岩石学报  2021, Vol. 37 Issue (5): 1405-1418, doi: 10.18654/1000-0569/2021.05.05   PDF    
赣南横市辉长岩的成因及其地质意义: 年代学、地球化学和Sr-Nd-Pb-Hf同位素证据
贾小辉1,2, 王晓地1,2, 杨文强1, 周岱1,2     
1. 中国地质调查局武汉地质地质调查中心, 武汉 430223;
2. 中国地质调查局花岗岩成岩成矿地质研究中心, 武汉 430223
摘要: 华南早古生代基性岩浆岩出露少而小,对其岩石成因的研究仍存在较大争议,较大地制约了对华南早古生代造山作用的深入理解。横市辉长岩位于赣南地区,有数个小的侵入体组成,SHRIMP锆石U-Pb定年结果显示其形成时代为423.3±4.9Ma。辉长岩具有均一的硅含量(SiO2=49.14%~52.05%),相对高的镁含量(MgO=7.16%~9.43%)和Mg#值(60.7~67.3)。稀土总量(∑REE)为80.6×10-6~131.5×10-6,无-弱的铕正异常(δEu=0.97~1.21)。Sr-Nd-Pb-Hf同位素组成为:ISr=0.7048~0.7060,εNd(423Ma)=-3.11~-1.97;(206Pb/204Pb)i=17.73~18.03,(207Pb/204Pb)i=15.57~15.59,(208Pb/204Pb)i=37.80~38.19;εHft)=-3.71~+1.55。元素及同位素组成表明,横市辉长岩可能源自类似于EMⅠ和EMⅡ混合的富集地幔源区的部分熔融。大规模的岩石圈拆沉作用可能是形成华南早古生代基性岩石的动力学机制。
关键词: 华南    早古生代    基性岩    地球化学特征    岩石圈拆沉    
Petrogenesis and implications of the Hengshi gabbros in south Jiangxi Province: Evidence from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes
JIA XiaoHui1,2, WANG XiaoDi1,2, YANG WenQiang1, ZHOU Dai1,2     
1. China Geological Survey, Wuhan Center of Geological Survey, Wuhan 430223, China;
2. Research Center for Petrogenesis and Mineralization of Granitoid Rocks, Wuhan Center of Geological Survey, Wuhan 430223, China
Abstract: The outcrop area of Early Paleozoic basic rocks and the individual plutons were very small, and the research on them was relatively weak, especially on their petrogenesis, which restricted the deep understanding of Early Paleozoic orogeny in South China. The Hengshi gabbros were located in southern Jiangxi Province. SHRIMP U-Pb dating from gabbros showed that they were formed at 423.3±4.9Ma. Gabbros had uniform silicon contents (SiO2=49.14%~52.05%), high magnesium contents (MgO=7.16%~9.43%) and Mg# value (60.7~67.3). The ∑REE values were 80.6×10-6~131.5×10-6, with no-weak positive anomaly of Eu (δEu=0.97~1.21). The Sr-Nd-Pb-Hf isotopic compositions of gabbros were ISr=0.7048~0.7060, εNd(423Ma)=-3.11~-1.97; (206Pb/204Pb)i=17.73~18.03, (207Pb/204Pb)i=15.57~15.59, (208Pb/204Pb)i=37.80~38.19; εHf(t)=-3.71~+1.55. The elemental and isotopic compositions suggested that the Hengshi gabbros originated from partial melting of a rich mantle source similar to the mixture of EMⅠ and EMⅡ. Large-scale lithospheric delamination was a potential the dynamic mechanism for the formation of the Early Paleozoic basic rocks in South China.
Key words: South China    Early Paleozoic    Basic rock    Geochemical characteristics    Lithospheric delamination    

华南地区早古生代的构造背景是地质界研究的热点之一,一直以来存在两种主要的观点:洋陆俯冲作用和陆内造山作用(Charvet et al., 2010; Li et al., 2010; Zhang et al., 2015; Wang et al., 2013),争论的焦点在于华南是否存在早古生代洋壳。有的学者认为华南早古生代存在洋壳俯冲-碰撞的造山体系,俯冲消减带位于华夏板块和扬子板块之间(彭松柏等, 2016a, b; Liu et al., 2018)或南海与华南之间的政和-大埔断裂带(Zhang et al., 2015);而有的学者则认为华南早古生代不存在与洋壳相关的残余洋壳、蛇绿岩带及岛弧火山岩等,属于典型的板内造山作用(Li et al., 2010; Wang et al., 2010, 2018)。古生物地层学的研究结果表明,华南早古生代造山运动可能存在“由南向北”的推进过程,生物相和岩相的转变时间暗示造山运动始于奥陶纪晚期(~460Ma),推进至扬子板块南缘(Chen et al., 2012),结束于早石炭世(~390Ma)(Wang et al., 2011)。由于早古生代基性岩石的相对稀少,同时期广泛发育的花岗岩已得到深入的研究,如,花岗岩的时空分布、岩石成因类型及包含物源、热源等岩石成因的研究等,尤其是一些特殊岩石类型,如一些A型花岗岩的厘定(Feng et al., 2014),为区域构造背景的探讨提供了一定佐证。然而,总体上花岗岩并不能对构造背景及其演化提供有效地制约(吴福元等, 2007),相对而言,基性岩可以提供更多的有效证据。

近年来,华南地区早古生代基性岩受到了广泛的关注(图 1表 1)。由于基性岩体出露数量少,且单个岩体出露面积小,对其研究仍然较为匮乏(图 1)。目前,对于这些基性岩石及其构造背景研究的争议焦点在于:(1)是否存在洋-陆俯冲作用?如是否存在残余洋壳物质、弧岩浆岩等;(2)造山作用的过程中,由造山挤压向后造山伸展的转换时限问题。如,Wang et al. (2013)统计花岗岩年龄值及变质作用时限认为~430Ma是岩浆作用的峰期,代表了造山垮塌的时间;Yao et al. (2012)认为~435Ma发生了造山垮塌和岩石圈拆沉;Zhong et al. (2013)则认为造山地壳增厚时间为425~460Ma,随后的造山垮塌时间为400~425Ma;Jia et al. (2017)Zhang et al. (2015)则认为由造山挤压向后造山伸展的转换时间应为~445Ma;(3)早古生代岩石圈地幔性质如何?是富集型地幔(Wang et al., 2013; Zhang et al., 2015)?亏损型地幔(Zhao et al., 2015)?还是适度亏损型地幔(Xu et al., 2017)。

图 1 华南地区早古生代基性岩分布图(据Yao et al., 2012) 早古生代基性岩同表 1:1-益将;2-石雷;3-扶溪;4-思泰;5-池垌;6-龙虎岗;7-竹雅;8-石板;9-洞尾;10-糯垌;11-大爽;12-桃源;13-大康;14-茶园山;15-永和;16-石马;17-四都;18-新川;19-虎尾;20-塘上;21-弹前;22-横市;23-大宁;24-陈蔡;25-龙游;26-陈蔡;27-武功山;28-梅子青;29-坝头村 Fig. 1 Distribution map of Early Paleozoic basic rocks in South China (after Yao et al., 2012) The Early Paleozoic basic rocks are the same as Table 1

表 1 华南地区早古生代基性岩一览表 Table 1 The table of Early Paleozoic basic rocks in South China

华南早古生代基性岩石发育偏少,大部分岩石偏中性,如,赣南石雷、益将、虎尾闪长岩,具有相对高的SiO2含量和低的Mg#,不能反映其地幔源区的初始组成。本文研究的横市基性侵入岩位于江西南部,为典型的早古生代基性岩,通过对该侵入体的岩石学、元素及Sr-Nd-Pb-Hf同位素的研究,并结合前人研究成果,探讨华南早古生代基性岩石的地幔源区特征,并对区域构造背景提供进一步约束。

1 地质特征 1.1 地质概况

华南早古生代造山带北东向延绵可达2000km,造山运动大致范围东起政和-大埔断裂、西至安化-罗城断裂,包含了扬子地块东部和大部分华夏地块。研究区位于江西省南部,华夏地块中部,政和-大埔断裂带以西,武夷-云开造山带核部(Yao et al., 2012)(图 1)。区域上出露地层主要为新元古代沙坝黄组变质含砾石英粗砂岩、变质岩屑石英杂砂岩、粉砂质板岩和寒武纪牛角河组炭质板岩、硅质板岩、粉砂质板岩及变质砂岩,内部褶皱构造非常发育,表现为系列复式背斜、复式向斜等交替发育的特点(江西省地质调查研究院, 2017)。研究区花岗岩十分发育,主要出露奥陶纪花岗闪长岩和侏罗纪黑云母二长花岗岩等(图 2)。

① 江西省地质调查研究院. 2017. 江西1:5万遂川县幅、良口幅、横市井幅、夏府幅区域地质调查报告

图 2 横市地区地质简图(据江西省地质调查研究院,2017) Fig. 2 Geological sketch map of Hengshi area

横市基性侵入岩位于赣州市横市镇北东,由增坑、清江和张坑等3个小岩体组成,受控于北北东向断裂,呈小岩株或岩墙产出,侵入寒武纪牛角河组变质岩中(图 2)。出露面积约1.64km2,围岩角岩化明显(左祖发等, 2015)。本次研究所采集的辉长岩样品均为新鲜且相对弱蚀变岩石,锆石U-Pb同位素年龄测试样品的取样坐标为26°06′3.70″N、114°41′36.3″E。

1.2 岩石学、矿物学特征

横市基性侵入体的主要岩性为辉长岩,少量闪长岩,辉长结构。主要由斜长石(55%~60%)、辉石(20%~25%)、黑云母(5%~6%)、角闪石(10%~15%)和少量石英等组成。斜长石半自形柱状,发育聚片双晶,粒径0.5~5mm,An=45~55,为中-拉长石,轻微绢云母化、碳酸盐化(图 3a, b);辉石呈半自形柱状-他形粒状,粒径0.2~5mm,主要为斜方辉石,多数已变质为显微状的纤闪石、呈交代假象(图 3b),另含少量单斜辉石;角闪石呈半自形柱状,粒径0.5~5mm,绿泥石化(图 3c, d);黑云母呈自形片状,粒径0.5~2mm,具不同程度绿泥石化;石英呈他形粒状,粒径 < 0.2mm,充填于斜长石、角闪石等大颗粒矿物间。副矿物为磁铁矿、榍石、磷灰石。蚀变矿物为绢云母、纤闪石、方解石等。

图 3 横市辉长岩岩相学特征 (a、c)单偏光下;(b、d)正交偏光下.Px-辉石;Hbl-普通角闪石;Pl-斜长石;Bt-黑云母;Qtz-石英 Fig. 3 Petrographical characteristics of the Hengshi gabbros (a, c) under plane-polarized light; (b, d) under cross-polarized light. Px-pyroxene; Hbl-hornblende; Pl-plagioclase; Bt-biotite; Qtz-quartz
2 测试方法

锆石阴极发光(CL)及透射光、反射光图像的摄制在武汉上谱分析科技有限责任公司实验室完成。SHRIMP锆石U-Pb同位素测年在北京离子探针中心SHRIMP-Ⅱ上完成。锆石样品靶制作、测试流程和数据处理见文献(Black et al., 2003; 刘敦一等, 2003)。原始数据和同位素年龄采用Squid和Isoplot程序进行处理和计算(Ludwig, 2001)。

主量元素、微量元素和全岩Sr-Nd-Pb同位素分析在中国地质调查局武汉地质调查中心中南检测中心完成。主量元素和微量元素分析方法及详细的分析流程见文献(Qu et al., 2004)。全岩Sr-Nd-Pb同位素分析在Triton和MAT261热电离质谱仪上完成,Rb、Sr、Sm、Nd含量及Nd同位素比值、Sr同位素比值、Pb同位素的测定原理及流程见文献(王磊等, 2015)。

锆石Lu-Hf同位素分析在西北大学大陆动力学国家重点实验室Nepture型MC-ICPMS上完成,测定时采用标样91500进行同位素分馏校正,详细分析步骤及流程见文献(Yuan et al., 2003)。采用Blichert-Toft and Albarède (1997)推荐的球粒陨石值进行εHf(t)值计算,176Hf/177Hf=0.282772,176Lu/177Hf比值为0.0332。亏损地幔模式年龄计算采用Griffin et al. (2000)的推荐值。

3 分析结果 3.1 锆石U-Pb年代学

辉长岩样品中锆石多呈板状,少量呈长柱状,具宽缓的或不明显的振荡环带,晶形多不完整,大小为50μm×120μm~100μm×200μm,无明显的核-边差异(图 4a)。选取10个分析点进行测试,锆石的Th/U比值为0.73~1.53(表 2),206Pb/238U表面年龄变化于410.3~434.0Ma,在U-Pb谐和图上均投影于U-Pb谐和线上及附近(图 4b),得出206Pb/238U年龄的加权平均值为423.3±4.9Ma(MSWD=1.5),代表了辉长岩的形成时代。

图 4 横市辉长岩锆石阴极发光图像(a)和U-Pb谐和图(b) Fig. 4 Zircon U-Pb CL images (a) and concordia diagram (b) of the Hengshi gabbro

表 2 横市辉长岩(样品HS2-1)SHRIMP锆石U-Pb同位素分析数据 Table 2 SHRIMP U-Pb isotope for zircons of the Hengshi gabbro (Sample HS2-1)
3.2 元素地球化学

横市辉长岩具有相对低且均一的硅含量(SiO2=49.14%~52.05%,HS2-4为58.51%),全碱含量(K2O+Na2O)为3.48%~5.65%(表 3),在侵入岩TAS图解上大部分样品投影于辉长岩图区(图 5a),K2O/Na2O值变化大(0.33~0.98)(图 5b, c)。样品的全铁含量FeOT(FeO+0.95×Fe2O3)=7.86%~9.90%,MgO=7.16%~9.43%,Mg#=60.7~67.3。Mg#与选定的主、微量元素相关关系不明显(图 5d-h)。

表 3 横市辉长岩主量元素(wt%)和微量元素(×10-6)含量分析结果表 Table 3 Major elements (wt%) and trace elements (×10-6) concentrations of the Hengshi gabbros

图 5 横市辉长岩TAS(a, 底图据Middlemost, 1994)、SiO2-K2O(b)、Na2O-K2O(c)(b、c, 底图据Peccerillo and Taylor, 1976)图解和Mg#-主微量元素图解(d-h,底图据Yao et al., 2012) Fig. 5 Diagrams of TAS (a, after Middlemost, 1994), SiO2-K2O (b), Na2O-K2O (c) (b, c, after Peccerillo and Taylor, 1976) and Mg#-selected major and trace elements diagrams (d-h, after Yao et al., 2012)

辉长岩的稀土总量较均一(∑REE=80.6×10-6~131.5×10-6,除样品HS2-4为415.2×10-6外),富集轻稀土元素((La/Yb)N=7.95~25.2),无-弱的铕正异常(δEu=0.97~1.21,仅HS2-4为0.53)(图 6a)。岩石样品富集大离子亲石元素(Rb、Th、K、Sr等)而亏损高场强元素(Nb、Ta、Zr、Ti等)及重稀土元素(图 6b)。Nb/Ta和NB/La比值分别为15.9~19.1和0.50~0.80。

图 6 横市辉长岩球粒陨石标准化稀土元素分布模式(a)和原始地幔标准化微量元素蛛网图解(b)(标准化值、OIB、N-MORB、E-MORB据Sun and McDonough, 1989) Fig. 6 The chondrite-normalized rare earth elements (REE) patterns (a) and the primitive mantle-normalized multi-elements diagrams (b) of the Hengshi gabbros(normalization values, OIB, N-MORB and E-MORB after Sun and McDonough, 1989)
3.3 Sr-Nd-Pb-Hf同位素

辉长岩具有相对低的初始Sr同位素值(Isr=0.7048~0.7060),负的εNd(423Ma)值(-3.11~-1.97)(表 4图 7a),相应的Nd同位素一阶段模式年龄和两阶段模式年龄分别为tDM1=1.24~1.52Ga和tDM2=1.34~1.43Ga,大致相当。

表 4 横市辉长岩Sr-Nd-Pb同位素分析结果 Table 4 Sr-Nd-Pb isotopic compositions of Hengshi gabbros

图 7 横市辉长岩(87Sr/86Sr)i-εNd(t)图解(a)和Th/Nb-Zr图解(b)(底图据Wang et al., 2013) 早古生代基性岩数据源自:李光来等, 2010; Yao et al., 2012; Zhong et al., 2013; Wang et al., 2013; Zhang et al., 2015; Jia et al., 2017; Xu and Xu, 2017; Xu et al., 2017; Liu et al., 2018 Fig. 7 Diagrams of (87Sr/86Sr)i vs. εNd(t) (a) and Th/Nb vs. Zr (b) (after Wang et al., 2013) Sr-Nd isotopic data of Early Paleozoic basic rocks from: Li et al., 2010; Yao et al., 2012; Zhong et al., 2013; Wang et al., 2013; Zhang et al., 2015; Jia et al., 2017; Xu and Xu, 2017; Xu et al., 2017; Liu et al., 2018

放射性铅同位素组成为(206Pb/204Pb)i=17.73~18.03,(207Pb/204Pb)i=15.57~15.59,(208Pb/204Pb)i=37.70~38.19(表 4),岩石样品落入EMⅠ和EMⅡ区之间(图 8)。

图 8 横市辉长岩(206Pb/204Pb)i-(87Sr/86Sr)i (a)、(206Pb/204Pb)i-(143Nd/144Nd)i (b)和(206Pb/204Pb)i-(207Pb/204Pb)i (c)(据Rollison,2000) Fig. 8 Diagrams of (206Pb/204Pb)i vs. (87Sr/86Sr)i (a), (206Pb/204Pb)i vs. (143Nd/144Nd)i (b) and (206Pb/204Pb)i vs. (207Pb/204Pb)i (c) (after Rollison, 2000)

辉长岩的(176Hf/177Hf)i变化于0.28243~0.28257之间,εHf(t)变化于-3.71~+1.55之间,相应的Hf同位素一阶段和两阶段模式年龄分别为tHf1=0.97~1.19Ga和tHf2=1.57~1.89Ga(表 5图 9)。

表 5 横市辉长岩锆石的Lu-Hf同位素分析结果 Table 5 Lu-Hf isotopic results for zircons of Hengshi gabbros

图 9 横市辉长岩t-εHf(t)(a)、εHf(t)频数图(b)和tHf1频数图(c) 早古生代基性岩数据源自:农军年等, 2017; 周岱等, 2017; Zhong et al., 2013; Wang et al., 2013; Zhang et al., 2015; Zhao et al., 2015; Jia et al., 2016; Xu and Xu, 2017; Xu et al., 2017; Liu et al., 2018 Fig. 9 Diagram of t vs. εHf(t) (a) and frequency histograms of εHf(t) (b) and tHf1 (c) for zircons of Hengshi gabbros Hf isotopic data of Early Paleozoic basic rocks from: Zhong et al., 2013; Wang et al., 2013; Zhang et al., 2015; Zhao et al., 2015; Nong et al., 2017; Zhou et al., 2017; Jia et al., 2016; Xu and Xu, 2017; Xu et al., 2017; Liu et al., 2018
4 讨论 4.1 岩石成因

显微镜观察结果显示,横市辉长岩发生自变质作用,镁铁质矿物多为纤闪石、滑石所代替,具绿泥石化,纤闪石化最为发育,次之为钠黝帘石化、阳起石化(图 3)。但是,岩石烧失量LOI值低且均一(1.69%~2.81%),同时,SiO2、FeOT、MgO、TiO2、P2O5等与烧失量LOI值之间缺失明显的相关关系(图略),暗示着蚀变作用过程中,这些元素是不活泼的,且蚀变程度影响有限。Zr和与之相关的高场强元素在低度变质和蚀变作用过程中是最不活泼的,能作为探讨风化蚀变中微量元素迁移性的判别指标(Yao et al., 2012)。

横市辉长岩具有相对均一的MgO(7.16%~9.43%)、Mg#(60.7~67.3)和低的Cr(83.9×10-6~198×10-6)、Ni(131×10-6~166×10-6)含量,未见橄榄石,暗示着岩浆经历了一定程度的分异结晶过程,但并不明显。随Mg#降低,MgO、FeOT、Cr、Ni和CaO/Al2O3等降低,表明岩浆经历了Ol和Cpx的分异结晶(图 5)。岩石无显著的负Eu异常,表明斜长石的分异结晶程度较弱(图 6a)。除样品HS2-4之外,其余的辉长岩具有相对高且均一的SiO2(49.14%~52.05%)、FeOT(7.97%~10.02%)、MgO、集中的Sr-Nd-Pb同位素组成,表明岩浆演化过程中地壳混染不明显,样品中未见继承锆石也证实了这一点。而样品HS2-4具有显著高的SiO2(58.51%)、低的MgO(4.21%)、Mg#(55.2)和低的Cr(47.5×10-6)、Ni(74.5×10-6)、Sr/Y(19.9)、Ba/Th值(19.5),与别的样品差异显著,可能是岩浆上升侵位过程中边缘极小部位混染了少量的地壳物质,在局部形成相对富集的岩石。锆石原位Hf同位素中存在少量相对低的εHf(t)值(-3.7)和高的tHf2值(~1.9Ga),在Th/Nb-Zr图解中样品也未表现出地壳混染的趋势(图 7b),这些证据也表明地壳混染影响较小。

4.2 源区特征

实验岩石学研究表明下地壳镁铁质岩石的部分熔融形成相对高硅的岩石(Wolf and Wyllie, 1994; Rapp et al., 2003),横市辉长岩绝大部分岩石样品具有低均一的SiO2含量和高的MgO和Mg#(>65),表明其源区组成应为地幔物质而非壳源物质。此外,横市辉长岩具有铕正异常(δEu>1),而下地壳镁铁质麻粒岩部分熔融则形成Eu负异常,也证实横市辉长岩的地幔源区特征。

横市辉长岩具有富集LREEs、LILEs、Pb和Sr-Nd-Hf同位素组成的特征,具有类似弧岩浆(arc-like)的特点。通常来讲,具有类似弧岩浆特征可能的源区包括:新生俯冲作用、地壳混染和古老弧地幔楔等(Xu et al., 2017)。上述讨论可以排除主要由地壳物质混染形成横市辉长岩的可能,辉长岩的Nd同位素的tDM1tDM2大致相当,Hf同位素一阶段模式年龄tHf1集中于0.97~1.19Ga,表明辉长岩的地幔源区具有新元古代时期改造的印记,如,发生于新元古代的俯冲作用形成的交代地幔楔(Wang et al., 2018)。辉长岩具有低的TiO2含量(0.51%~0.95%),样品投影于难熔橄榄岩区(图 10a),表明其主要源自大陆岩石圈地幔(SCLM)的部分熔融(Wang et al., 2013)。在Sr-Nd-Pb同位素相关图解上(图 8),岩石样品主要投影于富集型地幔EMⅠ和EMⅡ源区之间。因此,横市辉长岩主要源自富集型大陆岩石圈地幔,这种富集型地幔可能是新元古代古俯冲作用所改造的地幔楔体,保存于大陆岩石圈地幔中,于早古生代发生部分熔融形成基性岩浆。

图 10 横市辉长岩Fe2O3T-TiO2(a, 据Furman and Graham, 1999)和Ba/Rb-Rb/Sr(b, 据Falloon et al., 1988) Fig. 10 Diagrams of Fe2O3T vs. TiO2 (a, after Furman and Graham, 1999) and Ba/Rb vs. Rb/Sr (b, after Falloon et al., 1988)

在Ba/Rb-Rb/Sr图解上(图 10b),横市辉长岩位于金云母和角闪石相交叉区域,暗示着其源区为含金云母和角闪石二辉橄榄岩源区。含金云母和/或角闪石相的二辉橄榄岩,其石榴子石和尖晶石的稳定相可通过Dy/Yb值进行判别(Duggen et al., 2005)。石榴子石稳定相的橄榄岩源区的部分熔融具有高的Dy/Yb值(>2.5),而尖晶石稳定相的部分熔融具有低的Dy/Yb值(< 1.5),横市辉长岩的Dy/Yb值为1.58~1.86,位于二者之间,暗示着横市辉长岩形成于尖晶石-石榴子石过渡相的二辉橄榄岩部分熔融(~75km)(McKenzie and O'Nions, 1991)。

对于华南早古生代基性岩的岩石成因而言,存在诸多认识,主要包括:(1)后造山垮塌时期古俯冲改造的地幔楔体的部分熔融(Wang et al., 2013;本文);(2)后造山垮塌时期交代岩石圈地幔的部分熔融(Zhong et al., 2013);(3)后造山拆沉引发的富水交代岩石圈地幔部分熔融(Yao et al., 2012; Zhang et al., 2015);(4)板内伸展环境下的亏损岩石圈地幔源区的部分熔融(Jia et al., 2017);(5)陆内造山环境下的地壳混染为主(Xu and Xu, 2017);(6)洋陆俯冲过程中,由俯冲沉积物或流体加入的洋壳熔融形成的玄武质岩浆(彭松柏等, 2016b)、或由年轻、热的洋壳熔体/流体交代上覆地幔楔橄榄岩的部分熔融(Liu et al., 2018);(7)活动大陆边缘环境下亏损软流圈地幔的部分熔融(Zhao et al., 2015)。更有甚者,对于同一个岩体,相同/相近的数据,出现不同的成因解释,如,云开岑溪地区大爽中-基性火山岩,有的学者认为大爽玄武岩-安山岩是由古俯冲交代的地幔楔的部分熔融所形成,是后造山垮塌的产物,形成于板内造山环境(Wang et al., 2018);有的学者则认为其源自年轻的、热洋壳俯冲造成的板片熔融和玄武岩脱水释放流体交代上覆地幔楔橄榄岩发生的部分熔融(彭松柏等, 2016b)。出现上述诸多岩石成因观点的原因在于,一方面由于构造背景的认识差异,导致了源区认识的不同。更多的时候,是在某一既定的构造背景下对岩石成因展开讨论,源区的认识与构造背景的认识密切相关,可能会造成相关结论有失偏颇。另一方面,没有直接或足够令人信服的证据表明早古生代洋壳的存在,以及表现与俯冲相关的元素和同位素富集型的地球化学特征的多解性,如,俯冲作用和地壳混染均可能形成岩石的“Ta-Nb-Ti”(TNT)异常、Zr-Hf的亏损和U-Th的富集等特征(Xu et al., 2017)。

目前发表的早古生代Nd-Hf同位素数据显示,εNd(t)值变化于-10.1~+3.19之间,εHf(t)值变化于-21.7~+16.2之间,相应的Hf同位素一阶段模式年龄tHf1=0.41~1.88Ga(图 9)。总体上表现为极度的不均一性。那么,华南早古生代岩石圈地幔是富集的?还是亏损的?这种富集性质是地幔源区的自身特征,还是地壳混染所致?为什么新生幔源印记如此之少?是否存在软流圈地幔印记?

绝大多数岩体的εNd(t)值和εHf(t)值小于0,表现出了富集型地幔岩石圈的特点(Yao et al., 2012; Wang et al., 2013; Zhang et al., 2015; Xu and Xu, 2017);其中少量岩体具有相对高的εHf(t)值,如桃园辉长岩(+5.2)、龙虎岗辉长岩(+2.8),进而有学着提出华南早古生代岩石圈地幔是适度亏损型(Xu et al., 2017);更为特别的,Zhao et al. (2015)获得的陈蔡群中石榴子石角闪石岩的εHf(t)值变化于+12.5~+16.2之间,表现为强烈亏损型。

大陆岩石圈地幔(SCLM),作为一个独立的地球化学储库不参与地幔对流(李献华等, 2008),其形成的玄武质岩浆较软流圈地幔更加亏损,具有更高的地幔Mg#值(Wilson et al., 1995)。SCLM通常是“干”和“冷”的,在无水条件下难以形成大量的熔体(Arndt and Christensen, 1992)。而从已有的证据可以看出,华南早古生代基性岩石具有负εNd(t)值和εHf(t)值的岩体分布广泛,主要位于Yao et al. (2012)所认为的造山带核部及附近(图 1图 9)。因此,华南早古生代岩石圈地幔中富集地幔占据了一定的比例,在面积和体量上可能相当可观。通常情况下,SCLM的一部分遭受大洋俯冲板片来源的熔体/流体或者软流圈来源的低度部分熔融的熔体交代变质之后,其固相线温度会明显降低,在裂谷环境下,发生部分熔融的可能性将大大增加(李献华等, 2008; Harry and Leeman, 1995)。华南早古生代富集型地幔端元可以由大洋俯冲板片来源的熔体/流体交代形成,可能是古老俯冲作用(如,新元古代),形成富集型地幔组分储存于大陆岩石圈地幔之中,至早古生代造山伸展阶段发生熔融;也可能是新生俯冲作用提供的熔体/流体交代洋壳或上覆地幔楔熔融形成的熔体。从目前的证据来看,两种可能性都不能完全排除,基性岩石的tHf1主要峰值为0.9~1.1Ga,但也存在0.4~0.6Ga一个小峰值(图 9c)。此外,陈蔡群中石榴子石角闪石岩(437Ma)的εHf(t)=+12.5~+16.2,tHf1与成岩基本年龄一致(0.4~0.55Ma),可能代表了其源自软流圈地幔的部分熔融(Zhao et al., 2015)。

4.3 构造意义

依据目前所报道的华南早古生代基性岩的数据资料,尤其是绝大多数岩体具有富集的Nd-Hf同位素组成,(εNd(t) < 0,εHf(t) < 0),且Hf同位素一阶段模式年龄tHf1存在一个明显的新元古代峰值(0.9~1.1Ga),还有少量的异常高的εHf(t)值(+12.5~+16.2)。这些证据尽管不能完全排除存在早古生代新生俯冲作用的存在,但板内造山及后造山拆沉的模式更具可能性:ca. 445~430Ma,造山垮塌,发生大规模的岩石圈拆沉作用,拆沉的岩石圈地幔被软流圈地幔加热,其中的易熔组分(新元古代俯冲作用形成的富集岩石圈地幔)发生部分熔融形成大量具有富集Nd-Hf同位素的玄武质岩浆(Yao et al., 2012),这些基性岩浆具有时间跨度大、范围广而体量小的特征,表明拆沉作用对于早古生代基性岩石的形成所提供的贡献相对有限(Ducea, 2011)。同时,少量的软流圈地幔组分印记在稍晚(~437Ma)、局部地区也有所显示。至ca. 423~400Ma,区内已经入板内伸展环境,发育少量基性岩和A型花岗岩(Feng et al., 2014; Jia et al., 2016)。本文所获得的横市基性岩墙群也为早古生代晚期的伸展作用提供了岩石学佐证。

5 结论

(1) SHRIMP锆石U-Pb测年结果显示,横市辉长岩的形成时代为423±5Ma。元素(低且均一的硅、高MgO、Mg#δEu>1等)及Sr-Nd-Pb-Hf同位素组成表明,横市辉长岩并非源自残留的MORB或蛇绿岩,而可能源自类似于EMⅠ和EMⅡ混合的富集地幔源区的部分熔融;

(2) 横市辉长岩的可能源自古俯冲改造的富集型大陆岩石圈地幔的部分熔融,岩浆演化过程中,经历了一定程度的分异结晶,且地壳混染影响较小。

(3) Nd-Hf同位素结果显示,华南早古生代岩石圈地幔中富集地幔占据了一定的比例,在面积和体量上可能相当可观,大规模的岩石圈拆沉作用可能是形成这些基性岩石的动力学机制。

参考文献
Arndt NT and Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Journal of Geophysical Research, 97(B7): 10967-10981 DOI:10.1029/92JB00564
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170 DOI:10.1016/S0009-2541(03)00165-7
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Charvet J, Shu LS, Faure M, Choulet F, Wang B, Lu HF and Breton NL. 2010. Structural development of the lower Paleozoic belt of South China: Genesis of an intracontinental orogen. Journal of Asian Earth Sciences, 39(4): 309-330 DOI:10.1016/j.jseaes.2010.03.006
Chen X, Zhang YD, Fan JX, Tang L and Sun HQ. 2012. Onset of the kwangsian orogeny as evidenced by biofacies and lithofacies. Science China (Earth Sciences), 55(10): 1592-1600 DOI:10.1007/s11430-012-4490-4
Ducea MN. 2011. Fingerprinting orogenic delamination. Geology, 39(2): 191-192 DOI:10.1130/focus022011.1
Duggen S, Hoernle K, van den Bogaard P and Garbe-Schönberg D. 2005. Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology, 46(6): 1155-1201 DOI:10.1093/petrology/egi013
Falloon TJ, Green DH, Hatton CJ and Harris KL. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. Journal of Petrology, 29(6): 1257-1282 DOI:10.1093/petrology/29.6.1257
Feng SJ, Zhao KD, Ling HF, Chen PR, Chen WF, Sun T, Jiang SY and Pu W. 2014. Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny. Lithos, 206-207: 1-18 DOI:10.1016/j.lithos.2014.07.007
Furman T and Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 24: 237-262
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Harry DL and Leeman WP. 1995. Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. Journal of Geophysical Research, 100(B6): 10255-10269 DOI:10.1029/94JB03065
Jia XH, Wang XD, Tang GJ, Yang WQ and Niu ZJ. 2016. The Silurian A-type granites in northeastern Guangxi, South China Block: New evidence of transition from compression to post-orogenic extension of the Kwangsian Orogen. Acta Geologica Sinica, 90(5): 1913-1914 DOI:10.1111/1755-6724.12829
Jia XH, Wang XD and Yang WQ. 2017. Petrogenesis and geodynamic implications of the Early Paleozoic potassic and ultrapotassic rocks in the South China Block. Journal of Asian Earth Sciences, 135: 80-94 DOI:10.1016/j.jseaes.2016.12.013
Li GL, Hua RM, Hu DQ, Huang XE, Zhang WL and Wang XD. 2010. Petrogenesis of Shilei quartz diorite in southern Jiangxi: Constraints from petrochemistry, trace elements of accessory minerals, zircon U-Pb dating, and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 26(3): 903-918 (in Chinese with English abstract)
Li XH, Wang XC, Li WX and Li ZX. 2008. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China: From orogenesis to intracontinental rifting. Geochimica, 37(4): 382-398 (in Chinese with English abstract)
Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL and Bao CM. 2010. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai Orogeny, southeastern South China: New age constraints and pressure-temperature conditions. GSA Bulletin, 122(5-6): 772-793 DOI:10.1130/B30021.1
Liu DY, Jian P, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ and Tao H. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic subduction. Acta Geologica Sinica, 77(3): 317-327 (in Chinese with English abstract)
Liu SF, Peng SB, Kusky T, Polat A and Han QS. 2018. Origin and tectonic implications of an Early Paleozoic (460~440Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China. Lithos, 322: 104-128 DOI:10.1016/j.lithos.2018.10.006
Ludwig KR. 2001. SQUID 1.02, A User's Manual. Berkeley: Berkeley Geochronology Center
McKenzie D and O'Nions RK. 1991. Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology, 32(5): 1021-1091 DOI:10.1093/petrology/32.5.1021
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
Nong JN, Huang XQ, Guo SY, Sun MH, Deng B and Zou Y. 2017. Discovery of Caledonoan basic rocks in Dayaoshan region, eastern Guangxi and its geological significance. Geological Science and Technology Information, 36(6): 113-121 (in Chinese with English abstract)
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 130-143
Peng SB, Liu SF, Lin MS, Wu CF and Han QS. 2016a. Early Paleozoic subduction in Cathaysia (Ⅰ): New evidence from Nuodong ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract)
Peng SB, Liu SF, Lin MS, Wu CF and Han QS. 2016b. Early Paleozoic subduction in Cathaysia (Ⅱ): New evidence from the Dashuang High Magnesian-Magnesian andesite. Earth Science, 41(6): 931-947 (in Chinese with English abstract)
Qin XF, Wang ZQ, Gong JH, Zhao GY, Shi H, Zhan JY and Wang Z. 2017. The confirmation of Caledonian intermediate-mafic volcanic rocks in northern margin of Yunkai block: Evidence for Early Paleozoic paleo-ocean basin in southwestern segment of Qinzhou-Hangzhou joint belt. Acta Petrologica Sinica, 33(3): 791-809 (in Chinese with English abstract)
Qu XM, Hou ZQ and Li YG. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan Plateau. Lithos, 74(3-4): 131-148 DOI:10.1016/j.lithos.2004.01.003
Rapp M, Lübken FJ, Hoffmann P, Latteck R, Baumgarten G and Blix TA. 2003. PMSE dependence on aerosol charge number density and aerosol size. Journal of Geophysical Research, 108(D8): 8441 DOI:10.1029/2002JD002650
Rollison HR. 2000. Petrogeochemistry. In: Yang XM, Yang XY and Chen SX (trans. ). Hefei: Chinese Science and Technology University Publishing House, 179-205 (in Chinese)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Wang L, Jin XB, Wang XY, Wu XK, Liu CP and Duan GL. 2015. Forming process of lamprophyre from Leidong in Luocheng, northern Guangxi: Constraints from geochemistry, geochronology and Sr-Nd-Pb isotopes. Geological Science and Technology Information, 34(1): 10-19 (in Chinese with English abstract)
Wang YB, Wang DH, Han J, Chen ZH and Wang QL. 2010. U-Pb dating and Hf isotopic characteristics of zircons from quartz-diorite in the Yijiang REE-Sc deposit, Rucheng County, Hunan: Constraints on the timing of Caledonian magmatic activity in South China. Geology in China, 37(4): 1062-1070 (in Chinese with English abstract)
Wang YJ, Zhang FF, Fan WM, Zhang GW, Chen SY, Cawood PA and Zhang AM. 2010. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29(6): TC6020
Wang YJ, Zhang AM, Fan WM, Zhao GC, Zhang GW, Zhang YZ, Zhang FF and Li SZ. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239-260 DOI:10.1016/j.lithos.2011.07.027
Wang YJ, Zhang AM, Fan WM, Zhang YH and Zhang YZ. 2013. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence. Lithos, 160-161: 37-54 DOI:10.1016/j.lithos.2012.11.004
Wang YJ, He HY, Gan CS and Zhang YZ. 2018. Petrogenesis of the Early Silurian Dashuang high-Mg basalt-andesite-dacite in eastern South China: Origin from a palaeosubduction-modified mantle. Journal of the Geological Society, 175(6): 949-966 DOI:10.1144/jgs2018-102
Wilson M, Rosenbaum JM and Dunworth EA. 1995. Melilitites: Partial melts of the thermal boundary layer?. Contributions to Mineralogy and Petrology, 119(2-3): 181-196 DOI:10.1007/BF00307280
Wolf MB and Wyllie PJ. 1994. Dehydration-melting of amphibolite at 10kbar: The effects of temperature and time. Contributions to Mineralogy and Petrology, 115(4): 369-383 DOI:10.1007/BF00320972
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Xu C, Wang YJ, Zhang YZ, Xu WJ and Gan CS. 2019. Geochronological and geochemical constraints of Chidong Silurian gabbroic pluton in Yunkai domain and its tectonic implication. Earth Science, 44(4): 1202-1216 (in Chinese with English abstract)
Xu WJ and Xu XS. 2017. An Early Paleozoic monzonorite-granite suite in the South China block: Implications for the intracontinental felsic magmatism. Mineralogy and Petrology, 111(5): 709-728 DOI:10.1007/s00710-016-0488-5
Xu WJ, Xu XS and Zeng G. 2017. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from Early Paleozoic mafic rocks of the South China Block. Lithos, 286-287: 388-395 DOI:10.1016/j.lithos.2017.06.023
Yao WH, Li ZX, Li WX, Wang XC, Li XH and Yang JH. 2012. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: Evidence from ca. 435 Ma high-Mg basalts. Lithos, 154: 115-129 DOI:10.1016/j.lithos.2012.06.033
Yuan HL, Wu FY, Gao S, Liu XM, Xu P and Sun DY. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411-2421
Zhang Q, Jiang YH, Wang GC, Liu Z, Ni CY and Qing L. 2015. Origin of Silurian gabbros and I-type granites in central Fujian, SE China: Implications for the evolution of the Early Paleozoic orogen of South China. Lithos, 216-217: 285-297 DOI:10.1016/j.lithos.2015.01.002
Zhao L, Zhai MG, Zhou XW, Santosh M and Ma XD. 2015. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting. Lithos, 236-237: 226-244 DOI:10.1016/j.lithos.2015.09.004
Zhong YF, Ma CQ, Zhang C, Wang SM, She ZB, Liu L and Xu HJ. 2013. Zircon U-Pb age, Hf isotopic compositions and geochemistry of the Silurian Fengdingshan I-type granite pluton and Taoyuan mafic-felsic complex at the southeastern margin of the Yangtze Block. Journal of Asian Earth Sciences, 74: 11-24 DOI:10.1016/j.jseaes.2013.05.025
Zhong YF, Ma CQ, Liu L, Zhao JH, Zheng JP, Nong JN and Zhang ZJ. 2014. Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime. Lithos, 198-199: 202-216 DOI:10.1016/j.lithos.2014.04.002
Zhong YF, Wang LX, Zhao JH, Liu L, Ma CQ, Zheng JP, Zhang ZJ and Luo BJ. 2016. Partial melting of an ancient sub-continental lithospheric mantle in the Early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China. Lithos, 264: 224-238 DOI:10.1016/j.lithos.2016.08.026
Zhou D, Long WG, Wang L and Jia XH. 2017. Geochronology and Lu-Hf isotope of Early Paleozoic Zhuya-Shiban gabbros in Yunkai terrane, South China. Geological Bulletin of China, 36(5): 726-737 (in Chinese with English abstract)
Zuo ZF, Luo CL, Wang HM, Liu BX, Liu CG and Xu Z. 2015. LA-ICP-MS zircon U-Pb ages, geochemical characteristics of Silurian basic dykes in Hengshi area, southern Jiangxi, and their geological significances. Geological Review, 61(6): 1417-1428 (in Chinese with English abstract)
李光来, 华仁民, 胡东泉, 黄小娥, 张文兰, 王旭东. 2010. 赣南地区石雷石英闪长岩的成因: 岩石化学、副矿物微量元素、锆石U-Pb年代学与Sr-Nd-Hf同位素制约. 岩石学报, 26(3): 903-918.
李献华, 王选策, 李武显, 李正祥. 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382-398. DOI:10.3321/j.issn:0379-1726.2008.04.012
刘敦一, 简平, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据. 地质学报, 77(3): 317-327. DOI:10.3321/j.issn:0001-5717.2003.03.004
农军年, 黄锡强, 郭尚宇, 孙明行, 邓宾, 邹瑜. 2017. 桂东大瑶山地区加里东期基性岩的发现及地质意义. 地质科技情报, 36(6): 113-121.
彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016a. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778.
彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016b. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据. 地球科学, 41(6): 931-947.
覃小锋, 王宗起, 宫江华, 赵国英, 石浩, 詹俊彦, 王震. 2017. 云开地块北缘加里东期中-基性火山岩的厘定: 钦-杭结合带南西段早古生代古洋盆存在的证据. 岩石学报, 33(3): 791-809.
Rollison HR. 2000. 岩石地球化学. 见: 杨学明, 杨晓勇, 陈双喜译. 合肥: 中国科学技术大学出版社, 179-205
王磊, 金鑫镖, 王新宇, 吴祥珂, 刘重芃, 段桂玲. 2015. 桂北罗城垒洞煌斑岩形成过程: 地球化学、年代学和Sr-Nd-Pb同位素约束. 地质科技情报, 34(1): 10-19.
王彦斌, 王登红, 韩娟, 陈郑辉, 王清利. 2010. 湖南益将稀土-钪矿的石英闪长岩锆石U-Pb定年和Hf同位素特征: 湘南加里东期岩浆活动的年代学证据. 中国地质, 37(4): 1062-1070. DOI:10.3969/j.issn.1000-3657.2010.04.020
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
徐畅, 王岳军, 张玉芝, 徐文景, 甘成势. 2019. 云开池垌志留纪辉长岩体的年代学、地球化学特征及构造意义. 地球科学, 44(4): 1202-1216.
周岱, 龙文国, 王磊, 贾小辉. 2017. 云开地区早古生代竹雅-石板辉长岩锆石U-Pb定年与Lu-Hf同位素特征. 地质通报, 36(5): 726-737. DOI:10.3969/j.issn.1671-2552.2017.05.005
左祖发, 罗春林, 王会敏, 刘邦秀, 刘春根, 徐喆. 2015. 赣南横市地区基性岩墙的LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义. 地质论评, 61(6): 1417-1428.