY, Wu SC, Zhu FH and Li H. 2016. Geological characteristics of the Laoshan'ao shear zone and its relationship with the Xiangdong tungsten deposit, Chaling, eastern Hunan Province. Acta Petrologica Sinica, 32(5): 1571-1580 (in Chinese with English abstract)
Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542 DOI:10.1016/j.epsl.2007.08.021
Suo YH, Li SZ, Dai LM, Liu X and Zhou LH. 2012. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract)
Suo YH, Li SZ, Cao XZ, Li XY, Liu X and Cao HH. 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate. Earth Science Frontiers, 24(4): 249-267 (in Chinese with English abstract)
Traynor JJ and Sladen C. 1995. Tectonic and stratigraphic evolution of the Mongolian People's Republic and its influence on hydrocarbon geology and potential. Marine and Petroleum Geology, 12(1): 35-52 DOI:10.1016/0264-8172(95)90386-X
Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P and Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71 DOI:10.1093/petrology/37.1.45
Van der Beek PA, Delvaux D, Andriessen PAM and Levi KG. 1996. Early Cretaceous denudation related to convergent tectonics in the Baikal region, SE Siberia. Journal of the Geological Society, 153(4): 515-523 DOI:10.1144/gsjgs.153.4.0515
Vergely P, Hou MJ, Wang YM and Mercier JL. 2007. The kinematics of the Tan-Lu fault zone during the Mesozoic-Palaeocene and its relations with the North China-South China Block collision (Anhui Province, China). Bulletin de la Société Géologique de France, 178(5): 353-365 DOI:10.2113/gssgfbull.178.5.353
Wang GC and Yang WR. 1996. Structural and chronological evidence of the Luotian dome in the core of the eastern Dabie Mountains, central China. Earth Science, 21(5): 524-528 (in Chinese with English abstract)
Wang J, Chang SC, Lin PJ, Zhu XQ, Fu YT and Zhang HC. 2016. Evidence of Early Cretaceous transpression in the Sulu orogenic belt, eastern China. Tectonophysics, 687: 44-55 DOI:10.1016/j.tecto.2016.09.005
Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL and He B. 2007. Early Cretaceous adakitic granites in the northern Dabie complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636 DOI:10.1016/j.gca.2007.03.008
Wang T, Zheng YD, Li TB and Gao YJ. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5): 715-729 DOI:10.1016/S1367-9120(03)00133-0
Wang T, Zheng YD, Zhang JJ, Zeng LS, Donskaya T, Guo L and Li JB. 2011a. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30(6): TC6007
Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345 DOI:10.1016/j.lithos.2012.07.020
Wang X, Neubauer F, Genser J and Yang W. 1998. The Dabie UHP unit, Central China: A Cretaceous extensional allochthon superposed on a Triassic orogen. Terra Nova, 10(5): 260-267 DOI:10.1046/j.1365-3121.1998.00200.x
Wang XS and Zheng YD. 2005. 40Ar/39Ar age constraints on the ductile deformation of the detachment systerm of the Louzidian core complex, southern Chifeng, China. Geological Review, 51(5): 574-582 (in Chinese with English abstract)
Wang Y and Li H. 2008. Initial formation and Mesozoic tectonic exhumation of an intracontinental tectonic belt of the northern part of the Taihang Mountain Belt, eastern Asia. The Journal of Geology, 116(2): 155-172 DOI:10.1086/529153
Wang Y, Zhou LY and Li JY. 2011b. Intracontinental superimposed tectonics: A case study in the Western Hills of Beijing, eastern China. GSA Bulletin, 123(5-6): 1033-1055 DOI:10.1130/B30257.1
Wang YS, Xiang BW, Zhu G and Jiang DZ. 2011c. Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China. Journal of Structural Geology, 33(3): 362-380 DOI:10.1016/j.jsg.2010.09.002
Wang ZG and Zhang LX. 1999. Metamorphic core complex in Xiong'ershan and the advances in prospecting. Geological Exploration for Non-Ferrous Metals, 8(6): 388-392 (in Chinese with English abstract)
Watson MP, Hayward AB, Parkinson DN and Zhang ZM. 1987. Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 4(3): 205-225 DOI:10.1016/0264-8172(87)90045-6
Webb LE, Graham SA, Johnson CL, Badarch G and Hendrix MS. 1999. Occurrence, age, and implications of the Yagan-Onch Hayrhan metamorphic core complex, southern Mongolia. Geology, 27(2): 143-146 DOI:10.1130/0091-7613(1999)027<0143:OAAIOT>2.3.CO;2
Wei W, Chen Y, Faure M, Martelet G, Lin W, Wang QC, Yan QR and Hou QL. 2016. An early extensional event of the South China Block during the Late Mesozoic recorded by the emplacement of the Late Jurassic syntectonic Hengshan composite granitic massif (Hunan, SE China). Tectonophysics, 672-673: 50-67 DOI:10.1016/j.tecto.2016.01.028
Wei W, Song C, Hou QL, Chen Y, Faure M, Yan QR, Liu Q, Sun JF and Zhu HF. 2018. The Late Jurassic extensional event in the central part of the South China Block-evidence from the Laoshan'ao shear zone and Xiangdong tungsten deposit (Hunan, SE China). International Geology Review, 60(11-14): 1644-1664 DOI:10.1080/00206814.2017.1395714
Wu F, Lin J, Wilde SA, Zhang X and Yang J. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119 DOI:10.1016/j.epsl.2005.02.019
Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG and Park SC. 2007a. Initial constraintson the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238(3-4): 232-248 DOI:10.1016/j.chemgeo.2006.11.012
Wu XD, Zhu G, Yin H, Su N, Lu YC, Zhang S and Xie CL. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39(9): e2020TC006132
Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY and Liu XM. 2007b. Zircon U-Pb ages and Hf isotope compositions of migmatite from the north Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 25(9): 991-1009 DOI:10.1111/j.1525-1314.2007.00738.x
Xia ZM, Liu JL, Ni JL, Zhang TT, Shi XM and Wu Y. 2016. Structure, evolution and regional tectonic implications of the Queshan metamorphic core complex in eastern Jiaodong Peninsula of China. Science China (Earth Sciences), 59(5): 997-1013 DOI:10.1007/s11430-015-5259-3
Xu CH, Zhou ZY, Ma CQ and Reiners PW. 2001. Geochronological constraints on 140~85Ma thermal doming extension in the Dabie orogen, Central China. Science in China (Series D), 45(9): 801-817
Xu G and Wang EQ. 2010. The uplift mechanism of Tongbai complex in Mesozoic and its coupling relationship with Nanyang Basin. Chinese Journal of Geology, 45(3): 626-652 (in Chinese with English abstract)
Xu HJ, Ma CQ and Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology, 240(3-4): 238-259 DOI:10.1016/j.chemgeo.2007.02.018
Xu HJ, Ma CQ, Zhang JF and Ye K. 2013. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research, 23(1): 190-207 DOI:10.1016/j.gr.2011.12.009
Yan DP, Zhou MF, Song HL, Wang GH and Sun M. 2006. Mesozoic extensional structures of the Fangshan tectonic dome and their subsequent reworking during collisional accretion of the North China block. Journal of the Geological Society, 163(1): 127-142 DOI:10.1144/0016-764904-154
Yang JH, Chung SL, Wilde SA, Wu FY, Chu MF, Lo CH and Fan HR. 2005. Petrogenesis of post orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99-125 DOI:10.1016/j.chemgeo.2004.08.053
Yang JH, Wu FY, Chung SL, Lo CH, Wilde SA and Davis GA. 2007. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. GSA Bulletin, 119(11-12): 1405-1414 DOI:10.1130/B26085.1
Yang JH, Wu FY, Chung SL and Lo CH. 2008. The extensional geodynamic setting of Early Cretaceous granitic intrusions in the eastern North China Craton: Evidence from laser ablation 40Ar/39Ar dating of K-bearing minerals. Acta Petrologica Sinica, 24(6): 1175-1184 (in Chinese with English abstract)
Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF and Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: new implications for timing and duration of hydrothermal activity in the Jiaodong Gold Province, China. Gondwana Research, 25(4): 1469-1483 DOI:10.1016/j.gr.2013.07.001
Yang Q, Shi W, Hou GT, Zhang Y, Wang TY and Zhao ZX. 2020. Late Mesozoic intracontinental deformation at the northern margin of the North China Craton: A case study from the Kalaqin massif, southeastern Inner Mongolia, China. Tectonophysics, 793: 228591 DOI:10.1016/j.tecto.2020.228591
Yin A and Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A and Harrison TA (eds. ). The Tectonic Evolution of Asia. New York: Cambridge University Press, 442-485
Yin CY, Zhang B, Han BF, Zhang JJ, Wang Y and Ai S. 2017. Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China craton, NE Asia. Journal of Structural Geology, 94: 195-212 DOI:10.1016/j.jsg.2016.11.011
Yu AN, Ye BL and Peng ES. 1998. Relationship between the Dayunshan metamorphic core complex and mineralization, Taolin, Hunan Province. Geotectonica et Metallogenia, 22(1): 82-88 (in Chinese with English abstract)
Zhai MG, Zhu RX, Liu JM, Meng QR, Hou QL, Hu SB, Liu W, Li Z, Zhang HF and Zhang HF. 2004. Time range of Mesozoic tectonic regime inversion in eastern North China Block. Science in China (Series D), 47(2): 151-159
Zhai YY, Xie JC and Dong GC. 2014. The genetic significance of amphiboles from the ultramafic rocks of Wang'anzhen batholith in northern Taihang Mountains. Acta Petrologica et Mineralogica, 33(2): 273-282 (in Chinese with English abstract)
Zhang H, Wang J, Peng T, Pham VT, Chen YC, Hou QL and Wu CM. 2018. Temperature conditions of mylonitization of the Dashuiyu ductile shear zone, Mt. Yunmeng, Beijing. Acta Petrologica Sinica, 34(6): 1801-1812 (in Chinese with English abstract)
Zhang HF and Sun M. 2002. Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. International Geology Review, 44(4): 370-382 DOI:10.2747/0020-6814.44.4.370
Zhang HF, Li SR, Zhai MG and Guo JH. 2006. Crust uplift and its implications in the Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 22(2): 285-295 (in Chinese with English abstract)
Zhang JJ, Zheng YD, Shi QZ, Yu XD and Xue LW. 1996. The Xiaoqinling detachment fault and metamorphic core complex of China: Structure, kinematics, strain and evolution. In: Proceedings of the 30th International Geological Congress. Beijing, 158-172
Zhang JS, Passchier CW, Konopasek J, Niu XL and Huang XN. 2007. Evidence for coalescing of extensional detachment and magma diapirism during uplift of the Yunmengshan metamorphic core complex. Earth Science Frontiers, 14(4): 26-39 (in Chinese with English abstract)
Zhang Q, Wang Y and Wang YL. 2001. Preliminary study on the components of the lower crust in East China Plateau during Yanshanian Period: Constraints on Sr and Nd isotopic compositions of adakite-like rocks. Acta Petrologica Sinica, 17(4): 505-513 (in Chinese with English abstract)
Zhang XD, Yu Q, Chen FJ and Wang XW. 2000. Structural characteristics, origin and evolution of metamorphic core complex in central basement uplift and Xujiaweizi faulted depression in Songliao Basin, Northeast China. Earth Science Frontiers, 7(4): 411-419 (in Chinese with English abstract)
Zhang XH, Li TS, Pu ZP and Wang H. 2002a. 40Ar-39Ar ages of the Louzidian-Dachengzi ductile shear zone near Chifeng, Inner Mongolia and their tectonic significance. Chinese Science Bulletin, 47(15): 1292-1297 DOI:10.1360/02tb9287
Zhang XH, Li TS and Pu ZP. 2002b. 40Ar-39Ar thermochronology of two ductile shear zones from Yiwulüshan, West Liaoning: Age constraints on the Mesozoic tectonic events. Chinese Science Bulletin, 47(13): 1113-1118 DOI:10.1360/02tb9250
Zhang YQ, Dong SW and Shi W. 2003. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China. Tectonophysics, 363(3-4): 243-258 DOI:10.1016/S0040-1951(03)00039-8
Zhang YQ, Zhao Y, Dong SW and Yang N. 2004. Tectonic evolution stages of the Early Cretaceous rift basins in eastern China and adjacent areas and their geodynamic background. Earth Science Frontiers, 11(3): 123-133 (in Chinese with English abstract)
Zhang YQ, Dong SW, Li JH, Cui JJ, Shi W, Su JB and Li Y. 2012. The new progress in the study of Mesozoic tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279 (in Chinese with English abstract)
Zhang ZK. 2020. Intracontinental deformation and magmatism of the North China Craton induced by subduction of the paleo-Pacific plate. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1-228 (in Chinese with English summary)
Zhao HB, Mo XX, Xu SM, Li SL and Ma BY. 2007. Composition and evolution of the Xinkailing metamorphic core complexes in Heilongjiang Province. Chinese Journal of Geology, 42(1): 176-188 (in Chinese with English abstract)
Zhao L, Zheng TY, Lu G and Ai YS. 2011b. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: Constraints from new SKS wave splitting measurements. Geophysical Research Letters, 187(2): 1027-1037
Zhao L, Zheng TY and Lu G. 2013. Distinct upper mantle deformation of cratons in response to subduction: Constraints from SKS wave splitting measurements in eastern China. Gondwana Research, 23(1): 39-53 DOI:10.1016/j.gr.2012.04.007
Zhao Y, Xu G, Zhang SH, Yang ZY, Zhang YQ and Hu JM. 2004. Yanshanian movement and conversion of tectonic regimes in East Asia. Earth Science Frontiers, 11(3): 319-328 (in Chinese with English abstract)
Zhao ZF, Zheng YF, Wei CS and Wu YB. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248-272 DOI:10.1016/j.lithos.2006.03.067
Zhao ZF, Zheng YF, Wei CS and Wu FY. 2011a. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos, 126(1-2): 99-114 DOI:10.1016/j.lithos.2011.06.010
Zheng Y, Wang Y, Liu R and Shao J. 1988. Sliding-thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beijing, China. Journal of Structural Geology, 10(2): 135-144 DOI:10.1016/0191-8141(88)90111-3
Zheng YD, Wang SZ and Wang YF. 1991. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sino-Mongolian boundary area. Science in China (Series B), 34(9): 1145-1154
Zheng YF, Xia QX, Chen RX and Gao XY. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Science Reviews, 107(3-4): 342-374 DOI:10.1016/j.earscirev.2011.04.004
Zhou YZ, Han BF, Zhang B, Xu Z, Ren R, Li XW and Su L. 2012. The Yingba shear zone on the Sino-Mongolian border: Southwestern extension of the Zuunbayan Fault from Mongolia to China and implications for Late Mesozoic intracontinental extension in eastern Asia. Tectonophysics, 574-575: 118-132 DOI:10.1016/j.tecto.2012.08.042
Zhu G, Xie CL, Xiang BW, Hu ZQ, Wang YS and Li X. 2007. Genesis of the Hongzhen metamorphic core complex and its tectonic implications. Science in China (Series D), 50(5): 649-659 DOI:10.1007/s11430-007-0032-x
Zhu G, Xie CL, Chen W, Xiang BW and Hu ZQ. 2010. Evolution of the Hongzhen metamorphic core complex: Evidence for Early Cretaceous extension in the eastern Yangtze craton, eastern China. GSA Bulletin, 122(3-4): 506-516 DOI:10.1130/B30028.1
Zhu G, Jiang DZ, Zhang BL and Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22(1): 86-103 DOI:10.1016/j.gr.2011.08.005
Zhu G, Chen Y, Jiang DZ and Lin SZ. 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex. Tectonophysics, 656: 91-110 DOI:10.1016/j.tecto.2015.06.009
Zhu G, Liu C, Gu CC, Zhang S, Li YJ, Su N and Xiao SY. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone. Science China (Earth Sciences), 61(4): 386-405 DOI:10.1007/s11430-017-9136-4
Zorin YA. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56 DOI:10.1016/S0040-1951(99)00042-6
Zou HJ, Ma CQ and Wang LX. 2011. A magma ascent rate of epidote-bearing granodioritic magma in the Mufushan complex batholith of NE Hunan Province: Evidence from petrography and mineral chemistry. Acta Geologica Sinica, 85(3): 366-378 (in Chinese with English abstract)
豆敬兆, 付顺, 张华锋. 2015. 胶东郭家岭岩体固结冷却轨迹与隆升剥蚀. 岩石学报, 31(8): 2325-2336.
关会梅, 刘俊来, 纪沫, 赵胜金, 胡玲, Davis GA. 2008. 辽宁南部万福变质核杂岩的发现及其区域构造意义. 地学前缘, 15(3): 199-208. DOI:10.3321/j.issn:1005-2321.2008.03.016
侯泉林, 刘庆, 李俊, 张宏远. 2007. 大别山晚中生代剪切带特征及年代学制约. 地质科学, 42(1): 114-123.
胡世玲, 王松山, 桑海清, 裘冀, 张任枯. 1987. 山东玲珑和郭家岭岩体的同位素年龄及其地质意义. 岩石学报, (3): 83-89. DOI:10.3321/j.issn:1000-0569.1987.03.010
冀文斌, 林伟, 石永红, 王清晨, 褚杨. 2011. 大别山早白垩世变质核杂岩的结构与演化. 地质科学, 46(1): 161-180.
纪新林, 王磊, 潘永信. 2010. 北京房山岩体的磁组构特征及其对岩体侵位的约束. 地球物理学报, 53(7): 1671-1680. DOI:10.3969/j.issn.0001-5733.2010.07.018
李锦轶, 杨天南, 陈文, 张思红. 2004. 中国东部东海地区超高压变质岩构造变形事件的40Ar/39Ar定年与超高压变质岩折返过程的重建. 地质学报, 78(1): 97-108. DOI:10.3321/j.issn:0001-5717.2004.01.012
李秋立, 杨亚楠, 石永红, 林伟. 2013. 榴辉岩中金红石U-Pb定年: 对大陆碰撞造山带形成和演化的制约. 科学通报, 58(23): 2279-2284.
李思田. 1988. 断陷盆地分析与煤聚积规律. 北京: 地质出版社, 1-125.
李思田. 1997. 中国东部及邻区中、新生代盆地演化及地球动力学背景. 武汉: 中国地质大学出版社, 239.
李三忠, 索艳慧, 李玺瑶, 王永明, 曹现志, 王鹏程, 郭玲莉, 于胜尧, 兰浩圆, 李少俊, 赵淑娟, 周在征, 张臻, 张国伟. 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应. 科学通报, 63(16): 1550-1593.
林少泽, 朱光, 赵田, 宋利宏, 刘备. 2014. 燕山地区喀喇沁变质核杂岩的构造特征与发育机制. 科学通报, 59(32): 3174-3189.
林伟, 王军, 刘飞, 冀文斌, 王清晨. 2013a. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论. 岩石学报, 29(5): 1791-1810.
林伟, 冀文斌, 石永红, 褚杨, 李秋立, 陈泽超, 刘飞, 王清晨. 2013b. 高压-超高压变质岩石多期构造折返: 以桐柏-红安-大别造山带为例. 科学通报, 58(23): 2259-2265.
林伟, 许德如, 侯泉林, 李双建, 孟令通, 任志恒, 邱华标, 褚杨. 2019. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿. 大地构造与成矿学, 43(3): 409-430.
林伟, 曾纪培, 孟令通, 邱华标, 卫巍, 任志恒, 褚杨, 李双建, 宋超, 王清晨. 2021. 伸展构造与华北克拉通破坏——花岗岩磁组构和变质核杂岩的构造分析. 中国科学(地球科学). DOI:10.1360/SSTe-2020-0306
刘翠, 邓晋福, 苏尚国, 肖庆辉, 罗照华, 王启航, 许立权. 2004. 北京云蒙山片麻状花岗岩锆石SHRIMP定年及其地质意义. 岩石矿物学杂志, 23(2): 141-146. DOI:10.3969/j.issn.1000-6524.2004.02.005
刘江, 张进江, 郭磊, 戚国伟. 2014. 内蒙古呼和浩特变质核杂岩韧性拆离带40Ar-39Ar定年及其构造含义. 岩石学报, 30(7): 1899-1908.
刘晓春, 江博明, 李三忠, 崔建军, 刘鑫, 娄玉行, 曲玮. 2011. 桐柏高压变质地体: 对桐柏-大别-苏鲁高压/超高压变质带构造框架和俯冲/折返机制的制约. 岩石学报, 27(4): 1151-1162.
赛盛勋, 赵天明, 王中亮, 黄锁英, 张良. 2016. 玲珑黑云母花岗岩成因: 矿物学特征约束. 岩石学报, 32(8): 2477-2493.
舒良树, 孙岩, 王德滋, Faure M, Charvet J, Monie P. 1998. 华南武功山中生代伸展构造. 中国科学(D辑), 28(5): 431-438. DOI:10.3321/j.issn:1006-9267.1998.05.003
舒良树, 周新民. 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. DOI:10.3321/j.issn:0371-5736.2002.03.004
舒良树, 周新民, 邓平, 余心起, 王彬, 祖辅平. 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(9): 876-884. DOI:10.3969/j.issn.1671-2552.2004.09.008
舒良树, 王德滋. 2006. 北美西部与中国东南部盆岭构造对比研究. 高校地质学报, 12(1): 1-13. DOI:10.3969/j.issn.1006-7493.2006.01.001
宋超, 卫巍, 侯泉林, 刘庆, 张宏远, 伍式崇, 朱浩峰, 李晖. 2016. 湘东茶陵地区老山坳剪切带特征及其与湘东钨矿的关系. 岩石学报, 32(5): 1571-1580.
索艳慧, 李三忠, 戴黎明, 刘鑫, 周立宏. 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618.
索艳慧, 李三忠, 曹现志, 李玺瑶, 刘鑫, 曹花花. 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程. 地学前缘, 24(4): 249-267.
王国灿, 杨巍然. 1996. 大别山核部罗田穹隆形成的构造及年代学证据. 地球科学, 21(5): 524-528.
王新社, 郑亚东. 2005. 楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束. 地质论评, 51(5): 574-582. DOI:10.3321/j.issn:0371-5736.2005.05.012
王志光, 张录星. 1999. 熊耳山变质核杂岩构造研究及找矿进展. 有色金属矿产与勘查, 8(6): 388-392.
夏增明, 刘俊来, 倪金龙, 张婷婷, 施性明, 吴云. 2016. 胶东东部鹊山变质核杂岩结构、演化及区域构造意义. 中国科学(地球科学), 46(3): 356-373.
许光, 王二七. 2010. 桐柏杂岩的中生代隆升机制及其与南阳盆地沉降的耦合关系. 地质科学, 45(3): 626-652.
杨进辉, 吴福元, 钟孙霖, 罗清华. 2008. 华北东部早白垩世花岗岩侵位的伸展地球动力学背景: 激光40Ar/39Ar年代学证据. 岩石学报, 24(6): 1175-1184.
喻爱南, 叶柏龙, 彭恩生. 1998. 湖南桃林大云山变质核杂岩构造与成矿的关系. 大地构造与成矿学, 22(1): 82-88.
翟媛媛, 谢锦程, 董国臣. 2014. 太行山北段王安镇岩基超镁铁质岩中角闪石成因意义. 岩石矿物学杂志, 33(2): 273-282. DOI:10.3969/j.issn.1000-6524.2014.02.006
张华锋, 李胜荣, 翟明国, 郭敬辉. 2006. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义. 岩石学报, 22(2): 285-295.
张慧, 王娟, 彭涛, 范文寿, 陈艺超, 侯泉林, 吴春明. 2018. 北京云蒙山大水峪韧性剪切带糜棱岩的变形温度. 岩石学报, 34(6): 1801-1812.
张家声, Passchier CW, Konopasek J, 牛向龙, 黄雄南. 2007. 云蒙山变质核杂岩抬升过程中伸展拆离和岩浆底辟联合作用的证据. 地学前缘, 14(4): 26-39. DOI:10.3321/j.issn:1005-2321.2007.04.003
张旗, 王焰, 王元龙. 2001. 燕山期中国东部高原下地壳组成初探: 埃达克质岩Sr、Nd同位素制约. 岩石学报, 17(4): 505-513.
张晓东, 余青, 陈发景, 汪新文. 2000. 松辽盆地变质核杂岩和伸展断陷的构造特征及成因. 地学前缘, 7(4): 411-419. DOI:10.3321/j.issn:1005-2321.2000.04.008
张岳桥, 赵越, 董树文, 杨农. 2004. 中国东部及邻区早白垩世裂陷盆地构造演化阶段. 地学前缘, 11(3): 123-133. DOI:10.3321/j.issn:1005-2321.2004.03.014
张岳桥, 董树文, 李建华, 崔建军, 施炜, 苏金宝, 李勇. 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279.
张哲坤. 2020. 古太平洋俯冲对华北克拉通陆内变形及岩浆作用的制约. 博士学位论文. 广州: 中国科学院广州地球化学研究所, 1-228
赵海滨, 莫宣学, 徐受民, 李尚林, 马伯永. 2007. 黑龙江新开岭变质核杂岩的组成及其演化. 地质科学, 42(1): 176-188.
赵越, 徐刚, 张拴宏, 杨振宇, 张岳桥, 胡健民. 2004. 燕山运动与东亚构造体制的转变. 地学前缘, 11(3): 319-328. DOI:10.3321/j.issn:1005-2321.2004.03.030
邹慧娟, 马昌前, 王连训. 2011. 湘东北幕阜山含绿帘石花岗闪长岩岩浆的上升速率: 岩相学和矿物化学证据. 地质学报, 85(3): 366-378.