岩石学报  2021, Vol. 37 Issue (7): 2007-2028, doi: 10.18654/1000-0569/2021.07.04   PDF    
东昆仑五龙沟地区早泥盆世双峰式侵入岩年代学、地球化学及其地质意义
张亮1,2, 李碧乐3, 刘磊1,2, 王盘喜1,2, 李良4     
1. 中国地质科学院郑州矿产综合利用研究所, 郑州 450006;
2. 国家非金属矿资源综合利用工程技术研究中心, 郑州 450006;
3. 吉林大学地球科学学院, 长春 130061;
4. 云南大学地球科学学院, 昆明 650500
摘要: 东昆仑造山带东段发现一套早泥盆世双峰式侵入岩岩体组合。本文对该套双峰式侵入岩开展了岩石学、锆石U-Pb年代学、岩石地球化学、Sr-Nd及Hf同位素研究,结果显示:(1)该套双峰式侵入岩主要由橄榄辉长岩、辉长岩和碱长花岗岩组成,其定年结果分别为410.3±2.7Ma、409.3±2.7Ma和410.5±1.8Ma,表明其形成于早泥盆世。此外,基性岩浆在侵位过程中捕获了形成于晚奥陶世至中-晚志留世(445~428Ma)的锆石。(2)橄榄辉长岩和辉长岩位于钙碱性系列-低钾拉斑质系列区域,Mg#=82~84,相对富集Rb、U、K、Pb、Nd等,相对亏损Ba、Nb、Ta、P等;碱长花岗岩具有高Si、K,高FeOT/MgO,低Al、Mg、Ca,相对富集Rb、Th、U、K、Pb、Nd等,亏损Ba、Nb、Ta、Sr、P、Eu、Ti等,显示出A型花岗岩特征。(3)基性岩εNdt)=-3.38~-6.21,εHft)=-4.04~+2.83(大部分为负值),Nd和Hf模式年龄分别为tDM2(Nd)=1282~1511Ma和tDM2(Hf)=1236~1914Ma;碱长花岗岩εNdt)=-3.33~-3.65,εHft)=-0.03~2.45,Nd和Hf模式年龄分别为tDM2(Nd)=1277~1303Ma和tDM2(Hf)=1245~1396Ma。岩石地球化学、Sr-Nd及Hf同位素特征揭示该套双峰式侵入岩的基性端元和酸性端元来源于不同的岩浆源区,基性端元来自于EMII型富集地幔并遭受地壳混染,经历了橄榄石、辉石的分离结晶;酸性端元为低压高温条件下长英质地壳的部分熔融。结合区域构造演化认为,原特提斯洋在早泥盆世已经完成闭合,此时东昆仑地区处于后碰撞伸展环境。
关键词: 东昆仑    双峰式侵入岩    早泥盆世    后碰撞伸展    地球化学    岩石学    
Geochronology, geochemistry and geological significance of the Early Devonian bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen
ZHANG Liang1,2, LI BiLe3, LIU Lei1,2, WANG PanXi1,2, LI Liang4     
1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou 450006, China;
2. China National Engineering Research Center for Utilization of Industrial Minerals, Zhengzhou 450006, China;
3. College of Earth Sciences, Jilin University, Changchun 130061, China;
4. School of Earth Sciences, Yunnan University, Kunming 650500, China
Abstract: The Early Devonian bimodal intrusive rocks are reported in eastern segment of the Kunlun Orogenic Belt. This paper studies the petrology,geochemistry,zircon U-Pb ages and Sr-Nd-Hf isotopes of the bimodal intrusive rocks in Wulonggou area,East Kunlun Orogen,and the results suggested that: (1) The bimodal intrusive rocks are mainly composed of olive gabbro,gabbro and alkali granite,whose LA-ICP-MS zircon U-Pb ages are 410.3±2.7Ma,409.3±2.7Ma,410.5±1.8Ma,respectively,representing their formation ages are Early Devonian. During their emplacement,the mafic magma captures the zircons with ages of Late Ordovician to Late Silurian (445~428Ma). (2) The olive gabbro and gabbro plots in the calc-alkaline series and low K (tholitic) series,with Mg#=82~84. In addition,they are enriched in Rb,U,K,Pb,Nd,etc.,and depleted in Ba,Nb,Ta,P,etc. Alkali granites are characterized by high Si,K,FeOT/MgO and low Al,Mg,Ca; enriched in Rb,Th,U,K,Pb,Nd,etc.,and depleted in the Ba,Nb,Ta,Sr,P,Eu,Ti,etc.,which is similar to A-type granite. (3) The mafic rocks have values of εNd(t)=-3.38~-6.21,εHf(t)=-4.04~+2.83(mostly negative),tDM2(Nd)=1282~1511Ma and tDM2(Hf)=1236~1914Ma. Meanwhile,the alkali granites have values of εNd(t)=-3.33~-3.65,εHf(t)=-0.03~2.45,tDM2(Nd)=1277~1303Ma and tDM2(Hf)=1245~1396Ma. The results of geochemistry and Sr-Nd-Hf isotopes reveal that the magmatic sources of the acidic rocks and the mafic rocks are different,i.e.,the mafic rocks come from EMII enrichment mantle and then contaminated by crust,while the acidic rocks derive from partial melting of the upper crust. The bimodel intrusive rocks show that the Proto-Tethys Ocean have already completely closed in Early Devonian,and the Wulonggou area in East Kunlun Orogen belongs to a post-collision extension setting during this period.
Key words: East Kunlun Orogen    Bimodal intrusive rocks    Early Devonian    Post-collisional extensional setting    Geochemistry    Petrology    

东昆仑造山带位于青藏高原的东北部,是中央造山带的重要组成部分(许志琴等,2006杨经绥等,2010)。自中元古代以来,该区经历了多期洋-陆转换、弧-弧和弧-陆碰撞过程(施彬和刘力,2014),岩浆岩广泛发育,尤其以加里东期和海西-印支期为主要岩浆作用时期,形成了显著的构造-岩浆岩带(丰成友等,2010)。关于加里东期构造-岩浆作用研究,前人已开展了大量研究工作,并取得了丰硕的研究成果。莫宣学等(2007)通过与北祁连造山带进行对比,划分了东昆仑造山带加里东期造山旋回的四个阶段,分别为洋盆打开与扩张(579~518Ma)、俯冲造山(508~450Ma)、碰撞和后碰撞(413~380Ma)、D3后造山崩塌隆升,建立起了东昆仑加里东期运动的构造框架。在早寒武世时原特提斯洋已处于打开和扩张阶段(Yang et al., 1996陆松年,2002),东昆仑地区加里东期原特提斯洋壳的俯冲消减多限定在早寒武世末-早志留世初期(李怀坤等,2006陈能松等,2008任军虎等,2010张亚峰等,2010崔美慧等2011刘战庆等,2011刘彬等, 2013a, bLiu et al., 2017)。对于东昆仑地区原特提斯洋的洋盆打开、扩张、消减,前人研究资料相对较多,但对其最终闭合、碰撞及后碰撞等事件的年代学和岩石地球化学方面的证据相对较少,前人通过对该区A型花岗岩研究,认为其多发生于晚志留世-中泥盆世(赵振明等,2008刘彬等,2012王冠等,2014王艺龙等,2018),而加里东期双峰式侵入岩并没有引起关注。笔者在东昆仑五龙沟地区工作期间发现了晚志留世双峰式侵入岩体,并对其开展相应研究。通过对该区双峰式侵入岩体的年代学、地球化学、构造背景等研究,可为东昆仑加里东晚期-海西早期的构造岩浆演化提供重要资料。同时,东昆仑地区新近发现的夏日哈木、石头坑德、冰沟南等铜镍硫化物矿床的镁铁质-超镁铁质成矿岩体均形成于晚志留世-早泥盆世(王冠等,2014张照伟等,2018段雪鹏等,2019潘彤和张勇,2020),本研究亦可为该区岩浆铜镍硫化物矿床成矿作用和构造背景研究提供理论依据。

1 地质背景及岩石学特征

东昆仑五龙沟地区位于青海省柴达木盆地南缘,东昆仑中段北缘,大地构造位置处于昆中断裂和昆北断裂夹持的构造岩浆岩带上(图 1a, b),该区地质构造演化历史复杂,经历了极其复杂的洋-陆俯冲碰撞、逆冲推覆造山演化过程,区内构造线总体呈NWW向展布。区内地层从元古代-中生代均有发育,其中以古元古代金水口群角闪岩相-麻粒岩相深变质岩系(黑云斜长片麻岩、黑云石英片岩、石英片岩等)最为发育。区域上岩浆活动强烈,分布广泛,具有期次多、类型全等特点,岩体分布受区域构造演化控制明显(陆露,2011),主要展布方向呈NW向展布,与区内构造线方向一致,加里东期、华力西期、印支期-燕山期为区内的主要岩浆活动期(郝娜娜等,2014)。

图 1 东昆仑大地构造位置图(a)和东昆仑地区岩浆构造图(b,据Dong et al., 2018; Xin et al., 2018修编) Fig. 1 Tectonic map of (a) and schematic geological map (b, modified after Dong et al., 2018; Xin et al., 2018) of the East Kunlun Orogen

东昆仑五龙沟地区碱长花岗岩岩体出露面积大于100km2,形态近似圆状,长轴方向近NW向,长约13km,宽约8km(图 2)。岩体中心与边部的矿物组成、矿物粒度变化不大,岩性比较均一,野外观察岩石新鲜面为肉红色,岩体侵位到金水口群变质岩中,与围岩界限明显。辉长岩和橄榄辉长岩产于同一岩体,整个基性岩体出露面积约5km2,侵位到金水口群白沙河岩组及万保沟组大理岩凝灰岩中,长轴方向近EW向,长约3.8~4.6km,宽约0.6~1.2km(图 2)。辉长岩、橄榄辉长岩与该区超基性岩组成辉长岩-橄榄辉长岩-辉石岩-橄辉岩-橄榄岩杂岩体,岩体整体往南-南东倾覆。平面上,岩株中部为中-粗粒、堆晶结构的橄榄岩相,在橄榄岩相外围为中-细粒的橄辉岩相,再外围为中-细粒辉石岩相,最外围为中-细粒辉长岩相,其岩相整体变化特征由中部向外,岩性由超基性向基性过渡,粒度由中-粗粒到中-细粒变化。杂岩体由北向南出露主要岩性依次为浅色辉长岩-辉石岩-橄辉岩-橄榄岩,岩体南端基性程度较高,辉石岩、橄辉岩、橄榄岩等蛇纹石化明显,并具有堆晶结构,局部可见少量闪长岩、辉长岩及片麻岩捕虏体(四川省地质矿产勘查开发局一〇八地质队,2015)。碱长花岗岩岩体与辉长岩、橄榄辉长岩杂岩体直线距离最近约8km,野外未发现碱长花岗岩和辉长岩、橄榄辉长岩露头的接触界线。

① 四川省地质矿产勘查开发局一〇八地质队.2015.青海省都兰县石头坑德铜镍矿普查报告

图 2 五龙沟-石头坑德地区地质简图,示取样位置(据青海省地质调查局,2014修编) Fig. 2 Geological map of the Wulonggou-Shitoukengde area in East Kunlun Orogen, showing sample locations

① 青海省地质调查局.2014.1∶250000地质图

本次研究选取了东昆仑五龙沟地区的碱长花岗岩(W1-W5取样位置:36°05′N、95°54′E;W6-W7取样位置:36°03′N、95°55′E)和石头坑德地区辉长岩(取样位置N35°56′、E96°09′)、橄榄辉长岩(取样位置35°56′N、96°11′E)(图 2)为研究对象进行采样,样品均采自新鲜的岩石露头(图 3a-c)。

图 3 东昆仑五龙沟地区双峰式侵入岩野外(a-c)及显微照片(d-f) (a)、(b)、(c)分别为橄榄辉长岩、辉长岩、碱长花岗岩野外照片;(d)、(e)、(f)分别为橄榄辉长岩、辉长岩、碱长花岗岩正交偏光镜下照片. Ol-橄榄石;Cpx-单斜辉石;Pl-斜长石;Kfs-碱性长石;Q-石英 Fig. 3 Field photos (a-c) and photomicrographs (d-f) for the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen

辉长岩呈浅灰色,中细粒结构,块状构造。主要由基性斜长石(d=0.35~2.65mm,含量38%~42%)、单斜辉石(d=0.22~1.85mm,含量15%~25%)、斜方辉石(d=0.25~1.28mm,含量20%~32%)组成,此外含少量黑云母(d=0.15~0.86mm,含量约5%)、石英等(0.06~0.55mm,含量<5%),副矿物偶见磷灰石和不透明铁质矿物。镜下观察岩石具辉长结构,斜长石呈自形-半自形板条状,聚片双晶和卡钠复合双晶发育,主要为拉长石;单斜辉石斜方辉石呈半自形-他形粒状,单斜辉石可见文象结构,斜方辉石多被包裹或镶嵌在自形的斜长石中。

橄榄辉长岩呈暗灰色,自形中细粒结构,块状构造。主要由基性斜长石(d=0.55~2.15mm,含量20%~30%)、单斜辉石(d=0.37~1.85 mm,含量20%~30%)、斜方辉石(d=0.45~2.05mm,含量20%~35%)、橄榄石(d=0.25~1.28mm,含量15%~20%)组成,副矿物偶见磷灰石和不透明铁质矿物。斜长石呈自形-半自形板条状,聚片双晶和卡钠复合双晶发育,主要为拉长石;单斜辉石斜方辉石呈半自形-他形粒状,单斜辉石部分发生蛇纹石化,斜方辉石多被包裹或镶嵌在自形的斜长石中,部分发生蛇纹石化;橄榄石呈他形粒状,边界见蛇纹石化的辉石组成的反应边结构。

碱长花岗岩呈肉红色,中细粒结构,块状构造。主要由石英(d=0.35~2.85mm,含量40%~45%)、碱性长石(d=0.58~3.86mm,含量45%~52%)组成,此外含少量斜长石(d=0.55~1.52mm,含约5%)、黑云母(d=0.15~0.75mm,含量<3%),副矿物主要为微量磷灰石、锆石、榍石及不透明金属矿物。石英呈他形粒状,可见波状消光现象;碱性长石他形板状,条纹结构发育,主客晶分别为碱性长石和钠长石。

2 分析方法

本次研究对东昆仑五龙沟地区新鲜的、有代表性的辉长岩、橄榄辉长岩、碱长花岗岩分别进行了全岩主微量元素测试、锆石U-Pb定年、全岩Sr-Nd同位素测试;对碱长花岗岩和辉长岩进行了锆石Hf同位素测试。测试分析在北京燕都中实测试技术有限公司完成。

锆石U-Pb定年选择有代表性的样品按照标准程序进行锆石分选,将选出的锆石放在双目镜下挑纯,选出晶形和透明度较好的锆石置于环氧树脂中制靶,并进行透反射和阴极发光照相。测试利用LA-ICP-MS分析完成,激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90,束斑直径根据实际情况选择25μm。同位素定年采用锆石标准91500和Plesovice作为外标进行同位素分馏校正;锆石微量元素含量利用SRM610作为多外标、Si作内标的方法进行定量计算。

全岩主微量元素测试选取无蚀变及脉体穿插的新鲜样品粉碎至200目以备测试。主量元素测试使用XRF(Zetium,PANalytical)进行,测试数据误差小于1%;微量元素测试使用ICP-MS(M90,analytikjena)进行,测试数据误差小于5%,部分挥发性元素及极低含量元素的分析误差小于10%。

全岩Sr-Nd同位素测试使用Thermo Fisher Scientific公司多接收电感耦合等离子体质谱仪Neptune Plus MC-ICP-MS分别测定87Sr/86Sr值和143Nd/144Nd值,用88Sr/86Sr值(8.373209)和143Nd/144Nd值(0.7218)对测定的87Sr/86Sr值和143Nd/144Nd值进行校正,87Sr/86Sr值和143Nd/144Nd值的不确定度为2σ

锆石原位Lu-Hf同位素测试采用美国热电Neptune-plus MC-ICP-MS与NewWave UP213激光烧蚀进样系统完成测试。锆石剥蚀使用频率为8Hz,能量为16 J/cm2的激光剥蚀31s,剥蚀出直径约30μm的剥蚀坑。每个测试点的173Yb/172Yb平均值用于计算Yb的分馏系数,然后再扣除176Yb对176Hf的同质异位素干扰。173Yb/172Yb的同位素比值为1.35274。

3 测试结果 3.1 锆石U-Pb定年

本次研究分别对辉长岩、橄榄辉长岩、碱长花岗岩进行了锆石U-Pb定年以厘定其成岩时代,测试结果见表 1

表 1 青海东昆仑五龙沟地区双峰式侵入岩锆石LA-ICP-MS定年分析结果 Table 1 Zircon LA-ICP-MS U-Pb data for the bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen

锆石阴极发光(CL)图像显示,辉长岩的锆石大体可以分为两类,一类为具有较均匀的内部结构、可见条带状吸收的锆石(图 4a;点1至点18),形态以长条状为主,显示了基性岩浆锆石的特征;粒度多为100~120μm,Th/U值范围介于0.08~0.54之间,绝大多数大于0.1,显示其为岩浆成因特征。18粒锆石的206Pb/238U年龄为406±8~413±6Ma,所有数据均落在谐和线上(图 5a),对应的加权平均年龄为409.3±2.7Ma(MSWD=0.1,图 5b),属于早泥盆世,代表了辉长岩的结晶年龄。另一类为具有明显的环带、形态不规则、内部结构多样的锆石(图 4a;点19至点27),206Pb/238U年龄为428±6~435±6 Ma(图 5a),应为辉长岩侵位过程中捕获的锆石。结合区内加里东期岩浆侵入活动频繁,已存在形成于425Ma辉长岩(张照伟等,2018)以及本次研究岩体中存在闪长岩、辉长岩捕掳体的事实,认为该捕获锆石可能来自形成晚奥陶世至中-晚志留世的辉长岩。

图 4 东昆仑五龙沟地区双峰式侵入岩锆石阴极发光照片 Fig. 4 Representative CL images of zircons for the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen

图 5 东昆仑五龙沟地区双峰式侵入岩锆石U-Pb年龄谐和图与加权平均年龄图 Fig. 5 Zircon U-Pb age concordia diagrams and weighted mean ages for the bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen

与辉长岩类似,橄榄辉长岩的锆石CL图像也显示其存在两种类型的锆石。一类为浑圆状、具有较完整的晶形、较均匀的内部结构的锆石(图 4b;点1至点13),表现出了基性岩岩浆锆石的特征;该类锆石的粒度为80~100μm,Th/U值介于0.14~1.22,为岩浆成因锆石。13粒锆石的206Pb/238U年龄为408±5~411±5Ma,所有数据均落在谐和线上(图 5c),对应的加权平均年龄为410.3±2.7Ma(MSWD=0.1,图 5d),属于早泥盆世,代表了橄榄辉长岩的结晶年龄。另一类锆石形态不规则、部分具有明显环带(图 4b;点14至点20),206Pb/238U年龄为429±4Ma~435±6Ma(中-晚志留世;与辉长岩的捕获锆石年龄一致)以及445±5Ma(晚奥陶世),也应为橄榄辉长岩侵位过程中捕获的锆石(图 5c)。

锆石阴极发光(CL)图像显示,碱长花岗岩的锆石粒度为120~180μm,锆石内部可见清晰的比较窄的振荡环带,部分为断头晶(图 4c),表现出碱性花岗岩锆石的特征;Th/U值范围介于0.47~0.96,为岩浆成因的锆石。23粒锆石的206Pb/238U年龄为406±5Ma~415±5Ma,所有数据均落在谐和线上,对应的加权平均年龄为410.5±1.8Ma(MSWD=0.3,图 5e),属于早泥盆世,代表了碱长花岗岩的侵位年龄。

综上可知,东昆仑五龙沟地区在早泥盆世(约409~411Ma)发生了大规模的岩浆侵入事件。

3.2 岩石地球化学 3.2.1 主量元素特征

碱长花岗岩、辉长岩及橄榄辉长岩的元素地球化学分析结果见表 2。其中,碱长花岗岩具有高SiO2(74.74% ~77.14%)、高K2O(4.32%~4.97%)、贫MgO(0.08%~0.11%)、CaO(0.18%~0.40%)的特征,Na2O=3.57%~4.19%,Na2O+K2O=8.32%~8.76%,FeOT/MgO=13.82~27.13,在SiO2-K2O图解位于高钾钙碱性区域(图 6a)。辉长岩SiO2=52.19% ~52.55%,Al2O3=8.8% ~9.21%,MgO=19.60%~19.81%,Na2O+K2O=1.49%~1.60%,属于钙碱性系列,TAS图解中位于闪长岩和辉长岩交界处,镜下观察其主要由基性斜长石、单斜辉石、斜方辉石组成,并具有辉长结构(图 3e),显示出辉长岩的特点,因此将其定名为辉长岩。橄榄辉长岩SiO2 =42.26% ~47.43%,Al2O3=11.65% ~12.18%,MgO=25.16%~27.91%,Na2O+K2O=1.11%~1.68%,SiO2-K2O图解位于低钾拉斑质系列区域,并且辉长岩和橄榄辉长岩均落入亚碱性区域(图 6b)。在AFM图解中(图 7),基性岩样品均落入镁铁质-超镁铁质堆晶岩区域,反映了该杂岩体形成过程中经历了堆晶作用。TAS图解中(图 6b),该组岩石样品分别落在花岗岩、辉长岩(闪长岩)以及橄榄辉长岩区内,SiO2分布区间主要集中在74.74%~77.14%和42.26%~52.55%两个区间内,在55%~70%之间出现明显的间断,且该组岩石为同一时期同一地区产出的,具有明显的双峰式侵入岩特征。

表 2 东昆仑五龙沟地区双峰式侵入岩主量(wt%)和微量(×10-6)元素分析结果 Table 2 Compositions of major (wt%) and trace(×10-6) elements of the bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen

图 6 东昆仑五龙沟地区双峰式侵入岩SiO2-K2O图解(a,据Peccerillo and Taylor, 1976)和TAS图解(b,据Irvine and Baragar, 1971) Fig. 6 SiO2 vs. K2O diagram (a, after Peccerillo and Taylor, 1976) and TAS diagram (b, after Irvine and Baragar, 1971) of the bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen

图 7 东昆仑五龙沟地区基性岩AFM图解(据Irvine and Baragar, 1971) Fig. 7 AFM diagram of the mafic rocks in Wulonggou area, East Kunlun Orogen (after Irvine and Baragar, 1971)
3.2.2 稀土、微量元素特征

在球粒陨石标准化稀土元素配分曲线中(图 8a),碱长花岗岩、辉长岩和橄榄辉长岩均显示为轻稀土元素相对富集、重稀土元素相对亏损的配分模式。碱长花岗岩具有A型花岗岩典型的略右倾的“海鸥”型稀土配分模式,稀土元素总量相对较高,∑REE=146.0×10-6~543.4×10-6,平均306.8×10-6,轻重稀土元素分异较明显(La/Yb)N=1.14~7.82,具有明显的Eu负异常(δEu=0.002~0.005),Ba、Sr,Eu亏损可能与源区中斜长石的残留有关;辉长岩稀土元素总量∑REE=15.75×106~25.02×106,平均60.83×106,轻重稀土元素分异较明显(La/Yb)N=2.79~8.92,无明显的Eu异常;橄榄辉长岩稀土元素总量∑REE=15.68×106~33.99×106,平均23.37×106,(La/Yb)N=3.37~4.75,无明显的Eu异常。在原始地幔标准化微量元素蛛网图中(图 8b),碱长花岗岩相对富集Rb、Th、U、K、Pb、Nd等元素,相对亏损Ba、Nb、Ta、Sr、P、Eu、Ti等元素;辉长岩和橄榄辉长岩相对富集Rb、U、K、Pb、Nd等,相对亏损Ba、Nb、Ta、P等(图 8b),呈现出Th>Ta,La>Ta的特征。

图 8 东昆仑五龙沟地区双峰式侵入岩球粒陨石标准化稀土元素配分图解(a,标准化值据Boynton,1984)及原始地幔标准化微量元素配分图解(b,标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized rare earth element patterns (a, normalization values after Boynton, 1984) and primitive mantle normalized multi-element patterns (b, normalization values after Sun and McDonough, 1989) for the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen
3.3 全岩Sr-Nd同位素

本次研究对上述3类岩石进行了全岩Sr-Nd同位素分析,测试结果列于表 3。结果表明,碱长花岗岩样品εNd(t)值介于-3.33~-3.65之间,对应的两阶段Nd模式年龄为tDM2=1277~1303Ma;辉长岩和橄榄辉长岩87Sr/86Sr初始值介于0.708928~0.710040之间,εNd(t)值介于-3.38~-6.21之间,在ISr-εNd(t)判别图解中落入EMII富集地幔区域(图 9),与同时期的跃进山辉长岩、夏日哈木辉长岩、夏日哈木I号岩体橄榄岩-辉石岩-二辉岩-辉长岩等的演化趋势一致(刘彬等,2012姜常义等,2015张照伟等,2018)。同时,辉长岩和橄榄辉长岩的两阶段Nd模式年龄tDM2=1282~1511Ma,均大于其结晶年龄,表明岩浆演化过程中受到过古老地壳物质的混染(吴福元等,2007)。

表 3 东昆仑五龙沟地区双峰式侵入岩Sr-Nd同位素分析结果 Table 3 Sr-Nd isotopic compositions of the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen

图 9 东昆仑五龙沟地区基性岩ISr-εNd(t)判别图解(据Zindler and Hart, 1986) 数据来源:跃进山辉长岩据刘彬等(2012);夏日哈木辉长岩据张照伟等(2018).MORB-洋中脊玄武岩;OIB-洋岛玄武岩;EMI-I型富集地幔;EMII-II型富集地幔 Fig. 9 ISr vs. εNd(t) diagram for the mafic rocks from Wulonggou area, East Kunlun Orogen (after Zindler and Hart, 1986)
3.4 Hf同位素

本次研究对辉长岩和碱长花岗岩进行了锆石Lu-Hf同位素分析,结果见表 4。结果表明,辉长岩176Yb/177Hf比值为0.007276~0.047558,176Lu/177 Hf比值为0.000211~0.001332,176Hf/177Hf比值为0.282406~0.282583,εHf(t)=-4.04~+2.83(大部分为负值),对应的一阶段模式年龄为tDM(Hf)=927~1352Ma,两阶段模式年龄tDM2(Hf)=1236~1914Ma,均远大于其结晶年龄,表明其来自富集地幔或受过地壳物质的混染;碱长花岗岩176Yb/177Hf比值为0.047410~0.123908,176Lu/177Hf比值为0.001159~0.002945,176Hf/177Hf比值为0.282530~0.282608,εHf(t)=-0.03~2.45,对应的两阶段Hf模式年龄tDM2(Hf)=1245~1396Ma。

表 4 东昆仑五龙沟地区双峰式侵入岩锆石Hf同位素分析结果 Table 4 Zircons Hf isotopic compositions of the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen
4 讨论 4.1 岩石成因 4.1.1 基性岩成因

辉长岩与橄榄辉长岩样品的Mg#=82~84,相容元素Cr和Ni的含量较高,说明岩浆经历了橄榄石、辉石堆晶作用,这与野外岩相学观察一致。辉长岩和橄榄辉长岩具有较高的ISr值(0.708928~0.710040)和Rb/Sr值(0.07~0.41),相对富集Rb、Nd、U、K等元素,同时锆石εHf(t)值主要集中在-4.04~+2.83 (大部分为负值),均显示出富集地幔特征,在ISr-εNd(t)判别图解(图 9)中样品点落于EMII型富集地幔区域。辉长岩与橄榄辉长岩具有低的Ce/Y比值(0.98~1.58,平均值1.20),指示其可能来自尖晶石-石榴子石相稳定区域(Mckenzie and Bickle, 1988),岩石低的(Tb/Yb)N值(1.03~1.43,平均1.21),则可以进一步证实岩石来自尖晶石二辉橄榄岩部分熔融(Wang et al., 2002),在图 10a中,辉长岩与橄榄辉长岩数据大部分位于尖晶石+石榴子石二辉橄榄岩相区域(更靠近尖晶石二辉橄榄岩相),部分熔融程度大概在3%~20%,说明基性岩浆来自尖晶石二辉橄榄岩相,岩浆源区深度大于80km(Ellam,1992)。

图 10 东昆仑五龙沟地区基性岩Sm/Yb-La/Sm(a,据Dilek and Furnes, 2011)、(La/Nb)PM-(Th/Ta)PM(b,据Neal et al., 2002)、Th/Yb-Ta/Yb(c,据Pearce,2008)和Nb/Zr-Th/Zr(d,据Woodhead et al., 2001)图解 Fig. 10 Diagrams of Sm/Yb vs. La/Sm (a, after Dilek and Furnes, 2011), (La/Nb)PM vs. (Th/Ta)PM (b, after Neal et al., 2002), Th/Yb vs. Ta/Yb (c, after Pearce, 2008) and Nb/Zr vs. Th/Zr (d, after Woodhead et al., 2001) for the magic rocks from Wulonggou area, East Kunlun Orogen

幔源岩浆在侵入到地壳的过程中,通常会与围岩发生不同程度的同化混染作用,在野外观察中发现基性岩杂岩体中橄榄岩、橄辉岩、辉长岩等基性岩体中局部有少量闪长岩、灰白色辉长岩及片麻岩捕虏体,锆石U-Pb测年结果显示,辉长岩与橄榄辉长岩中也均捕获了晚奥陶世至中-晚志留世(428~445Ma)形成的锆石,这都是该区存在同化混染的直接证据,此外,岩石微量元素呈现出Th>Ta,La>Ta和Nb、Ta亏损的特征,也暗示岩浆演化过程中存在一定程度的陆壳混染的影响(钱青和王焰,1999)。(La/Nb)PM-(Th/Ta)PM图解(图 10b)显示参与混染的地壳物质主要来自于上地壳,这也与辉长岩、橄榄辉长岩Nb、Ta亏损并捕获片麻岩捕虏体特征相一致。通常认为高La/Sm值(>4.5) 表明地壳物质的混染较强,La/Sm<2则极少受到地壳物质混染(Lassiter and DePaolo, 1997),五龙沟地区基性岩La/Sm为3.29~4.53(平均值3.77),指示遭受混染程度并不是特别强烈。需要指出的是该区基性岩石强烈亏损Nb、Ta,不排除这种亏损特征与同化混染作用有关,但由于同化混染作用存在不均匀性,与Nb、Ta亏损在辉长岩和橄榄辉长岩中的普遍性并不协调,所以这种亏损也反映了岩浆固有的特征。

研究表明,岩浆演化和侵位过程中,同化混染和结晶分异往往同时出现,即AFC过程(DePaolo,1981Halama et al., 2004Mir et al., 2011),在主量元素哈克图解上(图 11),MgO与SiO2、Al2O3、CaO、Na2O + K2O呈一定的负相关性,与FeOT呈正相关性,表明岩浆运移过程中经历了橄榄石、辉石的分离结晶作用,MgO与Ni呈现良好的正相关性,反映了岩浆发生了橄榄石的堆晶作用;未显示明显的Eu负异常,说明斜长石的分离结晶作用不明显。

图 11 东昆仑五龙沟地区基性岩主量元素哈克图解 Fig. 11 Harker diagrams of major elements for the magic rocks from Wulonggou area, East Kunlun Orogen

辉长岩和橄榄辉长岩富集轻稀土元素,轻、重稀土元素之间分馏明显,富集Rb、Th、Pb、K等大离子亲石元素,相对亏损Nb、Ta、Zr等高场强元素,这些特征显示了岛弧环境岩浆岩的地球化学特征(Henderson,1984)。此外,Th、Nb、Zr、Yb等元素具有相近的分配系数,分离结晶作用不会影响岩浆中相关元素的分配系数,因此,这些元素对的比值也可以指示源区的特征:辉长岩与橄榄辉长岩样品具有较高的Th/Yb比(0.95~3.41),在Nb/Yb-Th/Yb图解中(图 10c)样品点均明显偏离MORB-OIB演化线,显示了与岛弧环境有关的信息,同时,在Nb/Zr-Th/Zr图解中(图 10d)样品大部分落入俯冲交代流体区域,说明岩浆源区受到俯冲组分的影响(Pearce and Peate, 1995)。结合其Sr-Nd同位素属富集型地幔范畴特点,判断岩浆源区应该是位于消减板片之上的地幔楔,并且在岩浆生成之前该地幔楔受到了俯冲带流体作用的影响,流体来源可能为加里东期原特提斯洋俯冲洋壳的脱出流体。

综上,笔者认为基性岩石起源于富集地幔部分熔融,并且源区继承了早期大洋俯冲阶段流体交代积累影响,在上升侵位的过程中受到了地壳物质的同化混染并发生了分离结晶最终固结成岩。

4.1.2 碱长花岗岩成因

五龙沟地区碱长花岗岩具有高Si、K,贫Al、Mg、Ca,贫Sr、Eu、Ba、Ti、P等特点,FeOT/MgO=13.82~27.13,显示出典型的A型花岗岩特征(张旗等,2012)。A型花岗岩的成因前人总结主要有以下3种观点(Frost and Frost, 2011刘彬等,2013a):①长英质地壳的部分熔融;②玄武质岩浆分异;③玄武质岩浆同化地壳物质并发生分异。通常,由陆壳沉积物熔融形成的花岗岩K2O/Na2O>1,而由幔源岩浆分异或地壳中以火成岩为源区重熔形成的花岗岩K2O/Na2O<1(路凤香和桑隆康,2002)。五龙沟地区碱长花岗岩具有高SiO2(74.74%~77.14%),K2O/Na2O>1的特征,在野外观察中也未发现岩体发育基性岩包体,表明其不是幔源岩浆分异或幔源岩浆与地壳熔体混合成因。King et al. (1997)对澳大利亚Lachlen褶皱带的A型花岗岩进行研究发现其Zr含量为301×10-6,并认为一些高分异铝质A型花岗岩Zr含量甚至低于200×10-6,五龙沟地区碱长花岗岩样品Zr含量为121×10-6~437×10-6,平均225×10-6,并且岩石具有高度的负Eu异常(δEu=0.002~0.005),强烈亏损Ba、Sr、P和Ti等特点,显示岩浆经历了强烈的分异演化。碱长花岗岩铝指数(A/CNK)为0.97~1.04(平均为1.01),显示准铝-弱过铝质花岗岩特征,基本可以排除富铝的泥质岩石重熔的可能。花岗岩Rb/Sr比值在15.58~55.84之间,显示出明显的壳源特征(壳源岩浆比相对幔源岩浆更高,幔源岩浆Rb/Sr比通常小于0.05,幔壳混合源介于0.05~0.5之间,壳源岩浆大于0.5;Taylor and McLennan, 1985),此外,元素Ba相对于Rb和Th明显亏损,Nd/Th值在0.73~2.54之间,接近壳源岩石3(Bea et al., 2001),Nb/Ta值10.04~14,平均11.96,明显不同于幔源岩浆值17.5,而更接近陆壳岩石值11(Taylor and McLennan, 1985Hofmann,1988Green,1995),Sr-Nd同位素测试结果岩石具有负的εNd(t)值(-3.33~-3.65,图 12a),这些特征均表明五龙沟地区花岗岩岩浆来源为壳源岩浆,这也与区域上同时期冰沟A型花岗岩(刘彬等,2013a)具有相似的Sr-Nd同位素特征和来源。

图 12 东昆仑五龙沟地区双峰式侵入岩εNd(t)图解(a)和锆石Hf同位素组成图解(b) 数据来源:冰沟正长花岗岩据刘彬等(2013a);跃进山二长花岗岩、花岗闪长岩、辉长岩据刘彬等(2012);夏日哈木辉长岩据张照伟等(2018);猴头沟二长花岗岩据严威等(2016);夏日哈木辉长苏长岩据王冠等(2014);胡晓钦镁铁质岩据刘彬等(2013b);东昆仑基底据余能等(2005) Fig. 12 Diagrams of εNd(t) vs. t (a) and zircon Hf isotopic compositions (b) for the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen

Patiño Douce(1997)熔融实验表明,长英质地壳物质在熔融过程中,压力对熔体的影响与源区物质同等重要,同一源岩组分更容易在相对低压的情况下产生A型花岗岩,并且在相对低压条件下形成的熔体通常显示准铝质-弱过铝质、铁质特征,在相对高压的条件下形成的熔体通常表现出强过铝质特征,五龙沟碱长花岗岩显示出准铝质-弱过铝质(A/CNK值为0.97~1.04)和铁质(FeOT/(MgO+FeOT)值为0.86~0.89)特征,说明其形成环境的压力较低,可能形成于地壳的浅部。通常,A型花岗岩具有较高的成岩温度,通过锆石饱和温度计得出的结晶温度一般达到800℃以上(刘昌实等,2003),实际成岩温度相较通过锆石饱和温度计算结果会更高(Patiño Douce,1997Miller et al., 2003Harrison et al., 2007),本文采用Watson et al. (2006)等锆石饱和温度计算方法,估算得出五龙沟地区碱长花岗锆石饱和温度为711~807℃(平均757℃),而实际上该碱长花岗岩形成温度应比计算值更高,与A型花岗岩的形成温度较高认识一致,表明早泥盆世东昆仑地区的长英质地壳发生高温部分熔融,暗示其深部应存在高的热异常(吴福元等,2007)。碱长花岗岩Nd和Hf两阶段模式年龄tDM2(Hf)=1245~1396Ma,tDM2(Nd)=1277~1303Ma,说明中元古代长英质地壳可能为碰撞后花岗岩岩浆的主要来源。

综上所述,笔者认为五龙沟碱长花岗岩岩浆起源于低压、高温条件下的中元古代长英质地壳部分熔融,热源为基性岩浆底侵供热。

按照岩浆源区,通常认为双峰式火成岩成因有两种(范超鹏,2016): 一种为酸性岩和基性岩来自异源母岩浆,二者在空间上的叠加可能仅与一次热事件有关(Sigurdsson,1977),两个岩石单元一般具有不同的岩浆来源和岩石地球化学特征,微量元素、Sr、Nd和Hf同位素特征差异很大(Davies and MacDonald,l987),宏观上酸性岩体积要大于基性岩体积;另一种为酸性岩和基性岩来自同源母岩浆,基性岩浆经过后期的分离结晶作用形成SiO2间断的两种岩浆,但二者具有相似的微量元素特征,母岩浆在后期的岩浆演化过程中,基本上没有或者很少受到地壳的混染作用,宏观上基性单元的岩石量要远大于酸性岩。东昆仑五龙沟地区碱长花岗岩显示出壳源特征,基性岩端元则来自于富集地幔并受到地壳的混染,表明该套双峰式侵入岩基性端元与酸性端元来自不同源区,这也与野外观察到酸性岩体出露大于基性岩体地质特征相一致。

4.2 构造环境探讨

东昆仑地区为中央造山带的重要组成部分(许志琴等,2006杨经绥等,2010),研究显示,新元古代-早古生代原特提斯洋俯冲消减和石炭纪晚期-三叠纪古特提斯洋俯冲消减是该区最重要的两次造山运动,这两次运动奠定了东昆仑地区现今构造格局(王艺龙等,2018)。因此研究该区古生代构造史对于研究原特提斯洋在我国西部的构造演化都具有重要意义。

研究表明,寒武纪时期,东昆仑地区沿中元古代闭合洋盆再次发生裂解,原特提斯洋开始形成,清水泉蛇绿岩残片中辉长岩的锆石TIMS U-Pb年龄为518~522Ma(Yang et al., 1996陆松年,2002),证明了早寒武纪时期昆中洋盆的存在,研究区内主要发育沙松乌拉组变质砂岩、大理岩等(施彬和刘力,2014)。中寒武世时原特提斯洋开始进入俯冲阶段(莫宣学等,2007张亚峰等,2010),随着洋壳持续的俯冲,区域上形成了大量与洋壳俯冲有关的弧岩浆岩体(主要以闪长岩为主,少量辉长岩),如都兰可可沙地区石英闪长岩(515±4Ma;张亚峰等,2010)和镁铁质-超镁铁质杂岩(509±7Ma;冯建赟等,2010)、旺尕秀辉长杂岩(468±2Ma;朱小辉等,2010)、鸭子泉闪长岩(480±3Ma;崔美慧等,2011)、乌兰乌珠尔黑云母花岗(457.5±2.3Ma;韩志辉等,2021)、阿确墩石英闪长岩(448.8±3.9Ma;李婷等,2018)、清水泉变质火山岩(448±4Ma;Chen et al., 2002)、胡晓钦镁铁质岩(438±2Ma;刘彬等,2013b)等。此外,该区一些变质事件的发生也指明洋壳俯冲过程的存在,如昆中缝合带清水泉麻粒岩(507Ma)为大洋岩石圈俯冲过程中发生高温中压麻粒岩相变质作用形成(李怀坤等,2006);诺木洪南部金水口群夕线黑云二长片麻岩则为昆北带在460Ma时发生岛弧型低压角闪岩相-麻粒岩相变质作用形成(张建新等,2003)。昆中缝合带内具有岛弧玄武岩特征的胡晓钦镁铁质岩石(438±2Ma,刘彬等,2013b)和清水泉基性岩脉(436.4±1.2Ma,任军虎等,2009)基本代表该区洋壳俯冲最晚的岩浆记录。436~431Ma陆壳型榴辉岩的出现,则代表昆中洋盆已关闭(孟繁聪等,2015潘彤和张勇,2020),张照伟等(2018)获得夏日哈木Ⅲ号榴辉岩436Ma递进变质年龄和409Ma退变质年龄,前者反映碰撞挤压环境,后者反映伸展环境,这也从侧面限定了昆中洋盆的关闭时间。

祁漫塔格地区出现的与陆陆碰撞有关的环斑花岗岩和二长花岗岩年龄分别为428.5±2.2Ma和430.8±1.7Ma(曹世泰等,2011),而430Ma±该区开始出现A型花岗岩,A型花岗岩出现时间与昆中428Ma的高压榴辉岩相(Meng et al., 2013)和427Ma的中压角闪岩变质岩相(陈能松等,2008)基本一致(刘彬等,2013a),这说明428Ma开始该区碰撞强烈的陆陆时期结束,东昆仑地区开始进入后碰撞伸展,并延续至晚泥盆世。在这一时期,该区岩浆岩主要以A型花岗岩、过铝质-强过铝质花岗岩、富镁闪长岩和辉长岩等为主,并且区域上双峰式侵入岩广泛发育,如白干湖A型花岗岩(430~429Ma;高永宝等,2014)、乌兰乌珠尔二长花岗岩(422.5±1.6Ma;韩志辉等,2021)、夏日哈木辉长苏长岩(423±1Ma;王冠等,2014)、红旗沟A型正长花岗岩(420±3Ma;王艺龙等,2018)、鸭子沟二长闪长岩(415.5±2.6Ma;王盘喜等,2020)、冰沟正长花岗(391±3Ma;刘彬等,2012)、祁漫塔格喀雅克登塔格区花岗闪长岩(380.52±0.92Ma;郝娜娜等,2014)等,形成时代上与牦牛山组伸展型磨拉石建造的形成时限423~406Ma基本一致(张耀玲等,2010),上述特点均代表了典型的后碰撞伸展构造背景。

五龙沟地区辉长岩和橄榄辉长岩岩石地球化学显示为钙碱性系列-低钾拉斑质系列,亏损Nb、Ta,上述特点均与碰撞后伸展阶段环境下的基性岩特点相一致(钱青和王焰,1999)。已有的研究证明,在后碰撞伸展环境下所形成的岩浆岩具有岛弧或活动陆缘岩浆岩的地球化学特征,辉长岩和橄榄辉长岩微量元素方面富集Rb、U、Pb、Nd、K等,亏损Nb、Ta,显示出岛弧岩浆岩的特点,在Hf/3-Th-Ta图解中(图 13a),落入陆缘弧钙碱性玄武岩区域,显示出俯冲流体的交代作用(Pearce and Peate, 1995),并显示出火山弧玄武岩的特点(图 13b),同时在图解区域中明显区别于N型大洋中脊玄武岩,反映出后碰撞伸展阶段刚刚开始。碱长花岗岩在构造判别图解中落入后碰撞区域(图 13c, d),岩石类型显示为A型花岗岩特征;Nb-Y-3×Ga图解进一步确定岩体位于A2型花岗岩区域(图 14b),酸性岩与基性岩构成EMII型富集地幔+A2型花岗岩组合,表明在410Ma左右,该区已经进入碰撞后伸展的阶段。

图 13 东昆仑五龙沟地区双峰式侵入岩基性岩Hf/3-Th-Ta(a,据Wood, 1980)、Nb×2-Zr/4-Y(b,据Meschede,1986)、Rb-Y+Nb(c,据Pearce et al., 1984)和R1-R2(d,据Batchelor and Bowden, 1985)构造判别图解 (a)A-N型大洋中脊玄武岩;B-E型大洋中脊玄武岩和板内玄武岩;C-板内碱性玄武岩;D-钙碱性玄武岩;E-岛弧拉斑玄武岩.(b)AI+AII-板内碱性玄武岩;AII+C-板内拉斑玄武岩; B-P型MORB; D-N型MORB;C+D-火山弧玄武岩.(c)ORG-大洋中脊花岗岩;Syn-COLG-同碰撞花岗岩;VAG-岛弧花岗岩;WPG-板内花岗岩 Fig. 13 Tectonic discrimination diagrams of Hf/3-Th-Ta (a, after Wood, 1980), Nb×2-Zr/4-Y (b, after Meschede, 1986), Rb-Y+Nb (c, after Pearce et al., 1984) and R1-R2 (d, after Batchelor and Bowden, 1985) for the bimodal intrusive rocks from Wulonggou area, East Kunlun Orogen

图 14 东昆仑五龙沟地区碱长花岗岩Zr-104×Ga/Al(a,据Whalen et al., 1987)图解和Nb-Y-3×Ga(b,据Eby, 1992)图解 Fig. 14 Diadrams of Zr vs. 104×Ga/Al (a, after Whalen et al., 1987) and Nb-Y-3×Ga (b, after Eby, 1992) for the alkali granite rocks from Wulonggou area, East Kunlun Orogen

综合前人研究结果和本次研究,笔者认为五龙沟地区的双峰式侵入岩的形成机制为:加里东期,原特提斯洋在俯冲过程中发生脱水并交代上覆地幔楔,形成了局部具有俯冲组分特征的富集地幔端元;加里东晚期-海西早期该区俯冲作用结束,在后碰撞伸展作用下发生拆沉作用,引发具有俯冲组分特征的富集型岩石圈地幔部分熔融上涌形成基性岩浆,基性岩浆上涌过程中一方面部分基性岩浆发生结晶分异和同化混染作用侵位至地壳形成辉长岩与橄榄辉长岩,另一方面提供热源引起长英质地壳部分熔融,产生A型花岗岩岩浆,形成碱长花岗岩,最终形成了宏观上东昆仑五龙沟地区双峰式侵入岩。

5 结论

(1) 东昆仑五龙沟地区双峰式侵入岩形成于早泥盆世,橄榄辉长岩年龄为410.3±2.7Ma,辉长岩年龄为409.3±2.7Ma,碱长花岗岩年龄为410.5±1.8Ma。

(2) 五龙沟双峰式侵入岩来源于不同的岩浆源区,基性端元来自于EMII型富集地幔,岩浆上升过程中遭受了地壳混染,并经历了橄榄石、辉石的分离结晶;酸性端元为低压高温条件下长英质地壳的部分熔融,成分上为A2型花岗岩。

(3) 五龙沟双峰式侵入岩产出于后碰撞伸展构造体制,表明在早泥盆世原特提斯洋俯冲活动已经结束,东昆仑地区处于后碰撞伸展构造环境。

致谢      衷心感谢四川省地质矿产勘查开发局108地质队工作人员对野外地质采样工作的帮助;衷心感谢吉林大学钱烨老师对论文成文的指导与帮助;衷心感谢两位评审专家及本刊编辑给予本文的建议和具体修改意见。

参考文献
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55 DOI:10.1016/0009-2541(85)90034-8
Bea F, Arzamastsev A, Montero P and Arzamastseva L. 2001. Anomalous alkaline rocks of Soustov, Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions to Mineralogy and Petrology, 140(5): 554-566 DOI:10.1007/s004100000211
Blichert TJ and Albarède F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Cao ST, Liu XK, Ma YS, Li JY and Ma YL. 2011. Qimantage area Silurian intrusive rocks and its geological significance. Qinghai Science and Technology, 18(5): 26-30
Chen NS, Sun M, Wang QY, Zhang KX, Wan YS and Chen HH. 2002. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen. Science in China (Series D), 38(6): 657-666 (in Chinese)
Cui MH, Meng FC and Wu XK. 2011. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks. Acta Petrologica Sinica, 27(11): 3365-3379 (in Chinese with English abstract)
Davies GR and MacDonald R. 1987. Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: Combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28(6): 1009-1031 DOI:10.1093/petrology/28.6.1009
DePaolo DJ. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2): 189-202 DOI:10.1016/0012-821X(81)90153-9
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411 DOI:10.1130/B30446.1
Dong YP, He DF, Sun SS, Liu XM, Zhou XH, Zhang FF, Yang Z, Cheng B, Zhao GC and Li JH. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261 DOI:10.1016/j.earscirev.2017.12.006
Duan XP, Meng FC and Fan YZ. 2019. The constraints of kaersutite and pargasite on metallogeny in Xiarihamu mafic-ultramafic intrusion, East Kunlun. Acta Petrologica Sinica, 35(6): 1819-1832 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.06.11
Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Ellam RM. 1992. Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2): 153-156 DOI:10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
Fan CP. 2016. Introduction to bimodel volcanic rock classification. World Nonferrous Metals, (19): 146-147 (in Chinese with English abstract)
Feng CY, Li DS, Wu ZS, Li JH, Zhang ZY, Zhang AK, Shu XF and Su SS. 2010. Major types, time-space distribution and metallogeneses of polymetallic deposits in the Qimantage metallogenic belt, eastern Kunlun area. Northwestern Geology, 43(4): 10-17 (in Chinese with English abstract)
Feng JY, Pei XZ, Yu SL, Ding SP, Li RB, Sun Y, Zhang YF, Li ZC, Chen YX, Zhang XF and Chen GC. 2010. The discovery of the mafic-ultramafic melange in Kekesha area of Dulan County, East Kunlun Region, and its LA-ICP-MS zircon U-Pb age. Geology in China, 37(1): 28-38 (in Chinese with English abstract)
Frost CD and Frost BR. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39-53 DOI:10.1093/petrology/egq070
Gao YB, Li WY, Qian B, Li K, Li DS, He SY, Zhang ZW and Zhang JW. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrologica Sinica, 30(6): 1647-1665 (in Chinese with English abstract)
Goldstein SL, O'Nions RK and Hamilton PJ. 1984. A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70(2): 221-236 DOI:10.1016/0012-821X(84)90007-4
Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347-359 DOI:10.1016/0009-2541(94)00145-X
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Achterbergh EV, O'Reilly SY and Shee SR. 2000. The Hf isotope compositon of cratonic mantle: LAM-MC-ICP-MS analysis of zircon magacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Halama R, Marks M, Brügmann G, Siebel W, Wenzel T and Markl G. 2004. Crustal contamination of mafic magmas: Evidence from a petrological, geochemical and Sr-Nd-Os-O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland. Lithos, 74(3-4): 199-232 DOI:10.1016/j.lithos.2004.03.004
Han ZH, Sun FY, Tian N, Gao HC, Li L and Zhao TF. 2021. Zircon U-Pb geochronology, geochemistry and geological implications of the Early Paleozoic Wulanwuzhuer granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30 (in Chinese with English abstract)
Hao NN, Yuan WM, Zhang AK, Cao JH, Chen XN, Feng YL and Li X. 2014. Late Silurian to Early Devonian granitoids in the Qimantage area, East Kunlun Mountains: LA-ICP-MS zircon U-Pb ages, geochemical features and geological setting. Geological Review, 60(1): 201-215 (in Chinese with English abstract)
Harrison TM, Watson EB and Aikman AB. 2007. Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7): 635-638 DOI:10.1130/G23505A.1
Henderson P. 1984. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 276-280
Hofmann AW. 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314 DOI:10.1016/0012-821X(88)90132-X
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-528 DOI:10.1139/e71-055
Jiang CY, Ling JL, Zhou W, Du W, Wang ZX, Fan YZ, Song YF and Song ZB. 2015. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment. Acta Petrologica Sinica, 31(4): 1117-1136 (in Chinese with English abstract)
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391 DOI:10.1093/petroj/38.3.371
Lassiter JC and DePaolo DJ. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. In: Mahoney JJ and Coffin MF (eds. ). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, 100: 335-355
Li HK, Lu SN, Xiang ZQ, Zhou HY, Guo H, Song B, Zheng JK and Gu Y. 2006. SHRIMP U-Pb zircon age of the granulite from the Qingshuiquan area, central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321 (in Chinese with English abstract)
Li T, Li M, Hu CB, Li Y, Meng J, Gao XF and Zha XF. 2018. Zircon U-Pb geochronology, geochemistry and its geological implications of intrusions in Aquedun area from Qimantag, East Kunlun, China. Earth Science, 43(12): 4350-4363 (in Chinese with English abstract)
Liew TC and Hofmann AW. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98(2): 129-138 DOI:10.1007/BF00402106
Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J and Jiang HA. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica, 28(6): 1785-1807 (in Chinese with English abstract)
Liu B, Ma CQ, Jiang HA, Guo P, Zhang JY and Xiong FH. 2013a. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the eastern Kunlun Region: Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6): 2093-2106 (in Chinese with English abstract)
Liu B, Ma CQ, Guo P, Zhang JY, Xiong FH, Huang J and Jiang HA. 2013b. Discovery of the Middle Devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications. Earth Science, 38(5): 947-962 (in Chinese with English abstract)
Liu B, Ma CQ, Huang J, Wang LX, Zhao SQ, Yan R, Sun Y and Xiong FH. 2017. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau. Lithos, 284-285: 766-778 DOI:10.1016/j.lithos.2017.05.016
Liu CS, Chen XM, Chen PR, Wang RC and Hu H. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract)
Liu ZQ, Pei XZ, Li RB, Li ZC, Chen GC, Chen YX, Gao JM, Liu CJ, Wei FH, Wang XL and Zhang G. 2011. Early Paleozoic intermediate-acid magmatic activity in Bairiqiete area along the Buqingshan tectonic melange belt on the southern margin of East Kunlun: Constraints from zircon U-Pb dating and geochemistry. Geology in China, 38(5): 1150-1167 (in Chinese with English abstract)
Lu FX and Sang LK. 2002. Petrology. Beijing: Geological Publishing House, 43-45
Lugmair GW and Marti K. 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357 DOI:10.1016/0012-821X(78)90021-3
Lu L. 2011. Study on the ore-controlling structure of Wulonggou gold deposit in East Kunlun Mountain. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
Lu SN. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Beijing: Geological Publishing House, 1-225 (in Chinese with English abstract)
McKenzie DP and Bickle MJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625-679 DOI:10.1093/petrology/29.3.625
Meng FC, Zhang JX and Cui MH. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance. Gondwana Research, 23(2): 825-836 DOI:10.1016/j.gr.2012.06.007
Meng FC, Cui MH, Jia LH, Ren YF and Feng HB. 2015. Paleozoic continental collision of the East Kunlun Orogen: Evidence from protoliths of the eclogites. Acta Petrologica Sinica, 31(12): 3581-3594 (in Chinese with English abstract)
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218 DOI:10.1016/0009-2541(86)90004-5
Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532 DOI:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Mir AR, Alvi SH and Balaram V. 2011. Geochemistry of the mafic dykes in parts of the Singhbhum granitoid complex: Petrogenesis and tectonic setting. Arabian Journal of Geosciences, 4(5-6): 933-943 DOI:10.1007/s12517-010-0121-6
Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract)
Neal CR, Mahoney JJ and Chazey WJ. 2002. Mantle Sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen plateau and broken ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7): 1177-1205 DOI:10.1093/petrology/43.7.1177
Pan T and Zhang Y. 2020. Geochemical characteristics and metallogenic response of the eclogite from Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt. Geotectonica et Metallogenia, 44(3): 447-464 (in Chinese with English abstract)
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-Pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746 DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-286 DOI:10.1146/annurev.ea.23.050195.001343
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48 DOI:10.1016/j.lithos.2007.06.016
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Qian Q and Wang Y. 1999. Geochemical characteristics of bimodal volcanic suites from different tectonic settings. Geology-Geochemistry, 27(4): 29-32 (in Chinese)
Ren JH, Liu YQ, Feng Q, Han WZ, Gao H and Zhou DW. 2009. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica, 25(5): 1135-1145 (in Chinese with English abstract)
Ren JH, Liu YQ, Zhou DW, Feng Q, Zhang K, Dong ZL and Qin PL. 2010. Geochemical characteristics and LA-ICP-MS zircon U-Pb dating of basic dykes in the Xiaomiao Area, Eastern Kunlun. Journal of Jilin University (Earth Science Edition), 40(4): 859-868 (in Chinese with English abstract)
Shi B and Liu L. 2014. Petrological and geochemical characteristics of Early Silurian granites in Zaohuogou of eastern Kunlun and their geological significance. Global Geology, 33(4): 758-767 (in Chinese with English abstract)
Sigurdsson H. 1977. Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature, 269(5623): 25-28 DOI:10.1038/269025a0
Söderlund U, Patchett JP, Vervoort JD and Isachsen C. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3): 311-324
Steiger RH and Jäger E. 1977. Sub-commission on geochronology: Convention on the use of decay constants in geochronology and cosmo-chronology. Earth and Planetary Science Letters, 36(3): 359-362 DOI:10.1016/0012-821X(77)90060-7
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford: Blackwell Scientific Publications, 1-328
Wang G, Sun FY, Li BL, Li SJ, Zhao JW, Ao C and Yang QA. 2014. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting. Earth Science Frontiers, 21(6): 381-401 (in Chinese with English abstract)
Wang K, Plank T, Walker JD and Smith EI. 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research (Solid Earth), 107(B1): ECV5-1-ECV5-21 DOI:10.1029/2001JB000209
Wang PX, Guo F and Wang ZN. 2020. Zircon U-Pb geochronology, geochemistry and geological significance of granitoids in the Yazigou, Qimantage Area of East Kunlun Mountains. Geoscience, 34(5): 987-1000 (in Chinese with English abstract)
Wang YL, Li YJ, Wei JH, Li H, Han Y, Zhou HZ, Huang XK and Ke KJ. 2018. Origin of Late Silurian A-type granite in Wulonggou area, East Kunlun Orogen: Zircon U-Pb age, geochemistry, Nd and Hf isotopic constraints. Earth Science, 43(4): 1219-1236 (in Chinese with English abstract)
Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433 DOI:10.1007/s00410-006-0068-5
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30 DOI:10.1016/0012-821X(80)90116-8
Woodhead JD, Hergt JM, Davidson JP and Eggins SM. 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331-346 DOI:10.1016/S0012-821X(01)00453-8
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Xin W, Sun FY, Li L, Yan JM, Zhang YT, Wang YC, Shen TS and Yang YJ. 2018. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos, 312-313: 108-127 DOI:10.1016/j.lithos.2018.05.005
Xu ZQ, Yang JS, Li HB and Yao JX. 2006. The Early Palaeozoic terrene framework and the formation of the high-pressure (HP) and ultra-high pressure (UHP) metamorphic belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806 (in Chinese with English abstract)
Yan W, Qiu DM, Ding QF and Liu F. 2016. Geochronology, petrogenesis, source and its structural significance of Houtougou monzogranite of Wulonggou area in Eastern Kunlun Orogen. Journal of Jilin University (Earth Science Edition), 46(2): 443-460 (in Chinese with English abstract)
Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, Northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106 DOI:10.1016/j.lithos.2005.10.002
Yang JS, Robinson PT, Jiang CF and Xu ZQ. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258(1-4): 215-231 DOI:10.1016/0040-1951(95)00199-9
Yang JS, Xu ZQ, Ma CQ, Wu CL and Zhang JX. 2010. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China. Geology in China, 37(1): 1-11 (in Chinese with English abstract)
Yu N, Jin W, Ge WC and Long XP. 2005. Geochemical study on peraluminous granite from Jinshuikou in East Kunlun. Global Geology, 24(02): 123-128 (in Chinese with English abstract)
Zhang JX, Meng FC, Wang YS, Yang JS and Dong GA. 2003. Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam: Zircon U-Pb SHRIMP age evidence. Geological Bulletin of China, 22(6): 397-404 (in Chinese with English abstract)
Zhang Q, Ran H and Li CD. 2012. A-type granite: What is the essence?. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract)
Zhang YF, Pei XZ, Ding SP, Li RB, Feng JY, Sun Y, Li ZC and Chen YX. 2010. LA-ICP-MS zircon U-Pb age of quartz diorite at the Kekesha area of Dulan County, eastern section of the East Kunlun orogenic belt, China and its significance. Geological Bulletin of China, 29(1): 79-85 (in Chinese with English abstract)
Zhang YL, Hu DG, Shi YR and Lu L. 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China. Geological Bulletin of China, 29(11): 1614-1618 (in Chinese with English abstract)
Zhang ZW, Wang CY, Qian B and Li WY. 2018. The geochemistry characteristics of Silurian gabbro in East Kunlun Orogenic Belt and its mineralization relationship with magmatic Ni-Cu sulfide deposit. Acta Petrologica Sinica, 34(8): 2262-2274 (in Chinese with English abstract)
Zhao ZM, Ma HD, Wang BZ, Bai YS, Li RS and Ji WH. 2008. The evidence of intrusive rocks about collision-orogeny during Early Devonian in eastern Kunlun area. Geological Review, 54(1): 47-56 (in Chinese with English abstract)
Zhu XH, Chen DL, Liu L and Li D. 2010. Zircon LA-ICP-MS U-Pb dating of the Wanggaxiu gabbro complex in the Dulan area, northern margin of Qaidam Basin, China and its geological significance. Geological Bulletin of China, 29(2): 227-236 (in Chinese with English abstract)
Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571 DOI:10.1146/annurev.ea.14.050186.002425
曹世泰, 刘晓康, 马永胜, 李家勇, 马玉林. 2011. 祁漫塔格地区早志留世侵入岩的发现及其地质意义. 青海科技, 18(5): 26-30. DOI:10.3969/j.issn.1005-9393.2011.05.010
陈能松, 孙敏, 王勤燕, 张克信, 万渝生, 陈海红. 2008. 东昆仑造山带中带的锆石U-Pb定年与构造演化启示. 中国科学(D辑), 38(6): 657-666. DOI:10.3321/j.issn:1006-9267.2008.06.001
崔美慧, 孟繁聪, 吴祥珂. 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379.
段雪鹏, 孟繁聪, 范亚洲. 2019. 东昆仑夏日哈木镁铁-超镁铁岩中的钛闪石-韭闪石对成矿过程的约束. 岩石学报, 35(6): 1819-1832.
范超鹏. 2016. 浅谈双峰式火山岩的分类. 世界有色金属, (19): 146-147.
丰成友, 李东生, 吴正寿, 李军红, 张占玉, 张爱奎, 舒晓峰, 苏生顺. 2010. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用. 西北地质, 43(4): 10-17. DOI:10.3969/j.issn.1009-6248.2010.04.002
冯建赟, 裴先治, 于书伦, 丁仨平, 李瑞保, 孙雨, 张亚峰, 李佐臣, 陈有炘, 张晓飞, 陈国超. 2010. 东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄. 中国地质, 37(1): 28-38.
高永宝, 李文渊, 钱兵, 李侃, 李东生, 何书跃, 张照伟, 张江伟. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征. 岩石学报, 30(06): 1647-1665.
韩志辉, 孙丰月, 田楠, 高宏昶, 李良, 赵拓飞. 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30.
郝娜娜, 袁万明, 张爱奎, 曹建辉, 陈小宁, 冯云磊, 李希. 2014. 东昆仑祁漫塔格晚志留世-早泥盆世花岗岩: 年代学、地球化学及形成环境. 地质论评, 60(1): 201-215.
姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景. 岩石学报, 31(4): 1117-1136.
李怀坤, 陆松年, 相振群, 周红英, 郭虎, 宋彪, 郑健康, 顾瑛. 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. DOI:10.3321/j.issn:1005-2321.2006.06.034
李婷, 李猛, 胡朝斌, 李瑶, 孟杰, 高晓峰, 查显锋. 2018. 东昆仑祁漫塔格阿确墩地区侵入岩U-Pb年代学、地球化学及其地质意义. 地球科学, 43(12): 4350-4363.
刘彬, 马昌前, 张金阳, 熊富浩, 黄坚, 蒋红安. 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807.
刘彬, 马昌前, 郭盼, 张金阳, 熊富浩, 黄坚, 蒋红安. 2013a. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962.
刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013b. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106.
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573-591. DOI:10.3969/j.issn.1006-7493.2003.04.011
刘战庆, 裴先治, 李瑞保, 李佐臣, 陈国超, 陈有炘, 高景民, 刘成军, 魏方辉, 王学良, 张刚. 2011. 东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动: 来自锆石U-Pb测年及岩石地球化学证据. 中国地质, 38(5): 1150-1167. DOI:10.3969/j.issn.1000-3657.2011.05.003
路凤香, 桑隆康. 2002. 岩石学. 北京: 地质出版社, 43-45.
陆露. 2011. 东昆仑五龙沟金矿构造控矿特征研究. 硕士学位论文. 北京: 中国地质科学院
陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社, 1-225.
孟繁聪, 崔美慧, 贾丽辉, 任玉峰, 冯惠彬. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581-3594.
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. DOI:10.3969/j.issn.1006-7493.2007.03.010
潘彤, 张勇. 2020. 东昆仑夏日哈木铜镍矿区榴辉岩地球化学特征及成矿响应. 大地构造与成矿学, 44(3): 447-464.
钱青, 王焰. 1999. 不同构造环境中双峰式火山岩的地球化学特征. 地质地球化学, 27(4): 29-32.
任军虎, 柳益群, 冯乔, 韩文中, 高辉, 周鼎武. 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145.
任军虎, 柳益群, 周鼎武, 冯乔, 张琨, 董忠良, 秦萍莉. 2010. 东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 吉林大学学报(地球科学版), 40(4): 859-868.
施彬, 刘力. 2014. 东昆仑灶火沟早志留世花岗岩岩石学、地球化学特征及地质意义. 世界地质, 33(4): 758-767. DOI:10.3969/j.issn.1004-5589.2014.04.003
王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义. 地学前缘, 21(6): 381-401.
王盘喜, 郭峰, 王振宁. 2020. 东昆仑祁漫塔格鸭子沟地区花岗岩类岩石年代学、地球化学及地质意义. 现代地质, 34(5): 987-1000.
王艺龙, 李艳军, 魏俊浩, 李欢, 韩玉, 周红智, 黄啸坤, 柯坤家. 2018. 东昆仑五龙沟地区晚志留世A型花岗岩成因: U-Pb年代学、地球化学、Nd及Hf同位素制约. 地球科学, 43(4): 1219-1236.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
许志琴, 杨经绥, 李海兵, 姚建新. 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. DOI:10.3321/j.issn:0001-5717.2006.12.002
严威, 邱殿明, 丁清峰, 刘飞. 2016. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义. 吉林大学学报(地球科学版), 46(2): 443-460.
杨经绥, 许志琴, 马昌前, 吴才来, 张建新. 2010. 复合造山作用和中国中央造山带的科学问题. 中国地质, 37(1): 1-11.
余能, 金巍, 葛文春, 龙晓平. 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(02): 123-128. DOI:10.3969/j.issn.1004-5589.2005.02.004
张建新, 孟繁聪, 万渝生, 杨经绥, 董国安. 2003. 柴达木盆地南缘金水口群的早古生代构造热事件: 锆石U-Pb SHRIMP年龄证据. 地质通报, 22(6): 397-404. DOI:10.3969/j.issn.1671-2552.2003.06.004
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?. 岩石矿物学杂志, 31(4): 621-626. DOI:10.3969/j.issn.1000-6524.2012.04.014
张亚峰, 裴先治, 丁仨平, 李瑞保, 冯建赟, 孙雨, 李佐臣, 陈有炘. 2010. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义. 地质通报, 29(1): 79-85. DOI:10.3969/j.issn.1671-2552.2010.01.010
张耀玲, 胡道功, 石玉若, 陆露. 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义. 地质通报, 29(11): 1614-1618. DOI:10.3969/j.issn.1671-2552.2010.11.003
张照伟, 王驰源, 钱兵, 李文渊. 2018. 东昆仑志留纪辉长岩地球化学特征及与铜镍成矿关系探讨. 岩石学报, 34(8): 2262-2274.
赵振明, 马华东, 王秉璋, 拜永山, 李荣社, 计文化. 2008. 东昆仑早泥盆世碰撞造山的侵入岩证据. 地质论评, 54(1): 47-56. DOI:10.3321/j.issn:0371-5736.2008.01.006
朱小辉, 陈丹玲, 刘良, 李涤. 2010. 柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义. 地质通报, 29(2): 227-236. DOI:10.3969/j.issn.1671-2552.2010.02.006