岩石学报  2021, Vol. 37 Issue (4): 1255-1269, doi: 10.18654/1000-0569/2021.04.17   PDF    
中国东北新生代火山区CO2释放规模与成因
赵文斌1,2,3, 郭正府1,2,3, 刘嘉麒1,3, 张茂亮4, 孙玉涛5, 雷鸣6, 马琳1,2,3, 李菊景1,2,3     
1. 中国科学院地质与地球物理研究所, 新生代地质与环境重点实验室, 北京 100029;
2. 中国科学院生物演化与环境卓越创新中心, 北京 100044;
3. 中国科学院大学地球与行星科学学院, 北京 100049;
4. 天津大学表层地球系统科学研究院, 天津 300072;
5. 河北地质大学地球科学学院, 石家庄 050031;
6. 中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广州 510640
摘要: 板片俯冲过程将地表碳带入地球内部,火山作用将深部碳输送至地球外部圈层,两者构成了地球深部碳循环的主要方式,进而影响了地史时期的气候变化。我国东北新生代火山活动被认为是太平洋板片深俯冲作用的产物,板片俯冲导致岩浆源区强烈的碳酸盐组分交代作用,进而使东北亚上地幔成为一个新生代时期的巨型深部碳库,它的活动和释放将会对全球的气候与环境变化造成重要影响。然而,有关该深部碳库向当今大气圈输送CO2气体的规模及其演化过程尚不清楚,从而影响了进一步定量评估该碳库在全球变化研究中的地位和作用。针对上述科学问题,本文对我国东北长白山、五大连池和阿尔山火山释放CO2气体的规模与成因进行了研究。结果表明,东北新生代火山区的土壤CO2释放通量介于9.6~41.2g·m-2·d-1之间,每年向当今大气圈释放CO2气体约为2.1Mt(其中,长白山火山区为0.94Mt,五大连池火山区为1.2Mt)。气体地球化学研究证实,长白山与五大连池火山气体均起源于太平洋板片深俯冲环境;但是,与长白山相比,五大连池火山气体具有较高比例壳源组分贡献。阿尔山火山气体的成分与长白山和五大连池火山区存在着明显的差异,它们以N2为主(>95%),并且其δ15NN2值高于空气值(1.3‰~1.9‰),3He/4He比值较低(0.14~0.18RA),δ13CCO2较轻(-13.7‰~-6.2‰),表明壳源富氮有机沉积物的贡献占比较大的比例。上述特征进一步表明,阿尔山火山气体在上升经过地下水时可能滞留了较长时间,混染了大量的陆壳组分,其源区并未受到太平洋板片俯冲物质的显著影响。
关键词: 火山区    深部碳    地幔富集    陆壳混染    中国东北    
Fluxes and genesis of carbon dioxide emissions from Cenozoic volcanic fields in NE China
ZHAO WenBin1,2,3, GUO ZhengFu1,2,3, LIU JiaQi1,3, ZHANG MaoLiang4, SUN YuTao5, LEI Ming6, MA Lin1,2,3, LI JuJing1,2,3     
1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China;
3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4. Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China;
5. College of Earth Sciences, Heibei GEO University, Shijiazhuang 050031, China;
6. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: Carbon was carried into the Earth's interior by plate subduction, and returned to the exogenic environment mainly by volcanism, which constitute the main process of deep carbon cycles in the Earth and drive the long-term (~Myr) climate change. Cenozoic intraplate volcanism in NE China is deemed to be derived from deep subducted Pacific slab in the mantle transition zone (MTZ), along with large quantities of crustal carbonates, which makes the upper mantle beneath NE China a huge carbon reservoir in Cenozoic era, whose activity and release would have a significant impact on global climate and environmental change. Nevertheless, the total output of volcanic carbon, its origin and evolution process remain controversial. Studies were performed in Cenozoic volcanic fields of Changbai volcanic field (CVF), Wudalianchi volcanic field (WVF) and Aershan volcanic field (AVF) in NE China to better constrain this issue. The fluxes of soil CO2 emissions from Cenozoic volcanic fields in NE China are between 9.6g·m-2·d-1 and 41.2g·m-2·d-1, and the total flux of volcanic CO2 is reviewed and recalculated to be 2.1Mt per year, about 0.94Mt from the CVF and 1.2Mt from WVF. Chemical compositions and C-He isotopes indicate that CO2-riched gases in CBV and WVF might originate from deeply subducted Pacific slab beneath NE China. However, volcanic gases from WVF show more proportions of crustal components than that in CVF. Bubble gases from hot springs in AVF exhibit enrichment in N2 (>95%) and remarkable contribution from crustal nitrogen-rich organic components, as indicated by relatively heavier δ15NN2 values (1.3‰~1.9‰), low 3He/4He ratios (0.14~0.18RA) and light δ13CCO2 values (-13.7‰~-6.2‰), which reveals that volcanic gases in AVF may not be prominently influenced by the recycled materials from deeply subducted Pacific slab. We suggest that the primordial gases in AVF are contaminated by large quentities of crustal materials during its long time retention in the groundwater systems.
Key words: Volcanic fields    Deep carbon    Mantle enrichment    Crustal contamination    NE China    

大量研究表明,地球系统通过板块俯冲作用可以将大量壳源物质携带进入深部地幔(Liu et al., 2019; Plank and Manning, 2019),而火山作用在促进地球不同圈层物质能量交换(郭正府等, 2010)的基础上,会将大量深部碳输送到大气圈中(Mörner and Etiope, 2002; Burton et al., 2013),并影响着全球长时间尺度的气候与环境变化(Sleep and Zahnle, 2001; Dasgupta, 2013; Hunt et al., 2017; McKenzie and Jiang, 2019)。地质历史时期的五次生物大灭绝事件被认为与火山作用造成的地球系统碳循环扰动有密切联系(Reichow et al., 2009; Rampino, 2010; Bond and Grasby, 2017),白垩纪至新生代早期(140~50Ma)的高温事件也被认为可能与当时大规模的火山活动有关(Lee et al., 2013; Lee and Lackey, 2015)。然而,在现今地球系统碳循环及未来气候预测模型等研究中,地球深部碳的贡献远被低估,原因在于深部碳循环在短时间尺度对气候、环境的影响还存在争议,且不同模型计算的深部碳释放通量结果差别较大(Sano and Marty, 1995; Kerrick, 2001; Mörner and Etiope, 2002; Kelemen and Manning, 2015; Lee and Lackey, 2015; Plank and Manning, 2019; Wong et al., 2019),获得准确的深部碳释放通量数值需依赖大量野外实地观测与模型计算结果的结合(Burton et al., 2013; Aiuppa et al., 2019; Fischer et al., 2019)。然而,目前这方面的研究还很薄弱。

地球物理层析成像研究显示,西太平洋板块俯冲至我国东部的地幔过渡带深度(Richard and Iwamori, 2010; Zhao et al., 2011; Liu et al., 2017),并被认为是导致该区新生代火山作用的主要原因(Kuritani et al., 2011, 2019; Xu et al., 2012b; Wang et al., 2015; Yang and Faccenda, 2020)。新生代玄武岩轻Mg同位素及重Fe、Zn同位素研究成果均表明,我国东北上地幔含有较高比例的再循环壳源碳组分,东北亚上地幔被认为是一个新生代全球规模的巨型深部碳库(Liu et al., 2016; Li et al., 2017; Li and Wang, 2018; Xu et al., 2018; He et al., 2019)。以往的气体地球化学研究证实(郭正府等, 2010, 2014),东北新生代火山气体的成分与成因机制研究是示踪该深部碳库活动性及其规模的有效手段。目前,东北新生代火山区存在强烈的岩浆脱气现象,并通过温泉、土壤微渗漏等形式向当今大气圈释放大量的CO2气体,进一步证实该深部碳库目前正处于活动状态(郭正府等, 2014; Zhang et al., 2015; Zhao et al., 2019; Sun et al., 2020)。尽管前人已对东北地区部分火山区进行了火山碳释放通量的零星调查,但是,东北新生代火山区的深部碳释放规模,至今尚不清楚(郭正府等, 2014; Zhang et al., 2015; Zhao et al., 2019Sun et al., 2020)。定量研究中国东北新生代火山区深部碳释放的规模及其演变特征,对于有效地评估东北亚深部碳库在全球变化研究中的地位和作用具有重要的意义。

本文在对我国东北新生代火山区CO2的释放特征进行大量野外考察与实地观测的基础上,结合火山气体的同位素地球化学模拟计算结果,估算了东北新生代火山区的深部碳释放规模,并探讨了火山区CO2释放的成因机制,在此基础上,提出了东北新生代火山区碳释放的成因模式。

1 地质概况及火山气体的释放特征

我国东北地区的松辽盆地自中生代以来经历了广泛的陆内裂谷作用(Tian et al., 1992; Liu et al., 2001; Ren et al., 2002),内部普遍发育伸展断裂,地壳及岩石圈地幔呈现中间薄、周边厚的特征(Zhang et al., 2014)。新生代以来,东北地区的火山活动较强烈,形成了长白山、五大连池和阿尔山等多个火山区(Fan and Hooper, 1991; Liu et al., 2001)。火山的数量接近600座,火山岩的出露面积超过60000km2(Liu et al., 2001; 陈霞玉等, 2014);火山喷发物的成分以玄武质熔岩为主,构成了欧亚大陆东缘新生代板内火山活动带的重要组成部分(Liu et al., 2001)。地球物理及火山岩地球化学的研究表明,大兴安岭-太行山重力梯度带以东新生代火山区的成因与太平洋板片的深俯冲作用有关(Kuritani et al., 2019; Yang and Faccenda, 2020)。为深入理解东北新生代火山区深部碳释放的规模和特征,本文选取了分别位于松辽盆地东侧、中部及西侧的长白山、五大连池和阿尔山火山区(图 1a),开展了火山碳释放调查与气体来源、演化的对比研究。

图 1 东北新生代火山岩及温泉分布简图(据Zhao et al., 2019修改) (a)东北新生代火山区分布示意图; (b)长白山火山区温泉分布图; (c)阿尔山火山区温泉水热活动分布图; (d)五大连池火山区冷泉分布图 Fig. 1 Sketch maps showing the distribution of Cenozoic volcanic rocks and springs in NE China (modified after Zhao et al., 2019) (a) Cenozoic volcanic fields in NE China; (b) hot springs in Changbaishan volcanic field; (c) hydrothermal activities in Aershan volcanic field; (d) cold springs in Wudalianchi volcanic field
1.1 长白山火山区

长白山火山区位于华北克拉通东北缘,距离西太平洋岛弧带的直线距离约1400km,是我国东部新生代板内火山作用的典型代表(Zhang et al., 2018; Fan and Chen, 2019)。区内大规模的火山活动始于中新世早期的玄武质熔岩喷发,在早更新世达到顶峰,形成了以天池火山口为中心、直径约50~60km的玄武质熔岩台地(Zhang et al., 2018)。构成长白山天池火山巨大锥体的粗面岩、碱流岩等形成于晚更新世(Zhang et al., 2018)。此后,天池火山经历了多次不同规模的喷发,其中“千年大喷发”是过去千年以来人类已知最强烈的火山活动之一(Oppenheimer, 2003)。长白山天池火山被认为是一座具有潜在喷发危险的火山(Wei et al., 2013)。火山监测记录显示天池火山在2002~2005年间曾处于异常活动期(刘国明等, 2011; Zhang et al., 2018);地球物理研究也显示火山深部存在高温地壳岩浆房(Kim et al., 2017);火山及其周边水热活动剧烈,分布着包括湖滨温泉带、聚龙温泉、锦江温泉在内的多个温泉群(图 1b),反映了深部高温岩浆房的不断加热烘烤与岩浆脱气作用。

湖滨温泉带位于长白山天文峰下的天池湖滨,沿东西方向延伸约500m,宽约50m,温泉数量众多,呈星散状分布,最高水温可达33℃,温泉所在水域冬季不结冰(高玲等, 2010);此外,朝鲜境内将军峰下的天池湖滨有一条长约900m的温泉带(杨清福等, 2018)。聚龙温泉群位于长白瀑布以北的峡谷内,在面积约3500m2的范围内分布着超过140处温泉,最高水温可达75℃;2002~2005年天池火山岩浆异常活动期间,聚龙温泉水温整体升高2~3℃,同时逸出气CO2含量、幔源He含量也同步升高,被认为是深部岩浆扰动的指示(刘国明等, 2011; Zhang et al., 2018)。锦江温泉群位于天池火山西坡锦江峡谷内,20余眼温泉密集分布在面积约40m2的范围内,气体呈翻花状逸出,最高水温达57℃(李婷等, 2015)。此外,在天池火山锥体外围地区出露十八道沟温泉及药水泉等气体释放区(Zhang et al., 2015, 2018)。

1.2 五大连池火山区

五大连池火山区位于东北松辽盆地北缘,距离西太平洋岛弧带约1800km(Zhao et al., 2014)。区内大规模玄武质火山喷发始于中晚更新世,形成笔架山、卧虎山、焦得布山及龙门山等火山,距今最近的一次喷发发生在约300年前(公元1719~1721年),形成老黑山与火烧山(Zhao et al., 2014)。火山区内14座火山的分布受NE及NNE向断裂的控制,属于典型的陆内裂谷型火山(图 1d; 毛翔等, 2010; Zhao et al., 2014, 2019)。地球物理研究显示,火山区东北部尾山下方存在熔融的壳内岩浆房,并构成深部岩浆持续补给体系(Li et al., 2016; Gao et al., 2020)。

五大连池与长白山火山区显著不同之处在于,该火山区无明显的温泉气体释放(Mao et al., 2009; Zhao et al., 2019)。相反,沿着火山熔岩流侧翼及火山锥体边缘分布有多处冷泉,大多数水温常年低于10℃(图 1d)。翻花泉、北饮泉和南饮泉位于药泉山东侧,泉水温度介于5~16℃之间。桦林沸泉位于火烧山东侧,夏季水温介于18~24℃之间,冬季水温接近0℃。在卧虎山以南约6km的永安村、永远村出露着超过10眼冷泉,水温介于5~8℃,无明显气泡逸出现象(冷泉群2, 图 1d)。前人研究表明,五大连池深部地幔仍在持续向地表逸散富含CO2的火山气体(Xu et al., 2013; Zhao et al., 2019)。

1.3 阿尔山火山区

阿尔山火山区位于大兴安岭-太行山重力梯度带中段的西缘,距西太平洋岛弧带约2100km(图 1a; 樊祺诚等, 2015)。该区古生代至中生代以变质的火成-沉积岩为主,含少量石灰岩及碎屑岩,区内花岗岩遍布;新生代火山活动主体始于更新世,形成28座沿NE向断裂分布的火山锥体,火山岩面积达1000km2(赵勇伟等, 2008)。第四纪火山岩沿河谷不整合覆盖在侏罗纪火山-侵入岩之上(Ge et al., 2005; Wu et al., 2011),其中,全新世火山喷发形成高山、焰山两座保存较为完好的火山锥(白志达等, 2005)。

阿尔山是东北地区除长白山外又一处水-热活动较强烈的新生代火山区,区内温泉沿火山群以西的山谷星状分布(图 1c)。其中,阿尔山温泉群位于阿尔山市高勒河谷内,沿NNW向断裂带东侧分布,水温最高可达41℃,此外,在温泉群周边区域,还分布有多个低温矿泉带(Gu et al., 2017)。银江沟温泉群位于阿尔山市东北约10km的山谷中,水温约37℃,并伴有成分以N2为主的气体逸出,水化学类型为碱性富碳酸氢钠型(韩湘君等, 2001)。金江沟温泉群位于阿尔山市以东25km处的河谷中,与区内新生代火山距离最近,温度介于25~37℃之间,伴有大量气泡逸出,水化学类型以碱性碳酸-硫酸氢钠型为主,温泉群所在的区域的围岩为侏罗纪花岗岩。在火山群中西部哈拉哈河三潭峡至金江沟之间的河段,冬季不结冻,称为“不冻河”(图 1c),被认为是地下热能释放的表现(白志达等, 2005)。

2 火山碳释放通量测量与气体采样、测试方法

野外调查显示,东北新生代火山区主要通过土壤微渗漏和温泉逸出气两种形式向大气圈释放温室气体(郭正府等, 2014; Sun et al., 2018)。密闭气室法是目前国际通用的土壤微渗漏CO2释放通量测量方法,已被广泛地应用于火山区、泥火山区以及农田等地区的土壤微渗漏碳释放调查研究(Chiodini et al., 1998)。本文的土壤微渗漏CO2释放数据均通过此方法测量获得,测量仪器为WEST土壤碳通量仪及便携式CO2红外分析仪,在火山区CO2释放调查中,上述两种仪器获得的数据已被证明在误差范围内一致(Wen et al., 2011; Zhang et al., 2015),并利用温度计测得各点的土壤温度。火山区温泉逸出气通量采用GL-103B型数字皂膜流量计进行测量(张茂亮等, 2011)。

火山区内温(冷)泉逸出气采用排水法进行收集。将集气漏斗倒置于温(冷)泉逸出气泡之上并没入水中,连接管线,利用进入的气体冲洗连接装置约5~10分钟,以减少管内残留空气对样品的污染。采样时,将装满泉水的集气瓶倒立并没入水中,进行取样。采集的气体样品在中国科学院西北生态环境资源研究院油气资源研究中心进行地球化学分析,测试项目包括气体化学全组分、碳同位素、氮同位素及氦同位素。气体全组分测试采用的仪器为MAT271气体成分质谱,仪器检测范围为0.01%~100%(Zhang et al., 2015),当气体组分中烃类(例如,CH4,C2H6等)含量较高时,采用气相色谱联用进行校正。气体的碳同位素比值(δ13CCO2)和氮同位素比值(δ15NN2)分别采用Delta Plus XP和MAT253稳定同位素质谱仪进行测定。氦同位素(3He/4He比值,4He/20Ne比值)采用Noblesse SFT稀有气体同位素质谱进行测定(Zhao et al., 2019)。

3 东北新生代火山区的深部碳释放通量

当前,火山气体观测成为研究地球深部碳库的重要方法,已逐渐发展为了解深部碳库规模及其活动性的“探针”和“窗口”(郭正府等, 2010, 2014)。本文所研究的3个新生代火山区的温泉气体,以中低温释放特征为主(郭正府等, 2014; 赵文斌等, 2018)。长白山和五大连池火山气体的地表显示特征较强烈,气体成分以CO2为主(Zhang et al., 2015; Zhao et al., 2019);阿尔山火山区的气体成分以N2为主,由于植被覆盖严重,研究程度低,目前尚未开展火山温室气体释放通量的野外观测与研究。

3.1 长白山火山区

长白山火山区的深部碳释放类型,包括天池复合火山锥体及分布在外围熔岩台地上众多单成因火山的深部碳释放(Sun et al., 2018, 2020; Zhang et al., 2018)。前人曾对长白山天池火山锥体西坡及北坡进行土壤CO2释放测量,分别获得了19.4g·m-2·d-1(Zhang et al., 2015)和22.8g·m-2·d-1(Wen et al., 2011)的通量,但由于测量区域仅限于火山锥体顶部,不能全方位代表整个火山区深部碳的释放状况。随后,Sun et al. (2020)对区内不同类型的火山进行了土壤CO2释放系统调查与观察研究,结果表明,天池复合成因火山锥体外围的土壤CO2平均释放通量(41.2g·m-2·d-1)高于周边熔岩台地单成因火山区平均释放通量(9.6g·m-2·d-1)。

前人研究表明,长白山火山区的湖滨温泉、聚龙温泉、锦江温泉等每年通过逸出气的形式释放CO2气体约6.9×104t (张茂亮等, 2011)。天池火山锥体高海拔地区植被较稀疏,CO2释放通量接近(Wen et al., 2011; Zhang et al., 2015),结合其土壤微渗漏面积(110km2),火山锥体每年释放CO2气体约7.8×105t(郭正府等, 2014)。Sun et al. (2020)通过系统观测,获得天池火山锥体外围单成因火山区CO2释放通量为9.4×104t·y-1。此外,锥体外围熔岩台地上的圆池玛珥湖系统每年释放CO2约176t(Sun et al., 2018)。因此,长白山火山区向大气圈释放CO2的总通量约为0.94Mt·y-1(表 1)。

表 1 长白山火山区CO2气体释放通量估算结果 Table 1 Estimation of the total volcanogenic CO2 flux in Changbaishan volcanic field
3.2 五大连池火山区

五大连池区内的老黑山火山最近一次喷发发生在约300年前,火山锥体东南坡植被覆盖率较低,是土壤碳释放观测的理想区域。前人采用密闭气室法在老黑山南坡进行了两次土壤CO2释放调查,分别获得了10.3g·m-2·d-1(郭正府等, 2014)和11.8g·m-2·d-1(Zhao et al., 2019)的通量数据。由于单成因火山区释放通量具有复杂性,选取某个区域进行土壤CO2释放测量通常不能代表整个火山区的释放状况,因此,Zhao et al. (2019)对全区具有代表性的区域进行了较全面的通量调查,查明五大连池全区CO2气体平均释放通量为18.7g·m-2·d-1,与长白山火山锥体释放通量接近(19.4g·m-2·d-1, Zhang et al., 2015)。在上述野外观测研究的基础上,本文基于Surfer软件,绘制了五大连池火山区的土壤CO2释放通量空间分布图(图 2a),并采用统计学方法,分别获得土壤释放背景值(0~5g·m-2·d-1)、混合(5~60g·m-2·d-1)及地质源(60~162g·m-2·d-1)三种不同来源CO2释放通量所代表的面积,从而估算出五大连池火山区每年通过土壤微渗漏向大气圈释放CO2气体约1.2Mt(表 2)。

图 2 五大连池火山区土壤CO2释放通量分布图(a, “+”代表土壤微渗漏测量点)及土壤CO2释放通量沿CC′剖线分布状况(b) Fig. 2 Isogram showing distribution of soil CO2 fluxes in Wudalianchi volcanic field where the spots of soil CO2 emission are represented by "+" (a) and CO2 emissions across the transect line C-C′ (b) in Fig. 2 (a)

表 2 五大连池火山区土壤CO2释放通量估算结果 Table 2 Estimation of the total soil CO2 flux in Wudalianchi volcanic field

五大连池火山区土壤CO2释放通量的空间分布极不均匀(图 2a),本文认为主要受以下因素的影响:

(1) 断裂分布:断裂系统可以为深源气体的上升运移提供通道,土壤CO2(以及Rn、Hg、H2等)释放调查成为火山区及构造活动区断裂识别的有效手段(Williams-Jones et al., 2000; Hutchison et al., 2015; Zhou et al., 2016)。五大连池是典型的陆内裂谷型火山区,断裂系统为区内更新世-全新世的火山活动提供了岩浆上涌的通道(Mao et al., 2009; Zhao et al., 2014)。土壤CO2释放通量分布显示,通量高值呈现明显的“点状分布”特征(图 2a),并与区内主要断裂的分布具有较紧密的关系,例如,笔架山与药泉山两侧通量值均较高(CC′剖线),推测可能与通过该区的隐伏断裂有关(图 1d图 2b)。

(2) 地下水的分布:五大连池火山区内冷泉广布(图 1d),药泉山以东至石龙河西岸的区域,地下水深度较浅,部分地方不足1m,水中HCO3-离子浓度高达1590mg/L(Mao et al., 2009)。土壤CO2高通量区与地下水分布区一致,特别是冷泉群1附近,测到了区内最高通量值(162g·m-2·d-1; 图 2),这表明火山气体在沿断裂上升的过程中溶于地下水,并沿薄弱带通过土壤微裂隙释放至大气中。

3) 岩浆活动及岩石渗透率:以往研究表明,火山最后一次喷发距今越近,区内土壤CO2平均释放通量往往越大(Caracausi et al., 2015)。老黑山是五大连池火山区内最新喷发的火山之一,然而其东南坡释放通量(11.8g·m-2·d-1)低于全区通量(18.7g·m-2·d-1, Zhao et al., 2019)。大地电磁研究结果显示,老黑山-火烧山下方存在固结岩浆形成的高阻体(詹艳等, 2006),因此,推断五大连池老黑山-火烧山在约300年前最后一次喷发后整体趋于平静(Zhao et al., 2019)。值得注意的是,尽管地球物理研究结果显示火山区东北部尾山下方中上地壳存在熔融程度较高的岩浆房,并存在深部岩浆的持续补给(Li et al., 2016; Gao et al., 2020),但本文并未发现该区土壤CO2释放存在高异常的特征。此外,相对于渗透性强的火山碎屑物,致密的熔岩更不利于深源CO2气体的逸散(Hutchison et al., 2015),老黑山南坡表层覆盖松散的火山渣,其下部为较厚且致密的玄武质熔岩流,阻止了深源CO2向地表的逸散,因而造成该地区整体通量值偏低。

上述特征表明,火山区CO2释放受到多个因素的影响。因此,充分考虑研究区内不同地质要素(例如,断裂带、地下水、火山岩覆盖等)的分布特征,进行碳观测的点位布设,从而使获得的数据具有统计学意义,也更接近全区释放通量的真实值(Chiodini et al., 1998; Sun et al., 2018; 2020; Zhao et al., 2019)。

上述火山碳观测的结果显示,长白山火山区土壤CO2释放通量介于9.6~41.2g·m-2·d-1之间,每年向大气圈释放CO2的量约为0.94Mt(表 1);五大连池火山区土壤CO2释放通量介于10.3~18.7g·m-2·d-1之间,每年向大气圈释放CO2的量约为1.2Mt(表 2)。东北新生代火山区CO2的释放总通量为2.1Mt·y-1,约为腾冲火山区(4.5Mt·y-1, Zhang et al., 2016)或东非大裂谷Magadi-Natron盆地(4.0Mt·y-1, Lee et al., 2016)CO2释放通量的一半,接近全球火山活动CO2释放通量的0.4%(540Mt·y-1, Burton et al., 2013)。值得注意的是,东北地区新生代火山活动规模较大(Liu et al., 2001; 陈霞玉等, 2014),随着观测研究的持续开展和进一步深入,温室气体的释放规模的数据将是巨大且不容忽视的。

4 东北新生代火山气体的成因

本文采集了五大连池桦林沸泉、翻花泉和阿尔山金江沟温泉的气体样品(图 1),用于气体化学组分和C-N-He同位素测试(表 3),结合前人数据探讨了火山气体的来源及其深部演化过程。

表 3 东北新生代火山区温(冷)泉气体地球化学成分 Table 3 Geochemical compositions of hot (cold) spring gases from Cenozoic volcanic fields in NE China
4.1 火山气体的地球化学特征 4.1.1 长白山火山区

长白山火山区聚龙、锦江和湖滨温泉群靠近天池破火山口,逸出气具有相似的地球化学特征,气体组分以CO2为主,平均含量分别为95.7%、90.0%及85.3%(Zhang et al., 2015)。气体3He/4He比值介于2.38~6.32RA之间,均值为5.0RA(图 3b),低于上地幔的氦同位素平均组成(8±1RA, Hilton and Craig, 1989),与岛弧火山气体3He/4He比值基本一致(5.37±1.87RA, Hilton et al., 2002),表现出壳幔物质混合的特征,且以幔源为主(图 3b)。温泉气体δ13CCO2值为-7.9‰~-1.6‰(图 4a),与俯冲带火山气体的δ13C值范围一致(Zhang et al., 2015)。火山气体CO2/3He比值范围较大,介于2.4×108~1.4×1012之间(图 3a图 4a),部分样品CO2/3He比值低于上地幔值(1.5×109, Sano and Marty, 1995),被认为与气体上升过程中方解石沉淀造成的He-CO2分馏有关(Hahm et al., 2008; Zhang et al., 2015)。距离火山口较远的十八道沟温泉CO2含量为7.9%,以N2为主(87.5%),具有相对较高的He含量(1.71%),同时气体较低的3He/4He比值(0.85RA)和较轻的δ13CCO2值(-12.3‰),指示了陆壳物质对火山气体成分的影响(Zhang et al., 2015)。

图 3 东北新生代火山区气体CO2-3He-4He图解(a)与3He/4He-(He/Ne)M/(He/Ne)ASW图解(b)(底图据Zhao et al., 2019修改) 实心图例为本文数据, 空心数据引自Zhang et al. (2015), Zhao et al. (2019)及其中的文献; 图 7图 8数据来源同此图 Fig. 3 Ternary plot of CO2-3He-4He (a) and 3He/4He vs. (He/Ne)M/(He/Ne)ASW (b) for the spring gases from Cenozoic volcanic fields in NE China (base map after Zhao et al., 2019) Filled and open symbols represent, respectively, data in this study and previous studies in Zhang et al. (2015), Zhao et al. (2019) and references within; Data source in Fig. 7 and Fig. 8 are same as in this figure

图 4 东北新生代火山区气体δ13C-CO2/3He协变图解(a,据Sano and Marty, 1995修改)δ15N-N2/He协变图解(b, 据Sano et al., 2001; Roulleau et al., 2013修改) 图(b)中空气、富氮有机质与地幔端元N2/He比值分别为1.5×105、10500与150(数据引自Sano et al., 2001, Roulleau et al., 2013); 弧后玄武岩、洋岛玄武岩(OIB)及典型岛弧火山气体数据引自Sano et al. (2001) Fig. 4 Correlation diagramsof δ13C ratios vs. CO2/3He values (a, modified after Sano and Marty, 1995) and δ15N ratios vs. N2/He values (b, modified after Sano et al., 2001; Roulleau et al., 2013) of spring gases from Cenozoic volcanic fields in NE China The N2/He ratios for air, nitrogen-rich organic matter and mantle are 1.5×105, 10500 and 150, respectively (Sano et al., 2001; Roulleau et al., 2013); Date for back-arc basin basalts, oceanic island basalt (OIB) and island arc from Sano et al. (2001)
4.1.2 五大连池火山区

五大连池火山区冷泉气体与长白山的温泉气体呈现出相似的地球化学特征。火山气体中CO2含量较高(76.7%~96.5%),O2含量较低(低于3.66%),显示受空气混染的程度较小。火山气体的3He/4He比值介于1.88~3.87RA之间,均值为3.0RA,明显高于地壳成因气体的3He/4He比值(0.05 RA, Lupton, 1983),低于地幔(8±1RA, Hilton and Craig, 1989)与大陆岩石圈地幔(6.1±0.9RA, Gautheron and Moreira, 2002),显示出壳幔混合特征(Mao et al., 2009; Xu et al., 2013; Zhao et al., 2019)。冷泉气体δ13CCO2值为-8.8‰~-3.1‰,与岛弧火山气体的碳同位素成分一致(-9.1‰~-1.3‰, Sano and Marty, 1995)。相比于长白山火山区的温泉气体,五大连池冷泉气体CO2/3He比值偏低,介于9×107~9.8×1010之间(图 3a图 4a)。由于低温下CO2相较于He在水中的溶解度更高(Stephen and Stephen, 1963),五大连池火山区泉水温度普遍较低,深源CO2气体在上升过程中更多的溶于水,因此造成了五大连池火山气体的CO2/3He比值较低(Zhao et al., 2019)。

4.1.3 阿尔山火山区

阿尔山火山区温泉气体以N2为主,含量介于95.8%~96.7%之间,CO2含量较低(0.12%~0.26%),火山气体中He(1457×10-6~3191×10-6)与Ar(1.14%~1.45%)含量较高(表 3)。火山气体N2/Ar比值(67~84)与空气值接近(83.6, Hilton, 1996),但O2含量(1.45%~2.01%)较低,4He/20Ne比值(152~384)远高于空气值(0.32, Magro et al., 2013)。上述的气体地球化学特征表明,空气混染没有显著改变该区原始气体的成分,因此其可以用于气体源区特征判别。阿尔山火山气体的3He/4He比值较低,介于0.14~0.18RA之间(表 3),高于地壳成因气体3He/4He比值(0.05RA, Lupton, 1983),但明显低于上地幔或岩石圈地幔的3He/4He比值,指示其源区以壳源为主。气体δ13CCO2比值介于-13.7‰~-6.2‰之间,CO2/3He比值较低,介于2×106~5×106之间,可能与壳源有机沉积物的加入有关(图 4a)。

4.1.4 火山区气体氮同位素(δ15NN2)

由于氮同位素可以有效示踪富N2气体的源区性质(Roulleau et al., 2013),因此火山气体的氮同位素研究已成为近年广泛用于源区示踪的有效方法(Mohapatra and Honda, 2006; Mohapatra et al., 2009)。以往研究(Sano et al., 2001; Roulleau et al., 2013)显示,火山气体中的氮主要来源于空气、有机质和地幔三个端元;通常认为,空气的δ15N比值为0‰,有机质为7±2‰,上地幔δ15N平均值约为-5±2‰(Sano et al., 2001)。阿尔山温泉气体和五大连池冷泉气体样品呈现出较高N2含量的成分特征(表 3),采用常规地球化学手段很难准确获得气体来源演化的关键信息,因此,本文利用火山气体氮同位素的测试数据(表 3),开展了气体源区示踪研究。

五大连池火山区冷泉气体的δ15N比值介于-2.1‰~0.2‰之间(表 3),显示明显的幔源物质贡献,样品N2/He比值变化范围较大,介于49~1769之间(图 4b);其中,样品FH18中N2含量较高(22.6%, 表 3),δ15N比值为0.2‰,接近空气,表明该样品在氮同位素测试过程中可能受到空气的混染。阿尔山火山区温泉气体以N2为主,气体δ15N比值介于1.3‰~1.9‰之间,N2/He比值介于303~663之间(图 4b)。两者相比,五大连池火山区冷泉气体成分更接近地幔端元,而阿尔山火山区温泉气体则显示较高比例富氮有机质加入的特征(图 4b)。

4.2 火山气体的成因模式

长白山和五大连池火山区温(冷)泉气体均以幔源为主,并受到不同程度的壳源物质混染;阿尔山火山区温泉气体以壳源为主,气体地球化学特征与前两者明显不同。这表明它们之间可能具有完全不同的气体成因模式。

4.2.1 长白山和五大连池火山气体的成因模式

氦属于强挥发惰性气体元素,它在流体中的溶解度远低于其它元素(Lupton, 1983; Ozima and Podosek, 1983; Hilton et al., 2002)。尽管幔源氦在上升过程中也会受到不同程度地壳“稀释”作用或岩浆侵入体的影响(Sano et al., 1984; Hilton, 2007),但由于其上升过程中不易与其它流体发生交换反应,因此氦同位素比值一直被认为是火山气体源区示踪研究中的有效工具与参数(Hilton and Craig, 1989; Hilton et al., 2002; Hilton, 2007; Zhang et al., 2015)。火山气体从源区脱气,通过温(冷)泉逸出气、土壤微渗漏等形式释放至大气圈,其氦同位素成分继承了其源区的特征(Marty and Jambon, 1987),例如,洋中脊流体样品与玄武岩斑晶包裹体的氦同位素特征基本一致(Lupton et al., 2015)。前人通过He-C同位素的示踪研究,认为长白山和五大连池火山气体主要来源于古俯冲流体交代的大陆岩石圈地幔(Hahm et al., 2008; Xu et al., 2013)。但是,长白山和五大连池火山气体氦同位素均值分别为5.0±1.0RA和3.0±0.4RA,显著低于大陆岩石圈的氦同位素平均值(图 5)。因此火山气体地球化学特征并非来源于岩石圈地幔。

图 5 东北新生代火山区橄榄岩包体及火山气体3He/4He比值特征 橄榄岩包体3He/4He比值数据引自Xu et al. (1998), Li et al. (2002), Kim et al. (2005), 赖勇等(2005), Chen et al. (2007)Hahm et al. (2008) Fig. 5 Comparison of 3He/4He (RA) values between mantle xenoliths and volcanic gases from Cenozoic volcanic fields in NE China 3He/4He (RA) values for mantle xenoliths are from Xu et al. (1998), Li et al. (2002), Kim et al. (2005), Lai et al. (2005), Chen et al. (2007) and Hahm et al. (2008); Average 3He/4He (RA) values, the SD (1 Standard Deviation), and the number of collected samples (N) are given for each group

如前4.1节所述,尽管长白山和五大连池火山区处于大陆板内环境,但气体地球化学特征与板内地幔柱或热点火山成因的气体显著不同(Lupton et al., 2015; Eguchi et al., 2020),而具有类似俯冲带岛弧岩浆挥发份的地球化学特征(Zhang et al., 2015; Zhao et al., 2019)。例如,二者火山气体δ13CCO2分别介于-7.9‰~-1.6‰,-8.8‰~-3.1‰之间(图 4a),与岛弧火山气体基本一致(-9.1‰~-1.3‰, Sano and Marty, 1995);气体CO2/3He (×109)比值介于0.24~1400、0.09~98之间,符合岛弧火山气体三端元物质组成的特征(图 4a; Sano and Marty, 1995; Van Soest et al., 1998);气体3He/4He (RA)比值与岛弧火山气体类似,具有壳幔物质混合的特征,并以幔源为主;火山气体CO2/N2、N2/Ar等常规组分的比值也落在俯冲带/岛弧火山气体的范围内(图 6)。上述特征均表明,长白山和五大连池火山气体很可能起源于深俯冲背景,其源区存在再循环俯冲壳源组分的贡献(Sano and Marty, 1995; Van Soest et al., 1998)。

图 6 东北新生代火山区气体CO2-N2-Ar三角图解(据Sun et al., 2018修改) 俯冲带/岛弧火山气体数据引自Sano et al. (1998) Fig. 6 Ternary plot of CO2-N2-Ar for the spring gases from Cenozoic volcanic fields in NE China (modified after Sun et al., 2018) Data of volcanic gases from arc volcanism in subduction zone from Sano et al. (1998)

长白山和五大连池火山气体成分显示,未经历He-CO2分馏的样品其CO2/3He比值与3He/4He比值呈反比关系,相关系数(R2)分别为0.47和0.43(图 7a),揭示气体源区具有两端元混合的特征(Poreda et al., 1988),即“高3He/4He比值、低CO2/3He比值”特征的地幔端元和“低3He/4He比值、高CO2/3He比值”特征的俯冲再循环物质端元的混合特征(图 7a)。由于火山气体的CO2/3He与3He/4He比值并未完全落在地幔与俯冲再循环物质混合的曲线上,其CO2/3He比值变化范围较大,与大陆地壳物质的成分相近(O'Nions and Oxburgh, 1988),表明火山气体在上升至地表的过程中,还伴随不同程度陆壳物质的加入(图 7b)。上述特征表明,起源于板块深俯冲背景的长白山和五大连池火山气体,在上升过程中,经历了俯冲再循环物质交代和/或陆壳物质混染的演化历程(图 7b图 8)。

图 7 东北新生代火山区气体3He/4He (RA)-CO2/3He图解 图中俯冲再循环物质包括俯冲碳酸盐(CAR)及变质有机沉积物(OMS) Fig. 7 3He/4He (RA) ratios vs. CO2/3He values for spring gases from Cenozoic volcanic fields in NE China The subducted and recycled materials in the figure include subducted carbonate (CAR) and organic metasediment (OMS)

图 8 东北新生代火山区气体C-He同位素拟合图解 实心图例及误差条表示不同火山区气体的C-He同位素平均值及标准差 Fig. 8 C-He isotope coupling model for spring gases from Cenozoic volcanic fields in NE China Average value and the error bar (1 Standard Deviation) of δ13C and 3He/4He (RA) of the gas samples are given for each group
4.2.2 长白山和五大连池火山气体的成因差异与对比

尽管长白山和五大连池火山气体成因模式存在相似性(Zhang et al., 2015; Zhao et al., 2019),但两者的碳、氦同位素及CO2/3He比值显著不同(图 3图 7),表明两者源区组成存在差异。五大连池火山气体较长白山3He/4He比值低,δ13CCO2比值偏轻(图 3图 7),表明气体中壳源物质贡献比例较高。由4.2.1节讨论可知,火山气体中壳源物质的贡献可分为两种方式,即源区俯冲再循环壳源物质的交代与大陆地壳物质混染作用(图 7图 8);俯冲再循环壳源物质加入较多和/或陆壳物质较高的混染比例,均可以解释五大连池火山气体的地球化学特征。

本文采用C-He同位素判别方法,开展气体成因过程的拟合研究,并进一步提出了长白山和五大连池火山气体的模式(图 8),具体的方法及参数选择参见Zhao et al. (2019)。按照俯冲带/岛弧火山气体的成因模式,火山气体的源区受到俯冲板片携带有机质和碳酸盐的影响(Sano and Marty, 1995; Van Soest et al., 1998),因此本文选择变质有机沉积物、碳酸盐代表气体源区的富集组分。火山气体在从岩浆中脱出后上升至地表的过程中,经过地壳及水热系统时,会伴随陆壳物质的加入,此过程已被证实在大陆板内火山气体(如长白山, Zhang et al., 2015)的演化过程中具有重要意义。

在拟合过程中,首先考虑气体初始源区的形成过程,即俯冲变质有机沉积物、碳酸盐与地幔混合形成火山气体的富集源区;然后探讨初始富集源区产生的气体在上升过程中伴随不同程度陆壳物质的加入过程,其中,不同比例的陆壳变质有机组分与陆壳碳酸盐混合形成陆壳物质的替代端元(图 8)。拟合结果显示,五大连池地幔源区再循环壳源物质参与比例相对更高(图 8),这与其原始岩浆中相对较高的H2O和CO2含量结果是一致的(Di et al., 2020)。五大连池火山气体上升过程中陆壳物质加入的比例略高于长白山(图 8),同时加入陆壳物质的类型存在区别,五大连池火山气体中陆壳碳酸盐的贡献比例相对长白山偏低,而变质有机沉积物的参与比例相对更高(图 8),这可能是导致火山气体轻δ13CCO2比值的原因。

4.2.3 阿尔山火山气体的成因

阿尔山火山区金江沟温泉气体成分以N2为主,CO2含量较低,具有较高的He含量(表 3);火山气体3He/4He比值、δ13CCO2比值与CO2/3He比值均较低,δ15N比值偏重,具有富氮有机沉积物加入的特征(图 3-图 6)。上述地球化学特征与我国辽东半岛、海南岛及长白山十八道沟的温泉气体地球化学特征相似(Xu et al., 2012a, 2014; Zhang et al., 2015)。

阿尔山火山区位于大兴安岭-太行山重力梯度带以西(图 1a; 樊祺诚等, 2015),地壳厚度相对较大(Zhang et al., 2014)。氦同位素三元混合计算结果(图 3b)显示,温泉气体中幔源物质贡献比例仅1.8%,主要为陆壳来源(98%)。火山区内温泉主要分布在新生代火山群以西的山谷中(图 1c),周边地势较高(Gu et al., 2017),围岩主体为中生代花岗岩,其U、Th元素含量较高,通过衰变反应产生4He子体,从而导致其具有较低的3He/4He比值和较高的He含量。火山区内广泛分布低程度变质的火成-沉积岩系及第四纪沉积物,它们提供了大量有机质。因此,本文认为阿尔山火山区幔源气体在沿断裂上升的过程中,在地下水中滞留的时间较长,受到较高比例陆壳物质加入的影响,例如花岗岩源区物质、富氮有机质等,从而导致气体3He/4He比值和CO2/3He比值(106级)均较低,δ13CCO2比值偏轻,且δ15N比值偏重。上述气体地球化学特征表明阿尔山火山气体可能并未受到俯冲太平洋板片再循环物质的显著影响。

5 结论

本文在对东北新生代火山区进行野外碳释放观测的基础上,估算了火山区深部碳释放的通量;并利用气体地球化学测试结果与同位素模拟结果,探讨了火山气体的成因机制。取得了以下主要认识:

(1) 东北新生代火山区的土壤碳释放通量介于9.6~41.2g·m-2·d-1之间,均值为19.1g·m-2·d-1;东北新生代火山每年向当今大气圈释放CO2气体约为2.1Mt。

(2) 长白山和五大连池火山碳起源于太平洋板块深俯冲环境,并受到俯冲再循环壳源组分的影响和/或上升过程中经历了大陆地壳物质的混染作用。

(3) 阿尔山火山气体在上升过程中混染了大量陆壳物质,火山气体的源区并未受到俯冲太平洋板片再循环物质的显著影响。

致谢      成文过程中,第一作者与成智慧博士进行了有益的讨论;样品的测试中得到中国科学院西北生态环境资源研究院油气资源研究中心李立武、李中平、杜丽、曹春辉与邢蓝田等老师的悉心指导与帮助;四位审稿人及编辑部俞良军博士均对本文初稿提出了建设性的修改意见;在此一并感谢。

参考文献
Aiuppa A, Fischer TP, Plank T and Bani B. 2019. CO2 flux emissions from the Earth's most actively degassing volcanoes, 2005-2015. Scientific Report, 9: 5442 DOI:10.1038/s41598-019-41901-y
Bai ZD, Tian MZ, Wu FD, Xu DB and Li TJ. 2005. Yanshan, Gaoshan: Two active volcanos of the volcanic cluster in Arshan, Inner Mongolia. Earthquake Research in China, 21(1): 113-117 (in Chinese with English abstract)
Bond DPG and Grasby SE. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29 DOI:10.1016/j.palaeo.2016.11.005
Burton MR, Sawyer GM and Granieri D. 2013. Deep carbon emissions from volcanoes. Reviews in Mineralogy and Geochemistry, 75(1): 323-354 DOI:10.2138/rmg.2013.75.11
Caracausi A, Paternoster M and Nuccio PM. 2015. Mantle CO2 degassing at Mt. Vulture volcano (Italy): Relationship between CO2 outgassing of volcanoes and the time of their last eruption. Earth and Planetary Science Letters, 411: 268-280
Chen XY, Chen LH, Chen Y, Zeng G and Liu JQ. 2014. Distribution summary of Cenozoic basalts in central and eastern China. Geological Journal of China Universities, 20(4): 507-519 (in Chinese with English abstract)
Chen Y, Zhang YX, Graham D, Su SG and Deng JF. 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96(1-2): 108-126 DOI:10.1016/j.lithos.2006.09.015
Chiodini G, Cioni R, Guidi M, Raco B and Marini L. 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13(5): 543-552 DOI:10.1016/S0883-2927(97)00076-0
Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry, 75(1): 183-229 DOI:10.2138/rmg.2013.75.7
Di YK, Tian W, Chen MM, Li ZF, Chu ZY and Liang J. 2020. A method to estimate the pre-eruptive water content of basalts: Application to the Wudalianchi-Erkeshan-Keluo volcanic field, northeastern China. American Mineralogist, 105: 149-161 DOI:10.2138/am-2020-7137
Eguchi J, Seales J and Dasgupta R. 2020. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geoscience, 13(1): 71-76 DOI:10.1038/s41561-019-0492-6
Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. Journal of Petrology, 32(4): 765-810 DOI:10.1093/petrology/32.4.765
Fan QC, Zhao YW, Chen SS, Li N and Sui JL. 2015. Quaternary volcanic activities in the west of the Daxing'anling-Taihangshan gravity lineament. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 674-681 (in Chinese with English abstract)
Fan XL and Chen QF. 2019. Seismic constraints on the magmatic system beneath the Changbaishan volcano: Insight into its origin and regional tectonics. Journal of Geophysical Research: Solid Earth, 124(2): 2003-2024 DOI:10.1029/2018JB016288
Fischer TP, Arellano S, Carn S, Aiuppa A, Galle B, Allard P, Lopez T, Shinohara H, Kelly P, Werner C, Cardellini C and Chiodini G. 2019. The emissions of CO2 and other volatiles from the world's subaerial volcanoes. Scientific Report, 9: 18716 DOI:10.1038/s41598-019-54682-1
Gao J, Zhang HJ, Zhang SQ, Xin HL, Li ZW, Tian W, Bao F, Cheng ZP, Jia XF and Fu L. 2020. Magma recharging beneath the Weishan volcano of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology, 48(9): 913-918 DOI:10.1130/G47531.1
Gao L, Shangguan ZG and Wei HQ. 2010. Geochemistry features of the Hubin springs in the northern caldera lake of the Tianchi Volcano, Changbaishan. Bulletin of Mineralogy, Petrology and Geochemistry, 29(3): 244-249 (in Chinese with English abstract)
Gautheron C and Moreira M. 2002. Helium signature of the subcontinental lithospheric mantle. Earth and Planetary Science Letters, 199(1-2): 39-47 DOI:10.1016/S0012-821X(02)00563-0
Ge WC, Wu FY, Zhou CY and Abdel Rahman AA. 2005. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105 DOI:10.1360/982005-207
Gu XM, Zhang QL, Cui YL, Shao JL, Xiao Y, Zhang P and Liu JX. 2017. Hydrogeochemistry and genesis analysis of thermal and mineral springs in Arxan, northeastern China. Water, 9(1): 61 DOI:10.3390/w9010061
Guo ZF, Li XH and Zhang ML. 2010. Volcanic activities and deep carbon cycle. Quaternary Sciences, 30(3): 497-505 (in Chinese with English abstract)
Guo ZF, Zhang ML, Cheng ZH, Zhang LH and Liu JQ. 2014. Fluxes and genesis of greenhouse gases emissions from typical volcanic fields in China. Acta Petrologica Sinica, 30(11): 3467-3480 (in Chinese with English abstract)
Hahm D, Hilton DR, Cho M, Wei H and Kim K. 2008. Geothermal He and CO2 variations at Changbaishan intra-plate volcano (NE China) and the nature of the sub-continental lithospheric mantle. Geophysical Research Letters, 35(22): L22304 DOI:10.1029/2008GL035955
Han XJ, Jin X and Sun CH. 2001. Geothermal structure of Aershan hot springs, Inner Mongolia. Acta Geoscientia Sinica, 22(3): 259-264 (in Chinese with English abstract)
He YS, Meng XN, Ke S, Wu HJ, Zhu CW, Teng FZ, Hoefs J, Huang J, Yang W, Xu LJ, Hou ZH and Ren ZY and Li SG. 2019. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle. Earth and Planetary Science Letters, 512: 175-183 DOI:10.1016/j.epsl.2019.02.009
Hilton DR and Craig H. 1989. A helium isotope transect along the Indonesian archipelago. Nature, 342(6252): 906-908 DOI:10.1038/342906a0
Hilton DR. 1996. The helium and carbon isotope systematics of a continental geothermal system: Results from monitoring studies at Long Valley caldera (California, U.S.A. ). Chemical Geology, 127(4): 269-295 DOI:10.1016/0009-2541(95)00134-4
Hilton DR, Fischer TP and Marty B. 2002. Noble gases and volatile recycling at subduction zones. Reviews in Mineralogy and Geochemistry, 47(1): 319-370 DOI:10.2138/rmg.2002.47.9
Hilton DR. 2007. The leaking mantle. Science, 318(5855): 1389-1390 DOI:10.1126/science.1151983
Hunt JA, Zafu A, Mather TA, Pyle DM and Barry PH. 2017. Spatially variable CO2 degassing in the main ethiopian rift: Implications for magma storage, volatile transport and rift-elated emissions. Geochemistry, Geophysics, Geosystems, 18(10): 3714-3737 DOI:10.1002/2017GC006975
Hutchison W, Mather TA, Pyle DM, Biggs J and Yirgu G. 2015. Structural controls on fluid pathways in an active rift system: A case study of the Aluto volcanic complex. Geosphere, 11(3): 542-562 DOI:10.1130/GES01119.1
Kelemen PB and Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences of the United States of America, 112(30): E3997-E4006 DOI:10.1073/pnas.1507889112
Kerrick DM. 2001. Present and past nonanthropogenic CO2 degassing from the solid earth. Reviews of Geophysics, 39(4): 565-585 DOI:10.1029/2001RG000105
Kim KH, Nagao K, Tanaka T, Sumino H, Nakamura T, Okuno M, Lock JB, Youn JS and Song J. 2005. He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean Peninsula. Geochemical Journal, 39(4): 341-356 DOI:10.2343/geochemj.39.341
Kim S, Tkalčić H and Rhie J. 2017. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data. Journal of Geophysical Research: Solid Earth, 122(7): 5452-5473 DOI:10.1002/2017JB014105
Kuritani T, Ohtani E and Kimura JI. 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4(10): 713-716 DOI:10.1038/ngeo1250
Kuritani T, Xia QK, Kimura JI, Liu J, Shimizu K, Ushikubo T, Zhao DP, Nakagawa M and Yoshimura S. 2019. Buoyant hydrous mantle plume from the mantle transition zone. Scientific Reports, 9(1): 6549 DOI:10.1038/s41598-019-43103-y
Lai Y, Liu YL, Huang BL and Chen YJ. 2005. The characteristics of noble gases in mantle-derived xenoliths in Wudalianchi and Kuandian, NE China: MORB-like mantle and metasomated mantle. Acta Petrologica Sinica, 21(5): 1373-1381 (in Chinese with English abstract)
Lee CTA, Shen B, Slotnick BS, Liao K, Dickens GR, Yokoyama Y, Lenardic A, Dasgupta R, Jellinek M, Lackey JS, Schneider T and Tice MM. 2013. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere, 9(1): 21-36 DOI:10.1130/GES00822.1
Lee CTA and Lackey JS. 2015. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements, 11(2): 125-130 DOI:10.2113/gselements.11.2.125
Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA, Sharp ZD and Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nature Geoscience, 9(2): 145-149 DOI:10.1038/ngeo2622
Li SG, Yang W, Ke S, Meng XN, Tian HC, Xu LJ, He YS, Huang J, Wang XC, Xia QK, Sun WD, Yang XY, Ren ZY, Wei HQ, Liu YS, Meng FC and Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4(1): 111-120 DOI:10.1093/nsr/nww070
Li SG and Wang Y. 2018. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China Craton: Geodynamic effects of deep recycled carbon. Science China (Earth Sciences), 61(7): 853-868 DOI:10.1007/s11430-017-9217-7
Li T, Liu JQ, Wang XB, Guo ZF, Guo WF, Cheng ZH and Zhang ML. 2015. Geochemical characteristics and genesis of gases from Tianchi volcanic springs, Changbai Mountains, Jilin, China. Bulletin of Mineralogy, Petrology and Geochemistry, 34(6): 1192-1202 (in Chinese with English abstract)
Li YH, Li JC, Song HB and Guo LH. 2002. Helium isotope studies of the mantle xenoliths and megacrysts from the Cenozoic basalts in the eastern China. Science in China (Series D), 45(2): 174-183 DOI:10.1007/BF02879794
Li ZW, Ni SD, Zhang BL, Bao F, Zhang SQ, Deng Y and Yuen DA. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophysical Research Letters, 43(10): 4954-4961 DOI:10.1002/2016GL068895
Liu GM, Sun HY and Guo F. 2011. The newest monitoring information of Changbaishan volcano, NE China. Acta Petrologica Sinica, 27(10): 2905-2911 (in Chinese with English abstract)
Liu JQ, Han JT and Fyfe WS. 2001. Cenozoic episodic volcanism and continental rifting in Northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339(3-4): 385-401 DOI:10.1016/S0040-1951(01)00132-9
Liu SA, Wang ZZ, Li SG, Huang J and Yang W. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 444: 169-178 DOI:10.1016/j.epsl.2016.03.051
Liu X, Zhao DP, Li SZ and Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth and Planetary Science Letters, 464: 166-174 DOI:10.1016/j.epsl.2017.02.024
Liu YS, Chen CF, He DT and Chen W. 2019. Deep carbon cycle in subduction zones. Science China (Earth Sciences), 62(11): 1764-1782 DOI:10.1007/s11430-018-9426-1
Lupton JE. 1983. Terrestrial inert gases: Isotope tracer studies and clues to primordial components in the mantle. Annual Review of Earth and Planetary Sciences, 11: 371-414 DOI:10.1146/annurev.ea.11.050183.002103
Lupton J, Rubin KH, Arculus R, Lilley M, Butterfield D, Resing J, Baker E and Embley R. 2015. Helium isotope, C/3He, and Ba-Nb-Ti signatures in the northern Lau Basin: Distinguishing arc, back-arc, and hotspot affinities. Geochemistry, Geophysics, Geosystems, 16(4): 1133-1155 DOI:10.1002/2014GC005625
Magro G, Gherardi F and Bayon FEB. 2013. Noble and reactive gases of Palinpinon geothermal field (Philippines): Origin, reservoir processes and geodynamic implications. Chemical Geology, 339: 4-15 DOI:10.1016/j.chemgeo.2012.09.036
Mao X, Li JH, Gao WY and Zhang TR. 2010. Vent distribution of Wudalianchi volcanoes Heilongjiang Province, China and its relation to faults. Geological Journal of China Universities, 16(2): 226-235 (in Chinese with English abstract)
Mao XM, Wang YX, Chudaev OV and Wang X. 2009. Geochemical evidence of gas sources of CO2-rich cold springs from Wudalianchi, Northeast China. Journal of Earth Science, 20(6): 959-970 DOI:10.1007/s12583-009-0081-5
Marty B and Jambon A. 1987. C3He in volatile fluxes from the solid earth: Implications for carbon geodynamics. Earth and Planetary Science Letters, 83(1-4): 16-26 DOI:10.1016/0012-821X(87)90047-1
McKenzie NR and Jiang HH. 2019. Earth's outgassing and climatic transitions: The slow burn towards environmental "Catastrophes"?. Elements, 15(5): 325-330 DOI:10.2138/gselements.15.5.325
Mohapatra RK and Honda M. 2006. "Recycled" volatiles in mantle-derived diamonds: Evidence from nitrogen and noble gas isotopic data. Earth and Planetary Science Letters, 252(1-2): 215-219 DOI:10.1016/j.epsl.2006.09.025
Mohapatra RK, Harrison D, Ott U, Gilmour JD and Trieloff M. 2009. Noble gas and nitrogen isotopic components in Oceanic Island Basalts. Chemical Geology, 266(1-2): 29-37 DOI:10.1016/j.chemgeo.2009.03.022
Mörner NA and Etiope G. 2002. Carbon degassing from the lithosphere. Global and Planetary Change, 33(1-2): 185-203 DOI:10.1016/S0921-8181(02)00070-X
O'Nions RK and Oxburgh ER. 1988. Helium, volatile fluxes and the development of continental crust. Earth and Planetary Science Letters, 90(3): 331-347 DOI:10.1016/0012-821X(88)90134-3
Oppenheimer C. 2003. Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption. International Journal of Climatology, 23(4): 417-426 DOI:10.1002/joc.891
Ozima M and Podosek FA. 1983. Noble Gas Geochemistry. London: Cambridge University Press, 1-286
Plank T and Manning CE. 2019. Subducting carbon. Nature, 574(7778): 343-352 DOI:10.1038/s41586-019-1643-z
Poreda RJ, Jeffrey AW, Kaplan IR and Craig H. 1988. Magmatic helium in subduction-zone natural gases. Chemical Geology, 71(1-3): 199-210 DOI:10.1016/0009-2541(88)90115-5
Rampino MR. 2010. Mass extinctions of life and catastrophic flood basalt volcanism. Proceedings of the National Academy of Sciences of the United States of America, 107(15): 6555-6556 DOI:10.1073/pnas.1002478107
Reichow MK, Pringle MS, Al'Mukhamedov AI, Allen MB, Andreichev VL, Buslov MM, Davies CE, Fedoseev GS, Fitton JG, Inger S, Medvedev AY, Mitchell C, Puchkov VN, Safonova IY and Scott RA and Saunders AD. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters, 277(1-2): 9-20 DOI:10.1016/j.epsl.2008.09.030
Ren JY, Tamaki K, Li ST and Zhang JX. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205 DOI:10.1016/S0040-1951(01)00271-2
Richard GC and Iwamori H. 2010. Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Physics of the Earth and Planetary Interiors, 183(1-2): 280-287 DOI:10.1016/j.pepi.2010.02.009
Roulleau E, Sano Y, Takahata N, Kawagucci S and Takahashi H. 2013. He, N and C isotopes and fluxes in Aira caldera: Comparative study of hydrothermal activity in Sakurajima volcano and Wakamiko crater, Kyushu, Japan. Journal of Volcanology and Geothermal Research, 258: 163-175 DOI:10.1016/j.jvolgeores.2013.04.003
Sano Y, Nakamura Y, Wakita H, Urabe A and Tominaga T. 1984. Helium-3 emission related to volcanic activity. Science, 224(4645): 150-151 DOI:10.1126/science.224.4645.150
Sano Y and Marty B. 1995. Origin of carbon in fumarolic gas from island arcs. Chemical Geology, 119(1-4): 265-274 DOI:10.1016/0009-2541(94)00097-R
Sano Y, Nishio Y, Sasaki S, Gamo T and Nagao K. 1998. Helium and carbon isotope systematics at Ontake volcano, Japan. Journal of Geophysical Research: Solid Earth, 103(B10): 23863-23873 DOI:10.1029/98JB01666
Sano Y, Takahata N, Nishio Y, Fischer TP and Williams SN. 2001. Volcanic flux of nitrogen from the Earth. Chemical Geology, 171(3-4): 263-271 DOI:10.1016/S0009-2541(00)00252-7
Sleep NH and Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research, 106(E1): 1373-1399 DOI:10.1029/2000JE001247
Stephen H and Stephen T. 1963. Solubilities of Inorganic and Organic Compounds. New York: Pergamon Press, 1-960
Sun RB and Du JG. 1998. The hydro-geochemical background of the Wudalianchi Volcanic Area. Bulletin of Mineralogy, Petrology and Geochemistry, 17(3): 150-155 (in Chinese with English abstract)
Sun YT, Guo ZF, Liu JQ and Du JG. 2018. CO2 diffuse emission from Maar Lake: An example in Changbai volcanic field, NE China. Journal of Volcanology and Geothermal Research, 349: 146-162 DOI:10.1016/j.jvolgeores.2017.10.012
Sun YT, Guo ZF and Fortin D. 2020. Carbon dioxide emission from monogenetic volcanoes in the Mt. Changbai volcanic field, NE China, International Geology Review DOI:10.1080/00206814.2020.1802782
Tian ZY, Han P and Xu KD. 1992. The Mesozoic-Cenozoic East China rift system. Tectonophysics, 208(1-3): 341-363 DOI:10.1016/0040-1951(92)90354-9
Van Soest MC, Hilton DR and Kreulen R. 1998. Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochimica et Cosmochimica Acta, 62(19-20): 3323-3335 DOI:10.1016/S0016-7037(98)00241-5
Wang XC, Wilde SA, Li QL and Yang YN. 2015. Continental flood basalts derived from the hydrous mantle transition zone. Nature Communications, 6: 7700 DOI:10.1038/ncomms8700
Wei HQ, Liu GM and Gill J. 2013. Review of eruptive activity at Tianchi volcano, Changbaishan, Northeast China: Implications for possible future eruptions. Bulletin of Volcanology, 75(4): 706 DOI:10.1007/s00445-013-0706-5
Wen HY, Yang TF, Guo ZF, Fu CC and Zhang ML. 2011. Gas Composition and soil CO2 flux at Changbaishan intra-plate volcano, NE China. In: AGU Fall Meeting Abstracts. AGU
Williams-Jones G, Stix J, Heiligmann M, Charland A, Lollar BS, Arner N, Garzón GV and Barquero J and Fernandez E. 2000. A model of diffuse degassing at three subduction-related volcanoes. Bulletin of Volcanology, 62(2): 130-142 DOI:10.1007/s004450000075
Wong K, Mason E, Brune S, East M, Edmonds M and Zahirovic S. 2019. Deep carbon cycling over the past 200 million years: A review of fluxes in different tectonic settings. Frontiers in Earth Science, 7: 263 DOI:10.3389/feart.2019.00263
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014
Xu S, Nagao K, Uto K, Wakita H, Nakai S and Liu CQ. 1998. He, Sr and Nd isotopes of mantle-derived xenoliths in volcanic rocks of NE China. Journal of Asian Earth Sciences, 16(5-6): 547-556 DOI:10.1016/S0743-9547(98)00041-5
Xu S, Zheng GD and Xu YC. 2012a. Helium, argon and carbon isotopic compositions of spring gases in the Hainan Island, China. Acta Geologica Sinica, 86(6): 1515-1523 DOI:10.1111/1755-6724.12019
Xu S, Zheng GD, Nakai SI, Wakita H, Wang XB and Guo ZF. 2013. Hydrothermal He and CO2 at Wudalianchi intra-plate volcano, NE China. Journal of Asian Earth Sciences, 62: 526-530 DOI:10.1016/j.jseaes.2012.11.001
Xu S, Zheng GD, Wang XB, Wang HL, Nakai S and Wakita H. 2014. Helium and carbon isotope variations in Liaodong Peninsula, NE China. Journal of Asian Earth Sciences, 90: 149-156 DOI:10.1016/j.jseaes.2014.04.019
Xu YG, Zhang HH, Qiu HN, Ge WC and Wu FY. 2012b. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?. Chemical Geology, 328: 168-184 DOI:10.1016/j.chemgeo.2012.01.027
Xu YG, Li HY, Hong LB, Ma L, Ma Q and Sun MD. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China (Earth Sciences), 61(7): 869-886 DOI:10.1007/s11430-017-9192-y
Yang JF and Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579(7797): 88-91 DOI:10.1038/s41586-020-2045-y
Yang QF, Yuan XJ, Wu CZ, Pan XD and Zhang Y. 2018. The multibeam sounding exploration of the Tianchi caldera lakebed topography at the China-North Korea border. Acta Petrologica Sinica, 34(1): 185-193 (in Chinese with English abstract)
Zhan Y, Zhao GZ, Wang JJ, Xiao QB, Tang J and Rokityansky Ⅱ. 2006. Crustal electric conductivity structure for Wudalianchi volcanic cluster in the Heilongjiang Province, China. Acta Petrologica Sinica, 22(6): 1494-1502 (in Chinese with English abstract)
Zhang ML, Guo ZF, Cheng ZH, Zhang LH, Guo WF, Yang CY, Fu QZ and Wen XY. 2011. Greenhouse gases flux estimation of hot springs in Changbaishan volcanic field, NE China. Acta Petrologica Sinica, 27(10): 2898-2904 (in Chinese with English abstract)
Zhang ML, Guo ZF, Sano Y, Cheng ZH and Zhang LH. 2015. Stagnant subducted Pacific slab-derived CO2 emissions: Insights into magma degassing at Changbaishan volcano, NE China. Journal of Asian Earth Sciences, 106: 49-63 DOI:10.1016/j.jseaes.2015.01.029
Zhang ML, Guo ZF, Sano Y, Zhang LH, Sun YT, Cheng ZH and Yang TF. 2016. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone. Journal of Asian Earth Sciences, 127: 76-90 DOI:10.1016/j.jseaes.2016.06.009
Zhang ML, Guo ZF, Liu JQ, Liu GM, Zhang LH, Lei M, Zhao WB, Ma L, Sepe V and Ventura G. 2018. The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Science Reviews, 187: 19-52 DOI:10.1016/j.earscirev.2018.07.011
Zhang RQ, Wu QJ, Sun L, He J and Gao ZY. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions. Earth and Planetary Science Letters, 401: 196-205 DOI:10.1016/j.epsl.2014.06.017
Zhao DP, Yu S and Ohtani E. 2011. East Asia: Seismotectonics, magmatism and mantle dynamics. Journal of Asian Earth Sciences, 40(3): 689-709 DOI:10.1016/j.jseaes.2010.11.013
Zhao WB, Guo ZF, Sun YT, Zhang ML, Zhang LH, Lei M and Ma L. 2018. Advances of the research on CO2 degassing from volcanic fields. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 601-620 (in Chinese with English abstract)
Zhao WB, Guo ZF, Lei M, Zhang ML, Ma L, Danielle F and Zheng GD. 2019. Volcanogenic CO2 degassing in the Songliao continental rift system, NE China. Geofluids: 8053579
Zhao YW, Fan QC, Bai ZD, Sun Q, Li N, Sui JL and Du XX. 2008. Preliminary study on Quaternary volcanoes in the Halaha river and Chaoer river area in Daxing'an mountain range. Acta Petrologica Sinica, 24(11): 2569-2575 (in Chinese with English abstract)
Zhao YW, Li N, Fan QC, Zou HB and Xu YG. 2014. Two episodes of volcanism in the Wudalianchi volcanic belt, NE China: Evidence for tectonic controls on volcanic activities. Journal of Volcanology and Geothermal Research, 285: 170-179 DOI:10.1016/j.jvolgeores.2014.08.016
Zhou XC, Chen Z and Cui YJ. 2016. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan Ms 8.0 earthquake in western Sichuan, China. Environmental Geochemistry and Health, 38(5): 1067-1082
白志达, 田明中, 武法东, 徐德兵, 李团结. 2005. 焰山、高山: 内蒙古阿尔山火山群中的两座活火山. 中国地震, 21(1): 113-117. DOI:10.3969/j.issn.1001-4683.2005.01.012
陈霞玉, 陈立辉, 陈晹, 曾罡, 刘建强. 2014. 中国中-东部地区新生代玄武岩的分布规律与面积汇总. 高校地质学报, 20(4): 507-519. DOI:10.3969/j.issn.1006-7493.2014.04.002
樊祺诚, 赵勇伟, 陈生生, 李霓, 隋建立. 2015. 大兴安岭-太行山重力梯度带以西的第四纪火山活动. 矿物岩石地球化学通报, 34(4): 674-681. DOI:10.3969/j.issn.1007-2802.2015.04.001
高玲, 上官志冠, 魏海泉. 2010. 长白山天池火山口内湖滨温泉地球化学. 矿物岩石地球化学通报, 29(3): 244-249. DOI:10.3969/j.issn.1007-2802.2010.03.005
郭正府, 李晓惠, 张茂亮. 2010. 火山活动与深部碳循环的关系. 第四纪研究, 30(3): 497-505. DOI:10.3969/j.issn.1001-7410.2010.03.07
郭正府, 张茂亮, 成智慧, 张丽红, 刘嘉麒. 2014. 中国大陆新生代典型火山区温室气体释放的规模及其成因. 岩石学报, 30(11): 3467-3480.
韩湘君, 金旭, 孙春晖. 2001. 内蒙古阿尔山温泉热结构. 地球学报, 22(3): 259-264. DOI:10.3321/j.issn:1006-3021.2001.03.007
赖勇, 刘玉琳, 黄宝玲, 陈衍景. 2005. 五大连池和宽甸地幔包体的惰性气体同位素特征: MORB型地幔和交代型地幔. 岩石学报, 21(5): 1373-1381.
李婷, 刘嘉麒, 王先彬, 郭正府, 郭文峰, 成智慧, 张茂亮. 2015. 长白山天池火山温泉的气体地球化学特征与成因. 矿物岩石地球化学通报, 34(6): 1192-1202. DOI:10.3969/j.issn.1007-2802.2015.06.011
刘国明, 孙鸿雁, 郭峰. 2011. 长白山火山最新监测信息. 岩石学报, 27(10): 2905-2911.
毛翔, 李江海, 高危言, 张天然. 2010. 黑龙江五大连池火山群火山分布与断裂关系新认识. 高校地质学报, 16(2): 226-235. DOI:10.3969/j.issn.1006-7493.2010.02.010
孙如波, 杜建国. 1998. 五大连池火山区水文地球化学背景. 矿物岩石地球化学通报, 17(3): 150-155.
杨清福, 原晓军, 武成智, 盘晓东, 张羽. 2018. 中朝边境天池破火山口湖底地形多波束测深探测. 岩石学报, 34(1): 185-193.
詹艳, 赵国泽, 王继军, 肖骑彬, 汤吉, Rokityansky Ⅱ. 2006. 黑龙江五大连池火山群地壳电性结构. 岩石学报, 22(6): 1494-1502.
张茂亮, 郭正府, 成智慧, 张丽红, 郭文峰, 杨灿尧, 付庆州, 温心怡. 2011. 长白山火山区温泉温室气体排放通量研究. 岩石学报, 27(10): 2898-2904.
赵文斌, 郭正府, 孙玉涛, 张茂亮, 张丽红, 雷鸣, 马琳. 2018. 火山区CO2气体释放研究进展. 矿物岩石地球化学通报, 37(4): 601-620.
赵勇伟, 樊祺诚, 白志达, 孙谦, 李霓, 隋建立, 杜星星. 2008. 大兴安岭哈拉哈河-淖尔河地区第四纪火山活动初步研究. 岩石学报, 24(11): 2569-2575.