岩石学报  2021, Vol. 37 Issue (4): 1270-1286, doi: 10.18654/1000-0569/2021.04.18   PDF    
云南东川群碎屑锆石年代学和元素地球化学及其地质意义
肖剑1,2,3, 赵志丹1, 祝新友2, 张雄2, 曾瑞垠2,4, 张敏3     
1. 中国地质大学地质过程与矿产资源国家重点实验室, 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 北京矿产地质研究院, 北京 100012;
3. 江西有色地质矿产勘查研究院, 南昌 330001;
4. 昆明理工大学国土资源学院, 昆明 650093
摘要: 东川式铜矿主要分布在云南省中北部的康滇地区,属于典型的沉积岩型容矿铜矿床,以东川地区的东川铜矿床铜储量最大。东川群是东川式铜矿的主要赋矿围岩,查明东川群物源对于识别沉积作用的源区、沉积构造环境和Cu成矿作用以及对于研究沉积岩型容矿铜矿床的成矿模式具有重要意义。本文对东川地区东川群的因民组、黑山组、青龙山组样品的碎屑锆石进行了LA-ICP-MS U-Pb定年和原位微量元素分析。结果表明,东川群绝大多数碎屑锆石属岩浆锆石,且来自S型花岗岩源区。所有锆石显示了~2.7Ga、~2.5Ga、~2.2Ga、~1.8Ga和~1.5Ga等5个年龄峰值,首次确定青龙山组最大沉积年龄为~1220Ma。东川群含矿地层成岩和成矿物质具有二元特征:地层主体成分来自于毗邻的哥伦比亚造山带的S型花岗岩,而金属Cu应为同一造山带内先期存在的Cu矿床或者富Cu岩石经过剥蚀、搬运和沉积成矿作用富集的。
关键词: 东川群    碎屑锆石    LA-ICP-MS U-Pb定年    微量元素    源区    
Detrital zircon chronology and element geochemistry of the Dongchuan Group in Yunnan Province and its geological significance
XIAO Jian1,2,3, ZHAO ZhiDan1, ZHU XinYou2, ZHANG Xiong2, ZENG RuiYin2,4, ZHANG Min3     
1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. Beijing Institute of Geology for Mineral Resources, Beijing 100012, China;
3. Jiangxi Nonferrous Geo-Minerals Exploration and Development Institute, Nanchang 330001, China;
4. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract: Dongchuan-type copper deposit, a typical sediment-hosted stratiform copper deposit, is distributed in the Kangdian area in the central and northern part of Yunnan Province. This deposit is the most important Dongchuan-type copper deposit which is hosted in Dongchuan Group, in the Kangdian area in Yunnan Province. As a result, discrimination of the provenance of Dongchuan Group is very important for tracing the sediment source regions, tectonic environment and the copper mineralization of the deposit. In this study, zircons from the strata of Yinmin, Heishan and Qinglongshan formations of the Dongchuan Group were applied for LA-ICP-MS U-Pb dating and in-situ trace elements analysis. The results demonstrate that most of the detrital zircons in Dongchuan Group were of magmatic-origin, i.e., mainly from S-type granites. The detrital zircons ages from Dongchuan Group show five age peaks, which are ~2.7Ga, ~2.5Ga, ~2.2Ga, ~1.8Ga, and ~1.5Ga, respectively. The maximum zircon age is 1220Ma, which provided constrains on the sedimentary age of the Qinglongshan Formation for the first time. Our studies suggest that the materials of the Dongchuan Group deposit-host strata, including sediments and Cu metals, were from two endmembers: the sediments come from the S-type granitoids of the adjacent Columbia orogen, while the copper come from the erosion and transportation processes of a pre-exist Cu deposit or Cu-rich magmatic rocks in the same orogen.
Key words: Dongchuan Group    Detrital zircons    LA-ICP-MS U-Pb Dating    Trace elements    Source region    

锆石同位素年代学和同位素地球化学联合研究被广泛应用于揭示锆石(岩石)类型、判别母岩形成构造环境(Belousova et al., 2002赵志丹等, 2018; 邢莉圆等,2020)。其中,花岗岩锆石微量元素成分变化规律可用于判别花岗岩的四种成因类型(I-, S-, A-, M-,Wang et al., 2012); 喷发到地表的火山岩在上升过程中捕获的大量地壳锆石纪录了区域上多期岩浆作用及其性质(Liu et al., 2014); 不同时代沉积岩的碎屑锆石是沉积盆地碎屑物质源区信息的载体,可以用于恢复沉积物组成、源区岩石性质,推断沉积环境和构造背景,进而为分析古陆块属性、来源和重建陆块之间的古地理和古构造格局提供证据(Wei et al., 2020),如,Zhu et al. (2011)对青藏高原主要构造块体的沉积岩进行锆石定年和系统示踪,揭示出拉萨地块是从南半球与澳大利亚一体的东冈瓦纳陆块裂解后向北漂移的地体。

东川式铜矿是我国重要铜矿床类型之一,属于沉积岩型容矿铜矿床(Sediment-hosted Stratiform Copper,简称SSC),矿床主要赋矿围岩是古-中元古界东川群沉积地层。东川群由因民组、落雪组、黑山组和青龙山组构成,主要出露在云南东川、武定、易门和元江地区(图 1)。前人对东川式铜矿和东川群的研究已经取得了丰富成果(华仁民, 1990, 1993; 陈好寿等, 1992; 龚琳等, 1996; 叶霖, 2004; 耿元生等, 2007; Zhao et al., 2010, 2012, 2013; 尹福光等, 2011a, b; 朱华平等, 2011b; 高辉等, 2012; 方维萱, 2014; 王生伟等, 2016)。就东川群各组的沉积时代而言,前人分别获得了因民组凝灰岩锆石年龄(1742Ma)、落雪组白云岩Pb-Pb等时线年龄(1716~1718Ma)、黑山组凝灰岩锆石年龄(1500~1504Ma)(常向阳等, 1997; 吴健民等, 1998; 孙志明等, 2009; Zhao et al., 2010; 李怀坤等, 2013),而东川群顶部青龙山组沉积时限尚无报道。此外,东川群的沉积物源在矿床形成过程中起到关键作用(Hitzman et al., 2005; 高辉等, 2012; 刘玄等, 2015),但前人对东川群沉积物源区和沉积环境的研究依然缺乏。

图 1 研究区区域地质简图(据Zhao et al., 2010耿元生等, 2017) Fig. 1 Simplified tectonic map of Dongchuan area (modified after Zhao et al., 2010; Geng et al., 2017)

本文针对东川铜矿的上述问题,采集了矿区的因民组、黑山组及矿区外的青龙山组沉积岩样品,进行了碎屑锆石LA-ICP-MS U-Pb定年和原位微量元素分析,试图限定东川群顶部青龙山组的沉积时代,由此约束东川群沉积物质来源和沉积构造环境,为揭示矿床沉积地层的性质提供证据。

1 地质背景

东川地区距离云南省昆明市北约150km,大地构造位置处于扬子板块西南缘(图 1c),即康滇地区。扬子板块西南缘未见太古代基底岩石露头,主要出露地层为汤丹群、河口群、大红山群、东川群、康定群、苴林群、昆阳群、会理群(图 1a)。近南北走向的河口-大红山断裂、绿汁江断裂带、汤郎-易门断裂、小江断裂将古、中元古代的地层错断为不连续的区块(图 1a)。汤丹群形成于古元古代中期,可能为早期哥伦比亚超级大陆的一部分(朱华平等, 2011b; 周邦国等, 2012)。古元古代末期扬子板块西南缘处于裂谷环境,其形成与同期全球性哥伦比亚超级大陆的裂解同步(王生伟等, 2013; 郭阳等, 2014; 王伟等, 2019),东川地区正处于该裂谷环境中,为东川凹陷,其内沉积形成了东川群(庞维华等, 2015)。

东川凹陷盆地内基底地层为古元古界汤丹群、古-中元古界东川群。其中汤丹群自下而上洒海沟组、望厂组、菜园湾组以及平顶山组组成。东川群自下向上划分的四个组为因民组、落雪组、黑山组和青龙山组(图 1b),其中,因民组下部主要为角砾岩、紫红色砂岩、含砾砂岩,上部主要为粉砂质、钙质板岩,钙质、泥质、白云质粉砂岩等;落雪组主要为灰色、灰白色、肉红色白云岩、砂质白云岩;黑山组为一套黑色碳质板岩夹灰绿色、灰色粘土质板岩,沿层含立方体黄铁矿散点及草莓状黄铁矿细层,具水平层理;青龙山组主要为青灰、浅灰至深灰色中厚层至块状泥沙质白云岩、泥质灰岩。

东川凹陷的范围受限于其周缘同生断层,东至小江断裂,西至普渡河断裂,北抵麻塘断裂,南到宝九断裂(图 2a)。东川群在裂谷发展初始阶段开始沉积因民组(龚琳等, 1996),形成代表氧化环境下沉积的紫红色岩石(华仁民, 1990);在裂谷断裂坳陷阶段沉积了落雪组、黑山组和青龙山组。落雪组主要为海相碳酸盐岩(杜远生和韩欣,1999尹福光等,2011龚琳等,1996),属于潮坪、潮间带沉积,为浅海环境,表现了由氧化环境到还原环境的渐变过程。黑山组以黑色碳质板岩为主,原岩应属海湾滞流还原环境(龚琳等, 1996);最上部的青龙山组属下一个海侵系列的海相碳酸盐岩(解德勇, 1993),但形成于浅海陆棚环境(梁玉左等, 1982)。

图 2 东川地区地质图(据成都地质调查中心,2011 Fig. 2 The geological map of Dongchuan area

① 成都地质调查中心. 2011. 1:5万因民幅矿产远景调查说明书

2 样品和分析方法

样品采自东川因民矿区及其西部的舍块地区(图 2b图 3)。其中,青龙山组样品(DCZR-1)采自因民矿区西部舍块段公路旁(26.2459°N、102.9225°E),三风口以南;黑山组样品(DCZR-2)采自包子铺以西036县道旁(26.2478°N、102.9795°E);因民组样品(DCZR-13)采自因民矿区2472中段的巷道之中。

图 3 东川群因民组、黑山组和青龙山组样品野外和镜下照片 青龙山组泥砂质白云岩露头(a)和正交偏光镜下特征(b);黑山组碳质板岩露头(c)和正交偏光镜下特征(d);因民组白云质砂岩露头(e)和正交偏光镜下特征(f). Fsp-长石;Q-石英 Fig. 3 Outcrops and microscopic images of Yinmin, Heishan, and Qinglongshan formations of Dongchuan Group Outcrop (a) and micrograph (b) of argillaceous-sandy dolomite of Qinglongshan Formation; outcrop (c) and micrograph (d) of carbonaceous slate of Heishan Formation; outcrop (e) and micrograph (f) of dolomite sandstone of Yinmin Formation. Fsp-feldspar; Q-quartz

锆石制靶及照相在北京中科矿研检测技术有限公司完成,首先将挑选的锆石置于环氧树脂内,对其进行抛光清洗,露出锆石表面,制成靶样。锆石U-Pb定年和微量元素测试工作均在中国地质大学(北京)矿物激光微区分析实验室完成。激光剥蚀系统使用NewWave 193UC型ArF准分子激光器,电感耦合等离子质谱(ICP-MS)为Angilent 7900。实验过程中采用NIST 610作为元素含量外标,锆石91500 (Wiedenbeck et al., 2004)作为U-Pb同位素比值外标,锆石GJ-1 (Jackson et al., 2004)和Plesovice (Sláma et al., 2008)作为未知样品的数据质量监控标来进行分析。数据处理采用ICPMSDataCal软件(Liu et al., 2008, 2010a, b; Hu et al., 2012),同位素比值及年龄误差均为1σ

3 结果 3.1 碎屑锆石特征

3个样品CL图像(图 4)显示,采自东川群三个组的沉积岩样品的锆石粒径略有差异:青龙山组泥砂质白云岩的锆石粒径为40~160μm,黑山组碳质板岩的锆石粒径为30~70μm,因民组紫红色砂岩的锆石粒径为35~140μm。三个组的碎屑锆石内部结构多样,有些存在清晰的震荡环带、板状和扇状环带,个别具有增生边(图 4)。碎屑锆石多呈次圆状到次棱角状,表明原岩的碎屑物质搬运距离短,应为近源沉积。

图 4 东川群部分碎屑锆石阴极发光照片 圆圈代表U-Pb激光测点的位置,圆内数字为测点号,锆石颗粒下方的数字为年龄(Ma) Fig. 4 Cathodoluminescent (CL) images of detrital zircons from Dongchuan Group Locations and numbers of the laser spots on the zircon grains are illustrated as circles and spot numbers, ages in Ma are presented under the zircon grains
3.2 碎屑锆石的U-Pb年龄

对于年龄 < 1000Ma的锆石,采用206Pb/238U年龄;而年龄>1000Ma采用207Pb/206Pb年龄(Sircombe, 1999),年龄数据见表 1。谐和度>90%的数据在U-Pb谐和图上,大部分落在谐和线上或靠近谐和线(图 5),部分数据点稍偏离谐和线,反映部分锆石可能存在一定程度的Pb丢失。

表 1 东川群碎屑锆石LA-ICP-MS U-Pb定年结果 Table 1 LA-ICP-MS U-Pb dating results of the detrital zircons from the Dongchuan Group

图 5 东川群碎屑锆石U-Pb谐和图和U-Pb年龄分布直方图 Fig. 5 Concordia diagrams for U-Pb data and spectrum of U-Pb ages of the detrital zircons from the Dongchuan Group

青龙山组测试了56颗锆石,27颗年龄谐和度大于90%的锆石参与年龄计算。27颗锆石谐和年龄为1224~1726Ma;主要集中于1224~1591Ma之间,峰值年龄为1513Ma,共26颗锆石(占96%);另外1颗锆石年龄为1726Ma。因为东川群上部青龙山组目前缺乏年龄限制,本文青龙山组所获得的最年轻碎屑锆石年龄为1224Ma,可作为是青龙山组最大沉积年龄。

黑山组测试了56颗锆石,16颗年龄谐和度大于90%的锆石参与年龄计算。16颗锆石的谐和年龄在452~2492Ma;主要集中在1766~2492Ma之间,共15颗(占83%),主要呈现2个峰值(1818Ma和2480Ma)。另外1个锆石的谐和年龄为1539Ma,属于岩浆锆石年龄,可以代表黑山组最大沉积年龄,与孙志明等(2009)获得黑山组中凝灰岩锆石年龄1503±17Ma接近。

因民组测试了72颗锆石,37颗谐和度大于90%的锆石年龄参与统计。37颗锆石的谐和年龄为1755~3620Ma,主要集中在3个范围:第1个范围介于1755~2405Ma之间,共21颗,峰值为2211Ma;第2个范围介于2587~2799Ma之间,共9颗,峰值为2720Ma;第3个范围介于2814~3620Ma之间,共7颗。刘伟(2019)在因民组获得的碎屑锆石年龄具有三个峰值,分别为~2.7Ga、~2.28Ga、~1.86Ga,与本文的峰值基本一致。因民组中最年轻锆石年龄为1755Ma,与Zhao et al.(2010)在因民组获得1742±13Ma年龄非常接近。第三组的年龄分布在中-早太古宙。

3.3 碎屑锆石的微量元素

东川群样品的稀土元素成分来自成分均一且谐和度≥90%的锆石,分析结果见表 2,球粒陨石标准化稀土元素配分图见图 6。总体看,三个组的碎屑锆石绝大多数具有富集重稀土元素的特征,三个组总体上正Ce异常明显(Ce/Ce*=1.5~196)、负Eu异常清晰(Eu/Eu*=0.04~0.51)。碎屑锆石的稀土总量对比看,青龙山组总量最高,黑山组和因民组总量接近。

表 2 东川群碎屑锆石LA-ICP-MS原位稀土元素分析结果(×10-6) Table 2 LA-ICP-MS analysis results (×10-6) for rear earth elements of the in-situ detrital zircons from the Dongchuan Group

图 6 东川群碎屑锆石球粒陨石标准化稀土元素配分图(标准化数值据Sun and McDonough, 1989) Fig. 6 Chondrite-nomarlized REE patterns for the analyzed detrital zircons from the Dongchuan Group (normalization values after Sun and McDonough, 1989)
4 讨论 4.1 东川群沉积物来源和沉积环境

东川群碎屑锆石除极小部分外,大多数锆石呈现相似的重稀土元素富集,明显负Eu异常和正Ce异常的球粒陨石标准化配分模式(图 6)。Th/U比值大多数在0.3以上,表明锆石都属于岩浆成因(Hoskin and Ireland, 2000; Hoskin and Schaltegger, 2003赵志丹等,2018)。部分锆石颗粒边缘发育变质增生边。

在Y-U、Y-Ce/Ce*、Y-Yb/Sm图解(图 7a-c)中,东川群碎屑锆石大部分数据点落入花岗岩类区,部分落入基性岩和花岗岩重叠区(Y-U、Y-Yb/Sm),暗示这些碎屑锆石可能主要来自于花岗岩类。在Th-Pb图解中东川群碎屑锆石大部分落入S型花岗岩区域内(图 7d),说明这些锆石主要来自陆壳花岗岩质岩石中的S型花岗岩。东川群锆石颗粒圆度普遍较低,多为次棱角状和棱角状,代表源区搬运到沉积盆地的距离较近。因民组中的碎屑锆石的年龄多集中在早元古代-晚太古代,暗示研究区代表的扬子板块西南缘早元古代-晚太古代存在近源出露的花岗岩类岩石。

图 7 东川群碎屑锆石的微量元素岩性判别图解(底图据Belousova et al., 2002Wang et al., 2012) 花岗岩类细分:1-正长岩;2-浅色花岗岩;3-花岗岩闪、长岩和英云闪长岩 Fig. 7 Detrital zircons lithological discrimination diagrams of trace elements from Dongchuan Group(base map after Belousova et al., 2002; Wang et al., 2012)

扬子板块西南缘东川地区东川群获得的碎屑锆石U-Pb年龄范围从中元古代至古太古代(1224~3620Ma),主要的峰值有~1.5Ga、~1.8Ga、~2.2Ga、~2.5Ga、~2.7Ga。目前已报道扬子西南缘基底地层汤丹群最古老的沉积年龄为洒海沟组熔结凝灰岩(2285Ma)(朱华平等, 2011a),并且扬子西南缘没有太古代基底岩石出现,由此可见,扬子板块西南缘的康滇地区存在潜在的沉积物源区。本文东川群锆石揭示的大量S型花岗岩源区,表明扬子板块西南缘存在较早的酸性成分的大陆地壳。

从东川凹陷盆地发育历史看,裂谷发展早期,在氧化环境下因民组主要为紫灰色碎屑岩(华仁民, 1990龚琳等, 1996)之后,落雪组主要为浅海环境的碳酸盐岩(龚琳等,1996),黑山组主要为海湾滞流还原环境的泥质岩类(龚琳等, 1996),最上部青龙山组为海侵的陆棚环境海相碳酸盐岩(梁玉左等, 1982解德勇, 1993)。因此东川群应为毗邻大陆的浅海相环境沉积的产物,毗邻的大陆可能为发育典型壳源岩浆作用(S型花岗岩)古老造山带。

4.2 东川群碎屑锆石来源对扬子地台西南缘构造格局的启示

扬子板块西南缘岩浆活动集中在2.3Ga和1.8~1.0Ga两期。2.3Ga的凝灰岩主要夹于汤丹群望厂组、洒海沟组中(朱华平等, 2011a; 周邦国等, 2012);1.8~1.0Ga是康滇地区岩浆活动区间,尤其是集中在1.75~1.65Ga(Zhao et al., 2010; 关俊雷等, 2011; 周家云等, 2011; 朱华平等, 2011a; 耿元生等, 2012; 周邦国等, 2012; 王冬兵等, 2013; 王子正等, 2013王生伟等, 2014刘伟, 2019);1.0Ga的中酸性岩类分布在麻塘断裂南西侧(王生伟等, 2013)以及北侧的会理群天宝山组中(耿元生等, 2007; 尹福光等, 2012)。康滇地区1.8~1.5Ga的岩浆岩可能为东川群~1.8Ga、~1.5Ga的锆石源区。但东川群的碎屑锆石年龄大多数都早于1.8Ga(表 1),且出现2.2Ga、2.5Ga、2.7Ga三个新太古代到古元古代岩浆作用峰值,它们的物源区来自哪里呢?

扬子板块太古宙-古元古代基底岩石主要分布在扬子板块北部和西部边缘的有限地区,包括崆岭杂岩、黄土岭麻粒岩、鱼洞子杂岩、陡岭杂岩和后河杂岩(图 8)。鱼洞子杂岩主要由变质地层(鱼洞子岩群)和规模不等的花岗质变质侵入体(花岗片麻岩)组成,年龄集中于2.45~2.8Ga(秦克令等, 1992; 张宗清等, 2001; 张欣等, 2010; 王洪亮等, 2011; Hui et al., 2017; Zhou et al., 2018)。后河杂岩主要由TTG质混合片麻岩组成,年龄为~2.5Ga(凌文黎等, 1997吴建民等, 1998)。鱼洞子杂岩和后河杂岩可能为东川群提供了~2.5Ga、~2.7Ga的锆石物源区。扬子板块西南缘南部的越南西北部古元古代岩浆岩可作为扬子板块毗邻的主要地质记录(Wang et al., 2016),其中Phan Si Pan地区花岗质片麻岩的原岩岩浆侵位于2280~2190Ma(Wang et al., 2016)、撮科二长花岗岩侵位于~2360Ma。越南西北部Phan Si Pan地区的花岗岩质片麻岩可能为东川群提供了~2.2Ga的锆石。但是考虑到东川群锆石绝大多数来自于近距离搬运的物源,上述早期岩群都不可能供给沉积物。最可能的情形是在康滇地区存在2.2~2.7Ga的早期岩浆作用,或者目前地表尚未发现,或者已经被剥蚀殆尽。

图 8 华南前寒武纪(>1.9Ga)岩石分布图(据邓奇等, 2017修改) Fig. 8 Geological map showing the distribution of Precambian rocks (>1.9 Ga) in South China (modified after Deng et al., 2017)

扬子板块作为哥伦比亚超大陆的组成部分(周邦国等, 2012; 王生伟等, 2013; 刘伟, 2019; 王伟等, 2019)。扬子板块在古元古代中期(2.4~2.3Ga)增生拼贴到劳伦的Rae克拉通(王伟等, 2019),而2.1~1.8Ga的碰撞造山带几乎分布在哥伦比亚超大陆所有陆块内部(图 9Zhao et al., 2002),该时期在扬子板块西北和西南部存在着两条巨大的碰撞造山带。因此,哥伦比亚超大陆的古元古代碰撞造山带可能为东川群提供了重要的沉积物质。

图 9 扬子板块在Columbia超大陆中的重建模式图(据王伟等, 2019) Fig. 9 A model for reconstructing the Yangtze Block in the Columbia supercontinent (after Wang et al., 2019)
4.3 东川群Cu来源

Metcalfe et al.(1994)阐述过陆相红盆沉积物中Cu的富集过程,认为Cu主要来自于结晶岩风化形成的初始不稳定矿物,如黑云母(Cu含量227×10-6)、辉石(Cu含量130×10-6)和角闪石(Cu含量81×10-6)等。中非铜矿带金属很可能来源于前Katanga期陆相岩石风化后形成的沉积物,特别是古元古代低品位斑岩型铜矿床,如Bangweulu地块的斑岩型铜矿或者包括津巴布韦克拉通的太古代Cu-Co-Ni矿床或矿点(Cailteux et al., 2005)。因此先期存在的Cu矿床和富集Cu元素的源区应为东川群成矿的必要条件。

研究区东川群地层形成于陆相红盆到大陆边缘滨海和浅海沉积环境,前文论及其碎屑锆石的源岩可能为哥伦比亚超大陆碰撞造山带产出的S型花岗岩。矿床学理论表明,与S型花岗岩有关的主要是碰撞造山带的W、Sn、Mo等矿床(翟裕生等,2011),而Cu矿床则主要产于与洋陆汇聚有关的大陆弧岩浆-成矿作用、或者产于大陆碰撞造山带内先期大陆岩浆弧Cu元素再循环进入碰撞后斑岩型岩浆-成矿作用。汇聚阶段大陆岩浆弧形成的典型Cu矿床的实例,可见于青藏高原冈底斯带碰撞后斑岩型Cu矿床(侯增谦等, 2012; Yang et al., 2016; 王瑞等,2020)。因此,东川群含矿地层物源区应具有成分二元结构,地层碎屑物质主体为研究区毗邻的造山带典型陆壳再循环的S型花岗岩,而其成矿作用的金属Cu应来自于先期存在Cu矿床或者富集Cu的具有岩浆弧新生地壳特征的岩石。

5 结论

(1) 云南东川群的青龙山组、黑山组、因民组碎屑锆石显示了5个年龄峰值为~2.7Ga、~2.5Ga、~2.2Ga、~1.8Ga、~1.5Ga;青龙山组最小的碎屑锆石年龄为~1220Ma,可作为青龙山组最大沉积年龄。

(2) 东川群3个组的碎屑锆石呈重稀土元素富集、负Eu异常和正Ce异常的岩浆锆石特征,锆石成分应属于S型花岗岩。

(3) 东川群含矿地层碎屑物主体为毗邻的造山带S型花岗岩,成矿金属Cu应为先期存在的Cu矿床或者富Cu岩浆弧岩石。

致谢      本文的野外工作受到云南金沙矿业股份有限公司和矿山技术人员的支持;苗壮、武精凯、齐宁远、唐演、邱磊在锆石U-Pb定年测试及数据处理过程中提供了帮助;李小伟和夏瑛详细审阅并提出了宝贵意见;在此一并致以谢忱。

参考文献
Belousova E, Griffin W, O'Reilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK and Milesi JP. 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African copper belt. Journal of African Earth Sciences, 42(1-5): 134-158 DOI:10.1016/j.jafrearsci.2005.08.001
Chang XY, Zhu BQ, Sun DZ, Qiu HN and Zou R. 1997. Isotope geochemistry study of Dongchuan copper deposits in middle Yunnan Province, SW China: I. Stratigraphic chronology and application of geochemical exploration by lead isotopes. Geochimica, 26(2): 32-38 (in Chinese with English abstract)
Chen HS and Ran CY. 1992. Isotope Geochemistry of Copper Deposits in Kangdian Axis. Beijing: Geological Publishing House, 1-100 (in Chinese)
Deng Q, Wang ZJ, Wang J, Cui XZ, Ma L and Xiong XH. 2017. Discovery of the Baiyu~1.79Ga A-type granite in the Beiba area of the northwestern margin of Yangtze Block: Constraints on tectonic evolution of South China. Acta Geologica Sinica, 91(7): 1454-1466 (in Chinese with English abstract)
Du YS and Han X. 1999. New Discovery of stromatolitic reef of the Luoxue Formation (Mesoproterozoic Era) in central Yunnan Province. Journal of Stratigraphy, 23(4): 294-315 (in Chinese with English abstract)
Fang WX. 2014. Geotectonic evolution and the Proterozoic iron oxide copper-gold deposits on the western margin of the Yangtze Massif. Geotectonica et Metallogenia, 38(4): 733-757 (in Chinese with English abstract)
Gao H, Pei RF, Wang AJ, Cao DH, Fan SJ and Mei YX. 2012. Marine sand shale-hosted copper mineralization model and geological correlation: A case study of the Dongchuan copper mine in Yunnan and the Aynak copper mine in Afghanistan. Geological Bulletin of China, 31(8): 1332-1351 (in Chinese with English abstract)
Geng YS, Yang CH, Wang XS, Ren LD, Du LL and Zhou XW. 2007. Age of crystalline basement in western margin of Yangtze terrane. Geological Journal of China Universities, 13(3): 429-441 (in Chinese with English abstract)
Geng YS, Liu YQ, Gao LZ, Peng N and Jiang XJ. 2012. Geochronology of the Mesoproterozoic Tong'an Formation in southwestern margin of Yangtze Craton: New evidence from zircon LA-ICP-MS U-Pb ages. Acta Geologica Sinica, 86(9): 1479-1490 (in Chinese with English abstract)
Geng YS, Kuang HW, Liu YQ and Du LL. 2017. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze block. Acta Geologica Sinica, 91(10): 2151-2174 (in Chinese with English abstract)
Gong L, He YT and Chen TY. 1996. Proterozoic Rift Copper Deposits in Dongchuan, Yunnan Province. Beijing: Metallurgical Industry Press, 1-248 (in Chinese)
Guan JL, Zheng LL, Liu JH, Sun ZM and Cheng WH. 2011. Zircons SHRIMP U-Pb dating of diabase from Hekou, Sichuan Province, China and its geological significance. Acta Geologica Sinica, 85(4): 482-490 (in Chinese with English abstract)
Guo Y, Wang SW, Sun XM, Liao ZW, Wang ZZ, Zhou BG and Yang B. 2014. Zircon U-Pb age of the Paleoproterozoic diabase from the Yinachang iron-copper deposit, Yunnan Province, and its geological implication. Geotectonica et Metallogenia, 38(1): 208-215 (in Chinese with English abstract)
Hitzman M, Kirkham R, Broughton D, Thorson J and Selley D. 2005. The sediment-hosted stratiform copper ore system. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds. ). Economic Geology: One Hundredth Anniversary. Littleton: Society of Economic Geologists, 609-642
Hoskin PWO and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630 DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
Hou ZQ, Zheng YC, Yang ZM and Yang ZS. 2012. Metallogenesis of continental collision setting: Part I. Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Mineral Deposits, 31(4): 647-670
Hu ZC, Liu YS, Gao S, Liu WG, Zhang W, Tong XR, Lin L, Zong KQ, Li M, Chen HH, Zhou L and Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399 DOI:10.1039/c2ja30078h
Hua RM. 1993. Some characteristics of sedimentation of the Yinmin Formation. Acta Sedimentologica Sinica, 11(1): 32-40 (in Chinese with English abstract)
Hui B, Dong YP, Cheng C, Long XP, Liu XM, Yang Z, Sun SS, Zhang FF and Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze Craton, China. Precambrian Research, 301: 65-85 DOI:10.1016/j.precamres.2017.09.003
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69 DOI:10.1016/j.chemgeo.2004.06.017
Li HK, Zhang CL, Yao CY and Xiang ZQ. 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif. Science China (Earth Sciences), 56(4): 628-639 DOI:10.1007/s11430-013-4590-9
Liang YZ, Wu MD, Cao RG and Duan JS. 1982. Discovery of "Micro-type stromatolite assemblage under stable conditions" in Kunyang Group and its Geological significance. Geology of Yunnan, 1(1): 85-87
Ling WL, Gao S, Zhang BR, Zhou L and Zhang HF. 1997. Early Precambrian continental crust evolution at the northern margin of Yangtze Craton: Constrain from the elemental and isotopic geochemical study of Houhe complex. Journal of Mineralogy and Petrology, 17(4): 27-33 (in Chinese with English abstract)
Liu D, Zhao ZD, Zhu DC, Niu YL and Harrison TM. 2014. Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time. Geology, 42(1): 43-46 DOI:10.1130/G34902.1
Liu W. 2019. Response to Columbia supercontinent in the western margin of Yangtze block. Ph. D. Dissertation. Hefei: University of Science and Technology of China, 155 (in Chinese with English summary)
Liu X, Fan HR, Hu FF, Yang KF and Qiu ZJ. 2015. Research progresses on sediment-hosted stratiform copper deposit. Geological Review, 61(1): 45-64 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 DOI:10.1007/s11434-010-3052-4
Metcalfe R, Rochelle CA, Savage D and Higgo JW. 1994. Fluid-rock interactions during continental red bed diagenesis: Implications for theoretical models of mineralization in sedimentary basins. In: Parnell J (ed). Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins. Geological Society London Special Publications.
Pang WH, Ren GM, Sun ZM and Yin FG. 2015. Division and correlation of Paleo-Mesoproterozoic strata on the western margin of Yangtze block: Evidence from the U-Pb age of tuff zircon in the Tongan Formation. Geology in China, 42(4): 921-936 (in Chinese with English abstract)
Qin KL, Song SG and He SP. 1992. The geological characteristics of the Yudongzi granite-greenstone terrain and its gold-bearing property in Mianluening area Shaanxi. Northwest Geoscience, 13(1): 65-74 (in Chinese with English abstract)
Sircombe KN. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124(1-4): 47-67 DOI:10.1016/S0037-0738(98)00120-1
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Sun ZM, Yin FG, Guan JL, Liu JH, Li JM, Geng QR and Wang LQ. 2009. SHRIMP U-Pb dating and its stratigraphic significance of tuff zircons from Heishan Formation of Kunyang Group, Dongchuan area, Yunnan Province, China. Geological Bulletin of China, 28(7): 896-900 (in Chinese with English abstract)
Wang DB, Yin FG, Sun ZM, Wang LQ, Wang BD, Liao SY, Tang Y and Ren GM. 2013. Zircon U-Pb age and Hf isotope of Paleoproterozoic mafic intrusion on the western margin of the Yangtze Block and their implications. Geological Bulletin of China, 32(4): 617-630 (in Chinese with English abstract)
Wang HL, Xu XY, Chen JL, Yan Z, Li T and Zhu T. 2011. Constraints from zircon U-Pb chronology of Yudongzi Group magnetite-quartzite in the Lueyang area, southern Qinling, China. Acta Geologica Sinica, 85(8): 1284-1290 (in Chinese with English abstract)
Wang Q, Zhu DC, Zhao ZD, Guan Q, Zhang XQ, Sui QL, Hu ZC and Mo XX. 2012. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59-66 DOI:10.1016/j.jseaes.2011.07.027
Wang R, Zhu DC, Wang Q, Hou ZQ, Yang ZM, Zhao ZD and Mo XX. 2020. Porphyry mineralization in the Tethyan orogen. Science China (Earth Sciences), 63(12): 2042-2067 DOI:10.1007/s11430-019-9609-0
Wang SW, Liao ZW, Sun XM, Jiang XF, Zhou BG, Guo Y, Luo MJ, Zhu HP and Ma D. 2013. Geochemistry of Paleoproterozoic diabases in the Dongchuan copper deposit, Yunnan, SW China: Response to breakup of the Columbia supercontinent in the southwestern margin of Yangtze block. Acta Geologica Sinica, 87(12): 1834-1852 (in Chinese with English abstract)
Wang SW, Liao ZW, Sun XM, Zhou Q, Wang B, Wang ZZ, Guo Y, Jiang XF, Yang B and Lu SL. 2014. The Yanshanian lithospheric evolution in the Kangdian Area: Restriction from SHRIMP zircons U-Pb age and geochemistry of mafic dykes in Dongchuan, Yunnan Province, SW China. Acta Geologica Sinica, 88(3): 299-317 (in Chinese with English abstract)
Wang SW, Jiang XF, Yang B, Sun XM, Liao ZW, Zhou Q, Guo Y, Wang ZZ and Yang B. 2016. The Proterozoic tectonic movement in Kangdian area I: Kunyang intracontinental rift, mantle plume and its metallogenesis. Geological Review, 62(6): 1353-1377 (in Chinese with English abstract)
Wang W, Cawood PA, Zhou MF and Zhao JH. 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent. Earth and Planetary Science Letters, 433: 269-279 DOI:10.1016/j.epsl.2015.11.005
Wang W, Lu GM, Huang SF and Xue EK. 2019. Geological evolution of the Yangtze block in Paleo- to Meso-Proterozoic and its implication on the reconstruction of the Columbia Supercontinent. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 30-52 (in Chinese with English abstract)
Wang ZZ, Guo Y, Yang B, Wang SW, Sun XM, Hou L, Zhou BG and Liao ZW. 2013. Discovery of the 1. 73Ga Haizi anorogenic type granite in the western margin of Yantze Craton, and its geological significance. Acta Geologica Sinica, 87(7): 931-942 (in Chinese with English abstract)
Wei YQ, Zhao ZD, Niu YL, Zhu DC, DePaolo DJ, Jing TJ, Liu D, Guan Q and Sheikh L. 2020. Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane. Gondwana Research, 78: 41-57 DOI:10.1016/j.gr.2019.08.014
Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår O, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q and Zheng YF. 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9-39 DOI:10.1111/j.1751-908X.2004.tb01041.x
Wu JM, Liu ZC, Li GJ, Huang YP, Li FY and Zhong KH. 1998. Geology of Copper Deposits on the Western Margin of the Yangtze Platform. Wuhan: China University of Geosciences Press, 1-271 (in Chinese)
Xie DY. 1993. The ore-bearing stratum in the Yimen mining district: Luzhijiang Formation. Yunnan Geology, 12(1): 50-56 (in Chinese with English abstract)
Xing LY, Zhao ZD, Qi NY, Tang Y, Liu D, Tong X, Wang Q and Zhu DC. 2020. Geochemistry and petrogenesis of sandstones and their basaltic interlayers of Shexing Formation from Linzhou basin, South Tibet. Acta Petrologica Sinica, 36(9): 2729-2750 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.09.08
Yang ZM, Goldfarb R and Chang ZS. 2016. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. In: Richards JP (ed). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Littleton: Society of Economic Geologists Special Publication, 19: 279-300
Ye L. 2004. The geochemical research of Xikuangshan type copper ore deposit, Dongchuan, Yunnan. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences: 1-128 (in Chinese with English summary)
Yin FG, Sun ZM and Bai JK. 2011a. Stratigraphic framework of the Mesoproterozoic in Dongchuan and central Yunnan region. Journal of Stratigraphy, 35(1): 49-54 (in Chinese with English abstract)
Yin FG, Sun ZM and Zhang Z. 2011b. Mesoproterozoic stratigraphic-structure framework in Huili-Dongchuan Area. Geological Review, 57(6): 770-778 (in Chinese with English abstract)
Yin FG, Sun ZM, Ren GM and Wang DB. 2012. Geological record of Paleo-and Mesoproterozoic orogenesis in the western margin of Upper Yangtze Block. Acta Geologica Sinica, 86(12): 1917-1932 (in Chinese with English abstract)
Zhai YS, Yao SZ and Cai KQ. 2011. Mineral Deposits. 3rd Edition. Beijing: Geological Publishing House (in Chinese)
Zhang X, Xu XY, Song GS, Wang HL, Chen JL and Li T. 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, western Qinling, China. Geological Bulletin of China, 29(4): 510-517 (in Chinese with English abstract)
Zhang ZQ, Zhang GW, Tang SH and Wang JH. 2001. On the age of metamorphic rocks of the Yudongzi Group and the Archean crystalline basement of the Qinling orogen. Acta Geologica Sinica, 75(2): 198-204 (in Chinese with English abstract)
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162
Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH and Yang JH. 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69 DOI:10.1016/j.precamres.2010.06.021
Zhao XF, Zhou MF, Hitzman MW, Li JW, Bennett M, Meighan C and Anderson E. 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, Southwest China. Economic Geology, 107(2): 357-375 DOI:10.2113/econgeo.107.2.357
Zhao XF, Zhou MF, Li JW and Qi L. 2013. Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China: Their possible link to the supercontinent cycle. Mineralium Deposita, 48(1): 129-136 DOI:10.1007/s00126-012-0445-0
Zhao ZD, Liu D, Wang Q, Zhu DC, Dong GC, Zhou S and Mo XX. 2018. Zircon trace elements and their use in probing deep processes. Earth Science Frontiers, 25(6): 124-135 (in Chinese with English abstract)
Zhou BG, Wang SW, Sun XM, Liao ZW, Guo Y, Jiang XF, Zhu HP, Luo MJ, Liu CZ, Ma D, Shen ZW and Zhang H. 2012. SHRIMP U-Pb age and its significance of zircons in welded tuff of Wangchang Formation in Dongchuan area, Yunnan Province, SW China. Geological Review, 58(2): 359-368 (in Chinese with English abstract)
Zhou GY, Wu YB, Li L, Zhang WX, Zheng JP, Wang H and Yang SH. 2018. Identification of ca. 2.65Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block. Precambrian Research, 314: 240-263
Zhou JY, Mao JW, Liu FY, Tang HQ, Shen B, Zhu ZM, Chen JB, Luo LP, Zhou X and Wang Y. 2011. SHRIMP U-Pb zircon chronology and geochemistry of albitite from the Hekou Group in the western Yantze block. Journal of Mineralogy and Petrology, 31(3): 66-73 (in Chinese with English abstract)
Zhu DC, Zhao ZD, Niu YL, Dilek Y and Mo XX. 2011. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727-730 DOI:10.1130/G31895.1
Zhu HP, Fan WY, Zhou BG, Wang SW, Luo MJ, Liao ZW and Guo Y. 2011a. Assessing Precambrian stratigraphic sequence of Dongchuan area: Evidence from zircon SHRIMP and LA-ICP-MS dating. Geological Journal of China Universities, 17(3): 452-461 (in Chinese with English abstract)
Zhu HP, Zhou BG, Wang SW, Luo MJ, Liao ZW and Guo Y. 2011b. Detrital zircon U-Pb dating by LA-ICP-MS and its geological significance in western margin of Yangtze Terrane. Journal of Mineralogy and Petrology, 31(1): 70-74 (in Chinese with English abstract)
常向阳, 朱炳泉, 孙大中, 邱华宁, 邹日. 1997. 东川铜矿床同位素地球化学研究: I. 地层年代与铅同位素化探应用. 地球化学, 26(2): 32-38.
陈好寿, 冉崇英. 1992. 康滇地轴铜矿床同位素地球化学. 北京: 地质出版社, 1-100.
邓奇, 汪正江, 王剑, 崔晓庄, 马龙, 熊小辉. 2017. 扬子地块西北缘碑坝地区白玉~1. 79Ga A型花岗岩的发现及其对构造演化的制约. 地质学报, 91(7): 1454-1466.
杜远生, 韩欣. 1999. 滇中地区中元古代昆阳群落雪组叠层石礁的新发现及其意义. 地层学杂志, 23(4): 294-315.
方维萱. 2014. 论扬子地块西缘元古宙铁氧化物铜金型矿床与大地构造演化. 大地构造与成矿学, 38(4): 733-757. DOI:10.3969/j.issn.1001-1552.2014.04.002
高辉, 裴荣富, 王安建, 曹殿华, 范世家, 梅燕雄. 2012. 海相砂页岩型铜矿成矿模式与地质对比——以中国云南东川铜矿和阿富汗安纳克铜矿为例. 地质通报, 31(8): 1332-1351. DOI:10.3969/j.issn.1671-2552.2012.08.013
耿元生, 杨崇辉, 王新社, 任留东, 杜利林, 周喜文. 2007. 扬子地台西缘结晶基底的时代. 高校地质学报, 13(3): 429-441. DOI:10.3969/j.issn.1006-7493.2007.03.012
耿元生, 柳永清, 高林志, 彭楠, 江小均. 2012. 扬子克拉通西南缘中元古代通安组的形成时代——锆石LA-ICPMS U-Pb年龄. 地质学报, 86(9): 1479-1490. DOI:10.3969/j.issn.0001-5717.2012.09.009
耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174. DOI:10.3969/j.issn.0001-5717.2017.10.001
龚琳, 何毅特, 陈天佑. 1996. 云南东川元古宙裂谷型铜矿. 北京: 冶金工业出版社, 1-248.
关俊雷, 郑来林, 刘建辉, 孙志明, 程万华. 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490.
郭阳, 王生伟, 孙晓明, 廖震文, 王子正, 周邦国, 杨斌. 2014. 云南省武定县迤纳厂铁铜矿区古元古代辉绿岩锆石的U-Pb年龄及其地质意义. 大地构造与成矿学, 38(1): 208-215.
侯增谦, 郑远川, 杨志明, 杨竹森. 2012. 大陆碰撞成矿作用: I. 冈底斯新生代斑岩成矿系统. 矿床地质, 31(4): 647-670.
华仁民. 1990. 论昆阳拗拉谷. 地质学报, 64(4): 289-301.
华仁民. 1993. 论因民组的若干沉积建造特征. 沉积学报, 11(1): 32-40.
李怀坤, 张传林, 姚春彦, 相振群. 2013. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成. 中国科学(地球科学), 43(8): 1287-1298.
梁玉左, 吴懋德, 曹仁关, 段锦荪. 1982. 昆阳群中"稳定条件下微小类型叠层石组合"的发现及其地质意义. 云南地质, 1(1): 85-87.
凌文黎, 高山, 张本仁, 周炼, 张宏飞. 1997. 扬子克拉通北缘早前寒武纪地壳演化——后河杂岩元素和同位素地球化学限制. 矿物岩石, 17(4): 27-33.
刘伟. 2019. Columbia超大陆在扬子陆块西缘的响应. 博士学位论文. 合肥: 中国科学技术大学, 155.
刘玄, 范宏瑞, 胡芳芳, 杨奎锋, 邱正杰. 2015. 沉积岩型层状铜矿床研究进展. 地质论评, 61(1): 45-64.
庞维华, 任光明, 孙志明, 尹福光. 2015. 扬子地块西缘古-中元古代地层划分对比研究: 来自通安组火山岩锆石U-Pb年龄的证据. 中国地质, 42(4): 921-936. DOI:10.3969/j.issn.1000-3657.2015.04.010
秦克令, 宋述光, 何世平. 1992. 陕西勉略宁区鱼洞子花岗岩-绿岩地体地质特征及其含金性. 西北地质科学, 13(1): 65-74.
孙志明, 尹福光, 关俊雷, 刘建辉, 李军敏, 耿全如, 王立全. 2009. 云南东川地区昆阳群黑山组凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义. 地质通报, 28(7): 896-900. DOI:10.3969/j.issn.1671-2552.2009.07.009
王冬兵, 尹福光, 孙志明, 王立全, 王保弟, 廖世勇, 唐渊, 任光明. 2013. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 32(4): 617-630. DOI:10.3969/j.issn.1671-2552.2013.04.010
王洪亮, 徐学义, 陈隽璐, 闫臻, 李婷, 朱涛. 2011. 南秦岭略阳鱼洞子岩群磁铁石英岩形成时代的锆石U-Pb年代学约束. 地质学报, 85(8): 1284-1290.
王瑞, 朱弟成, 王青, 侯增谦, 杨志明, 赵志丹, 莫宣学. 2020. 特提斯造山带斑岩成矿作用. 中国科学(地球科学), 50(12): 1919-1946.
王生伟, 廖震文, 孙晓明, 蒋小芳, 周邦国, 郭阳, 罗茂金, 朱华平, 马东. 2013. 云南东川铜矿区古元古代辉绿岩地球化学——Columbia超级大陆裂解在扬子陆块西南缘的响应. 地质学报, 87(12): 1834-1852.
王生伟, 廖震文, 孙晓明, 周清, 王彪, 王子正, 郭阳, 蒋小芳, 杨波, 陆生林. 2014. 康滇地区燕山期岩石圈演化——来自东川基性岩脉SHIRMP锆石U-Pb年龄和地球化学制约. 地质学报, 88(3): 299-317.
王生伟, 蒋小芳, 杨波, 孙晓明, 廖震文, 周清, 郭阳, 王子正, 杨斌. 2016. 康滇地区元古宙构造运动Ⅰ: 昆阳陆内裂谷、地幔柱及其成矿作用. 地质论评, 62(6): 1353-1377.
王伟, 卢桂梅, 黄思访, 薛尔堃. 2019. 扬子陆块古-中元古代地质演化与Columbia超大陆重建. 矿物岩石地球化学通报, 38(1): 30-52.
王子正, 郭阳, 杨斌, 王生伟, 孙晓明, 侯林, 周邦国, 廖震文. 2013. 扬子克拉通西缘1.73Ga非造山型花岗斑岩的发现及其地质意义. 地质学报, 87(7): 931-942.
吴健民, 刘肇昌, 黎功举, 等. 1998. 扬子地块西缘铜矿床地质. 武汉: 中国地质大学出版社, 271.
解德勇. 1993. 易门矿区的含矿层位——绿汁江组. 云南地质, 12(1): 50-56.
邢莉圆, 赵志丹, 齐宁远, 唐演, 刘栋, 佟鑫, 王青, 朱弟成. 2020. 藏南林周盆地设兴组砂岩及其中玄武岩夹层的地球化学与成因. 岩石学报, 36(9): 2729-2750.
叶霖. 2004. 东川稀矿山式铜矿地球化学研究. 博士学位论文. 贵阳: 中国科学院地球化学研究所, 1-128
尹福光, 孙志明, 白建科. 2011a. 东川、滇中地区中元古代地层格架. 地层学杂志, 35(1): 49-54.
尹福光, 孙志明, 张璋. 2011b. 会理-东川地区中元古代地层-构造格架. 地质论评, 57(6): 770-778.
尹福光, 孙志明, 任光明, 王冬兵. 2012. 上扬子陆块西南缘早-中元古代造山运动的地质记录. 地质学报, 86(12): 1917-1932. DOI:10.3969/j.issn.0001-5717.2012.12.005
翟裕生, 姚书振, 蔡克勤. 2011. 矿床学. 第3版. 北京: 地质出版社.
张欣, 徐学义, 宋公社, 王洪亮, 陈隽璐, 李婷. 2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义. 地质通报, 29(4): 510-517. DOI:10.3969/j.issn.1671-2552.2010.04.004
张宗清, 张国伟, 唐索寒, 王进辉. 2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底. 地质学报, 75(2): 198-204. DOI:10.3321/j.issn:0001-5717.2001.02.008
赵志丹, 刘栋, 王青, 朱弟成, 董国臣, 周肃, 莫宣学. 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124-135.
周邦国, 王生伟, 孙晓明, 廖震文, 郭阳, 蒋小芳, 朱华平, 罗茂金, 刘才泽, 马东, 沈战武, 张海. 2012. 云南东川望厂组熔结凝灰岩锆石SHRIMP U-Pb年龄及其意义. 地质论评, 58(2): 359-368. DOI:10.3969/j.issn.0371-5736.2012.02.018
周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66-73. DOI:10.3969/j.issn.1001-6872.2011.03.010
朱华平, 范文玉, 周邦国, 王生伟, 罗茂金, 廖震文, 郭阳. 2011a. 论东川地区前震旦系地层层序: 来自锆石SHRIMP及LA-ICP-MS测年的证据. 高校地质学报, 17(3): 452-461.
朱华平, 周邦国, 王生伟, 罗茂金, 廖震文, 郭阳. 2011b. 扬子地台西缘康滇克拉通中碎屑锆石的LA-ICP-MS U-Pb定年及其地质意义. 矿物岩石, 31(1): 70-74.