岩石学报  2021, Vol. 37 Issue (4): 1177-1195, doi: 10.18654/1000-0569/2021.04.13   PDF    
腾冲早白垩世花岗岩的高分异成因及其构造意义
马鹏飞1,2,3, 夏小平1,2, 徐健1,2, 崔泽贤1,2, 蒙均桐1,2,3, 周美玲4     
1. 中国科学院广州地球化学研究所, 同位素国家重点实验室, 广州 510640;
2. 中国科学院深地科学卓越创新中心, 广州 510640;
3. 中国科学院大学, 北京 100049;
4. 南方海洋科学与工程广东省实验室, 珠海 519000
摘要: 腾冲地块东缘发育大量早白垩世花岗岩,这些花岗岩普遍具有高硅(69.2%~77.4%)、富钾(K2O/Na2O>1.1)、弱过铝-强过铝质(A/CNK=1.03~1.23)及不同程度Eu的负异常(δEu=0.13~0.69)的特征,被认为是S型花岗岩或者是高分异的I型花岗岩。厘清这些花岗岩的成因对于理解腾冲地块早白垩世岩浆活动、构造演化及其与西藏拉萨和羌塘等陆块的构造对应关系具有重要意义。本文选择了腾冲地块中3个典型的早白垩世岩体(明光、勐连、小棠-芒东)中的二长花岗岩、白云母花岗岩及正长花岗岩重点进行了高精度SIMS氧同位素研究,结合SIMS U-Pb年代学、全岩主微量元素、Sr-Nd同位素分析探讨了这些花岗岩的成因及构造意义。锆石SIMS U-Pb定年结果表明3个岩体花岗岩的侵位年龄为112~122Ma,SIMS氧同位素分析结果表明这些花岗岩都具有一致的低δ18O值(6.5‰~7.0‰)。全岩Sr-Nd同位素结果表明它们具有一致的富集同位素特征,(87Sr/86Sr)i变化于0.7062~0.7213,εNdt)变化于-9.1~-4.7。以上全岩和锆石的地球化学分析结果表明这些花岗岩的源区主要为古老的镁铁质下地壳,属于高分异I型花岗岩,并非前人认为的S型花岗岩。结合前人研究,本文认为这些高分异I型花岗岩可能形成于拉萨-腾冲与羌塘-保山地块碰撞后,中特提斯洋板块发生回转或板片断离的构造背景下,跟拉萨地块北缘岩浆岩带同期构造背景一致,是其东南向延伸。
关键词: 腾冲地块    氧同位素    高分异I型花岗岩    班公湖-怒江洋    
Early-Cretaceous highly fractionated granites from the Tengchong terrane: Petrogenesis and tectonic implication
MA PengFei1,2,3, XIA XiaoPing1,2, XU Jian1,2, CUI ZeXian1,2, MENG JunTong1,2,3, ZHOU MeiLing4     
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
Abstract: Abundant Early Cretaceous granites were developed in the eastern margin of the Tengchong terrane. These granites were high SiO2 (69.2%~77.4%), K-rich (K2O/Na2O>1.1), slightly peraluminous to strongly peraluminous (A/CNK=1.03~1.23) and display significantly negative Eu anomalies (δEu=0.13~0.69), which were thought to be S-type or highly fractionated I-type. Clarifying the origin of these granites is of great significance for understanding the Early Cretaceous magmatism and tectonic evolution of the Tengchong terrane and its correspondence with the Lhasa and Qiangtang terranes in Tibet. In this study, three Early Cretaceous granitic plutons (Mingguang, Menglian, Xiaotang-Mangdong) from the Tengchong terrane were selected for SIMS zircon oxygen isotope analyses. Combined with SIMS zircon U-Pb, and whole-rock major and trace element and Sr-Nd isotope data, the petrogenesis and tectonic significance of these granites were discussed. SIMS zircon U-Pb dating of six granite samples from different plutons indicate that these granites were emplaced coevally during 112~122Ma. They have uniformly low zircon δ18O values of 6.5‰~7.0‰. Whole-rock isotopic compositions show enriched 87Sr/86Sr(i) (0.7062~0.7213) and εNd(t) (-9.1~-4.7). These results, especially zircon oxygen isotopes, provided robust evidence that the granites are highly fractionated I-type, not S-type as previously thought. Our data, in combination with published geochronological and geochemical data, show that these highly fractionated I-type granites were formed by slab rollback and subsequent breakoff of the subducting Bangong-Nujiang ocean lithosphere during the Tengchong (Lhasa)-Baoshan (Qiangtang) collision. This geodynamic scenario is similar to that for north margin of the Lhasa terrane at that time, indicating southeast extension of the Lasha terrane to the Tengchong terrane.
Key words: Tengchong terrane    Oxygen isotope    Highly fractionated I-type granite    Tethys Bangong-Nujiang Ocean    

Chappell and White (1974)定义了以变沉积岩为源区的S型花岗岩及变火成岩为源区的I型花岗岩以及后来定义的代表碱性、无水、形成于非造山背景下A型花岗岩(Loiselle and Wones, 1979)以来,花岗岩的I-S-A型划分方案被普遍接受(Gao et al., 2016; 吴福元等, 2007)。角闪石、堇青石或碱性暗色矿物可以分别作为I型、S型或A型花岗岩的有效识别标志(吴福元等, 2007)。但对于不含有这些标志性矿物的花岗岩,一般根据其全岩主微量特征来判断其岩石类型,如S型花岗岩由富铝变沉积岩的部分熔融形成,因此过铝质特征被作为S型花岗岩的判别指标,然而过铝质特征并非S型花岗岩所独有,澳大利亚Lachlan褶皱带中超过一半的I型花岗岩同样为过铝质(Chappell et al., 2012)。这是因为I型花岗质岩浆角闪石和辉石的分离结晶也可以形成过铝质花岗岩(吴福元等, 2017)。此外,SiO2-P2O5和SiO2-A/CNK等判别图也被用来区分I、S型花岗岩,但也存在较大的不确定性(Gao et al., 2016)。花岗岩全岩主微量元素组成不仅受源区组成控制,也受到岩浆过程如部分熔融、同化混染等过程的影响,常常无法有效限制其源区组成。全岩的Sr-Nd同位素及锆石的Hf同位素主要反映的是源岩在地壳中存留时间,例如,亏损的Sr-Nd-Hf同位素特征表明花岗岩可能是新生下地壳部分熔融形成的I型花岗岩(Zhou et al., 2018),也可能是新生的上地壳物质由于构造作用被迅速剥蚀掩埋而后发生熔融形成的S型花岗岩(Dan et al., 2014)。因此仅通过对岩石的全岩主微量元素或者放射性成因同位素(如Sr-Nd)组成来确定花岗岩类型可能会产生错误的结论。锆石氧同位素组成不受部分熔融和结晶分异过程的影响,是识别I、S型花岗岩的理想地球化学指标(Gao et al., 2016; Kemp et al., 2007)。如果源岩为遭受过地表低温水岩反应的变沉积岩,部分熔融形成的熔体具有高氧同位素特征;相反,以未经历地表沉积循环的变火成岩为源区部分熔融形成的熔体具有较低的氧同位素。

位于中国云南西部的腾冲地块发育大量早白垩世花岗岩(130~110Ma)(戚学祥等, 2011; Cao et al., 2019; Fang et al., 2018; He et al., 2020; Qi et al., 2019; Zhang et al., 2018a, b; Zhu et al., 2015, 2020)。这些花岗岩有的具有角闪石,属于典型I型花岗岩;但其中也有部分花岗岩不具有角闪石,也不具有堇青石或碱性暗色矿物等特征矿物,但具有高硅(68.67%~77.90%)、高钾、弱到强过铝质的特点,被认为是S型花岗岩(陈永清等, 2013; 杨启军等, 2006; Cao et al., 2014)或高分异I型花岗岩(Zhu et al., 2015)。前者认为这些花岗岩形成于碰撞造成的挤压背景下,源区主要为上地壳硬砂岩,而后者则认为形成于俯冲背景下,源区主要为中下地壳及少量的幔源物质。如前所述,由于缺乏矿物学标志,前人对这些高硅、过铝质花岗岩的成因类型判断主要依靠全岩主微量元素,缺乏足够的依据,无法有效的限制其源区特征及构造背景。本文首次对腾冲地块早白垩世高硅过铝质花岗岩进行锆石氧同位素研究,发现这些花岗岩普遍具有相对较低的氧同位素组成,表明其源区组成主要以基性下地壳为主,并结合花岗岩的矿物学特征、全岩主微量元素和Sr-Nd同位素特征,确定了这些花岗岩属于高分异I型花岗岩,它们可能形成于班公湖-怒江洋闭合后的板片折返或板片断离背景,而非之前认为的是沉积物为主的源区在碰撞挤压背景下的熔融产物。

1 地质背景和样品描述

腾冲地块位于青藏高原东南缘,东以高黎贡剪切带(或龙陵-瑞丽断裂带)与保山地块相隔,西以密支那缝合带与西缅地块相隔(图 1)。在早古生代腾冲地块位于冈瓦纳大陆边缘,于中生代拼合到欧亚大陆(Liu et al., 2019a; Metcalfe, 2013)。腾冲地块最古老的地质单元为古-新元古代高黎贡山群,由片麻岩、片岩、硅质岩、大理岩和板岩等组成,普遍经历绿片岩-角闪岩相变质作用,向南可与缅甸的Mogok群相连(陈福坤等, 2006; 李再会等, 2012a),但最新的研究表明该群也出露一些早古生代(518~476Ma)、中生代(128~109Ma)和新生代(55~50Ma)花岗岩(Ma et al., 2014; Qi et al., 2019; Wang et al., 2013; Xu et al., 2012; Zhang et al., 2018a)。上覆沉积盖层主要包括:石炭纪碎屑沉积岩、二叠纪-三叠纪浊积岩和新生代陆相火山岩、河湖相碎屑沉积岩。腾冲地块缺失侏罗-白垩纪地层,可能与中特提斯洋的俯冲,腾冲与保山的碰撞有关(戚学祥等, 2011)。腾冲地块主要发育五期岩浆作用,包括寒武-奥陶纪(510~470Ma)(崔晓琳等, 2017; Wang et al., 2013)、二叠-三叠纪(245~206Ma)(从峰等, 2010; 黄志英等, 2013; Shi et al., 2016)、早白垩世(130~110Ma)(Cao et al., 2019; He et al., 2020; Qi et al., 2019; Xie et al., 2020; Zhang et al., 2018a, b)、晚白垩世(77~65Ma)(唐婉丽等, 2018; 徐容等, 2018; Cao et al., 2016; Wu et al., 2019)和古新世-始新世(65~40Ma)(Cheng et al., 2020; Liu et al., 2019b; Zhao et al., 2019)。此外,腾冲地块同样广泛发育着新近纪以来的火山岩(17.84~0.09Ma)(丁磊磊等, 2018; 林木森等, 2017; 张诗启等, 2017; Cheng et al., 2020; Xu et al., 2018a)。

图 1 滇西腾冲地块构造地质简图 BNS-班公湖-怒江缝合带;TC-腾冲地块;BS-保山地块;IC-印支地块 Fig. 1 Simplified tectonic map of the Tengchong terrane in western Yunnan Province BNS-Bangong-Nujiang Suture; TC-Tengchong terrane; BS-Baoshan terrane; IC-Indochina terrane

腾冲早白垩世岩浆岩主要分布在地体东缘,以中酸性为主,由数个岩体组成,出露面积在500km2以上(李再会等, 2012b)。本次研究的样品采自明光、勐连和小棠-芒东三个早白垩世岩体(图 1)。岩体侵入高黎贡山群中,岩石类型主要包括二长花岗岩、正长花岗岩及白云母花岗岩。矿物组成较为单一,主要包括:钾长石(30%~50%)、斜长石(10%~40%)、石英(20%~40%)、黑云母(3%~5%)和白云母(0~3%),副矿物主要有锆石和磷灰石,不含角闪石、堇青石和碱性暗色矿物(图 2)。

图 2 腾冲地块早白垩世花岗岩样品显微镜下照片 (a)白云母花岗岩;(b)二长花岗岩. Pl-斜长石;Qz-石英;Ms-白云母;Kfs-钾长石 Fig. 2 Photomicrographs of the Early Cretaceous granites from the Tengchong terrane (a) muscovite granite; (b) monzogranite. Pl-plagioclase; Qz-quartz; Ms-muscovite; Kfs-K-feldspar
2 分析方法 2.1 全岩主微量元素和Sr-Nd同位素分析

全岩主微量元素分析测试在武汉上谱分析科技有限责任公司分析测试中心完成。主量元素分析采用波长色散X射线荧光光谱仪(XRF型号:Axios MAX)测试,测试过程中使用外标和重复样综合控制测试质量,平行测定了BHVO-2、GSP-2、W-2A、GBW07103和GBW07316等标准物质,分析精度优于5%。微量元素分析利用Agilent 7700e ICP-MS完成,测试过程采用内标、重复样和外标综合控制测试质量的方法,以元素In为内标,平行测定空白样以及AGV-2、BHVO-2、BCR-2和RGM-2等标准物质, 分析精度约为5%~10%。全岩Sr-Nd同位素分析测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室MC-ICP-MS仪器上完成,将小于180目的样品粉末,用1:1的HF+HNO3在Teflon容器中低温溶解,利用AG-50W-8X柱分离出Sr和REEs,利用HDEHP阳离子交换柱分离出Nd和其他稀土元素,然后将分离出的Sr和Nd溶液用2%的HNO3稀释至适当浓度进行上机测试。分别用87Sr/86Sr=0.1194和146Nd/144Nd=0.7219对87Sr/86Sr和146Nd/144Nd的测定值标准化。

2.2 锆石SIMS U-Pb定年和氧同位素分析

锆石SIMS U-Pb定年和氧同位素分析测试均在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,测试仪器为CAMECA IMS 1280-HR型二次离子质谱仪。锆石U-Pb定年测试采用O2-为一次离子源,离子流强度为~10nA,加速电压为-13kV,束斑为椭圆形,大小为20×30μm,详细分析过程参考(Xu et al., 2019)。使用标准锆石Plesovice(Sláma et al., 2008)对样品Pb/U同位素比值进行校正,标准锆石SA01(Huang et al., 2020)用于监控分析结果可靠性。锆石氧同位素分析时使用133Cs一次离子源,加速电压10kV,电流强度为~2nA,束斑大小直径约为20μm。仪器质量分馏(IMF)校正采用标准锆石Penglai(δ18O=5.31±0.10‰)(Li et al., 2010)。标准锆石SA01(δ18O=6.16±0.26‰)用于监控测试结果的准确度。详细分析过程参考文献(Yang et al., 2018)。

3 分析结果 3.1 SIMS锆石U-Pb年龄和氧同位素

3个岩体中各选取6个花岗岩样品进行锆石SIMS U-Pb定年测试及氧同位素测试,分析数据分别见表 1表 2。所有样品中的锆石具有较一致的晶型,大部分呈自形-半自形的柱状,长100~200μm,长宽比一般为2:1~3:1,具有岩浆结晶环带(图 3)Th/U变化范围为0.4~3.7,为典型的岩浆成因锆石(Belousova et al., 2002)。

表 1 腾冲地块早白垩世花岗岩锆石U-Pb SIMS分析结果 Table 1 Zircon U-Pb SIMS analytical results for Early Cretaceous granites in the Tengchong terrane

表 2 腾冲地块早白垩世花岗岩锆石氧同位素分析结果 Table 2 Zircon Oxygen isotope analytical results for Early Cretaceous granites in the Tengchong terrane

图 3 腾冲地块早白垩世花岗岩锆石阴极发光图像(圆圈代表U-Pb定年位置及氧同位素分析位置) Fig. 3 Cathodoluminescence (CL) images for zircons from the Early Cretaceous granites in the Tengchong terrane (The circle show the positions for U-Pb dating and O isotope analysis)

明光岩体2个二长花岗岩样品18TC85和18TC74分别测试了16个点和14个点U-Pb数据,其中去除样品18TC85中2个误差较大的点后,2个样品给出的谐和年龄分别为122.2±1.1Ma(图 4a)和122.1±0.50Ma(图 4b)。勐连岩体1个白云母花岗岩样品18TC64和1个二长花岗岩样品17LL41分别测试了20个点和16个点,给出的谐和年龄分别为115.56±0.45Ma(图 4d)和114.37±1.1Ma(图 4c)。小棠-芒东岩体1个正长花岗岩样品18TC19和1个二长花岗岩样品18TC20分别测试了15个点,给出的谐和年龄分别为112.47±0.45Ma(图 4e)和115.16±0.46Ma(图 4f)。

图 4 腾冲地块早白垩世花岗岩锆石U-Pb谐和图 Fig. 4 Zircon U-Pb concordia diagrams from the Early Cretaceous granites in the Tengchong terrane

完成年龄测试后,抛去剥蚀坑后在测年锆石颗粒相同位置进行氧同位素分析。其中明光岩体2个样品共30粒锆石的δ18O变化范围为6.5‰~7.8‰(图 5a),平均值为7.1‰。勐连岩体2个样品共36粒锆石的δ18O变化范围为6.0‰~7.5‰(图 5b),平均值为6.7‰。小棠-芒东岩体2个样品共30粒锆石的δ18O变化范围为6.2‰~7.2‰(图 5c),平均值为6.6‰。

图 5 腾冲地块早白垩世花岗岩锆石氧同位素特征 Fig. 5 Zircon O isotopes from the Early Cretaceous granites in the Tengchong terrane
3.2 全岩主微量元素

表 3列出了3个岩体共11个样品的主微量元素测试结果。这3个岩体的主量元素组成具有以下一致特征:(1)富硅,SiO2含量为69.2%~77.4%,具有较高的分异指数(DI)(83~96),与北拉萨地块察隅高分异花岗岩(82~92)(朱弟成等, 2009)以及华南佛冈高分异花岗岩(82~94)(Li et al., 2007)相当, 表明岩体经历了较高程度的分异演化作用;(2)弱过铝-强过铝质,A/CNK值变化于1.03~1.23(平均值为1.09);(3)高钾钙碱性,在SiO2-K2O的地球化学判别图解中,样品均显示为高钾钙碱性(图 6a);(4) 较低的镁、铁、磷含量,可能指示了高程度的分异演化特征(表 3)。

表 3 腾冲地块早白垩世花岗岩全岩主量元素(wt%)和微量元素(×10-6)分析结果 Table 3 Composition of major (wt%) and trace (×10-6) elements for Early Cretaceous granites in the Tengchong terrane

图 6 腾冲地块早白垩世花岗岩全岩地球化学图解 (a) SiO2-K2O图解;(b) (Zr+Nb+Ce+Y)-FeOT/MgO图解 Fig. 6 Geochemical diagrams of the Early Cretaceous granites in the Tengchong terrane (a) SiO2 vs. K2O diagram; (b) Zr+Nb+Ce+Y vs. FeOT/MgO diagram

各岩体的稀土总量总体较低(∑REE=71.1×10-6~292.6×10-6)(表 3)。在球粒陨石标准化稀土元素配分图中(图 7a),各岩体均表现出轻稀土相对富集(∑LREE=61.7×10-6~279.1×10-6),重稀土相对亏损(∑HREE=9.5×10-6~30.0×10-6),LREE/HREE=3.9~20.6,(La/Yb)N=3.0~37.4,铕负异常较为明显(δEu=0.13~0.69),在原始地幔标准化微量元素蜘蛛图中(图 7b),所有样品均不同程度富集大离子亲石元素Rb、Th、Pb和K,亏损高场强元素Nb、P、Ti。

图 7 腾冲地块早白垩世花岗岩球粒陨石标准化稀土元素分布图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE distributions (a) and primitive mantle-normalized trace-element spidergram (b) for the Early Cretaceous granites in the Tengchong terrane (normalization values after Sun and McDonough, 1989)
3.3 全岩Sr-Nd同位素

3个岩体的Sr-Nd同位素基本一致,具体见表 4。小棠-芒东岩体的(87Sr/86Sr)i=0.71079~0.72125,εNd(t)=-7.70~-7.57;明光岩体的(87Sr/86Sr)i=0.70923~0.71022,εNd(t)=-9.13~-6.95;勐连岩体的(87Sr/86Sr)i=0.70624~0.70896,εNd(t)=-8.9~-4.73。研究样品均具有较老的二阶段Nd同位素模式年龄(1297~1662Ma)。

表 4 腾冲地块早白垩世花岗岩全岩Sr-Nd同位素分析结果 Table 4 Whole-rock Sr-Nd isotopic compositions of the Early Cretaceous granites in the Tengchong terrane
4 讨论 4.1 岩石类型

就所研究的3个岩体而言,它们具有不同于A型花岗岩的岩相学和地球化学特征,主要包括:(1)不含A型花岗岩的特征矿物,碱性暗色矿物(吴福元等, 2007);(2)较低的FeOT/MgO比值(平均为5.7)以及较低的10000×Ga/Al比值(平均为2.2),区别于典型的A型花岗岩(FeoT/MgO>10,10000×Ga/Al>2.6)(Whalen et al., 1987);(3)具有相对低的锆饱和温度(平均为760℃),不具有A型花岗岩显著的高温(>800℃)特征(King et al., 1997)。这些花岗岩具有较高的铝饱和指数,与变沉积岩部分熔融形成S型花岗岩相似(Chappell, 1999)。目前更多的学者根据花岗岩的SiO2与P2O5、Rb与Th、或Rb与Y含量的相关性来判断I型或S型花岗岩(Clemens, 2003)。在SiO2-P2O5图解中3个所研究的岩体样品以及杨启军等(2006)所定义的“S型花岗岩”样品均表现出I型花岗岩具有的相关关系(图 8a)。但值得注意的是,仅通过SiO2-P2O5和Rb-Y、Rb-Th等相关关系来区分I型或S型花岗岩是不够充分的(汪洋, 2008; Broska et al., 2004; Gao et al., 2016)。有些典型的S型花岗岩,如南非的Cape Granite Suite同样表现出SiO2-P2O5的负相关关系(Gao et al., 2016)。如前所述,锆石O同位素组成可以用来有效区分I型或S型花岗岩,所研究的3个岩体的花岗岩平均锆石氧同位素值(6.5‰~7.5‰)(图 5),远低于典型的华南S型花岗岩(8‰~12‰)(Fu et al., 2015; Jiao et al., 2015),以及澳大利亚拉克伦褶皱带S型花岗岩(8.0‰~11.0‰)(Kemp et al., 2007)。此外这3个岩体的花岗岩的锆石氧同位素与腾冲地块同时期典型的I型花岗岩(含角闪石)的锆石氧同位素值(6.1‰~7.8‰)(未发表数据)十分一致,并且它们的全岩Nd同位素同样可与这些典型的I型花岗岩对比(-10.5~-5.16)。以上证据基本排除了本文所研究的样品为S型花岗岩的可能。结合这3个岩体的花岗岩样品均具有高的SiO2含量,高的分异指数(DI=83~96),以及不同程度的Eu的负异常(δEu=0.13~0.69)(表 3),在Zr+Nb+Ce+Y-(FeOT/MgO)判别图(图 6b)解中位于高分异花岗岩区域,综合判断,我们认为3个岩体均属于高分异的I型花岗岩。

图 8 腾冲地块早白垩世花岗岩哈克图解 Fig. 8 Harker diagrams of the Early Cretaceous granites in the Tengchong terrane
4.2 岩石成因

高分异I型花岗岩的成因主要包括:(1)来自幔源的基性岩浆与长英质岩浆混合形成混源岩浆并在后期发生分离结晶作用(Karsli et al., 2010; Zhu et al., 2009a);(2)由于幔源分异的基性岩浆底侵,导致下地壳物质发生部分熔融,并发生分离结晶作用(Chappell et al., 2012; Topuz et al., 2010);(3)幔源的基性岩浆发生分离结晶(Chen and Arakawa, 2005; Wyborn et al., 2001)。腾冲早白垩世高分异I型花岗岩具有较为富集Sr-Nd的同位素组成,说明它们不可能是幔源基性岩浆分离结晶的产物。锆石平均δ18O值变化于6.5‰~7.0‰(图 5),略高于与幔源岩浆平衡的锆石δ18O值(5.3±0.3‰)(Valley et al., 2005), 低于上地壳平均δ18O值(9.7±1.3‰)(Simon and Lécuyer, 2005), 与下地壳平均值(7.0‰)(Kempton and Harmon, 1992)以及具有高镁(Mg#>70)特征的下地壳镁铁质麻粒岩捕虏体氧同位素(6.7±0.6‰)(Kempton and Harmon, 1992)十分接近,结合古老的Nd模式年龄(1297~1662Ma)(表 4),暗示它们可能是古老镁铁质大陆下地壳部分熔融的产物。低钾玄武质岩石熔融产生的中性-酸性熔体具有低钾及低的K2O/Na2O值(< 1),而中钾-高钾玄武质岩熔融则会产生更偏酸性及高钾及高的K2O/Na2O值(>1)的熔体(Sisson et al., 2005)。本次研究的样品具有高的K2O含量(>4.2%),高的K2O/Na2O值(>1.1),符合源岩为中钾-高钾玄武质岩石的特征(图 9)。因此,本文认为这些高分异花岗岩的源区是以中钾-高钾玄武质岩石为主的腾冲古老基底物质。

图 9 花岗岩源区判别图解(据Jiang et al., 2018) Fig. 9 Discrimination diagrams for the magma source of the granites (after Jiang et al., 2018)

研究的花岗岩样品经历了高程度的结晶分异作用,其中SiO2与CaO和Al2O3的负相关(图 8b, e)及Sr、Ba和Eu的亏损(图 7b)指示斜长石和钾长石的分离结晶,SiO2与P2O5的负相关(图 8a)及P的亏损(图 7b)指示磷灰石的分离结晶,SiO2与MgO和Fe2O3的负相关(图 8c, d)可能指示镁铁矿物(角闪石,黑云母)的分离结晶,SiO2与TiO2的负相关(图 8f)及Ti的亏损(图 7b)指示富钛矿物的分离结晶。值得注意的是,研究的样品中存在一些锆石具有十分低的氧同位素(6.0‰~6.3‰), 低于下地壳平均值(7.0‰)(Kempton and Harmon, 1992),甚至低于富镁的下地壳麻粒岩捕虏体(6.7±0.6%)(Kempton and Harmon, 1992),略高于与幔源岩浆平衡的锆石δ18O值(5.3±0.3‰)(Valley et al., 2005)。此外,3个岩体的Nd同位素(-9.1~-4.7)也具有较大的变化范围,以上证据表明来自幔源物质参与了成岩作用。尽管在研究的高分异花岗岩中未发现暗色包体的存在,但是在同时期的腾冲早白垩世I型花岗岩中有大量包体的报道(从峰等, 2011; Zhang et al., 2018a),这些包体具有较寄主岩更亏损的同位素特征(从峰等, 2011)。熔融实验表明镁铁质下地壳在没有地幔物质参与的情况下其部分熔融产生的熔体的镁值(Mg#)总是小于40(Rapp and Watson, 1995),然而同时期的腾冲地块存在许多具有高Mg#(>40)特征的中酸性岩(Qi et al., 2019; Zhu et al., 2017b)。综合以上证据,我们将本次研究的高分异I型花岗岩的成因解释为:来自幔源的岩浆底侵至镁铁质下地壳使其部分熔融并与壳源的岩浆混合随后发生分离结晶作用所形成。

4.3 构造意义

腾冲地块东缘发育大量早白垩世岩浆岩,呈近南北向展布,岩石类型主要为花岗岩、花岗闪长岩、闪长岩及包体,锆石年代学研究表明这些中酸性岩的形成时代在130~110Ma之间(从峰等, 2011; 戚学祥等, 2011; 杨启军等, 2006; Cao et al., 2019; Fang et al., 2018; He et al., 2020; Qi et al., 2019; Zhang et al., 2018a; Zhu et al., 2017a, b)。这些早白垩世岩浆岩的形成时的构造环境仍然存在较大争议。前人提出的构造成因模式主要包括:(1)班公湖-怒江洋闭合导致拉萨-腾冲地块与羌塘-保山地块碰撞所引发的地壳增厚熔融(杨启军等, 2006; Cao et al., 2014; Xu et al., 2012);(2)班公湖-怒江洋的向南(Qi et al., 2019; Zhu et al., 2017b)或向北(Cao et al., 2019; Fang et al., 2018)的俯冲背景;(3)碰撞后背景,包括俯冲板片断离(Zhang et al., 2018a; Zhu et al., 2017a)和板片后撤(He et al., 2020)。Xu et al. (2012)认为这些强过铝质花岗岩为S型,形成于板块碰撞导致的地壳增厚背景,幔源的贡献是十分有限的。如前所述,这些所谓的“S型花岗岩”其实为高分异的I型花岗岩,而且其形成过程中有幔源岩浆参与。此外,新的研究发现了越来越多的具有正的锆石εHf(t)值的早白垩世I型花岗岩(He et al., 2020; Zhang et al., 2018a; Zhu et al., 2017b),表明了地幔物质对腾冲早白垩世岩浆活动有着不可忽视的作用。

腾冲地块与西藏陆块群如拉萨地块和羌塘地块之间的对应关系一直存在着争议。Liu et al. (2016)通过年代学及锆石Hf-O同位素研究认为班公湖-怒江缝合带向东南延伸至缅甸境内的密支那蛇绿岩带(腾冲地块以西)。在这种构造模式下,腾冲地块与保山地块一样同属于Sibumasu地块的一部分,与西羌塘地块相连(Metcalfe, 2013)。然而,腾冲地块具有与拉萨地块相似的岩浆活动历史、地层学及古生物学特征(Liao et al., 2015; Zhang et al., 2019; Zhao et al., 2016),我们新的碎屑锆石年代学和同位素分析研究表明保山地块和腾冲地块古-中生代具有不同的碎屑锆石源区,分别为西羌塘地块和拉萨地块的东南延伸(周美玲, 2019)。腾冲地块东缘早白垩世岩浆活动具有与拉萨地块北部岩浆岩带相似的地球化学特征及年代学特征(Qi et al., 2019; Xie et al., 2016)。根据地层学,构造学,岩浆岩及变质岩资料,Zhu et al. (2016)提出了班公怒江洋双向俯冲模式,认为持续的双向俯冲最终导致班公湖-怒江洋在~140Ma的闭合,其中向南(或向西)俯冲的洋壳由于重力不稳定性发生板片折返(130~120Ma),并最终断离(120~110Ma)。最近,Xie et al. (2020)通过对腾冲地块早白垩世岩浆岩的Nd-Hf同位素研究认为腾冲地块早白垩世晚期岩浆活动(122~112Ma)具有比早期的岩浆活动(132~122Ma)更多的地幔物质加入,并认为这两期岩浆活动指示腾冲-保山地块碰撞后,由洋壳板片折返向洋壳板片断离的构造背景转换。本次研究的1个较年轻的样品(112Ma)具有相对高的Nd同位素值(εNd(t)=-4.7),并且两个较年轻的勐连和小棠芒东岩体的锆石氧同位素值(平均为6.6‰和6.7‰)具有比较老的(122Ma)明光岩体低的锆石氧同位素值(平均为7.1‰),以上这些同位素变化规律均指示幔源物质明显增加,进一步支持Zhu et al. (2016)Xie et al. (2020)所提出的构造模式。结合前人的研究,我们认为较老(122Ma)的明光高分异I型花岗岩可能与腾冲-保山地块碰撞后的板片折返背景相关,较年轻(115~112Ma)的勐连和小棠-芒东高分异I型花岗岩则与板片断离相关。这一构造背景跟拉萨地块北缘同期相似,支持腾冲地块是拉萨地块的东南延伸这一认识。

5 结论

(1) 明光、勐连及小棠-芒东岩体主要包括二长花岗岩、白云母花岗岩和正长花岗岩,高精度SIMS锆石U-Pb定年结果表明它们形成于114~122Ma,δ18O变化于6.5‰~7.0‰,是典型的I型花岗岩锆石氧同位素特征,属于高分异I型花岗岩。

(2) 全岩主微量、全岩Sr-Nd同位素表明这些具有高硅、富钾、弱过铝-强过铝质花岗岩源区为古老的高钾-中钾玄武质下地壳。

(3) 腾冲早白垩世岩浆作用可能形成于腾冲与保山之间的中特提斯洋闭合后,特提斯洋板片发生折返或断离的构造背景,跟拉萨地块北缘演化历史高度一致,表明腾冲陆块是拉萨陆块的东南向延伸。

参考文献
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Broska I, Williams CT, Uher P, Konečny P and Leichmann J. 2004. The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: The role of apatite and P-bearing feldspar. Chemical Geology, 205(1-2): 1-15 DOI:10.1016/j.chemgeo.2003.09.004
Cao HW, Zhang ST, Lin JZ, Zheng L, Wu JD and Li D. 2014. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China): Regional tectonic implications. Journal of Asian Earth Sciences, 81: 142-152 DOI:10.1016/j.jseaes.2013.11.002
Cao HW, Zou H, Zhang YH, Zhang ST, Zheng L, Zhang LK, Tang L and Pei QM. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78: 196-212 DOI:10.1016/j.oregeorev.2016.04.002
Cao HW, Zhang YH, Tang L, Hollis SP, Zhang ST, Pei QM, Yang C and Zhu XS. 2019. Geochemistry, zircon U-Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China: Implications for the Mesozoic tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. International Geology Review, 61(3): 257-279 DOI:10.1080/00206814.2017.1422445
Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Chappell BW, Bryant CJ and Wyborn D. 2012. Peraluminous I-type granites. Lithos, 153: 142-153 DOI:10.1016/j.lithos.2012.07.008
Chen B and Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320 DOI:10.1016/j.gca.2004.09.019
Chen FK, Li QL, Wang XL and Li XH. 2006. Zircon age and Sr-Nd-Hf isotopic composition of migmatite in the eastern Tengchong block, western Yunnan. Acta Petrologica Sinica, 22(2): 439-448 (in Chinese with English abstract)
Chen YQ, Lu YX, Zhao HJ, Cheng ZZ, Jiang CX and Liu ZS. 2013. Zircon SHRIMP U-Pb geochronology, geochemistry of the Xiaochang monzonitic granite with Mo mineralization and implications for tectonic setting in Tengchong Block, western Yunnan Terrain, southwestern China. Earth Science Frontiers, 20(5): 1-14 (in Chinese with English abstract)
Cheng ZH, Guo ZF, Dingwell DB, Li XH, Zhang ML, Liu JQ, Zhao WB and Lei M. 2020. Geochemistry and petrogenesis of the post-collisional high-K calc-alkaline magmatic rocks in Tengchong, SE Tibet. Journal of Asian Earth Sciences, 193: 104309 DOI:10.1016/j.jseaes.2020.104309
Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18 DOI:10.1016/S0012-8252(02)00107-1
Cong F, Lin SL, Tang HF, Xie T, Li ZH, Zou GF, Peng ZM and Liang T. 2010. Trace elements and Hf isotope compositions and U-Pb age of igneous zircons from the triassic granite in Lianghe, western Yunnan. Acta Geologica Sinica, 84(8): 1155-1164 (in Chinese with English abstract)
Cong F, Lin SL, Zou GF, Li ZH, Xie T, Peng ZM and Liang T. 2011. Magma mixing of granites at Lianghe: In-situ zircon analysis for trace elements, U-Pb ages and Hf isotopes. Science China (Earth Sciences), 54(9): 1346-1359 DOI:10.1007/s11430-011-4208-z
Cui XL, Deng J, Zhang D, Xiao CX, Zhang QW, Wu ZY and Zhou SM. 2017. Chronological and geochemical characteristics of the Early Silurian metamorphic granites in Tengchong Block, western Yunnan and their implications. Acta Petrologica Sinica, 33(7): 2085-2098 (in Chinese with English abstract)
Dan W, Li XH, Wang Q, Wang XC, Liu Y and Wyman DA. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research, 254: 59-72 DOI:10.1016/j.precamres.2014.07.024
Ding LL, Liu JQ, Guo ZF and Zhang L. 2018. The eruption trigger of the dacitic magma in Tengchong during the Middle Pleistocene. Acta Petrologica Sinica, 34(1): 113-125 (in Chinese with English abstract)
Fang Y, Zhang YH, Zhang ST, Cao HW, Zou H and Dong JH. 2018. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the Late Mesozoic tectonic evolution of southwestern China. Geoscience Frontiers, 9(2): 459-470 DOI:10.1016/j.gsf.2017.04.007
Fu SL, Hu RZ, Bi XW, Chen YW, Yang JH and Huang Y. 2015. Origin of Triassic granites in central Hunan Province, South China: Constraints from zircon U-Pb ages and Hf and O isotopes. International Geology Review, 57(2): 97-111 DOI:10.1080/00206814.2014.996258
Gao P, Zheng YF and Zhao ZF. 2016. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos, 258-259: 77-91 DOI:10.1016/j.lithos.2016.04.019
Hart SR. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309(5971): 753-757 DOI:10.1038/309753a0
He XH, Liu Z, Wang GC, Leonard N, Tao W and Tan SC. 2020. Petrogenesis and tectonic setting of the Early Cretaceous granitoids in the eastern Tengchong terrane, SW China: Constraint on the evolution of Meso-Tethys. Lithosphere, 12(1): 150-165 DOI:10.1130/L1149.1
Huang C, Wang H, Yang JH, Ramezani J, Yang C, Zhang SB, Yang YH, Xia XP, Feng LJ, Lin J, Wang TT, Ma Q, He HY, Xie LW and Wu ST. 2020. SA01: A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination. Geostandards and Geoanalytical Research, 44(1): 103-123 DOI:10.1111/ggr.12307
Huang ZY, Qi XX, Tang GZ, Liu JK, Zhu LH, Hu ZC, Zhao YH and Zhang C. 2013. The identification of Early Indosinian tectonic movement in Tengchong block, western Yunnan: Evidence of zircon U-Pb dating and Lu-Hf isotope for Nabang diorite. Geology in China, 40(3): 730-741 (in Chinese with English abstract)
Jiang H, Jiang SY, Li WQ, Zhao KD and Peng NJ. 2018. Highly fractionated Jurassic I-type granites and related tungsten mineralization in the Shirenzhang deposit, northern Guangdong, South China: Evidence from cassiterite and zircon U-Pb ages, geochemistry and Sr-Nd-Pb-Hf isotopes. Lithos, 312-313: 186-203 DOI:10.1016/j.lithos.2018.04.030
Jiao SJ, Li XH, Huang HQ and Deng XG. 2015. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos, 239: 217-233 DOI:10.1016/j.lithos.2015.10.004
Karsli O, Dokuz A, Uysal[XCI.tif, JZ], Aydin F, Chen B, Kandemir R and Wijbrans J. 2010. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harşit Pluton, Eastern Turkey. Contributions to Mineralogy and Petrology, 160(4): 467-487 DOI:10.1007/s00410-010-0489-z
Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983 DOI:10.1126/science.1136154
Kempton PD and Harmon RS. 1992. Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochimica et Cosmochimica Acta, 56(3): 971-986 DOI:10.1016/0016-7037(92)90041-G
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391 DOI:10.1093/petroj/38.3.371
Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?. Lithos, 96(1-2): 186-204 DOI:10.1016/j.lithos.2006.09.018
Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134 DOI:10.1111/j.1751-908X.2010.00036.x
Li ZH, Lin SL, Cong F, Xie T and Zou GF. 2012a. U-Pb ages of zircon from metamorphic rocks of the Gaoligongshan Group in western Yunnan and its tectonic significance. Acta Petrologica Sinica, 28(5): 1529-1541 (in Chinese with English abstract)
Li ZH, Lin SL, Cong F, Zou GF and Xie T. 2012b. Early cretaceous magmatism in tengchong-lianghe block, westem Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 590-598 (in Chinese with English abstract)
Liao SY, Wang DB, Tang Y, Yin FG, Cao SN, Wang LQ, Wang BD and Sun ZM. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana's northern margin. Geological Society of America Bulletin, 127(9-10): 1313-1330 DOI:10.1130/B31210.1
Lin MS, Peng SB and Qiao WT. 2017. 40Ar/39Ar geochronology and geochemistry of Pleistocene trachyandesite in Tengchong, western Yunnan, China, and its tectonic implication. Acta Petrologica Sinica, 33(10): 3137-3146 (in Chinese with English abstract)
Liu CZ, Chung SL, Wu FY, Zhang C, Xu Y, Wang JG, Chen Y and Guo S. 2016. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44(4): 311-314 DOI:10.1130/G37342.1
Liu HC, Bi MW, Guo XF, Zhou YZ and Wang YK. 2019a. Petrogenesis of Late Silurian volcanism in SW Yunnan (China) and implications for the tectonic reconstruction of northern Gondwana. International Geology Review, 61(11): 1297-1312 DOI:10.1080/00206814.2018.1506947
Liu Z, Liao SY, Tan SC, He XH, Wang GC, Wang DB and Zhou Q. 2019b. Paleocene Neo-Tethyan slab rollback constrained by A1-type granitic intrusion in the Gaoligong-Tengliang-Yingjiang belt of the Eastern Himalayan Syntaxis, SE Tibet. International Journal of Earth Sciences, 108(6): 2113-2128 DOI:10.1007/s00531-019-01752-4
Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America, Abstracts with Programs, 11(7): 468
Ma LY, Wang YJ, Fan WM, Geng HY, Cai YF, Zhong H, Liu HC and Xing XW. 2014. Petrogenesis of the early Eocene I-type granites in West Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research, 25(1): 401-419 DOI:10.1016/j.gr.2013.04.010
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33 DOI:10.1016/j.jseaes.2012.12.020
Qi XX, Zhu LH, Hu ZC and Li ZQ. 2011. Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica, 27(11): 3409-3421 (in Chinese with English abstract)
Qi XX, Wei C, Zhang C, Zhang SQ, Hu ZC and Ji FB. 2019. Southward extension of the Bangonghu-Nujiang Suture: Evidence from Early Cretaceous intermediate and felsic magmatism in the Gaoligong Orogen, China. Journal of Asian Earth Sciences, 175: 1-25 DOI:10.1016/j.jseaes.2018.09.007
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 DOI:10.1093/petrology/36.4.891
Shi YR, Anderson JL, Wu ZH, Yang ZY, Li LL and Ding J. 2016. Age and origin of early paleozoic and mesozoic granitoids in western Yunnan province, China: Geochemistry, SHRIMP zircon ages, and Hf-in-zircon isotopic compositions. The Journal of Geology, 124(5): 617-630 DOI:10.1086/687397
Simon L and Lécuyer C. 2005. Continental recycling: The oxygen isotope point of view. Geochemistry, Geophysics, Geosystems, 6(8): Q08004
Sisson TW, Ratajeski K, Hankins WB and Glazner AF. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6): 635-661 DOI:10.1007/s00410-004-0632-9
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ(eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tang WL, Xu JF, Chen JL, Tan RY and Huang WL. 2018. Implications of the geochronology and geochemistry of Diantan A-type granites in the Tengchong area. Geochimica, 47(1): 1-13 (in Chinese with English abstract)
Topuz G, Altherr R, Siebel W, Schwarz WH, Zack T, Hasözbek A, Barth M, Satır M and Şen C. 2010. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos, 116(1-2): 92-110 DOI:10.1016/j.lithos.2010.01.003
Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580
Wang YJ, Xing XW, Cawood PA, Lai SC, Xia XP, Fan WM, Liu HC and Zhang FF. 2013. Petrogenesis of Early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos, 182-183: 67-85 DOI:10.1016/j.lithos.2013.09.010
Wang Y. 2008. Some further discussions on the genetic type of the Early Yanshanian (Jurassic) granitoids in the Nanling area, SE China. Geological Review, 54(2): 162-174 (in Chinese with English abstract)
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Wu FY, Liu XC, Ji WQ, Wang J M and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60: 1201-1219 DOI:10.1007/s11430-016-5139-1
Wu HY, Deng J, Wang QF, Zhang LC, Cui XL, Shu QH, Zhang QW and Zhou SM. 2019. SIMS U-Pb zircon geochronological and geochemical study of the Sn deposits in Tengchong, north of the Southeast Asian metallogenic belt: Implications for the timing of mineralization and ore genesis. Ore Geology Reviews, 111: 102954 DOI:10.1016/j.oregeorev.2019.102954
Wyborn D, Chappell BW and James M. 2001. Examples of convective fractionation in high-temperature granites from the Lachlan Fold Belt. Australian Journal of Earth Sciences, 48(4): 531-541 DOI:10.1046/j.1440-0952.2001.00877.x
Xie JC, Zhu DC, Dong GC, Zhao ZD, Wang Q and Mo XX. 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Research, 39: 217-229 DOI:10.1016/j.gr.2016.02.007
Xie JC, Zhu DC, Wang Q, Zhao ZD and Zhang SQ. 2020. Compositional changes of granitoids from the Menglian Batholith in SW China at ca. 122Ma: Implications for the origin of decoupled Nd-Hf isotopic compositions and crust generation in collision zones. Lithos, 364-365: 105550
Xu J, Xia XP, Lai CK, Zhou ML and Ma PF. 2019. First identification of late permian Nb-enriched basalts in ailaoshan region (SW Yunnan, China): Contribution from emeishan plume to subduction of eastern paleotethys. Geophysical Research Letters, 46(5): 2511-2523 DOI:10.1029/2018GL081687
Xu MJ, Huang H, Huang ZC, Wang P, Wang LS, Xu MJ, Mi N, Li H, Yu DY and Yuan XH. 2018a. Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis. Earth and Planetary Science Letters, 482: 567-579 DOI:10.1016/j.epsl.2017.11.048
Xu R, Deng J, Cheng HY, Cui XL and Wang CB. 2018b. Geochronology, geochemistry and geodynamic setting of Late Cretaceous magmatism and Sn mineralization in the western South China and Tengchong-Baoshan. Acta Petrologica Sinica, 34(5): 1271-1284 (in Chinese with English abstract)
Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR and Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151-175 DOI:10.1016/j.jseaes.2011.06.018
Yang Q, Xia XP, Zhang WF, Zhang YQ, Xiong BQ, Xu YG, Wang Q and Wei GJ. 2018. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth Sciences, 3(3): 81-86 DOI:10.1016/j.sesci.2018.05.001
Yang QJ, Xu YG, Huang XL and Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: Tectonic implications. Acta Petrologica Sinica, 22(4): 817-834 (in Chinese with English abstract)
Zhang JY, Peng TP, Fan WM, Zhao GC, Dong XH, Gao JF, Peng BX, Wei C, Xia XP, Chen LL and Liang XR. 2018a. Petrogenesis of the Early Cretaceous granitoids and its mafic enclaves in the Northern Tengchong Terrane, southern margin of the Tibetan Plateau and its tectonic implications. Lithos, 318-319: 283-298 DOI:10.1016/j.lithos.2018.08.017
Zhang QW, Wang QF, Li GJ and Cui XL. 2018b. Fractionation process of high-silica magmas through the lens of zircon crystallization: A case study from the Tengchong Block, SW China. Chemical Geology, 496: 34-42 DOI:10.1016/j.chemgeo.2018.08.004
Zhang SQ, Qi XX, Wei C, Zhang C and Ji FB. 2017. Eocene magmatism in the Gaoligong orogen, southwestern Yunnan, and its response to the collision of the India-Eurasia. Acta Petrologica Sinica, 33(12): 3842-3860 (in Chinese with English abstract)
Zhang YC, Shen SZ, Zhang YJ, Zhu TX, An XY, Huang BX, Ye CL, Qiao F and Xu HP. 2019. Middle Permian foraminifers from the Zhabuye and Xiadong areas in the central Lhasa Block and their paleobiogeographic implications. Journal of Asian Earth Sciences, 175: 109-120 DOI:10.1016/j.jseaes.2018.01.008
Zhao SW, Lai SC, Qin JF and Zhu RZ. 2016. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau: Constraints from granitic gneisses and granitoid intrusions. Gondwana Research, 35: 238-256 DOI:10.1016/j.gr.2015.05.007
Zhao SW, Lai SC, Pei XZ, Qin JF, Zhu RZ, Tao N and Gao L. 2019. Compositional variations of granitic rocks in continental margin arc: Constraints from the petrogenesis of Eocene granitic rocks in the Tengchong Block, SW China. Lithos, 326-327: 125-143 DOI:10.1016/j.lithos.2018.12.026
Zhou ML. 2019. Detrital zircon U-Pb-Hf isotope studies for the Paleozoic sandstones from the Baoshan Block, western Yunnan, and their constraints on the Gondwana continental reconstruction. Master Thesis. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Zhou ZM, Ma CQ, Wang LX, Chen SG, Xie CF, Li Y and Liu W. 2018. A source-depleted Early Jurassic granitic pluton from South China: Implication to the Mesozoic juvenile accretion of the South China crust. Lithos, 300-301: 278-290 DOI:10.1016/j.lithos.2017.11.017
Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009a. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312 DOI:10.1016/j.chemgeo.2009.09.008
Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009b. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 39(7): 833-848 (in Chinese)
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
Zhu RZ, Lai SC, Qin JF and Zhao SW. 2015. Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 100: 145-163 DOI:10.1016/j.jseaes.2015.01.014
Zhu RZ, Lai SC, Qin JF, Zhao SW and Wang JB. 2017a. Late Early-Cretaceous quartz diorite-granodiorite-monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications. Lithos, 288-289: 311-325 DOI:10.1016/j.lithos.2017.07.021
Zhu RZ, Lai SC, Santosh M, Qin JF and Zhao SW. 2017b. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean. Lithos, 286-287: 175-190 DOI:10.1016/j.lithos.2017.05.017
Zhu RZ, Lai SC, Qin JF, Santosh M, Zhao SW, Zhang EC, Zong CL, Zhang XL and Xue YZ. 2020. Genesis of high-potassium calc-alkaline peraluminous I-type granite: New insights from the Gaoligong belt granites in southeastern Tibet Plateau. Lithos, 354-355: 105343 DOI:10.1016/j.lithos.2019.105343
陈福坤, 李秋立, 王秀丽, 李向辉. 2006. 滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成. 岩石学报, 22(2): 439-448.
陈永清, 卢映祥, 赵红娟, 程志中, 蒋成兴, 刘正尚. 2013. 滇西腾冲地块小场钼矿化花岗岩的锆石SHRIMP U-Pb定年、地球化学及其构造意义. 地学前缘, 20(05): 1-14.
丛峰, 林仕良, 唐红峰, 谢韬, 李再会, 邹光富, 彭智敏, 梁婷. 2010. 滇西梁河三叠纪花岗岩的锆石微量元素、U-Pb和Hf同位素组成. 地质学报, 84(08): 1155-1164.
崔晓琳, 邓军, 张铎, 肖常先, 张琦玮, 吴占毅, 周淑敏. 2017. 滇西腾冲地块高黎贡山群早志留世变质花岗岩体的年代学、地球化学特征及意义. 岩石学报, 33(07): 2085-2098.
丁磊磊, 刘嘉麒, 郭正府, 张磊. 2018. 滇西腾冲中更新世英安质岩浆的爆发机制. 岩石学报, 34(1): 113-125.
黄志英, 戚学祥, 唐贯宗, 刘金科, 朱路华, 胡兆初, 赵宇浩, 张超. 2013. 腾冲地块内早印支期构造事件的厘定: 来自那邦闪长岩锆石U-Pb定年和Lu-Hf同位素证据. 中国地质, 40(3): 730-741. DOI:10.3969/j.issn.1000-3657.2013.03.006
李再会, 林仕良, 丛峰, 谢韬, 邹光富. 2012a. 滇西高黎贡山群变质岩的锆石年龄及其构造意义. 岩石学报, 28(5): 1529-1541.
李再会, 林仕良, 丛峰, 邹光富, 谢韬. 2012b. 滇西腾冲-梁河地块早白垩世岩浆作用. 矿物岩石地球化学通报, 31(06): 590-598.
林木森, 彭松柏, 乔卫涛. 2017. 滇西腾冲更新世粗面安山岩Ar-Ar年代学、地球化学特征及其构造意义. 岩石学报, 33(10): 3137-3146.
戚学祥, 朱路华, 胡兆初, 李志群. 2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMP U-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报, 27(11): 3409-3421.
唐婉丽, 许继峰, 陈建林, 谈荣钰, 黄文龙. 2018. 滇西腾冲地区滇滩A型花岗岩的年代学、地球化学及其构造意义. 地球化学, 47(01): 1-13. DOI:10.3969/j.issn.0379-1726.2018.01.001
汪洋. 2008. 南岭燕山早期花岗岩成因类型的进一步探讨. 地质论评, 54(2): 162-174. DOI:10.3321/j.issn:0371-5736.2008.02.003
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
徐容, 邓军, 程韩宇, 崔晓琳, 王传斌. 2018. 华南板块西缘和腾冲-保山地块晚白垩世岩浆活动及Sn成矿作用对比: 年代学、地球化学和动力学背景. 岩石学报, 34(5): 1271-1284.
杨启军, 徐义刚, 黄小龙, 罗震宇. 2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义. 岩石学报, 22(4): 817-834.
张诗启, 戚学祥, 韦诚, 张超, 吉风宝. 2017. 滇西高黎贡造山带始新世岩浆活动及其对印度板块与欧亚大陆碰撞的响应. 岩石学报, 33(12): 3842-3860.
周美玲. 2019. 滇西保山、腾冲地体的碎屑锆石年代学和Hf同位素研究及其地质意义. 硕士学位论文. 广州: 中国科学院广州地球化学研究所
朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833-848.