岩石学报  2021, Vol. 37 Issue (5): 1489-1507, doi: 10.18654/1000-0569/2021.05.10   PDF    
北秦岭构造带与华北板块关系探讨: 来自宽坪杂岩变碎屑岩锆石U-Pb年代学与变质作用证据
王海杰, 陈丹玲, 任云飞, 朱小辉, 宫相宽     
大陆动力学国家重点实验室, 西北大学地质学系, 西安 710069
摘要: 宽坪杂岩是连接北秦岭构造带和华北板块的重要岩石-构造单元之一,其物质组成和变质变形特征可为探讨北秦岭构造带与华北板块构造关系及演化提供重要证据。本文在已有研究基础上,对宝鸡-眉县-洛南一带宽坪变碎屑岩进行了系统的岩石学、矿物学和碎屑锆石U-Pb年代学研究。结果表明,宽坪碎屑岩最年轻碎屑锆石年龄峰值为~550Ma,最主要碎屑锆石年龄集中区为~2.5Ga和1.0~0.9Ga,次要年龄集中区为1.3~1.0Ga和850~750Ma。通过与周缘可能物源区的年代学特征对比揭示,宽坪碎屑岩物源主要来自北秦岭新元古代花岗岩与秦岭岩群副片麻岩,部分来自南秦岭和扬子板块北缘新元古代花岗岩以及太古宙基底岩系,缺乏华北板块物质;宽坪碎屑岩的碎屑锆石年龄谱特征与南侧的二郎坪碎屑岩近乎一致,暗示两者可能形成于同一沉积盆地。相平衡模拟结果显示,洛南红土岭宽坪杂岩含石榴子石石英片岩记录了顺时针P-T演化轨迹,峰期变质条件为P=7.17~7.92kbar,T=557~563℃,形成于大陆碰撞过程。结合前人报道宽坪杂岩~440Ma的变质年龄,我们认为在早志留世时期宽坪和二郎坪沉积盆地闭合,北秦岭构造带与华北板块碰撞形成现今的构造格局,在此之前北秦岭构造带与华北板块不具有亲缘性。
关键词: 相平衡模拟    碎屑锆石U-Pb测年    宽坪变碎屑岩    北秦岭构造带    
The relationship between the North Qinling Belt and the North China Craton: Constrains from zircon U-Pb geochronology and metamorphism of metaclastic rocks from the Kuanping Complex
WANG HaiJie, CHEN DanLing, Ren YunFei, ZHU XiaoHui, GONG XiangKuan     
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
Abstract: As one of the most important petro-tectonic units connecting the North Qinling Belt (NQB) and the North China Craton (NCC), the composition and metamorphism of the Kuanping Complex can provide important constrains for the tectonic evolution of the NQB and the relationship between the NQB and the NCC. In this contribution, we conducted petrography, mineral chemistry and LA-ICP-MS zircon U-Pb dating on the metaclastic rocks from the Kuanping Complex in Baoji-Meixian-Luonan areas. Detrital zircon U-Pb dating yields the youngest magmatic ages of ~550Ma, two dominant age groups at ~2.5Ga and 1.0~0.9Ga, and two sub-dominant age groups at 1.3~1.0Ga and 850~750Ma, respectively. Comparing the detrital zircon age spectrum with all possible clastic provenances, it is suggested that the provenances of the Kuanping clastic rocks were mainly the Neoproterozoic granite and gneisses in the NQB, and subordinately the Neoproterozoic granite and the Archean basement rocks in the South Qinling Belt (SQB) and the Yangtze Craton (YZC), rather than rocks in the NCC. And the Kuanping clastic rocks display almost the same age spectrum with that of the Erlangping clastic rocks, indicating that they were probably formed in the same sedimentary basin. Phase equilibrium modelling predicts that the garnet-bearing quartz schist from Luonan area underwent a clockwise P-T path with peak P-T conditions of 7.17~7.92kbar and 557~563℃, suggesting a continental collision tectonic environment. Together with the reported metamorphic age of ~440Ma for the Kuanping Complex, we proposed that the closure of the Kuanping- Erlangping sedimentary basin occurred at the Early Silurian, which resulted in the collision of the NQB and the NCC. Before that, the NQB has not any tectonic affinities with the NCC.
Key words: Phase equilibrium modelling    Detrital zircon U-Pb dating    Kuanping Complex    North Qinling Belt    

秦岭造山带呈东西向横贯中国大陆中部,是华北板块与扬子板块多期俯冲碰撞而成的复合型造山带,长期受到国内外学者的广泛关注(Mattauer et al., 1985; 许志琴等, 1988; 任纪舜, 1991; 张国伟等, 2001; Ratschbacher et al., 2003; Wu and Zheng, 2013; Dong and Santosh, 2016; Liu et al., 2016; Li et al., 2018)。秦岭造山带以洛南-栾川断裂、商南-丹凤缝合带及勉县-略阳缝合带为界,自北向南依次划分为华北板块南缘(S-NCC)、北秦岭(NQB)、南秦岭(SQB)和扬子板块北缘(N-YZC)四个构造单元(图 1a)。南秦岭构造带主要由前寒武结晶基底和新元古代-三叠系沉积盖层组成,多数研究者认为其物质组成和构造属性与扬子板块具有明显的亲缘性(Meng and Zhang, 2000; 张国伟等, 2001),然而北秦岭构造带与其北侧华北板块南缘的构造演化目前仍存在中元古代-新元古代增生拼贴(Xu et al., 1997; 张国伟等, 2001)和古生代碰撞聚合(Diwu et al., 2012; Wu and Zheng, 2013; Liu et al., 2013)等多种认识,这些争议影响着对中央造山带结构和亚洲大陆演化的认识。

图 1 北秦岭构造带区域地质简图及采样位置(据Dong et al., 2014) Fig. 1 Simplified geological map of North Qinling orogen and sample locations (modified after Dong et al., 2014)

宽坪杂岩是北秦岭构造带最北部的岩石-构造单元,以洛南-栾川断裂与华北板块南缘相邻,呈狭长带状近东西向绵延近千千米(图 1b),其物质组成、形成时代、构造环境和变质作用研究可为探讨北秦岭构造带与华北板块构造关系和演化过程提供重要信息。宽坪杂岩主体由经历高绿片岩相至低角闪岩相变质的碎屑岩、基性火山岩和少量碳酸盐岩组成。最初以基性火山岩Sm-Nd等时线年龄(1142~986Ma,张寿广等, 1991; 张宗清等, 1994; 张国伟等, 2001)限定宽坪杂岩的形成时代为中-新元古代。最新锆石U-Pb定年结果限定基性火山岩锆石形成时代为943±6Ma(第五春荣等, 2010)和1445±60Ma(Dong et al., 2014),明显老于宽坪碎屑岩的最大沉积时代(640~530Ma,第五春荣等, 2010; Zhu et al., 2011; Liu et al., 2013; Shi et al., 2013; 高胜等, 2015; Cao et al., 2016);并且这些基性火山岩显示了N-MORB的地球化学属性,被认为是中-新元古代蛇绿岩残片(Dong et al., 2014),因而宽坪杂岩中变碎屑岩与基性火山岩应为构造混杂关系,其中的变碎屑岩作为宽坪杂岩的主体,与北秦岭的构造演化关系密切(第五春荣等, 2010; Zhu et al., 2011)。虽然目前多数研究认为宽坪碎屑岩应形成于早古生代,但所获最年轻锆石年龄(640~530Ma)存在较大变化范围,且研究样品主要集中在北秦岭东部有限的几个剖面,中西部地区宽坪碎屑岩缺乏系统研究。此外,关于宽坪碎屑岩的形成环境,仍存在华北板块南缘被动大陆边缘(Xue et al., 1996; Hacker et al., 2004; 王宗起等,2006)、陆内裂谷(张本仁等, 1994; Gao et al., 1996)以及商丹洋向北俯冲拉开的弧后盆地(高胜等, 2015; Liu et al., 2016; 杨敏等, 2016)等多种认识;宽坪变碎屑岩的变质演化历史也缺乏详细研究。

王宗起, 闫全人, 闫臻. 2006. 秦岭造山带结构与造山作用过程. 地质调查项目研究报告.中国地质科学院地质研究所

因此,在已有研究基础上,本文在宝鸡-眉县和洛南地区宽坪变碎屑岩比较发育的四个剖面上采集代表性岩石样品,进行了系统的锆石U-Pb年代学研究,同时对洛南红土岭宽坪含石榴子石石英片岩开展了相平衡模拟计算,探讨了宽坪变碎屑岩的沉积时代、物质来源、形成环境以及变质演化过程,为宽坪变碎屑岩形成和演化过程以及北秦岭构造带与华北板块的构造关系研究提供重要限定。

1 区域地质背景

秦岭造山带依据物质组成和变质变形特征自北向南可划分为华北板块南缘、北秦岭构造带、南秦岭构造带和扬子板块北缘四个构造单元,各构造单元之间均以大型剪切带所分隔(图 1a)。

1.1 华北板块南缘

华北板块南缘位于灵宝-鲁山-舞阳断裂以南,以洛南-栾川断裂与北秦岭宽坪杂岩相邻(图 1a),主要由太古宙基底杂岩太华群和登封群以及不整合其上的早-中元古代熊耳群火山岩和新元古代-中生代沉积盖层(如官道口群、栾川群、高山河群和陶湾群等)组成(张国伟等, 2001)。其中基底杂岩主体为一套经历角闪岩相变质TTG片麻岩,形成时代主体在新太古代-古元古代,峰值年龄为2.6~2.5Ga(陆松年等, 2003a; 万渝生等, 2009; Diwu et al., 2010b; 时毓等, 2014)。熊耳群主要由中基性和中酸性双峰式火山岩夹陆源碎屑岩组成,主体形成于1.80~1.75Ga(赵太平等, 2004)。陶湾群位于华北板块南缘最南端,与北秦岭宽坪杂岩呈断层接触(图 1b),主要由浅变质的砂岩、千枚岩、板岩和大理岩组成,其中的碎屑岩产出寒武-奥陶纪疑源类、几丁虫和虫颚化石(张维吉和李育敬, 1989; 刘国惠等, 1993; 王宗起等, 2007),沉积构造分析指示其具有碎屑流沉积特征(张国伟等, 2001),物源主要来自华北板块南缘,表明陶湾群应形成于早古生代华北板块南缘被动大陆边缘环境(杨敏, 2017)。

1.2 北秦岭构造带

北秦岭构造带位于洛南-栾川断裂与商丹缝合带之间,依据岩石组合与构造特征自北向南依次划分为宽坪杂岩、二郎坪群、秦岭岩群和丹凤群(图 1b)。

宽坪杂岩以瓦穴子-乔端断裂与南侧二郎坪群相接(图 1b),主要出露于陕西黑河、北宽坪及河南南召一带。肖思云等(1988)根据岩石组合特征将宽坪杂岩自下而上进一步划分为广东坪组、四岔口组和谢湾组,其中广东坪组主要由绿片岩夹石英岩、大理岩及云母石英片岩组成;四岔口组由云母石英片岩组夹角闪岩、石英大理岩和少量长英质变粒岩组成,并局部产出有早-中奥陶世疑源类、几丁虫和虫颚化石组合(王宗起等, 2009);谢湾组由角闪岩、黑云大理岩以及斜长石英片岩组成(林德超等, 1990; 张寿广等, 1991; 刘国惠等, 1993)。新近的年代学研究表明,宽坪杂岩中基性火山岩的形成时代为1445~943Ma(第五春荣等, 2010; Dong et al., 2014),变碎屑岩的最年轻碎屑锆石年龄变化于640~500Ma(第五春荣等, 2010; Zhu et al., 2011; Liu et al., 2013; Cao et al., 2016; 高胜等, 2016)。地球化学研究揭示广东坪组基性火山岩具有N-MORB的特征(第五春荣等, 2010; Dong et al., 2014),而碎屑岩和大理岩形成于近源浅海环境(陆松年等, 2003a),因此宽坪杂岩被认为是由不同时代、不同构造环境岩石组成的混杂岩(第五春荣等, 2010; Zhu et al., 2011)。

二郎坪群主体为一套绿片岩相-低角闪岩相变质的火山-沉积岩系,主要由蛇绿岩单元、碎屑沉积岩以及碳酸盐岩组成。最新获得蛇绿岩中基性火山岩和辉长-辉绿岩的形成年龄为475~463Ma(陆松年等, 2003a; Dong et al., 2011b; 赵姣等, 2012)。变碎屑岩主要为变长石石英砂岩和变粉砂岩(刘国惠等, 1993),碎屑锆石年代学研究指示其沉积时代晚于~550Ma(杨敏等, 2016)。

秦岭岩群呈透镜状夹于二郎坪群和丹凤群之间,被认为是秦岭造山带中最古老的前寒武纪基底变质杂岩,主要由各种长英质片麻岩、大理岩和少量呈透镜体或似层状产出的斜长角闪岩组成。片麻岩碎屑锆石研究表明,其原岩最大沉积时代为~1.0Ga,主要年龄集中区为1.8~1.3Ga(陆松年等, 2009; 时毓等, 2009; 杨力等, 2010; 万渝生等, 2011; Diwu et al., 2014; 宫相宽, 2017)。岩相学及锆石包裹体研究表明秦岭岩群中的斜长角闪岩(榴闪岩)和部分副片麻岩为退变质的高压-超高压变质岩石,峰期变质时代为~500Ma,榴辉岩原岩形成时代为~800Ma,是大陆深俯冲超高压变质作用的产物(杨经绥等, 2002; Liu et al., 2003, 2016; Wang et al., 2014; 陈丹玲等, 2015; Liao et al., 2016; 宫相宽等, 2016)。

丹凤群位于秦岭岩群南侧,主体为一套绿片岩相-低角闪岩相变质的火山-沉积岩系,为秦岭古生代洋盆闭合的产物(张旗等, 1995; 张国伟等, 2001),其中蛇绿岩的形成时代为534~500Ma(Dong et al., 2011b及其参考文献)。

北秦岭构造带中花岗质侵入体较为发育(图 1b),按时代可分为新元古代、古生代和早中生代三期。其中新元古代花岗岩的形成时代为979~815Ma,主要分布于秦岭岩群中,具有同碰撞花岗岩的特征,被认为是Rodinia超大陆聚合事件的响应(陆松年等, 2003a; 陈志宏等, 2004; 张成立等, 2004; 刘会彬等, 2006; 裴先治等, 2007);古生代花岗岩在北秦岭较为发育,形成时代介于500~400Ma之间(王洪亮等, 2009; 王涛等, 2009; 雷敏, 2010; 张成立等, 2013; 刘丙祥, 2014; 王晓霞等, 2015),被认为是商丹洋北向俯冲和碰撞过程中岩浆作用的产物(Dong and Santosh, 2016),或是北秦岭早古生代陆壳俯冲和折返过程的岩浆响应(张成立等, 2013);早中生代花岗岩(250~185Ma)以秦岭造山带西段较为发育,与勉略构造带的碰撞闭合相关(Wang et al., 2013b)。

1.3 南秦岭构造带与扬子板块北缘

南秦岭构造带夹于商丹与勉略缝合带之间,主要由前寒武纪基底(如陡岭群、武当群、耀岭河群等)以及震旦系-显生宙沉积地层组成。其中,陡岭群主要由片麻岩、斜长角闪岩和透辉变粒岩等组成(张国伟等, 2001),年代学研究表明,陡岭群主体为2.51~2.47Ga的结晶基底杂岩系,并在晋宁期(0.8Ga)发生角闪岩相变质作用(张寿广等, 1996; 胡娟等, 2013; Nie et al., 2016);武当群和耀岭河群以833~755Ma和810~680Ma(李怀坤等, 2003; 蔡志勇等, 2007; 凌文黎等, 2007; 夏林圻等, 2008)的裂谷火山岩为特征。

扬子板块北缘位于秦岭造山带勉略-巴山断裂以南,具有太古宙-古元古代结晶基底和中新元古代基底变火山岩-沉积岩系双层基底结构,之上被古生代沉积岩所覆盖。其中太古宙基底杂岩主要为崆岭杂岩和后河杂岩,由TTG片麻岩、斜长角闪岩和孔兹岩组成,混合岩化强烈,经历了角闪岩相-麻粒岩相变质作用,其主体形成时代为2.95~3.3Ga(Zhang et al., 2006; 郑永飞和张少兵, 2007焦文放等, 2009)。此外,扬子北缘广泛发育新元古代岩浆岩,以花岗岩和酸性火山岩为主(如望江山岩体、五堵门岩体和碑坝岩体等),形成时代为840~706Ma(Zhou et al., 2002; 凌文黎等, 2006; 敖文昊等, 2014)。

2 样品特征与分析方法 2.1 样品特征

本文研究样品从东向西主要采自洛南红土岭、眉县大镇沟、眉县斜峪关和宝鸡固川沟4个剖面(图 1b)。由于大量中生代花岗岩体的侵入,研究区内的宽坪杂岩多呈透镜体状断续出露。其中,红土岭剖面主要出露有四岔口组云母石英片岩和含石榴子石石英片岩和少量谢湾组石英大理岩,局部可见与陶湾群呈断层接触;大镇沟和固川沟剖面主要发育四岔口组云母石英片岩,局部夹少量变粒岩和透闪大理岩;斜峪关剖面主要出露四岔口组二云母石英片岩和少量广东坪组绿片岩和斜长角闪岩。研究样品主要为各剖面上的四岔口组变碎屑岩。

样品16HTL-1采自洛南红土岭剖面,为含石榴子石石英片岩,在剖面上与白垩纪红色砂质泥岩呈断层接触(图 2a)。岩石整体呈灰色,变形强烈,片理化明显。镜下可见斑状变晶结构,片状-片麻状构造(图 2b),变斑晶为黑云母(15%~20%)、斜长石(10%~15%)和石榴子石(~5%),基质主要由石英(>60%)和少量白云母(< 5%)组成,其中石英拉长变形,具波状消光。13DZG-1采自眉县大镇沟剖面,为黑云母石英片岩,呈浅灰色,鳞片粒状变晶结构,片状构造(图 2c, d),主要由石英(60%~70%)、黑云母(20%~35%)和斜长石(5%~10%)组成。样品13XYG-1采自眉县斜峪关剖面,为二云母石英片岩,浅灰色,变余砂状结构,片状构造(图 2e, f),主要由石英(55%~65%)、黑云母(< 20%)和白云母(< 20%)组成。样品13GCG-1采自宝鸡固川沟剖面,为黑云母石英片岩,浅灰色,鳞片粒状变晶结构,片状构造(图 2g, h),主要由石英(>60%)和黑云母(20%~30%)和少量斜长石(5%)、白云母(5%)组成,石英拉长变形,具波状消光,黑云母定向分布。

图 2 宽坪变碎屑岩野外及其正交偏光镜下特征 (a、b)含石榴子石石英片岩(16HTL-1);(c、d)黑云母石英片岩(13DZG-1);(e、f)二云母石英片岩(13XYG-1);(g、h)黑云母石英片岩(13GCG-1). Qz-石英;Pl-斜长石;Bt-黑云母;Ms-白云母;Grt-石榴子石 Fig. 2 The field and microscopic (all in cross-polarized light) features of the metaclastic rocks from the Kuanping Complex (a, b) garnet-bearing quartz schist (16HTL-1); (c, d) muscovite quartz schist (13DZG-1); (e, f) mica quartz schist (13XYG-1); (g, h) muscovite quartz schist (13GCG-1). Qz-quartz; Pl-plagioclase; Bt-biotite; Ms-muscovite; Grt-garnet
2.2 分析方法

本文所有涉及的分析测试均在西北大学大陆动力学国家重点实验室完成。其中,全岩主量元素含量分析采用X射线荧光熔片法。利用日本理学RIX2000型X荧光光谱仪(XRF)测试,测试过程中采用BCR-2和GBW07105标样以及重复样监控,分析精度一般优于±2%。烧失量采用高温灼烧法获得。矿物主量元素含量分析采用日本JEOL公司的JXA-8230型电子探针(EPMA)完成。分析条件为加速电压15kV,探针束流10nA,矿物标样由SPI公司提供,分析结果采用ZAF法校正。样品16HTL-1石榴子石元素面扫描分析分辨率为1300×1300,单点信号采集时间为15ms。

锆石的CL图像分析由加载在FEI Quanta 400 EFG扫面电镜上的Gatan Mono CL3+阴极发光系统完成。LA-ICP-MS U-Pb同位素和微量元素分析在Hewlett Packard公司的Agilent 7500a ICP-MS和Lambda Physick公司的ComPex102准分子激光器以及MicroLas公司的Geolas 200M光学系统的联机上进行。激光剥蚀斑束直径为24μm,频率为6Hz。锆石年龄计算采用国际标准锆石91500作为外部标准物质,元素含量分析采用29Si作为内标,NIST SRM 610作为外标进行校正。相关计算和绘图(年龄谐和图、累计频率图)采用Isoplot完成(ver. 3.15; Ludwig, 2003)。

3 分析结果 3.1 矿物化学与相平衡模拟

变质岩石中的石榴子石通常保存有丰富的成因信息,综合其元素含量和变化特征以及不同部位包裹体种类和成分信息,可以反演岩石的P-T演化条件(Spear, 1988; Stüwe and Powell, 1995; Wei and Clarke, 2011)。在详细的岩相学观察和矿物化学分析基础上(表 1),本文对红土岭含石榴子石石英片岩(16HTL-1)进行了相平衡模拟计算,重建其P-T演化轨迹。

表 1 含石榴子石石英片岩(样品16HTL-1)中代表性矿物的主量元素组成(wt%) Table 1 Major element compositions of minerals from the garnat-bearing quartz schist (Sample 16HTL-1) (wt%)

岩石样品中石榴子石为变斑晶矿物,粒径变化于2~5mm,内部可见石英、斜长石、绿帘石、钛铁矿、金红石和白云母等显微包裹体,其中绿帘石仅见于石榴子石核部,其他包体在核部和边部均可见(图 3c)。电子探针分析显示,石榴子石以铁铝榴石(Alm)为主,且显示明显的成分环带(图 3),从核部到边部,铁铝榴石与镁铝榴石(Prp)组分持续升高(XAlm从56.53升高到68.98;XPrp从2.79变为4.65),钙铝榴石(Grs)和锰铝榴石(Sps)组分持续降低(XGrs从27.45降为22.37;XSps从13.24降为4.00),显示进变质生长特征;在石榴子石的最边部,钙铝榴石组分突然降低(XGrs降为13.24),且铁铝榴石和镁铝榴石同时升高(XAlm升高到77.07;XPrp升高到7.38),锰铝榴石进一步降低(XSps降为2.66)。斜长石呈他形存在于基质中,粒度0.2~0.5mm,An组分为0.25~0.30,属奥长石。白云母有两种产状,作为石榴子石中的包体或基质矿物,但两者成分差异较小(表 1)。绿帘石仅见于石榴子石核部,其单位分子式Si值为3.08~3.03,Al值为2.49~2.38(表 1)。

图 3 红土岭含石榴子石石英片岩中石榴子石成分特征 (a、b)石榴子石Ca和Mn元素面分布特征,红色箭头代表图d中石榴子石剖面的分析位置;(c)石榴子石核部包体;(d)石榴子石成分环带剖面. Ilm-钛铁矿; Ep-绿帘石; Rt-金红石 Fig. 3 X-ray element maps and zonation profiles showing the composition change of garnet porphyroblast in the Hongtuling garnet-bearing quartz schist (a, b) the X-ray Ca and Mn element maps of the garnet porphyroblast. The red arrow in a showing the location of the traverse in (d); (c) the mineral inclusions in garnet core; (d) the compositional zoning of the garnet porphyroblast. Ilm-ilmenite; Ep-epidote; Rt-rutile

利用THERMOCALC 3.33程序(ver.3.33,Powell et al., 1998的升级版),内恰一致性热力学数据库(tcds55.txt,Holland and Powell, 1998的升级版)和XRF实测全岩成分(SiO2=75.38%、Al2O3=10.35%、FeO=5.30%、MgO=3.98%、K2O=2.80%、Na2O=1.38%、CaO=0.79%、MnO=0.03%;质量分数)进行相平衡模拟计算。依据样品的矿物组合及全岩组分特征,并考虑到中低级变质作用下MnO对于石榴子石的稳定域影响较大(White et al., 2014),计算选择MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (MnNCKFMASH)体系,并假设石英和H2O过量。虽然石榴子石具有明显的成分环带,但由于该片岩石榴子石含量极低(~5%),因此在计算过程中全岩成分未进行石榴子石核部成分扣除。计算涉及的成分活度模型为:石榴子石-Grt(White et al., 2005),黑云母-Bi(Tajčmanová et al., 2009),绿泥石-Chl(Holland and Powell, 1998),斜长石和钾长石-Pl和Kfs(Benisek et al., 2010),堇青石-Crd(Holland and Powell, 1998),十字石-St(Holland and Powell, 1998),和白云母-Ms(Coggon and Holland, 2002)。绿帘石、夕线石、石英及流体视为纯端元组分。

计算得到2~8kbar,400~700℃范围内的P-T视剖面图如图 4所示,石榴子石稳定于P>3kbar,T>500℃的区域;黑云母和斜长石在计算的整个P-T范围内保持稳定;白云母仅在T>600℃,P < 5Kbar的高温低压区消失,绿帘石仅存于T < 550℃的低温区域;绿泥石在T>600℃时消失。

图 4 红土岭含石榴子石石英片岩(样品16HTL-1)在MnNCKFMASH体系中的P-T视剖面图及P-T轨迹(石英与水过量) Fig. 4 The modelled P-T pseudosection in the MnNCKFMASH system with quartz and H2O in excess, the stability field of garnet and the inferred P-T path of the garnet-bearing quartz schist (Sample 16HTL-1)

P-T视剖面图的基础上,我们利用基于Matlab自动化软件TCInvestigator v1.0(Pearce et al., 2015)建立了石榴子石XSpsXGrsXAlm以及白云母XFe成分等值线图(图 5)。从图中可见,在Grt-Chl-Bt-Ms-Pl稳定域中,锰铝榴石、钙铝榴石和铁铝榴石等值线以及白云母XFe值具有陡峭的斜率,表明其含量主要受温度控制,即石榴子石中锰铝榴石和钙铝榴石组分以及白云母XFe值随着温度的升高而降低,而铁铝榴石组分随温度升高而升高(图 5)。

图 5 红土岭含石榴子石石英片岩(样品16HTL-1)锰铝榴石(a)、钙铝榴石(b)、铁铝榴石(c)和白云母XFe(d)等值线图 Fig. 5 The calculated isopleths of XSps(a), XGrs(b), and XAlm(c) in garnet and XFe in muscovite (d) of the garnet-bearing quartz schist (Sample 16HTL-1)
3.2 锆石原位U-Pb定年

从每个碎屑岩样品中分离出至少500粒锆石,多为浅棕色-无色,短柱状或椭圆状形态,显示出一定程度的磨蚀,粒径多变化于100~150μm之间。CL图像显示多数锆石具有清晰的振荡环带结构(图 6),具有较高的Th、U含量,Th/U比值大于0.1(电子版附表 1),为典型的岩浆锆石。

图 6 宽坪变碎屑岩中锆石的CL图像 Fig. 6 Cathodoluminescence (CL) images of selected zircons of metaclasitc rocks from Kuanping Complex

附表 1 北秦岭宽坪碎屑岩LA-ICP-MS锆石U-Pb定年分析结果 Appendix Table 1 Zircon U-Pb isotope data obtained by LA-ICP-MS for metaclastic rocks from Kuanping Complex

为保证测年数据的可信度和锆石的代表性,按照Andersen(2005)的方法,本文对每个样品随机选取45粒以上碎屑锆石颗粒进行U-Pb同位素分析。分析结果中去除了信号不好以及206Pb/238U年龄相对于207Pb/235U年龄偏差大于10%的数据。年龄小于1.0Ga的测点,取206Pb/238U年龄,大于1.0Ga取207Pb/206Pb年龄,最终结果见附表 1

从锆石U-Pb谐和图(图 7a, c, e, g)可看出,除样品13XYG-1少数测点沿不一致线分布(图 7e)外,其他样品多数测点集中分布在谐和线及其附近。4件样品的最年轻碎屑锆石年龄分别为520±5Ma(16HTL-1)、546±5Ma(13DZG-1)、553±5Ma(13XYG-1)和554±9Ma(13GCG-1),在误差范围内近乎一致。而且,在年龄累计频率图上(图 7b, d, f, h),所有样品都出现了1.0~0.9Ga和~2.5Ga两个明显的年龄集中区;多数样品出现1.3~1.0Ga,850~750Ma的次要年龄集中区。

图 7 宽坪变碎屑岩碎屑锆石U-Pb谐和图(a、c、e、g)及年龄频谱图(b、d、f、h) Fig. 7 Concordia diagrams (a, c, e, g) and spectum diagrams (b, d, f, h) of zircon U-Pb data of metaclastic rocks from Kuanping Complex
4 讨论 4.1 宽坪杂岩含石榴子石石英片岩变质作用过程

已有研究表明,当全岩成分固定时,P-T空间内每一点的矿物组合和成分具有唯一值(Spear, 1988; Powell et al., 1998; 魏春景, 2012),因而可通过它们反演岩石的形成条件。但如果岩石成分过于简单或由于退变质作用改造,通常见到的矿物组合总是占据较大的P-T空间,无法精确确定岩石的形成条件(图 4)。因此,相对于矿物组合,矿物成分更加精确,利用不同矿物成分等值线交点便可以准确限定岩石的P-T条件(Vance and Mahar, 1998; Wei and Clarke, 2011)。在Grt-Chl-Bt-Ms-Pl稳定域中,利用石榴子石核部Alm、Grs和Sps组分含量确定进变质阶段石榴子石核部生长条件约为T=525~528℃、P=6.41~6.58kbar(图 4a中g(Core)区域),接近石榴子石消失线;利用石榴子石边部成分限定峰期变质条件为T=557~563℃、P=7.17~7.92kbar(图 4a中g(Rim)区域)。石榴子石最边部成分等值线斜率相差较小,但是白云母XFe成分等值线斜率很陡(图 5d)。白云母XFe值受控于岩石中石榴子石和绿泥石的含量,随着温度和压力的升高,石榴子石含量逐渐增加,绿泥石含量下降,从而导致白云母XFe值急剧下降。因此,利用石榴子石最边部端元组分和白云母XFe值共同限定石榴子石最边部的变质条件约为T=578~586℃,P=6.27~6.82 kbar(图 4a中g(o-rim)区域)。另外,我们在石榴子石核部发现少量绿帘石包体(图 3c),但石榴子石核部成分在P-T视剖面中对应温压条件高于绿帘石稳定域,因此,这些绿帘石应形成于石榴子石核部生长之前,也就是说岩石在进变质阶段经过了绿帘石稳定域(图 4a虚线Ⅰ表示)。依据岩相学观察,石榴子石退变主要形成绿泥石(图 2b),岩石中未发现十字石,表明岩石在退变质过程中未经过十字石稳定域(图 4),结合石榴子石边部和最边部对应的温压条件,表明岩石变质温度的峰值晚于压力的峰值,并在达到温度的峰值后近等温降压退变质到绿泥石稳定域(图 4a虚线Ⅱ表示)。因此,上述特征指示,红土岭含石榴子石石英片岩总体经历了先升温升压再升温降压,最后近等温降压的顺时针P-T演化轨迹(图 4a),峰期变质条件(T=557~563℃、P=7.17~7.92kbar)为低角闪岩相。

造山带中岩石的变质作用类型和P-T轨迹与其构造环境密切相关。通常情况下,碰撞造山作用以中压相系变质作用和近等温降压(ITD)的顺时针P-T轨迹为特征(England and Thompson, 1984; Brown, 1993, 2014),而增生造山作用则以低压高温变质作用和逆时针的P-T轨迹为特征(Wells, 1980; Santosh et al., 2012)。本文通过相平衡模拟计算获得的红土岭含石榴子石石英片岩近等温降压的顺时针P-T演化轨迹以及峰期变质条件(T=557~563℃、P=7.17~7.92kbar),指示其形成于大陆碰撞造山作用过程(Brown and Johnson, 2018)。该结果与Liu et al. (2011)利用传统温压计和石榴子石环带特征获得的桐柏地区宽坪杂岩石榴子石角闪岩顺时针的P-T轨迹和T=570~650℃、P=6.6~11.2kbar的峰期变质条件基本一致,说明宽坪杂岩的变质作用与大陆碰撞造山作用相关。

4.2 宽坪碎屑岩的沉积时代与物源分析

本次研究获得宽坪碎屑岩最年轻碎屑锆石年龄分别为520±5Ma、546±5Ma、553±5Ma和554±9Ma,与前人在中东部宽坪碎屑岩获得的最小岩浆锆石年龄(640~530Ma; 第五春荣等, 2010; Zhu et al., 2011; Liu et al., 2013; Shi et al., 2013; 高胜等, 2015)基本一致。在所有宽坪变碎屑岩定年结果频谱图中(图 8a),最年轻碎屑锆石的年龄峰值为~550Ma,结合前人在宽坪碎屑岩中发现大量早-中奥陶世疑源类、几丁虫和虫颚等早古生代化石组合(王宗起等, 2009)以及宽坪杂岩石榴子石角闪岩~440Ma的变质年龄(Zhai et al., 1998; Liu et al., 2011),共同限定宽坪变碎屑岩沉积时代应为550~440Ma。

图 8 不同地质体锆石U-Pb年龄频谱图 (a)宽坪杂岩,数据引自第五春荣等, 2010; Zhu et al., 2011; Liu et al., 2013; Shi et al., 2013; 高胜等, 2015; Cao et al., 2016; (b)二郎坪群,数据杨敏等, 2016; Liu et al., 2013; (c)华北板块南缘,数据陆松年等, 2003a; 赵太平等, 2004; 周艳艳等, 2009; 万渝生等, 2009; Diwu et al., 2010b; Huang et al., 2013; Zhang et al., 2013; 时毓等, 2014; He et al., 2009; (d)北秦岭构造带,数据陆松年等, 2003a, 2009; 陈志宏等, 2004; 张成立等, 2004; 王涛等, 2009; 时毓等, 2009; 董增产, 2009; 万渝生等, 2011; 杨力等, 2010; Diwu et al., 2014; 宫相宽, 2017; (e)南秦岭-扬子北缘,数据李怀坤等, 2010; Ling et al., 2010; Zhu et al., 2011; 李献华等, 2012及其参考文献 Fig. 8 Compilations of U-Pb ages for concordant detrital zircons from different terranes (a) the Kuanping Complex, data from Diwu et al., 2010; Zhu et al., 2011; Liu et al., 2013; Shi et al., 2013; Gao et al., 2015; Cao et al., 2016. (b) the Erlangping Group, data from Yang et al., 2016; Liu et al., 2013. (c) the south margin of the NCC, data from Lu et al., 2003a, 2009; Zhao et al., 2004; Zhou et al., 2009; Wan et al., 2009; Diwu et al., 2010b; Huang et al., 2013; Zhang et al., 2013; Shi et al., 2014; He et al., 2009. (d) the NQB, data from Lu et al., 2003a, 2009; Chen et al., 2004; Zhang et al., 2004; Wang et al., 2009; Shi et al., 2009; Dong, 2009; Yang et al., 2010; Wan et al., 2011; Diwu et al., 2014; Gong, 2017. (e) the SQB-north margin of YZC, data from Li et al., 2010; Ling et al., 2010; Zhu et al., 2011; Li et al., 2012 and references therein

本文获得的宽坪碎屑岩锆石主要年龄集中区(1.0~0.9Ga和~2.5Ga)和次要年龄集中区(1.3~1.0Ga和850~750Ma)也与东部基本一致,表明东西部宽坪碎屑岩具有相同的物质来源。为探讨宽坪碎屑岩的物质源区,本文收集了宽坪碎屑岩周缘可能物源区的年龄数据(图 8c, d)。

CL图像显示,宽坪碎屑岩中1.0~0.9Ga和850~750Ma年龄集中区的碎屑锆石皆具有清晰且密集的岩浆振荡环带(图 6),Th/U比值均大于0.1(附表 1),指示其来源于结晶温度较低的花岗岩(吴元保和郑永飞,2004)。这两组年龄在北侧的华北板块南缘并未出现而在北秦岭和南秦岭有较多记录(图 8c, d)。北秦岭的秦岭岩群从东向西都存在形成时代在979~815Ma花岗质岩体(如图 1b, 陆松年等, 2003a; 陈志宏等, 2004; 张成立等, 2004; 刘会彬等, 2006; 裴先治等, 2007; Wang et al., 2013b),南秦岭和扬子北缘出露大量850~700Ma的花岗岩(凌文黎等, 2001; Zhou et al., 2002; 赵凤清等, 2006Zhao et al., 2008, 2009a, b李婷, 2010; Dong et al., 2011c, 2012; 敖文昊等, 2014)。因此,秦岭造山带与扬子北缘广泛发育的新元古代花岗岩应该是宽坪碎屑岩中年龄为1.0~0.9Ga和850~750Ma碎屑锆石的主要来源。

宽坪碎屑锆石另一主要年龄集中区为~2.5Ga,另有少量~1.8Ga年龄信息(图 8a)。尽管新太古代(~2.5Ga)和中元古代(~1.8Ga)的岩浆事件是华北板块代表性岩浆事件,且在华北南缘存在一条形成时代为1.8~1.7Ga的A型花岗岩带(陆松年等, 2003b; 包志伟等, 2009; Jiang et al., 2011; Wang et al., 2013a; Zhang et al., 2013; 翟明国等, 2014)。但作为最靠近华北板块南缘的宽坪碎屑岩中1.8~1.7Ga的年龄峰并不明显(图 8a)。特别是与该期花岗岩在空间上密切伴生的样品13XYG-1和13GCG-1中几乎不存在1.8~1.7Ga的碎屑锆石(图 7f, h)。另外,高胜等(2015)对天水东岔地区宽坪碎屑岩的研究发现,该地区宽坪碎屑岩分布于~1.8Ga花岗岩旁侧,但碎屑岩中不包含有任何~1.8Ga碎屑锆石记录,从而提出宽坪碎屑岩沉积时与~1.8Ga花岗岩相距遥远,华北南缘不是宽坪碎屑岩的物源区(高胜等, 2015)。虽然在图 7b中部分样品出现有~1.8Ga年龄信息,但从宽坪碎屑岩锆石频谱图(图 8a)来看,1.8~1.1Ga的年龄分布较为分散,不形成明显峰值,与典型岩浆事件峰值差异较大(图 8c-e),显示再循环沉积岩的特征(Cawood et al., 2003, 2012; Andersen, 2005; Adams et al., 2007; Tucker et al., 2013)。而且,这部分碎屑锆石年龄分布特征与华北板块南缘碎屑岩的谱系特征(图 8c)相差较远,而与南侧秦岭岩群长英质副片麻岩中1.8~1.1Ga的碎屑锆石年龄分布特征相似(图 8d)。此外,宽坪杂岩北侧以构造关系与华北南缘陶湾群相接,沉积学研究和古生物化石证据指示陶湾群形成于寒武-奥陶纪时期华北板块南缘的被动大陆边缘环境(张国伟等, 2001)。陶湾群的沉积时代近同时或稍晚于宽坪碎屑岩,但其碎屑物主要来自华北板块,缺乏北秦岭构造带的物质信息(杨敏, 2017),与宽坪碎屑岩源区特征明显不同。因此,华北板块不是宽坪碎屑岩物源区。近年来,新太古代-古元古代(2.7~2.4Ga, 图 8e)岩浆事件(郑永飞和张少兵, 2007; Liu et al., 2008; 张欣等, 2010; 胡娟等, 2013)在南秦岭和扬子北缘基底岩系(如鱼洞子群、陡岭杂岩)陆续发现,很可能是宽坪碎屑岩中~2.5Ga锆石的主要来源区。因此,宽坪碎屑岩中的新太古代-中元古代(2.5~1.0Ga)碎屑锆石应来自于北秦岭、南秦岭或扬子北缘(图 8e),并非来自华北板块。

4.3 构造环境

一直以来,宽坪杂岩的构造环境存在华北板块南缘被动陆缘(Xue et al., 1996; Hacker et al., 2004; 王宗起等, 2006)、大陆裂谷(Gao et al., 1996)以及弧后盆地(杨敏等, 2016)等多种认识。本文的研究显示,宽坪杂岩南侧的秦岭岩群及秦岭造山带中的新元古代花岗岩是宽坪碎屑岩重要的物源区,并未接受华北板块的物质,表明宽坪碎屑岩具有单向物源特征。因此,宽坪杂岩不大可能形成于华北板块被动陆缘或大陆裂谷环境。

如果秦岭岩群是宽坪碎屑岩的一个主要物源区,不可忽略的是,在宽坪杂岩与秦岭岩群之间还存在一个二郎坪群(图 1b)。二郎坪群以瓦穴子-乔端韧性剪切带与宽坪杂岩相邻,主要包括北部蛇绿岩片和南部变泥质碎屑岩片。北部蛇绿岩片以基性火山岩为主,不同学者获得蛇绿岩片中枕状熔岩、辉长岩-辉绿岩的形成时代为475~463Ma(陆松年等, 2003aDong et al., 2011b; 赵姣等,2012)。南部岩片主要为经历低角闪岩相变质的云母石英片岩和变长石石英砂岩(刘文荣等, 1989)。将宽坪和二郎坪碎屑锆石年龄图谱进行对比(图 8a, b)发现,虽然二郎坪碎屑岩锆石数据量较少,但两者无论在最年轻碎屑锆石年龄峰值(~550Ma)还是在碎屑锆石年龄谱峰特征上都非常相似,均在1.0~0.9Ga、850~750Ma和~2.5Ga形成三个锆石年龄的高频集中区,表明宽坪与二郎坪碎屑岩具有相同的沉积时代和碎屑物来源,暗示两者可能形成于同一早古生代沉积盆地。另外,从图 8a, b可见,宽坪和二郎坪碎屑岩中以远大于沉积时代(~550Ma)的新元古代(1.0~0.9Ga)和新太古代(~2.5Ga)的碎屑锆石为主体,明显不同于汇聚板块边缘或弧后盆地沉积物中与沉积时代接近的碎屑锆石年龄所占比例较大的特征,而与伸展和克拉通内环境的沉积物中多出现年龄较老碎屑锆石的特征相似(Cawood et al., 2012)。是否暗示宽坪-二郎坪碎屑岩可能形成于北秦岭早古生代伸展背景下的陆缘盆地环境,还有待进一步研究。

4.4 构造地质意义

北秦岭构造带长期以来多被认为是作为华北板块南缘的活动陆缘,在元古代(Dong et al., 2011a)或古生代时期(张国伟等, 2001)从华北板块裂解出来。本文碎屑锆石的对比研究结果表明,宽坪碎屑岩物源主要来自南侧的秦岭岩群、南秦岭和扬子北缘,不存在华北板块的物质。而且,前人对华北板块南缘陶湾群的研究揭示陶湾群与宽坪碎屑岩的形成时代(寒武-奥陶纪)相近但物质来源相异,陶湾群的碎屑物质主要来源于华北板块,没有北秦岭的物质记录(杨敏, 2017),表明在宽坪和陶湾群碎屑岩沉积时,北秦岭与华北板块相距较远,两者不具有亲缘性。该结论与早期对北秦岭构造带Pb同位素填图(朱炳泉, 1993; 朱炳泉和常向阳, 2001)和Nd模式年龄计算结果(张本仁等, 1996, 2002)揭示的北秦岭构造带与华北板块南缘具有不同的同位素组成特征,并且两者之间沿洛南-栾川断裂存在Pb同位素急变带的结果(朱炳泉, 1993; 朱炳泉和常向阳, 2001)相吻合,表明宽坪杂岩北侧的洛南-栾川断裂是北秦岭构造带与华北板块南缘的构造分界。

本文获得的洛南红土岭含石榴子石石英片岩顺时针等温降压P-T轨迹和峰期温压条件(T=557~563℃、P=7.17~7.92kbar)与Liu et al. (2011)在桐柏宽坪杂岩中角闪岩中获得的变质P-T轨迹和峰期温压条件基本一致,共同指示宽坪杂岩经历了与大陆碰撞有关的造山作用过程。宽坪杂岩斜长角闪岩434±2Ma的角闪石40Ar/39Ar年龄(Zhai et al., 1998)和442±6Ma的SHRIMP锆石变质年龄(Liu et al., 2011),以及Dong et al.(2018)最新给出的北秦岭构造带~430Ma的开始冷却抬升年龄,皆表明北秦岭构造带与华北板块的碰撞作用发生在~440Ma的早志留世。

5 结论

(1) 宽坪变碎屑岩经历了顺时针等温降压的P-T演化轨迹,峰期变质条件为T=557~563℃、P=7.17~7.92kbar,记录了早志留世(~440Ma)北秦岭构造带与华北板块碰撞聚合作用;

(2) 宽坪碎屑岩的沉积时代为550~440Ma的早古生代,与二郎坪碎屑岩具有相似的碎屑锆石年龄谱特征,两者可能形成于同一沉积盆地;

(3) 宽坪碎屑岩的碎屑沉积物主要来自于北秦岭、南秦岭和扬子北缘,缺少华北板块碎屑物质,表明在早志留世(~440Ma)之前,北秦岭构造带与华北板块不存在亲缘性。

致谢      感谢西北大学大陆动力学实验室的柳小明和杨文强老师在锆石定年和电子探针分析方面的帮助;感谢两位评审专家对本文提出的宝贵修改意见。

参考文献
Adams CJ, Campbell HJ and Griffin WL. 2007. Provenance comparisons of Permian to Jurassic tectonostratigraphic terranes in New Zealand: Perspectives from detrital zircon age patterns. Geological Magazine, 144(4): 701-729 DOI:10.1017/S0016756807003469
Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216(3-4): 249-270 DOI:10.1016/j.chemgeo.2004.11.013
Ao WH, Zhang YK, Zhang RY, Zhang Y and Sun Y. 2014. Neoproterozoic crustal accretion of the northern margin of Yangtze Plate: Constrains from geochemical characteristics, LA-ICP-MS Zircon U-Pb chronology and Hf isotopic compositions of trondhjemite from Zushidian area, Hannan Region. Geological Review, 6: 1393-1408 (in Chinese with English abstract)
Bao ZW, Wang Q, Zi F, Tang GJ, Du FJ and Bai GD. 2009. Geochemical of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of North China Craton: Petrogenesis and tectonic implications. Geochimica, 38(6): 509-522 (in Chinese with English abstract)
Benisek A, Dachs E and Kroll H. 2010. A ternary feldspar-mixing model based on calorimetric data: Development and application. Contributions to Mineralogy and Petrology, 160(3): 327-337 DOI:10.1007/s00410-009-0480-8
Brown M. 1993. P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society, 150(2): 227-241 DOI:10.1144/gsjgs.150.2.0227
Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5(4): 553-569 DOI:10.1016/j.gsf.2014.02.005
Brown M and Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103(2): 181-196 DOI:10.2138/am-2018-6166
Cai ZY, Xiong XL, Luo H, Wu DK, Sun SC, Rao BL and Wang SQ. 2007. Forming age of the volcanic rocks of the Yaolinghe Group from Wudang Block, Southern Qinling Mountain: Constraint from grain-zircon U-Pb dating. Acta Geologica Sinica, 81(5): 620-625 (in Chinese with English abstract)
Cao HH, Li SZ, Zhao SJ, Yu S, Li XY and Somerville ID. 2016. Detrital zircon geochronology of Neoproterozoic to Early Paleozoic sedimentary rocks in the North Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean. Precambrian Research, 279: 1-16 DOI:10.1016/j.precamres.2016.04.001
Cawood PA, Nemchin AA, Freeman M and Sircombe K. 2003. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210(1-2): 259-268 DOI:10.1016/S0012-821X(03)00122-5
Cawood PA, Hawkesworth CJ and Dhuime B. 2012. Detrital zircon record and tectonic setting. Geology, 40(10): 875-878 DOI:10.1130/G32945.1
Chen DL, Ren YF, Gong XK, Liu L and Gao S. 2015. Identification and its geological significance of eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841-1854 (in Chinese with English abstract)
Chen ZH, Lu SN, Li HK, Song B, Li HM and Xiang ZQ. 2004. The age of the Dehe biotite monzogranite gneiss in the North Qinling: TIMS and SHRIMP U-Pb zircon dating. Geological Bulletin of China, 23(2): 136-141 (in Chinese with English abstract)
Coggon R and Holland TJB. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology, 20(7): 683-696 DOI:10.1046/j.1525-1314.2002.00395.x
Diwu CR, Sun Y, Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557-2571 DOI:10.1007/s11434-010-3273-6
Diwu CR, Sun Y, Liu L, Zhang CL and Wang HL. 2010. The disintegration of Kuanping Group in North Qinling Orogenic Belt and Neo-proterozoic N-MORB. Acta Petrologica Sinica, 26(7): 2025-2038 (in Chinese with English abstract)
Diwu CR, Sun Y, Zhang H, Wang Q, Guo AL and Fan LG. 2012. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: constraints from detrital zircon U-Pb ages. Journal of Asian Earth Sciences, 47: 107-122 DOI:10.1016/j.jseaes.2011.07.012
Diwu CR, Sun Y, Zhao Y, Liu BX and Lai SC. 2014. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China: Implications for the evolutionary history of the North Qinling Orogenic Belt. Geoscience Frontiers, 5(4): 499-513 DOI:10.1016/j.gsf.2014.04.001
Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011a. Tectonic evolution of the Qinling orogeny, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237 DOI:10.1016/j.jseaes.2011.03.002
Dong YP, Zhang GW, Hauzenberger C, Neubauer F, Yang Z and Liu XM. 2011b. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122(1-2): 39-56 DOI:10.1016/j.lithos.2010.11.011
Dong YP, Liu XM, Santosh M, Zhang XN, Chen Q, Yang C and Yang Z. 2011c. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif. Precambrian Research, 189(1): 66-90
Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF and Zhang ZW. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274 DOI:10.1016/j.precamres.2011.12.007
Dong YP, Yang Z, Liu XM, Zhang XN, He DF, Li W, Zhang FF, Sun SS, Zhang HF and Zhang GW. 2014. Neoproterozoic amalgamation of the Northern Qinling Terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255(1): 77-95
Dong YP and Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40 DOI:10.1016/j.gr.2015.06.009
Dong YP, Neubauer F, Genser J, Sun SS, Yang Z, Zhang FF, Cheng B, Liu XM and Zhang ZW. 2018. Timing of orogenic exhumation processes of the Qinling Orogen: Evidence from 40Ar/39Ar dating. Tectonics, 37(10): 4037-4067 DOI:10.1029/2017TC004765
Dong ZC. 2009. The tectonic characteristics and geological formation of the North Qinling tectonic belt in Feng-Liangdang County region. Master Degree Thesis. Xi'an: Northwest University (in Chinese with English summary)
England PC and Thompson AB. 1984. Pressure-temperature-time paths of regional metamorphism Ⅰ. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894-928 DOI:10.1093/petrology/25.4.894
Gao S, Zhang BR, Wang DP, Ouyang JP and Xie QL. 1996. Geochemical evidence for the Proterozoic tectonic evolution of the Qinling Orogenic Belt and its adjacent margins of the North China and Yangtze cratons. Precambrian Research, 80(1-2): 23-48 DOI:10.1016/0301-9268(95)00100-X
Gao S, Chen DL, Gong XK, Ren YF and Li HP. 2015. Zircon U-Pb dating of clastic rocks and granites of Kuanping Group in Dongcha area of Tianshui, and its geological implications. Earth Science Frontiers, 22(4): 255-264 (in Chinese with English abstract)
Gong XK, Chen DL, Ren YF, Liu L, Gao S and Yang SJ. 2016. Identification of coesite-bearing amphibolite in the North Qinling and its geological significance. Chinese Science Bulletin, 61(12): 1365-1378 (in Chinese) DOI:10.1360/N972015-01277
Gong XK. 2017. Metamorphism, composition and forming age of the Qinling Group in Danfeng area. Ph. D. Dissertation. Xi'an: Northwest University (in Chinese with English summary)
Hacker BR, Ratschbacher L and Liou JG. 2004. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. In: Malpas J, Fletcher CJN, Ral JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. London: The Geological Society, 157-175
He YH, Zhao GC, Sun M and Xia XP. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168(3): 213-222
Holland TJB and Powell R. 1998. An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343
Hu J, Liu XC, Chen LY, Qu W, Li HK and Geng JZ. 2013. A~2.5Ga magmatic event at the northern margin of the Yangtze Craton: Evidence from U/Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen. Chinese Science Bulletin, 58(28): 3564-3579
Huang XL, Wilde SA and Zhong JW. 2013. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary. Precambrian Research, 233: 337-357 DOI:10.1016/j.precamres.2013.05.016
Jiang N, Gao JH and Zhai MG. 2011. Nature and origin of the Wenquan granite: Implication for the provenance of Proterozoic A-type granite in the North China Craton. Journal of Asian Earth Sciences, 42(1-2): 76-82 DOI:10.1016/j.jseaes.2011.04.010
Jiao WF, Wu YB, Peng M, Wang J and Yang SH. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China (Series D), 52(9): 1393-1399 DOI:10.1007/s11430-009-0135-7
Lei M. 2010. Petrogenesis of granites and their relation to tectonic evolution of orogen in the eastern part of Qinling orogenic belt. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
Li HK, Lu SN, Chen ZH, Xiang ZQ, Zhou HY and Hao GJ. 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geological Bulletin of China, 22(10): 775-781 (in Chinese with English abstract)
Li HK, Zhang CL, Xiang ZQ, Lu SN, Zhang J, Geng JZ, Qu LS and Wang ZX. 2013. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its significance. Acta Petrologica Sinica, 29(2): 673-697 (in Chinese with English abstract)
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Li T. 2010. The Study of Neoproterozoic tectonic-magmatic events in the northern margin of the Yangtze Continent. Master Degree Thesis. Xi'an: Chang'an University (in Chinese with English summary)
Li XH, Li WX and He B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 329-338 (in Chinese with English abstract)
Liao XY, Liu L, Wang YW, Cao YT, Chen DL and Dong YP. 2016. Multi-stage metamorphic evolution of retrograde eclogite with a granulite-facies overprint in the Zhaigen area of the North Qinling Belt, China. Gondwana Research, 30: 79-96 DOI:10.1016/j.gr.2015.09.012
Lin DC, Wang SY and Du JS. 1990. The Kuanping Group and its boundary in Henan Province. In: Liu GH and Zhang SG (eds.). Papers on Qingling-Dabashan Geology (Part 1): Metamorphic Geology. Beijing: Science and Technology Press, 40-46 (in Chinese)
Lin WL, Wang XH and Cheng JP. 2001. Geochemical features and its tectonic implication of the Jinningian Wangjiangshan gabbros in the northern margin of Yangtze Block. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 218-221 (in Chinese with English abstract)
Lin WL, Gao S, Cheng JP, Jiang LS, Yuan HL and Hu ZC. 2006. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes. Acta Petrologica Sinica, 22(2): 387-396 (in Chinese with English abstract)
Ling WL, Ren BF, Duan RC, Liu XM, Mao XW, Peng LH, Liu ZX, Cheng JP and Yang HM. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 53(14): 2192-2199
Ling WL, Duan RC, Liu XM, Cheng JP, Mao XW, Peng LH, Liu ZX, Yang HM and Ren BF. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin, 55(22): 2440-2448 DOI:10.1007/s11434-010-3095-6
Liu BX. 2014. Magmatism and crustal evolution in the eastern North Qinling Terrain. Ph. D. Dissertation. Hefei: University of Science and Technology of China (in Chinese with English summary)
Liu GH, Zhang SG and You ZD. 1993. Major Metamorphic-rocks Groups and Their Metamorphic Evolution in Qinling Belt. Beijing: Geological Publishing Press, 1-190 (in Chinese)
Liu HB, Pei XZ, Ding SP, Li ZC and Sun RQ. 2006. LA-ICP-MS zircon U-Pb dating of the Neoproterozoic granitic gneisses in the Yuanlong area, Tianshui City, West Qinling, China, and their geological significance. Geological bulletin of China, 25(11): 1315-1320 (in Chinese with English abstract)
Liu L, Chen DL, Sun Y, Zhang AD and Luo JH. 2003. Discovery of relic majoritic garnet in felsic metamorphic rocks of Qinling complex, North Qinling orogenic belt, China. In: Eide EA (ed.). Alice Wain Memorial Western Norway Eclogite Field Symposium. Selje: Western Norway, 82
Liu L, Liao X Y, Wang YW, Wang C, Santosh M, Yang M, Zhang CL and Chen DL. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Science Reviews, 159: 58-81 DOI:10.1016/j.earscirev.2016.05.005
Liu WR, Wang RS and Che ZC. 1989. The Erlangping Group in eastern Qinling. Journal of Northwest University, 19(Suppl.): 1-85 (in Chinese)
Liu XC, Jahn BM, Hu J, Li SZ, Liu X and Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium- to-high grade rocks from the Tongbai orogen, central China: Implications for multiple accretion/collision processes prior to terminal continental collision. Journal of Metamorphic Geology, 29(9): 979-1002 DOI:10.1111/j.1525-1314.2011.00952.x
Liu XC, Jahn BM, Li SZ and Liu YS. 2013. U-Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary system in the Tongbai orogeny, central China. Tectonophysics, 599: 67-88 DOI:10.1016/j.tecto.2013.04.003
Liu XM, Gao S, Diwu CR and Ling WL. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. American Journal of Science, 308(4): 421-468 DOI:10.2475/04.2008.02
Lu SN, Li HK and Chen ZH. 2003a. Meso-proterozoic to Neo-proterozoic Geological Evolution and Its Response to the Rodinia Supercontinent Event in the Qinling Belt. Beijing: Geological Publishing House, 118-124 (in Chinese)
Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY and Chen ZH. 2003b. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762-768 (in Chinese with English abstract)
Lu SN, Yu HF, Li HK, Chen ZH, Wang HC and Zhang CL. 2009. Precambrian Geology of the West and Middle Central China Orogen. Beijing: Geological Publishing House, 76-98 (in Chinese)
Ludwig KR. 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, Special Publication, 4-71
Mattauer M, Matte P, Malavieille J, Tapponnier P, Maluski H, Qin XZ, Lun LY and Qin TY. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317(6037): 496-500 DOI:10.1038/317496a0
Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4): 183-196 DOI:10.1016/S0040-1951(00)00106-2
Nie H, Yao J, Wan X, Zhu XY, Siebel W and Chen FK. 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: Evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167-179 DOI:10.1016/j.precamres.2016.10.005
Pearce MA, White AJR and Gazley MF. 2015. TCInvestigator: Automated calculation of mineral mode and composition contours for THERMOCALC pseudosections. Journal of Metamorphic Geology, 33(4): 413-425 DOI:10.1111/jmg.12126
Pei XZ, Ding SP, Zhang GW, Liu HB, Li ZC, Li WY, Liu ZQ and Meng Y. 2007. Zircons LA-ICP-MS U-Pb dating of Neoproterozoic granitoid gneisses in the north margin of West Qinling and geological implication. Acta Geologica Sinica, 81(6): 772-786 (in Chinese with English abstract)
Powell R, Holland T and Worley B. 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4): 577-588 DOI:10.1111/j.1525-1314.1998.00157.x
Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, Ireland T, Dong SW and Hu JM. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366(1-2): 1-53 DOI:10.1016/S0040-1951(03)00053-2
Ren JS. 1991. The basic characteristics of the tectonic evolution of the continental lithosphere in China. Regional Geology of China, (4): 289-293 (in Chinese with English abstract)
Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106 DOI:10.1016/j.precamres.2011.05.003
Shi Y, Yu JH, Xu XS, Qiu JS and Chen LH. 2009. Geochronology and geochemistry of the Qinling Group in the eastern Qinling orogen. Acta Petrologica Sinica, 25(10): 2651-2670 (in Chinese with English abstract)
Shi Y, Yu JH and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231: 19-60 DOI:10.1016/j.precamres.2013.03.001
Shi Y, Yu JH, Yang QJ, Liu XJ, Feng ZM and Zhu YH. 2014. Zircon U-Pb ages from the Taihua Group in Xiaoqinling area and crustal evolution of the southern North China Craton. Journal of Earth Sciences and Environment, 36(1): 218-229 (in Chinese with English abstract)
Spear FS. 1988. The Gibbs method and Duhem's theorem: The quantitative relationships among P, T, chemical potential, phase composition and reaction progress in igneous and metamorphic systems. Contributions to Mineralogy and Petrology, 99(2): 249-256 DOI:10.1007/BF00371465
Stüwe K and Powell R. 1995. P-T paths from modal proportions: Application to the Koralm Complex, Eastern Alps. Contributions to Mineralogy and Petrology, 119(1): 83-93 DOI:10.1007/BF00310719
Tajčmanová L, Connolly JAD and Cesare B. 2009. A thermodynamic model for titanium and ferric iron solution in biotite. Journal of Metamorphic Geology, 27(2): 153-165 DOI:10.1111/j.1525-1314.2009.00812.x
Tucker RT, Roberts EM, Hu Y, Kemp AIS and Salisbury. 2013. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas. Gondwana Research, 24(2): 767-779 DOI:10.1016/j.gr.2012.12.009
Vance D and Mahar E. 1998. Pressure-temperature paths from P-T pseudosections and zoned garnets: Potential, limitations and examples from the Zanskar Himalaya, NW India. Contributions to Mineralogy and Petrology, 132(3): 225-245 DOI:10.1007/s004100050419
Wan YS, Liu DY, Wang SY, Zhao X, Dong CY, Zhou HY, Yin XY, Yang CX and Gao LZ. 2009. Early Precambrian crustal evolution in the Dengfeng area, Henan Province (eastern China): Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract)
Wan YS, Liu DY, Dong CY and Yin XY. 2011. SHRIMP zircon dating of meta-sedimentary rock from the Qinling Group in the north of Xixia, North Qinling Orogenic Belt: Constraints on complex histories of source region and timing of deposition and metamorphism. Acta Petrologica Sinica, 27(4): 1172-1178 (in Chinese with English abstract)
Wang H, Wu YB, Gao S, Zheng JP, Liu Q, Liu XC, Qin ZW, Yang SH and Gong HJ. 2014. Deep subduction of continental crust in accretionary orogen: Evidence from U-Pb dating on diamond-bearing zircons from the Qinling orogen, central China. Lithos, 190-191: 420-429 DOI:10.1016/j.lithos.2013.12.021
Wang HL, Xu XY, Chen JL, Sun Y, Li WZ, Li P, Li T and Zhang H. 2009. Dating and geochemical characteristics of the Yanwan Paleozoic collisional intrusion in the western segment of Northern Qinling Mts. Acta Geologica Sinica, 83(3): 353-364 (in Chinese with English abstract)
Wang T, Wang XX, Tian W, Zhang CL, Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science in China (Series D), 52(9): 1359-138 DOI:10.1007/s11430-009-0129-5
Wang XL, Jiang SY, Dai BZ and Kern J. 2013a. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal, 48(5): 498-515 DOI:10.1002/gj.2464
Wang XX, Wang T and Zhang CL. 2013b. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151 DOI:10.1016/j.jseaes.2012.11.037
Wang XX, Wang T and Zhang CL. 2015. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Science China (Earth Sciences), 58(9): 1497-1512 DOI:10.1007/s11430-015-5150-2
Wang ZQ, Gao LD, Wang T and Jiang CF. 2008. Microfossils from the siltstones and muddy slates: Constraint on the age of Taowan Group in the Northern Qinling Orogenic Belt, Central China. Science in China (Series D), 51(2): 172-180 DOI:10.1007/s11430-007-0140-7
Wang ZQ, Yan Z, Wang T, Gao LD, Yan QR, Chen JL, Li QG, Jiang CF, Liu P, Zhang YL, Xie CL and Xiang ZJ. 2009. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt. Acta Geoscientica Sinica, 30(5): 561-570 (in Chinese with English abstract)
Wei CJ and Clarke GL. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. Journal of Metamorphic Geology, 29(9): 939-952 DOI:10.1111/j.1525-1314.2011.00948.x
Wei CJ. 2012. Advance of metamorphic petrology during the first decade of the 21st century. Bulletin of Mineralogy, Petrology and Geochemistry, 31(5): 415-427 (in Chinese with English abstract)
Wells PRA. 1980. Thermal models for the magmatic accretion and subsequent metamorphism of continental crust. Earth and Planetary Science Letters, 46(2): 253-265 DOI:10.1016/0012-821X(80)90011-4
White RW, Pomroy NE and Powell R. 2005. An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. Journal of Metamorphic Geology, 23(7): 579-602 DOI:10.1111/j.1525-1314.2005.00597.x
White RW, Powell R, Holland TJB, Johnson TE and Green ECR. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261-286 DOI:10.1111/jmg.12071
Wu YB and Zheng YF. 2004. The study on the zircon genesis mineralogy and its impacts on the interpretation of U-Pb age restriction. Chinese Science Bulletin, 49: 1589-1604 (in Chinese) DOI:10.1360/csb2004-49-16-1589
Wu YB and Zheng YF. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428 DOI:10.1016/j.gr.2012.09.007
Xia LQ, Xia ZC, Li XM, Ma ZP and Xu XY. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling mountains. Northwestern Geology, 41(3): 1-29 (in Chinese with English abstract)
Xiao SY, Zhang WJ and Song ZJ. 1998. North Qinling Metamorphic Strata. Xi'an: Xi'an Jiaotong University Press, 1-32 (in Chinese)
Xu JF, Zhang BR and Han YW. 1997. Discovery of high radiogenic Pb isotopic composition from Proterozoic mafic rocks in North Qinling area and its implication. Chinese Science Bulletin, 42: 51-54
Xu ZQ, Lu YL, Tang YQ and Zhang ZT. 1988. Formation of the Composition Eastern Qinling Chains. Beijing: China Environmental Science Press, 1-193 (in Chinese)
Xue F, Lerch MF, Kroner A and Reischmann T. 1996. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: A review and new tectonic model. Tectonophysics, 253(3-4): 271-284 DOI:10.1016/0040-1951(95)00060-7
Yang JS, Xu ZQ, Pei XZ, Shi RD, Wu CL, Zhang JX, Li HB, Meng FC and Rong H. 2002. Discovery of diamond in North Qinling: Evidence for a giant UHPM belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze plates. Acta Geologica Sinica, 76(4): 484-495 (in Chinese with English abstract)
Yang L, Chen FK, Yang YZ, Li SQ and Zhu XY. 2010. Zircon U-Pb ages of the Qinling Group in Danfeng area: Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling Terrain. Acta petrologica Sinica, 26(5): 1589-1603 (in Chinese with English abstract)
Yang M, Liu L, Wang YW, Liao XY, Kang L and Gai YS. 2016. Geochronology of detrital zircons from metaclastic of Erlangping complex in the North Qinling belt and its tectonic implication. Acta Petrologica Sinica, 32(5): 1452-1466 (in Chinese with English abstract)
Yang M. 2017. Detrital zircon U-Pb dating of metaclastic rocks from Erlangping, Kuangping and Taowan Group in the eastern Qinling area and its tectonic implication. Master Degree Thesis. Xi'an: Northwest University (in Chinese with English summary)
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhai XM, Day H, Hacker BR and You ZD. 1998. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, Central China. Geology, 26(4): 371-374 DOI:10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2
Zhang BR, Luo TC and Gao S. 1994. Geochemical Study of the Lithosphere, Tectonism and Metallogenesis in the Qinling-Dabashan Region. Wuhan: China University of Geosciences Press (in Chinese)
Zhang BR, Zhang HF, Zhao ZD and Ling WL. 1996. Geochemical subdivision and evolution of the lithosphere in East Qinling and adjacent regions: Implications for tectonics. Science in China (Series D), 39(3): 245-255
Zhang BR, Gao S, Zhang HF and Han YW. 2002. Geochemistry of the Qinling Orogenic Belt. Beijing: Science Press, 1-187 (in Chinese)
Zhang CL, Liu L, Zhang GW, Wang T, Chen DL, Yuan HL, Liu XM and Yan YX. 2004. Determination of Neoproterozoic post-collisional granites in the North Qinling Mountains and its tectonic significance. Earth Science Frontiers, 11(3): 33-42 (in Chinese with English abstract)
Zhang CL, Liu L, Wang T, Wang XX, Li L, Gong QF and Li XF. 2013. Granitic magmatism related to Early Paleozoic continental collision in North Qinling. Chinese Science Bulletin, 58(35): 4405-4410 DOI:10.1007/s11434-013-6064-z
Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-855 (in Chinese)
Zhang J, Zhang HF and Lu XX. 2013. Zircon U-Pb age and Lu-Hf isotope constrains on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton. Precambrian Research, 226: 1-20 DOI:10.1016/j.precamres.2012.11.015
Zhang Q, Zhang ZQ, Sun Y and Han S. 1995. Trace element and isotopic geochemistry of metabasalts from Danfeng Group (DFG) in Shangxian-Danfeng area, Shaanxi Province. Acta Petrologica Sinica, 11(1): 43-54 (in Chinese with English abstract)
Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151(3-4): 265-288 DOI:10.1016/j.precamres.2006.08.009
Zhang SG, Wan YS and Liu GH. 1991. Metamorphic Geology of the Kuanping Group in the Northern Qinling Mountain. Beijing: Beijing Science and Technology Press (in Chinese)
Zhang SG, Zhao ZR, Shen J and Wei CJ. 1996. Formation and metamorphic evolution of the Douling complex from the East Qinling Mountain. Science in China (Series D), (Suppl.1): 80-86
Zhang WJ and Li YJ. 1989. The sequences and the age of the Taowan Group. Journal of Xi'an College of Geology, 11(2): 1-10 (in Chinese)
Zhang X, Xu XY, Song GS, Wang HL, Chen JL and Li T. 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, western Qinling, China. Geological Bulletin of China, 29(4): 510-517 (in Chinese with English abstract)
Zhang ZQ, Liu DY and Fu GM. 1994. Isotopic Dating of Metamorphic Strata in the North Qinling Orogen. Beijing: Geological Publishing House, 1-161 (in Chinese)
Zhao FQ, Zhao WP, Zuo YC, Li ZH and Xue KQ. 2006. U-Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong, southern Shaanxi, China. Geological Bulletin of China, 25(3): 383-388 (in Chinese with English abstract)
Zhao J, Chen DL, Tan QH, Chen M, Zhu XH, Guo CL and Liu L. 2012. Zircon LA-ICP-MS U-Pb dating of basic volcanics from Erlangping Group of the North Qinling, eastern Qinling Mountains and its geological implications. Earth Science Frontiers, 19(4): 118-125 (in Chinese with English abstract)
Zhao JH and Zhou MF. 2008. Neoproterozoic adakitic plutons in the northern margin of the Yangtze Block, China: Partial melting of a thickened lower crust and implications for secular crustal evolution. Lithos, 104(1-4): 231-248 DOI:10.1016/j.lithos.2007.12.009
Zhao JH and Zhou MF. 2009a. Melting of newly formed mafic crust for the formation of Neoproterozoic Ⅰ-type granite in the Hannan Region, South China. The Journal of Geology, 117(1): 54-70 DOI:10.1086/593321
Zhao JH and Zhou MF. 2009b. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168 DOI:10.1016/j.lithos.2008.09.017
Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX and Wan YS. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502 DOI:10.1007/BF03183721
Zheng YF and Zhang SB. 2007. The formation and evolution of the Precambrian continental crust in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese) DOI:10.1007/s11434-007-0015-5
Zhou MF, Kennedy AK, Sun M, Malpas J and Lesher CM. 2002. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: Implications for the accretion of Rodinia. The Journal of Geology, 110(5): 611-618 DOI:10.1086/341762
Zhou YY, Zhao TP, Xue LW, Wang SY and Gao JF. 2009. Petrological, geochemical and chronological constraints for the origin and geological significance of Neoarchean TTG gneiss in the Songshan area, North China Craton. Acta Petrologica Sinica, 25(2): 331-347 (in Chinese with English abstract)
Zhu BQ. 1993. Tri-dimension special topological diagrams of ore lead isotopes and their application to the division of geochemical provinces and mineralizations. Geochimica, (3): 209-216 (in Chinese with English abstract)
Zhu BQ and Chang XY. 2001. Geochemical provinve and their boundaries. Advance Earth Sciences, 16(2): 153-162 (in Chinese with English abstract)
Zhu XY, Chen FK, Li SQ, Yang YZ, Nie H, Siebel W and Zhai MG. 2011. Crustal evolution of the North Qinling Terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition. Gondwana Research, 20(1): 194-204 DOI:10.1016/j.gr.2010.12.009
敖文昊, 张宇昆, 张瑞英, 赵燕, 孙勇. 2014. 新元古代扬子北缘地壳增生事件: 来自汉南祖师店奥长花岗岩地球化学、锆石LA-ICP-MS U-Pb年代学和Hf同位素证据. 地质论评, 60(6): 1393-1408.
包志伟, 王强, 资锋, 唐功建, 杜凤军, 白国典. 2009. 龙王[XC6童.tif; S-*8;Z0.2mm; Y0.2mm, JZ]A型花岗岩地球化学特征及其地球动力学意. 地球化学, 38(6): 509-522. DOI:10.3321/j.issn:0379-1726.2009.06.001
蔡志勇, 熊小林, 罗洪, 吴德宽, 孙三才, 饶帮良, 王寿琼. 2007. 武当地块耀岭河群火山岩的时代归属: 单锆石U-Pb年龄的制约. 地质学报, 81(5): 620-625. DOI:10.3321/j.issn:0001-5717.2007.05.005
陈丹玲, 任云飞, 宫相宽, 刘良, 高胜. 2015. 北秦岭松树沟榴辉岩的确定及其地质意义. 岩石学报, 31(7): 1841-1854.
陈志宏, 陆松年, 李怀坤, 宋彪, 李惠民, 相振群. 2004. 北秦岭德河黑云二长花岗片麻岩体的成岩时代: TIMS和SHRIMP锆石U-Pb同位素年代学. 地质通报, 23(2): 136-141. DOI:10.3969/j.issn.1671-2552.2004.02.006
第五春荣, 孙勇, 刘良, 张成立, 王洪亮. 2010. 北秦岭宽坪岩群的解体及新元古代N-MORB. 岩石学报, 26(7): 2025-2038.
董增产. 2009. 凤县-两党地区北秦岭构造带地质组成及构造特征. 硕士学位论文. 西安: 西北大学
高胜, 陈丹玲, 宫相宽, 任云飞, 李海平. 2015. 天水东岔地区宽坪岩群碎屑岩和花岗岩中的锆石U-Pb定年及其地质意义. 地学前缘, 22(4): 255-264.
宫相宽, 陈丹玲, 任云飞, 刘良, 高胜, 杨士杰. 2016. 北秦岭含柯石英斜长角闪岩的发现及其地质意义. 科学通报, 61(12): 1365-1378.
宫相宽. 2017. 丹凤地区秦岭岩群物质组成、形成时代及变质作用研究. 博士学位论文. 西安: 西北大学
胡娟, 刘晓春, 陈龙耀, 曲玮, 李怀坤, 耿建珍. 2013. 扬子克拉通北缘约2.5Ga岩浆事件: 来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据. 科学通报, 58(34): 3579-3588.
焦文放, 吴元保, 彭敏, 汪晶, 杨赛红. 2009. 扬子板块最古老岩石的锆石U-Pb年龄和Hf同位素组成. 中国科学(D辑), 39(7): 972-978.
雷敏. 2010. 秦岭造山带东部花岗岩成因及其与造山带构造演化的关系. 西安: 博士学位论文. 北京: 中国地质科学院
李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775-781. DOI:10.3969/j.issn.1671-2552.2003.10.005
李怀坤, 张传林, 相振群, 陆松年, 张健, 耿建珍, 翟乐生, 王志先. 2013. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义. 岩石学报, 29(2): 693-697.
李婷. 2010. 扬子陆块北缘碑坝-西乡地区新元古代构造-岩浆作用研究. 硕士学位论文. 西安: 长安大学
李献华, 李武显, 何斌. 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解: 观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. DOI:10.3969/j.issn.1007-2802.2012.06.002
林德超, 王世炎, 杜建山. 1990. 河南省宽坪群及其边界特征. 见: 刘国惠, 张寿广主编. 秦岭-大巴山地质论文集(变质地质). 北京: 科学技术出版社, 40-46
凌文黎, 王歆华, 程建萍. 2001. 扬子北缘晋宁期望江山基性岩体的地球化学特征及其构造背景. 矿物岩石地球化学通报, 20(4): 218-221. DOI:10.3969/j.issn.1007-2802.2001.04.003
凌文黎, 高山, 程建萍, 江麟生, 袁洪林, 胡兆初. 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义: 来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387-396.
凌文黎, 任邦方, 段瑞春, 柳小明, 毛新武, 彭练红, 刘早学, 程建萍, 杨红梅. 2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445-1456. DOI:10.3321/j.issn:0023-074X.2007.12.015
刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化. 博士学位论文. 合肥: 中国科学技术大学
刘国惠, 张寿广, 游振东. 1993. 秦岭造山带主要变质岩群及变质演化. 北京: 地质出版社, 1-190.
刘会彬, 裴先治, 丁仨平, 李佐臣, 孙仁奇. 2006. 西秦岭天水市元龙地区新元古代花岗质片麻岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 25(11): 1315-1320. DOI:10.3969/j.issn.1671-2552.2006.11.011
刘文荣, 王润三, 车自成. 1989. 东秦岭二郎坪群. 西北大学学报, 19(增): 1-85.
陆松年, 李怀坤, 陈志宏. 2003a. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社, 118-124.
陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003b. 华北克拉通南缘龙王?碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762-768.
陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林. 2009. 中央造山带(中-西部)前寒武纪地质. 北京: 地质出版社, 1-203.
裴先治, 丁仨平, 张国伟, 刘会彬, 李佐臣, 李王晔, 刘战庆, 孟勇. 2007. 西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质学报, 81(6): 772-786.
任纪舜. 1991. 论中国大陆岩石圈构造的基本特征. 中国区域地质, (4): 289-293.
时毓, 于津海, 徐夕生, 邱捡生, 陈立辉. 2009. 秦岭造山带东段秦岭岩群的年代学和地球化学研究. 岩石学报, 25(10): 2651-2670.
时毓, 于津海, 杨启军, 刘希军, 冯佐海, 朱昱桦. 2014. 小秦岭地区太华群锆石U-Pb年龄及华北克拉通南缘地壳演化. 地球科学与环境学报, 36(1): 218-229.
万渝生, 刘敦一, 王世炎, 赵逊, 董春艳, 周红英, 殷小艳, 杨长秀, 高林志. 2009. 登封地区早前寒武纪地壳演化—地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982-999. DOI:10.3321/j.issn:0001-5717.2009.07.007
万渝生, 刘敦一, 董春艳, 殷小艳. 2011. 西峡北部秦岭岩群变质沉积岩锆石SHRIMP定年: 物源区复杂演化历史和沉积、变质时代确定. 岩石学报, 27(4): 1172-1178.
王洪亮, 徐学义, 陈隽璐, 孙勇, 李万忠, 李平, 李婷, 张红. 2009. 北秦岭西段岩湾加里东期碰撞型侵入体形成时代及地球化学特征. 地质学报, 83(3): 353-364.
王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示. 中国科学(D辑), 39(7): 949-971.
王晓霞, 王涛, 张成立. 2015. 秦岭造山带花岗质岩浆作用与造山带演化. 中国科学(地球科学), 45(8): 1109-1125.
王宗起, 高联达, 王涛, 姜春发. 2007. 北秦岭陶湾群新发现的微体化石及其对地层时代的限定. 中国科学(D辑), 37(11): 1467-1473.
王宗起, 闫臻, 王涛, 高联达, 闫全人, 陈隽璐, 李秋根, 姜春发, 刘平, 张英利, 谢春林, 向忠金. 2009. 秦岭造山带主要疑难地层时代研究的新进展. 地球学报, 30(5): 561-570. DOI:10.3321/j.issn:1006-3021.2009.05.001
魏春景. 2012. 21世纪最初十年变质岩石学研究进展. 矿物岩石地球化学通报, 31(5): 415-427. DOI:10.3969/j.issn.1007-2802.2012.05.001
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
夏林圻, 夏祖春, 李向民, 马中平, 徐学义. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1-29. DOI:10.3969/j.issn.1009-6248.2008.03.001
肖思云, 张维吉, 宋子季. 1988. 北秦岭变质地层. 西安: 西安交通大学出版社, 1-32.
许志琴, 卢一伦, 汤耀庆, 张治洮. 1988. 东秦岭复合山链的形成-变形、演化及板块动力学. 北京: 中国环境科学出版社, 1-193.
杨经绥, 许志琴, 裴先治, 史仁灯, 吴才来, 张建新, 李海兵, 孟繁聪, 戎合. 2002. 秦岭发现金刚石: 横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别. 地质学报, 76(4): 484-495. DOI:10.3321/j.issn:0001-5717.2002.04.007
杨力, 陈福坤, 杨一增, 李双庆, 祝禧艳. 2010. 丹凤地区秦岭岩群片麻岩锆石U-Pb年龄: 北秦岭地体中-新元古代岩浆作用和早古生代变质作用的记录. 岩石学报, 26(5): 1589-1603.
杨敏, 刘良, 王亚伟, 廖小莹, 康磊, 盖永升. 2016. 北秦岭二郎坪杂岩变沉积岩碎屑锆石年代学及其构造地质意义. 岩石学报, 32(5): 1452-1466.
杨敏. 2017. 东秦岭地区二郎坪、宽坪及陶湾岩群变沉积岩碎屑锆石年代学研究及其地质意义. 硕士学位论文. 西安: 西北大学
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
张本仁, 骆庭川, 高山. 1994. 秦巴岩石圈构造及成矿规律地球化学研究. 武汉: 中国地质大学出版社.
张本仁, 张宏飞, 赵志丹, 凌文黎. 1996. 东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义. 中国科学(D辑), 26(3): 201-208.
张本仁, 高山, 张宏飞, 韩吟文. 2002. 秦岭造山带地球化学. 北京: 科学出版社, 1-187.
张成立, 刘良, 张国伟, 王涛, 陈丹玲, 袁洪林, 柳小明, 晏云翔. 2004. 北秦岭新元古代后碰撞花岗岩的确定及其构造意义. 地学前缘, 11(3): 33-42. DOI:10.3321/j.issn:1005-2321.2004.03.005
张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用. 科学通报, 58(23): 2323-2329.
张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-855.
张旗, 张宗清, 孙勇, 韩松. 1995. 陕西商县-丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学. 岩石学报, 11(1): 43-54. DOI:10.3321/j.issn:1000-0569.1995.01.005
张寿广, 万渝生, 刘国惠. 1991. 北秦岭宽坪群变质地质. 北京: 北京科学技术出版社.
张寿广, 赵子然, 沈洁, 魏春景. 1996. 东秦岭陡岭杂岩的形成与变质演化. 中国科学(D辑), 26(增1): 73-77.
张维吉, 李育敬. 1989. 陶湾群层序及时代研究. 西安地质学院学报, 11(2): 1-10.
张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及其地质意义. 地质通报, 4: 510-517. DOI:10.3969/j.issn.1671-2552.2010.04.004
张宗清, 刘敦一, 付国民. 1994. 北秦岭变质地层同位素年代研究. 北京: 地质出版社, 1-161.
赵凤清, 赵文平, 左义成, 李宗会, 薛克勤. 2006. 陕南汉中地区新元古代岩浆岩U-Pb年代学. 地质通报, 25(3): 383-388. DOI:10.3969/j.issn.1671-2552.2006.03.007
赵姣, 陈丹玲, 谭清海, 陈淼, 朱小辉, 郭彩莲, 刘良. 2012. 北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义. 地学前缘, 19(4): 118-125.
赵太平, 翟明国, 夏斌, 李惠民, 张毅星, 万渝生. 2004. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(23): 2342-2349.
郑永飞, 张少兵. 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10. DOI:10.3321/j.issn:0023-074X.2007.01.001
周艳艳, 赵太平, 薛良伟, 王世炎, 高剑锋. 2009. 河南嵩山地区新太古代TTG质片麻岩的成因及其地质意义: 来自岩石学、地球化学及同位素年代学的制约. 岩石学报, 25(2): 331-347.
朱炳泉. 1993. 矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划. 地球化学, (3): 209-216. DOI:10.3321/j.issn:0379-1726.1993.03.001
朱炳泉, 常向阳. 2001. 地球化学省与地球化学边界. 地球科学进展, 16(2): 153-162. DOI:10.3321/j.issn:1001-8166.2001.02.003