岩石学报  2021, Vol. 37 Issue (7): 2179-2188, doi: 10.18654/1000-0569/2021.07.12   PDF    
滇西松山锡矿锡石LA-SF-ICP-MS U-Pb年代学及其对区域锡成矿作用的指示
朱艺婷1,2,3, 李晓峰1,2,3, 余勇4, 李祖福4, 吴永5     
1. 中国科学院地质与地球物理研究所, 中国科学院矿产资源研究重点实验室, 北京 100029;
2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学地球与行星科学学院, 北京 100049;
4. 桂林理工大学地球科学学院, 桂林 541004;
5. 云南松山矿业有限公司, 昌宁 678107
摘要: 松山锡矿位于滇西临沧花岗岩基的西北侧。矿体主要赋存于临沧黑云母二长花岗岩与松山组绢云石英片岩接触带矽卡岩,以及花岗岩和围岩的裂隙中。由于缺乏精确的成矿年代学数据,在一定程度上限制了对矿床成因的认识,并制约了进一步的找矿勘查工作。本文首次利用LA-SF-ICP-MS微区原位U-Pb同位素测年技术,对松山锡矿床矽卡岩型和电气石石英脉型矿石中的锡石矿物开展了U-Pb年代学研究,获得2件锡石样品的207Pb/206Pb-238U/206Pb谐和年龄分别为76.6±1.5Ma和79.6±3.6Ma,说明松山锡矿锡的成矿作用主要发生在晚白垩世,与临沧花岗岩主体侵位时间(三叠纪)明显不同。结合地质特征和前人年代学研究成果,本文认为该地区存在明显的晚白垩世锡的成矿事件,研究区下一步的找矿工作应围绕岩体与围岩接触带,以及岩体和围岩中的断裂展开。
关键词: 锡石U-Pb年龄    晚白垩世    松山锡矿    临沧花岗岩    滇西    
LA-SF-ICP-MS U-Pb age of cassiterite at the Songshan tin deposit and its implications for regional tin mineralization, western Yunnan
ZHU YiTing1,2,3, LI XiaoFeng1,2,3, YU Yong4, LI ZuFu4, WU Yong5     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China;
4. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China;
5. Yunnan Songshan Mining Co., Ltd, Changning 678107, China
Abstract: The Songshan tin deposit is located in Lancangjiang tin belt in the Sanjiang Tethys metallogenic domain, which is related to Lincang granite complex. The tin orebodies occur as skarn, veins, and greisen. The ore minerals are composed of cassiterite, pyrrhotite, chalcopyrite, arsenopyrite, and pyrite. There has no available age dating published in the area, which restricts the understanding of the genesis of the deposit. The paper reports the U-Pb isotope dating of cassiterite using the method of in-situ LA-SF-ICP-MS at the Songshan tin deposit. The results show that the 207Pb/206Pb-238U/206Pb concordia ages of cassiterite from the skarn ore and quartz-vein ore are 76.6±1.5Ma and 79.6±3.6Ma, respectively. These ages indicate that the Sn mineralization formed in Late Cretaceous at the Songshan tin deposit, which is quite different from the age of the Lincang granite, which emplaced in the Triassic. Combined with other published age data, it concluded that the Sn mineralization in the Late Cretaceous occured in the Songshan deposit and its adjacent areas. The next exploration target should focus on the contact zone between granite and wall rocks, as well as the faults that occur in the granite.
Key words: Cassiterite U-Pb age    Late Cretaceous    Songshan tin deposit    Lincang granite    Western Yunnan    

成矿年代学研究是揭示矿床成因机制的重要手段。成矿年代的确定有间接方法和直接方法。间接方法主要有锆石U-Pb、全岩Rb-Sr、Sm-Nd、含钾矿物的40Ar-39Ar等,而直接方法主要有辉钼矿Re-Os等方法。锡矿的形成在空间和成分上与高分异花岗岩演化密切相关(Taylor, 1979; Lehmann, 1990);然而,高分异花岗岩中的锆石由于U含量较高,其结构容易受到α粒子辐射破坏,导致U-Pb系统扰动(Davis and Krogh, 2001; Romer, 2003)。Rb-Sr,Sm-Nd和含钾矿物的40Ar-39Ar系统由于其封闭温度相对较低,并且很容易受到后期热液蚀变及热事件的影响(Romer et al., 2007),导致测试的可靠性降低。锡矿中由于辉钼矿Re含量较低而Os含量较高,会导致样品溶解或沉淀过程中Re损失而使Re-Os体系受到影响(McCandless et al., 1993)。因此,上述方法对于高分异花岗岩中锡矿床成矿年龄的确定不甚理想。锡石作为锡矿中重要的矿石矿物,U含量较低(< 10-6),其U-Pb同位素封闭温度高于花岗岩固相线温度(张东亮等, 2011),因此,可以采用锡石U-Pb定年直接制约锡的成矿时间,利用锡石U-Pb同位素年龄来揭示稀有金属花岗岩及其有关锡矿的成因关系已成为当前成矿年代学研究的热点(Gulson and Jones, 1992; Yuan et al., 2008; Li et al., 2016)。

松山锡矿位于滇西临沧花岗岩基的北段。锡矿体主要发育于临沧黑云母二长花岗岩与松山组灰黄色绢云石英片岩接触带矽卡岩中,以及黑云母二长花岗岩和浅变质岩中。矿石类型主要有矽卡岩型、电气石石英脉型、云英岩型等。虽然该矿床在20世纪80年代就开展了地质普查工作,但是由于成矿年代的不确定性,制约了对矿床成因的认识和下一步找矿工作的部署。本文在野外地质工作的基础上,首次利用锡石U-Pb同位素测年方法对矽卡岩型和电气石石英脉型矿石中的锡石开展了U-Pb年代学工作,厘定了松山锡矿的成矿时代,探讨了其对区域成矿作用的指示。

1 区域地质背景

松山锡矿位于青藏高原三江特提斯造山带南段的昌宁-孟连缝合带,澜沧江锡矿带中段。昌宁-孟连缝合带呈近南北向狭长带状展布,北起昌宁,经凤庆、临沧和澜沧向南延伸至勐海地区,延伸长度约为400km,宽度达80~100km(图 1Wu et al., 1995)。它是一条重要的古特提斯主缝合带(刘本培等, 1993; Zhang et al., 1993; Wu et al., 1995; 钟大赉, 1998; Metcalfe, 2011; Wang et al., 2018),受印度洋板块、太平洋板块和欧亚板块三大板块作用的影响,该地区先后经历了特提斯演化(古生代古特提斯洋的消减闭合、中新生代新特提斯洋的开启-闭合)以及新生代印度-欧亚大陆的俯冲碰撞、陆内汇聚和隆升造山复杂演化过程(李文昌等, 2010; 李勇, 2012; 潘桂棠等, 2013)。

区域上出露地层主要有元古界澜沧群松山组灰黄色绢云石英片岩夹变质砂岩,大田丫口组深灰-浅灰色含斜长变斑片岩,小龙塘组灰白色石英片岩,以及崇山群花木岭组片岩、变粒岩等。出露的岩浆岩主要是临沧复式花岗岩体。临沧花岗岩基沿澜沧江断裂南段西侧呈南北向延伸,呈反“S”状展布,南北长达350km,东西宽10~48km,出露面积约7400km2(李兴林, 1996)。该岩基向南与泰国、马来西亚的花岗岩带断续相接,构成一条十分醒目的构造岩浆带。临沧岩基东侧以澜沧江断裂带与上古生界和三叠系为界,北端与中三叠统忙怀组火山岩呈侵入接触关系;西侧与中元古界澜沧群、大勐龙群呈侵入或断层接触;岩基被中侏罗统不整合覆盖。临沧花岗岩基为多期侵入的复式花岗岩体,主体岩性为中三叠世二长花岗岩、黑云母二长花岗岩、花岗闪长岩,少量的燕山期花岗岩侵入临沧花岗岩基中(彭头平等, 2006; 吴随录, 2010; 孔会磊等, 2012)。目前,对于临沧花岗岩的构造环境有碰撞型花岗岩(陈吉琛, 1987; 刘昌实等, 1989)和碰撞后花岗岩(莫宣学等, 1998; 彭头平等, 2006)等两种观点。

2 矿床地质

松山锡矿位于临沧花岗岩基的西北端,澜沧江北西向构造带与昌宁-营盘弧形构造的结合部位。矿区出露地层主要为澜沧群松山组绢云石英片岩夹变质砂岩,大田丫口组含斜长变斑片岩,小龙塘组灰白色石英片岩等。岩浆岩主要以三叠纪黑云母二长花岗岩为主,晚白垩世花岗岩呈岩株状侵位于黑云母二长花岗岩中(图 2)。

图 2 松山锡矿床地质简图 Fig. 2 Simplified geological map of the Songshan tin deposit

松山锡矿主要发育于三叠纪黑云母二长花岗岩与澜沧群松山组变质石英粉砂岩接触带, 以及黑云母花岗岩和石英粉砂岩的破碎带中。矿化主要受NNW-SSE向裂隙构造控制,呈脉状、透镜状、不规则囊状产出。矿石类型主要有矽卡岩型、电气石石英脉型和云英岩型等(图 3a-c)。

图 3 松山锡矿床不同类型矿石样品手标本及显微照片 (a)花岗岩与围岩接触带矽卡岩;(b)花岗岩中的电气石石英脉型矿石;(c)云英岩型矿石;(d)矽卡岩主要矿物组成为锡石和石榴子石、阳起石、石英、斜长石、赤铁矿等(-);(e)含锡电气石石英脉主要由锡石、电气石、石英等矿物组成(+);(f)云英岩型矿石中主要由锡石和绢云母、石英、电气石等矿物组成(+).Qtz-石英;Grt-石榴子石;Cst-锡石;Act-阳起石;Hem-赤铁矿;Tur-电气石;Ser-绢云母 Fig. 3 Hand specimens and micrographs of different types of ores at the Songshan tin deposit (a) skarn occurred in the contact zone between granite and surrounding rock; (b) tourmaline-quartz vein ores in biotite monzogranite; (c) Greisen ore in biotite-monogranite; (d) skarn is mainly composed of cassiterite, garnet, actinolite, quartz, plagioclase and hematite (plane-polarized light); (e) the minerals in tin-bearing tourmaline-quartz veins is composed of cassiterite, tourmaline and quartz (crossed polarized light); (f) the minerals in greisen ore is composed of cassiterite, sericite, quartz and tourmaline (crossed polarized light). Qtz-quartz; Grt-garnet; Cst-cassiterite; Act-actinolite; Hem-hematite; Tur-tourmaline; Ser-sericite

矽卡岩型锡矿主要发育于老地基-处马地基矿段和麻栗树矿段。矿体多呈囊状、透镜状,倾角较缓,长30~60m。矽卡岩主要矿物成分为石榴子石、透辉石、阳起石、绿帘石及石英。金属矿物有锡石、黄铁矿、磁黄铁矿、磁铁矿。热液蚀变主要有硅化、褐铁矿化、矽卡岩化等。锡石主要以呈颗粒镶嵌或细脉穿插于矽卡岩矿物中。镜下可见细小粒状石榴子石被阳起石不均匀交代,锡石交代早期的石榴子石和阳起石(图 3d),说明锡石形成时代较晚于石榴子石和阳起石。

电气石石英脉型锡矿主要发育于周家寨和岭岗寨矿段。矿体主要呈脉状或细脉状平行排列产出。矿石矿物主要由石英、电气石、锡石、黄铁矿、磁黄铁矿组成。电气石呈灰、黄绿色及黑色,以细脉状、散点状、不规则状、团块状分布于石英脉中。早期电气石脉(Tur-1)较破碎,锡石交代早期电气石(Tur-1)生长,而晚期电气石(Tur-2)呈针状交代锡石生长(图 3e)。

云英岩型锡矿主要发育于光山、麻栗树、鲁家坟、小寨等矿段,主要分布在花岗岩体内。主要矿石矿物为锡石、电气石、黄铁矿、磁黄铁矿等;主要脉石矿物有白云母、石英和长石。镜下可见锡石呈柱状-粒状,被白云母、石英、电气石充填交代(图 3f)。

3 样品采集与分析测试 3.1 样品采集

在野外观察的基础上,分别在麻栗树南139矿段和岭岗寨130矿段(图 2)采集了锡矿石样品,从中挑选了锡石单矿物颗粒进行U-Pb定年测试。SS139样品为矽卡岩型锡矿石,矿物组成主要为石榴子石、电气石、石英和锡石,其中锡石以单矿物呈深色颗粒状镶嵌在石英中。SSX10-1样品为产在黑云母二长花岗岩中的电气石石英脉型锡矿石,含锡石、电气石和石英。

3.2 分析方法

锡石U-Pb同位素定年在中国科学院地质与地球物理研究所多接收-电感耦合等离子体质谱实验室完成。所用仪器为高灵敏度扇形磁场质谱(SF-ICP-MS),激光剥蚀系统为UP193 ArF准分子激光器,采用的波长为193nm,脉冲宽度为5ns,激光束斑为50μm,频率为8Hz(Yang et al., 2020)。

实验流程具体如下:在双目镜下将锡石单矿物颗粒用双面胶粘在载玻片上,放上PVC环,将环氧树脂和固化剂按一定比例充分混合后注入PVC环中,待树脂充分固化后将样品从载玻片上剥离,并对其进行抛光处理。然后根据锡石靶的反射光、透射光和CL图像(图 4),选择合适的锡石颗粒,并尽量避开颗粒中的包裹体和裂纹,从而减少普通铅的影响。实验过程中采用He作为剥蚀物质的载气,通过直径3mm的PVC管将剥蚀物质传送到MC-ICP-MS,并在进入MC-ICP-MS之前与Ar气混合,形成混合气。实验中由于204Pb的离子信号较弱且在Ar气中有204Hg会对204Pb产生干扰,其含量难以准确测定,故对U含量不高,积累的放射成因207Pb含量极少的年轻锡石样品(一般小于400Ma),采用207Pb代替204Pb来作U-Pb等时线,即206Pb/207Pb-238U/207Pb等时线代替传统的238U/204Pb-206Pb/204Pb等时线方法处理数据;同时还对锡石U-Pb数据进行了Tera-Wasserburg曲线投图,以期与等时线年龄进行对比和印证。采用锡石标样(SPG,206Pb/238U年龄=1540Ma)作为测量外标。锡石207Pb/206Pb-238U/206Pb Tera-Wasserburg曲线的数据计算与图形绘制均用Isoplot软件完成(Ludwig, 2003)。

图 4 松山锡矿样品SSX10-1(a-c)和SS139(d-f)锡石颗粒CL照片 Fig. 4 Cathodoluminescence (CL) images of analyzed cassiterite separated from samples SSX10-1 (a-c) and SS139 (d-f) in the Songshan tin deposit
4 分析结果

松山锡矿锡石LA-SF-ICP-MS U-Pb年龄分析结果见表 1

表 1 松山锡矿中锡石LA-SF-ICP-MS U-Pb分析数据 Table 1 LA-SF-ICP-MS cassiterite U-Pb data at the Songshan tin deposit

SS139矽卡岩型矿石样品,共测试18个点。Pb含量为0.03×10-6~1.05×10-6,Th含量为0~0.03×10-6,U含量为2.31×10-6~95.00×10-6206Pb/238U变化范围为0.012~0.014,207Pb/235U变化范围为0.073~0.289,207Pb/206Pb变化范围为0.043~0.162。207Pb/206Pb-238U/206Pb谐和年龄为76.6±1.5Ma(MSWD=0.17)(图 5a)。

图 5 松山锡矿锡石U-Pb年龄谐和图 (a)样品SS139锡石U-Pb年龄;(b)样品SSX10-1锡石U-Pb年龄 Fig. 5 The concordia diagram (Tera-Wasserburg) of cassiterite at the Songshan tin deposit (a) cassiterite U-Pb age of Sample SS139; (b) cassiterite U-Pb age of Sample SSX10-1

SSX10-1电气石石英脉型矿石样品,共测试15个点。Pb含量为0.02×10-6~9.82×10-6,Th含量为0~0.13×10-6,U含量为0.25×10-6~43.00×10-6,U和Pb变化范围相对较大;206Pb/238U变化范围为0.012~2.301,207Pb/235U变化范围为0.134~69.80,207Pb/206Pb比值变化范围为0.098~0.775。207Pb/206Pb-238U/206Pb谐和年龄为79.6±3.6Ma(MSWD=1.2)(图 5b)。

由此可见,松山锡矿2件锡石样品U-Pb谐和年龄相差较小(76.6±1.5Ma和79.6±3.6Ma),在误差范围内基本一致,说明松山锡矿矽卡岩型锡矿化和石英脉岩型锡矿化成矿年龄基本一致,其成矿作用均发生于晚白垩世。

5 讨论 5.1 松山锡矿成岩成矿时代

锡石是稀有金属矿床中主要的矿石矿物,属于金红石族。当U进入晶格且含量较高时,锡石可以作为U-Pb同位素的测年对象(Gulson and Jones, 1992),并且得到了广泛的运用(张东亮等, 2011; Lehmann et al., 2020)。锡石U-Pb体系的封闭温度较高,即使受到后期高温岩浆热液作用的影响,锡石还可保持其U-Pb同位素体系封闭。因此,锡石U-Pb年龄是与锡有关矿床成矿年代学研究的理想对象。

松山锡矿主要发育于临沧黑云母二长花岗岩与松山组变质岩的接触带中,在空间上与临沧花岗岩密切相关,因此,先前的研究均认为松山锡矿的形成与临沧花岗岩的侵位有关,是晚三叠世的产物(罗君烈, 1991)。本次分析所用锡石颗粒多数>100μm,CL图像显示其生长环带发育(图 4),表面没有裂隙发育。由于锡石U-Pb体系封闭温度应大于560℃,后期岩浆热液流体作用的影响较小,因此,本次测试的锡石U-Pb年龄可以代表锡石沉淀结晶的时间。锡石是松山锡矿的主要矿石矿物,其结晶年龄能够代表松山锡矿的成矿年龄,也就是说松山锡矿锡的成矿作用主要发生于晚白垩世。

5.2 对区域成矿的指示意义

滇西澜沧江锡矿带北起保山市泸水石缸河锡矿,南至景洪自治州勐宋砂锡矿。在临沧花岗岩基周边及其内部锡矿化(点)星罗棋布。然而只见星星,不见月亮。在该地区地质找矿工作一直没有取得有效突破。其根本原因在于缺乏与锡成矿有关的精确成矿时代,制约了对该地区锡成矿作用的认识。前人对临沧花岗岩基不同岩石类型的花岗岩进行了大量的年代学研究,如:临沧岩基北癞痢头山二长花岗岩时代为231.5±3.6Ma(聂飞等, 2012);岩基北段凤庆和云县二长花岗岩锆石定年结果为231.8±1.4Ma~211.9±1.8Ma(Dong et al., 2013; 赵枫等, 2018);岩基中段临沧、双江和澜沧花岗岩锆石年龄为237.7±0.8Ma~203.3±0.7Ma(施小斌等, 2006; 孔会磊等, 2012; Dong et al., 2013; 苑新晨等, 2021);岩基南段景洪、勐海和勐宋花岗岩年龄为230.4±3.6Ma~216.0±3.0Ma(彭头平等, 2006; 孔会磊等, 2012; 王舫等, 2014; Wang et al., 2015)(图 1表 2)。这些花岗岩成岩年代学研究均表明,临沧岩基侵位时代在261~203Ma之间,主要集中于230~210Ma,说明临沧花岗岩基主要侵位于中-晚三叠世。因此,普遍认为该地区锡的成矿作用应主要发生在三叠纪。

表 2 滇西澜沧江锡矿带成岩成矿年龄 Table 2 The age data of the granite and mineralization at the Lancangjiang tin ore belt, western Yunnan Province

近年来,随着地质工作程度的不断深入,在临沧花岗岩基内部及其邻区发现了晚白垩世和古近纪的岩浆-热液事件的记录。如:临沧花岗岩基北段凤庆大河乡淡色花岗岩(糜棱岩化二云母花岗岩)的年龄为79.6±0.2Ma,电气石花岗质伟晶岩的年龄为81.8±0.1Ma(王海林等, 2016);中段双江黑云母花岗岩的锆石U-Pb年龄为65.1±7.9Ma(孙康, 2018)。临沧岩基北的志本山岩体的云龙铁厂二云母花岗岩锆石LA-ICP-MS U-Pb年龄为72.2±0.8Ma(廖世勇等, 2013);漕涧二云母花岗岩、黑云母二长花岗岩LA-ICP-MS U-Pb年龄分别为73.4±0.2Ma、68.8±1.2Ma(禹丽等, 2014; 孙柏东等, 2018);五叉树钨锡矿含白钨矿白云母电气石脉中白云母Ar-Ar年龄为68.1±0.9Ma (邱华宁等, 1994)(表 2)。这些年龄数据均表明在临沧花岗岩基内部及其邻区存在着明显的晚白垩世或者古新世岩浆-热液活动。课题组最近在松山锡矿外围获得云英岩脉白云母Ar-Ar年龄(64.8±0.9Ma)以及黑云母二长花岗岩黑云母Ar-Ar年龄(60.2±1.3Ma)也说明松山锡矿区存在着古新世岩浆热液活动。但晚白垩世-古新世的岩浆热液活动与成矿的关系还不十分明确。

临沧花岗岩基西侧的腾冲-梁河地区发育大量的晚白垩世花岗岩及其相关的锡的成矿作用,如:腾冲古永岩基二长花岗岩的锆石SHRIMP U-Pb年龄为76.0±1.0Ma和67.8±1.4Ma(杨启军等, 2009);古永岩基内的大松坡锡矿黑云母二长花岗岩锆石LA-ICP-MS U-Pb年龄为70.3±3.2Ma,黑云母花岗岩锆石LA-ICP-MS U-Pb年龄为75.3±4.2Ma(马楠, 2014);大松坡云英岩型锡矿锡石U-Pb年龄为75.5±2.6Ma(马楠等, 2013)。上述数据表明,在滇西地区存在着明显的晚白垩世花岗岩及其有关的锡的成矿作用。本文锡石U-Pb年龄则支持了在临沧花岗岩地区也存在着晚白垩世锡的成矿作用。尽管在松山锡矿地区尚未发现有晚白垩世花岗岩,但是可能存在着隐伏花岗岩体为松山锡矿锡的成矿作用提供成矿物质和成矿流体。因此,滇西临沧花岗岩地区存在大规模晚白垩世锡成矿的可能性,这期成矿主要受岩体与围岩接触带构造,以及岩体与围岩中的裂隙构造所控制。未来找矿部署应沿这些构造展开。

6 结论

(1) 本文首次对滇西临沧花岗岩基北段松山锡矿中的锡石开展了U-Pb定年工作,结果显示,松山锡矿中矽卡岩型和电气石石英脉型锡矿石U-Pb年龄分别为76.6±1.5Ma和79.6±3.6Ma,说明松山锡矿锡的成矿作用发生在晚白垩世。

(2) 松山锡矿的成矿时代明显晚于临沧花岗岩基主体侵位年龄,该地区的下一步找矿工作应围绕岩体与围岩接触带,以及岩体和围岩中的裂隙开展。

致谢      在野外考察过程中,得到了云南松山锡矿等地质同行的大力协助;在样品测试过程中,得到了中国科学院地质与地球物理研究所杨岳衡正高级工程师、吴石头工程师,以及杨明博士的大力帮助;在此一并致谢。

参考文献
Bureau of Geology and Mineral Resources of Yunnan Province (BGMRY). 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing House, 352-447 (in Chinese)
Chen JC. 1987. Discusion on the age division and the selects of isotopic age determination for granitic rock in western Yunnan. Yunnan Geology, 6(2): 101-113 (in Chinese with English abstract)
Davis DW and Krogh TE. 2001. Preferential dissolution of 234U and radiogenic Pb from α-recoil-damaged lattice sites in zircon: Implications for thermal histories and Pb isotopic fractionation in the near surface environment. Chemical Geology, 172(1-2): 41-58 DOI:10.1016/S0009-2541(00)00235-7
Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL and Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294 DOI:10.1016/j.jseaes.2012.10.003
Gulson BL and Jones MT. 1992. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld complex granites. Geology, 20(4): 355-358 DOI:10.1130/0091-7613(1992)020<0355:CPFDDO>2.3.CO;2
Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R and Wang QL. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Acta Petrologica Sinica, 28(5): 1438-1452 (in Chinese with English abstract)
Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer-Verlag, 1-211
Lehmann B, Zoheir BA, Neymark LA, Zeh A, Emam A, Radwan AM, Zhang RQ and Moscati RJ. 2020. Monazite and cassiterite U-Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield. Gondwana Research, 84: 71-80 DOI:10.1016/j.gr.2020.03.001
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-322 DOI:10.1016/j.oregeorev.2015.07.016
Li WC, Pan GT, Hou ZQ, Mo XX, Wang QL and Ding J. 2010. Archipelagic-basin, Forming Collision Theory and Prospecting Techniques along the Nujiang-Lancangjiang-Jinshajiang Area in Southwestern China. Beijing: Geological Publishing House: 1-490 (in Chinese)
Li XL. 1996. Basic characteristics and formation structural environment of Lincang composite granite batholith. Yunnan Geology, 15(1): 1-18 (in Chinese with English abstract)
Li Y. 2012. Geochronology, petrogenesis and geological significance of the Cenozoic potassic magmatic rocks in Sanjiang area, western Yunnan. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)
Liao SY, Wang DB, Tang Y, Yin FG, Sun ZM and Sun J. 2013. LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River Region and its geological implications. Acta Petrologica et Mineralogica, 32(4): 450-462 (in Chinese with English abstract)
Liu BP, Feng QL, Fang NQ, Jia JH and He FX. 1993. Tectonic evolution of Palaeo-Tethys poly-island-ocean in Changning-Menglian and Lancangjiang belts, southwestern Yunnan, China. Earth Science, 18(5): 529-539 (in Chinese with English abstract)
Liu CS, Zhu JC, Xu XS, Chu XJ, Cai DK and Yang P. 1989. Study on the characteristics of Linchang composite granite batholith in West Yunnan. Yunnan Geology, 8(3-4): 189-204, 212 (in Chinese with English abstract)
Ludwig KR. 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center
Luo JL. 1991. Granitoids related to western Yunnan (Dianxi) tin deposits and their metallization. Mineral Deposits, 10(1): 81-96, 80 (in Chinese)
Ma N, Deng J, Wang QF, Wang CM, Zhang J and Li GJ. 2013. Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-MC-ICP-MS U-Pb age. Acta Petrologica Sinica, 29(4): 1223-1235 (in Chinese with English abstract)
Ma N. 2014. The magmatism and mineralization of typical Fe-Sn deposits in the Tengchong area, Southwest Sanjiang. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese with English summary)
McCandless TE, Ruiz J and Campbell AR. 1993. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta, 57(4): 889-905 DOI:10.1016/0016-7037(93)90176-W
Metcalfe I. 2011. Palaeozoic-mesozoic history of SE Asia. In: Hall R, Cottam MA and Wilson MEJ (eds. ). The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. Geological Society, London, Special Publications, 355(1): 7-35
Mo XX, Shen SY, Zhu QW, Xu TR, Wei QR, Tan J, Zhang SQ and Cheng HL. 1998. Volcanics-Ophiolite and Mineralization of Middle and Southern Part in Sanjiang, Southern China. Beijing: Geological Publishing House, 1-128 (in Chinese)
Nie F, Dong GC, Mo XX, Zhu DC, Dong ML and Wang X. 2012. Geochemistry, zircon U-Pb chronology of the Triassic granites in the Changning-Menglian suture zone and their implications. Acta Petrologica Sinica, 28(5): 1465-1476 (in Chinese with English abstract)
Pan GT, Wang LQ, Zhang WP and Wang BD. 2013. The Instructions of Tectonic Map in Qinghai-Tibet Plateau and Its Adjacent Areas (1:1500000). Beijing: Geological Publishing House (in Chinese)
Peng TP, Wang YJ, Fan WM, Liu DY, Shi YR and Miao LC. 2006. SHRIMP zircon U-Pb geochronology of Early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Science in China (Series D), 49(10): 1032-1042 DOI:10.1007/s11430-006-1032-y
Qiu HN, Dai TM and Pu ZP. 1994. Dating mineralization of Lushui tin-tungsten deposit, western Yunnan, using 40Ar-39Ar age spectrum technique. Geochimica, 23(Suppl.1): 93-102 (in Chinese with English abstract)
Romer RL. 2003. Alpha-recoil in U-Pb geochronology: Effective sample size matters. Contributions to Mineralogy and Petrology, 145(4): 481-491 DOI:10.1007/s00410-003-0463-0
Romer RL, Thomas R, Stein HJ and Rhede D. 2007. Dating multiply overprinted Sn-mineralized granites: Examples from the Erzgebirge, Germany. Mineralium Deposita, 42(4): 337-359 DOI:10.1007/s00126-006-0114-2
Shi XB, Qiu XL, Liu HL, Chu ZY and Xia B. 2006. Thermochronological analyses on the cooling history of the Lincang granitoid batholith, western Yunnan. Acta Petrologica Sinica, 22(2): 465-479 (in Chinese with English abstract)
Sun BD, Wang XL, Huang L, Hu SB, Song DH, Zhu NG, Liu JP, Guan XQ and Tian SM. 2018. Geochemical characteristics of late cretaceous granites and zircon U-Pb chronological significance of the Caojian complex granites in the Baoshan block. Geological Bulletin of China, 37(11): 2099-2111 (in Chinese with English abstract)
Sun K. 2018. The geochemical characteristics and uranium metallogenic conditions of Lincang Indosinian-Yanshan granites in Yunnan. Master Degree Thesis. Chengdu: Chengdu University of Technology (in Chinese with English summary)
Taylor RG. 1979. Geology of Tin Deposits. Amsterdam: Elsevier: 1-543
Wang CM, Deng J, Santosh M, Lu YJ, McCuaig TC, Lu YJ, Carranza EJM and Wang QF. 2015. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Sciences, 113: 656-676 DOI:10.1016/j.jseaes.2015.05.001
Wang F, Liu FL, Liu PH, Shi JR and Cai J. 2014. Petrogenesis of Lincang granites in the south of Lancangjiang area: Constrain from geochemistry and zircon U-Pb geochronology. Acta Petrologica Sinica, 30(10): 3034-3050 (in Chinese with English abstract)
Wang HL, Lin FC, Cong F, Wang H and Li ZH. 2016. Yunnan Fengqing mang street leucogranite LA-ICP-MS zircon U-Pb age and its geological significance. World Nonferrous Metals, (7): 59-61 (in Chinese with English abstract)
Wang YJ, Qian X, Cawood PA, Liu HC, Feng QL, Zhao GC, Zhang YH, He HY and Zhang PZ. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195-230
Wu HR, Boulter CA, Ke BJ, Stow DAV and Wang ZC. 1995. The Changning-Menglian suture zone: A segment of the major Cathaysian-Gondwana divide in Southeast Asia. Tectonophysics, 242(3-4): 267-280 DOI:10.1016/0040-1951(94)00210-Z
Wu SL. 2010. Charcteristics, geochronology of Lincang granite in the southern Langcangjiang, Sanjiang Area and implication for tectonics. Master Degree Thesis. Beijing: China University of Geosciences, 1-62 (in Chinese with English summary)
Yang M, Yang YH, Wu ST, Romer RL, Che XD, Zhao ZF, Li WS, Yang JH, Wu FY, Xie LW, Huang C, Zhang D and Zhang Y. 2020. Accurate and precise in situ U-Pb isotope dating of wolframite series minerals via LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(10): 2191-2203 DOI:10.1039/D0JA00248H
Yang QJ, Xu YG, Huang XL, Luo ZY and Shi YR. 2009. Geochronology and geochemistry of granites in the Tengliang area, western Yunnan: Tectonic implication. Acta Petrologica Sinica, 25(5): 1092-1104 (in Chinese with English abstract)
Yu L, Li GJ, Wang QF and Liu XF. 2014. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block: Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions. Acta Petrologica Sinica, 30(9): 2709-2724 (in Chinese with English abstract)
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, south China). Mineralium Deposita, 43(4): 375-382 DOI:10.1007/s00126-007-0166-y
Yuan XC, Yang QJ, Lv Y, Pan M, Gao AY and Xu F. 2021. Response of magmatic activity to the closure of Changning-Menglian Palaeothys in western Yunnan: Evidence from geo-geochemical study on granite in southern section of Lincang pluton. Geological Bulletin of China, 40(1): 125-137 (in Chinese with English abstract)
Zhang DL, Peng JT, Hu RZ, Yuan SD and Zheng DS. 2011. The closure of U-Pb isotope system in cassiterite and its reliability for dating. Geological Review, 57(4): 549-554 (in Chinese with English abstract)
Zhang RY, Cong BL, Maruyama S and Liou JG. 1993. Metamorphism and tectonic evolution of the Lancang paired metamorphic belts, south-western China. Journal of Metamorphic Geology, 11(4): 605-619 DOI:10.1111/j.1525-1314.1993.tb00175.x
Zhao F, Li GJ, Zhang PF, Wang CB, Sun ZB and Tang X. 2018. Petrogenesis and tectonic implications of the Lincang batholith in the Sanjiang, Southwest China: Constraints by geochemistry, zircon U-Pb chronology and Hf isotope. Acta Petrologica Sinica, 34(5): 1397-1412 (in Chinese with English abstract)
Zhong DL. 1998. The Paleotethys Orogenic Belt in West of Sichuan and Yunnan. Beijing: Science Press, 1-30 (in Chinese)
陈吉琛. 1987. 滇西花岗岩类时代划分及同位素年龄值选用的讨论. 云南地质, 6(2): 101-113.
孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林. 2012. 滇西三江地区临沧花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 28(5): 1438-1452.
李文昌, 潘桂棠, 侯增谦, 莫宣学, 王立全, 丁俊. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社, 1-490.
李兴林. 1996. 临沧复式花岗岩基的基本特征及形成构造环境的研究. 云南地质, 15(1): 1-18.
李勇. 2012. 滇西"三江"地区新生代钾质岩浆岩年代学特征、岩石成因及其地质意义. 博士学位论文. 北京: 中国地质大学(北京)
廖世勇, 王冬兵, 唐渊, 尹福光, 孙志明, 孙洁. 2013. "三江"云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 32(4): 450-462. DOI:10.3969/j.issn.1000-6524.2013.04.004
刘本培, 冯庆来, 方念乔, 贾进华, 何馥香. 1993. 滇西南昌宁-孟连带和澜沧江古特提斯多岛洋构造演化. 地球科学(中国地质大学学报), 18(5): 529-539.
刘昌实, 朱金初, 徐夕生, 楚雪君, 蔡德坤, 杨平. 1989. 滇西临沧复式岩基特征研究. 云南地质, 8(3-4): 189-204, 212.
罗君烈. 1991. 滇西锡矿的花岗岩类及其成矿作用. 矿床地质, 10(1): 81-96, 80.
马楠, 邓军, 王庆飞, 王长明, 张静, 李龚健. 2013. 云南腾冲大松坡锡矿成矿年代学研究: 锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MS U-Pb年龄证据. 岩石学报, 29(4): 1223-1235.
马楠. 2014. 西南三江腾冲地区早白垩-古近纪典型Fe-Sn矿床成岩成矿作用. 博士学位论文. 北京: 中国地质大学(北京)
莫宣学, 沈上越, 朱勤文, 须同瑞, 魏启荣, 谭劲, 张双全, 程惠兰. 1998. 三江中南段火山岩-蛇绿岩与成矿. 北京: 地质出版社.
聂飞, 董国臣, 莫宣学, 朱弟成, 董美玲, 王霞. 2012. 滇西昌宁-孟连带三叠纪花岗岩地球化学、年代学及其意义. 岩石学报, 28(5): 1465-1476.
潘桂棠, 王立全, 张万平, 王保弟. 2013. 青藏高原及邻区大地构造图及说明书(1:1500000). 北京: 地质出版社.
彭头平, 王岳军, 范蔚茗, 刘敦一, 石玉若, 苗来成. 2006. 澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义. 中国科学(D辑), 36(2): 123-132.
邱华宁, 戴橦漠, 蒲志平. 1994. 滇西泸水钨锡矿床40Ar-39Ar法成矿年龄研究. 地球化学, 23(增1): 93-102.
施小斌, 丘学林, 刘海龄, 储著银, 夏斌. 2006. 滇西临沧花岗岩基冷却的热年代学分析. 岩石学报, 22(2): 465-479.
孙柏东, 王晓林, 黄亮, 胡绍斌, 宋冬虎, 朱能刚, 刘军平, 关学卿, 田素梅. 2018. 保山地块漕涧复式岩体晚白垩世花岗岩地球化学特征及锆石U-Pb年代学意义. 地质通报, 37(11): 2099-2111.
孙康. 2018. 云南临沧印支-燕山期花岗岩地球化学特征及铀成矿条件分析. 硕士学位论文. 成都: 成都理工大学
王舫, 刘福来, 刘平华, 施建荣, 蔡佳. 2014. 澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义. 岩石学报, 30(10): 3034-3050.
王海林, 林方成, 丛峰, 王宏, 李再会. 2016. 云南凤庆漭街淡色花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 世界有色金属, (7): 59-61.
吴随录. 2010. 三江地区南澜沧江临沧花岗岩的特点、时代及区域构造意义. 硕士学位论文. 北京: 中国地质大学(北京), 1-62
杨启军, 徐义刚, 黄小龙, 罗震宇, 石玉若. 2009. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义. 岩石学报, 25(5): 1092-1104.
禹丽, 李龚健, 王庆飞, 刘学飞. 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724.
苑新晨, 杨启军, 吕勇, 潘明, 高爱洋, 徐放. 2021. 滇西昌宁-孟连古特提斯闭合的岩浆活动响应——来自临沧岩体南段花岗岩的地质地球化学证据. 地质通报, 40(1): 125-137.
云南省地质矿产局. 1990. 云南省区域地质志. 北京: 地质出版社, 352-447.
张东亮, 彭建堂, 胡瑞忠, 袁顺达, 郑德顺. 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554.
赵枫, 李龚健, 张鹏飞, 王传斌, 孙载波, 唐鑫. 2018. 西南三江临沧花岗岩基成因与构造启示: 元素地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 34(5): 1397-1412.
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-30.