岩石学报  2021, Vol. 37 Issue (4): 1122-1138, doi: 10.18654/1000-0569/2021.04.10   PDF    
塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义
张永旺1,2, 刘汇川1,2, 于志琪1,2, 王凯1,2     
1. 油气资源与探测国家重点实验室, 中国石油大学(北京), 北京 102249;
2. 中国石油大学(北京)地球科学学院, 北京 102249
摘要: 塔里木克拉通保存有古元古代晚期与哥伦比亚超大陆演化相关的岩浆和构造记录。本文综述了塔里木克拉通周缘的古元古代晚期A型花岗岩,识别出两期(1.95Ga和1.85~1.73Ga)具不同地球化学特征的A型花岗岩。两期花岗岩均来源于具英云闪长岩和花岗闪长岩成分特征的地壳的部分熔融。~1.95Ga花岗岩具有相对较高的SiO2和Sr含量、Y/Nb和Ce/Nb比值、较低的εHf(t)值(-13~-5.2),为A2型花岗岩,形成于活动大陆边缘或弧后伸展等构造环境;而1.85~1.73Ga花岗岩具有相对较低的SiO2和Sr含量、Y/Nb和Ce/Nb比值、和较高的εHf(t)(-5.9~+8.7)和εNd(t)(-6.2~-2.5)值,为A2向A1过渡类型,形成于碰撞后伸展或者陆内伸展背景。笔者综述还发现塔里木克拉通内部元古代晚期岩浆和变质也可以明显的分为两期,岩浆岩峰值分别为1.93Ga和1.85Ga,变质年龄峰值为1.96Ga和1.84Ga,说明塔里木克拉通内部存在两期不同的古元古代晚期构造-岩浆事件。这两期构造-岩浆事件对应于俯冲型造山和碰撞造山后伸展环境,可能分别记录了哥伦比亚超大陆聚合和裂解过程,也就是说哥伦比亚超大陆可能在1.85Ga左右已经开始部分裂解。
关键词: 哥伦比亚    A型花岗岩    塔里木克拉通    古元古代    超大陆裂解    
Petrogenesis of late-Paleoproterozoic A-type granites in the Tarim Craton and implications for the Columbia assembly and break-up
ZHANG YongWang1,2, LIU HuiChuan1,2, YU ZhiQi1,2, WANG Kai1,2     
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China
Abstract: Lots of late-Paleoproterozoic magmatic and tectonic records, which are commonly interpreted as products of the Columbia assembly and break-up, were preserved in the Tarim Craton. In this study, we summarized the late-Paleoproterozoic A-type granitoids at the periphery of the Tarim Craton, and identified two A-type granitoid flare-ups at 1.95Ga and 1.85~1.73Ga. All these A-type granitoids are derived from partial melting of the crustal materials with tonalitic to granodioritic compositions. The ca. 1.95Ga granites show high SiO2 and Sr contents, high Y/Nb and Ce/Nb ratios, low εHf(t) values (-13~-5.2), and could be classified as A2 subtype granitoid. They were formed in continental arc or back-arc settings. The 1.85~1.73Ga granites show relatively low SiO2 and Sr contents, low Y/Nb and Ce/Nb ratios, high εHf(t) (-5.9~+8.7) and εNd(t) (-6.2~-2.5) values, and could be classified as A2 to A1 transitional subtype. They were formed in post-collisional or intracontinental extension settings. Besides, magmatism and metamorphism ages in the Tarim Craton also show two peaks at 1.93Ga and 1.85Ga, 1.95Ga and 1.84Ga, respectively. These age data suggest that the Tarim Craton may have experienced two significant tectono-magmatic events at about 1.93Ga and 1.85Ga. These two events may record the subduction related orogeny and collisional orogeny, and are related to the Columbia assembly and break-up, respectively. We believed that the Columbia supercontinent may have broken up at 1.85Ga.
Key words: Columbia    A-type granites    Tarim Craton    Paleoproterozoic    Supercontinent break-up    

超大陆的聚合和裂解过程直接影响地球岩石圈表层和内部的多种地质作用,还影响了全球海平面升降以及古气候演化(Rast, 2002; Rogers and Santosh, 2002; Zhao et al., 2002a, b, 2003, 2004; Pehrsson et al., 2013; Cawood et al., 2018; Mints, 2018; Liu et al., 2020)。自Worsley et al. (1984)提出了超大陆旋回概念之后,前人已陆续识别出四个典型的超大陆,即Ur(乌尔)、Columbia(哥伦比亚)、Rodinia(罗迪尼亚)和Pangea(潘吉尼亚)(Murphy and Nance, 1991; Meert, 2002; Rast, 2002; Rogers and Santosh, 2002; Zhao et al., 2002a, b, 2003, 2004; Cawood and Buchan, 2007; Goodge et al., 2008; Santosh, 2010; Evans, 2013; Nance et al., 2014; Zhou et al., 2014; Cawood et al., 2016, 2018)。其中的哥伦比亚超大陆聚合和裂解主要在古元古代,且伴生有强烈的古元古代地壳增生事件,因此一直是地质学界研究的热点(Meert, 2002; Rogers and Santosh, 2002; Sears and Price, 2002; Zhao et al., 2003; Hou et al., 2008; Chen et al., 2013c; Wang et al., 2014; Medig et al., 2016; Li et al., 2019)。哥伦比亚超大陆聚合和裂解过程在我国可能直接导致了华北、扬子和塔里木三大克拉通的结晶基底和古元古代晚期沉积盖层的形成(Zhao et al., 2003; 刘东晓等, 2017; Liu et al., 2020; Zhu et al., 2020a)。

塔里木克拉通位于我国西北部,主体是由前寒武纪变质基底和巨厚元古代以来沉积盖层组成的大型叠合盆地(图 1)。塔里木盆地北接中亚造山带,南临滇藏特提斯构造带,古老基底和地层出露于塔里木盆地周缘,盆地内部接近90%的区域被沙漠覆盖。前人研究已表明塔里木克拉通经历了与哥伦比亚超大陆演化相关的俯冲造山和陆内裂谷相关事件。比如,在塔里木盆地东北缘库鲁克塔格地区发现古元古代的兴地塔格群与杨吉布拉克群间呈角度不整合接触(陆松年, 1992)。Zhao et al. (2002b)将这种古元古代结晶基底和不整合覆于其上的中-新元古界沉积盖层构成认为是古元古代末期的一次重要构造事件,可能与哥伦比亚大陆汇聚有关;这种结构在华北板块普遍发育,Lee (1939)李江海等(2000)等学者将其命名为吕梁运动。随着高精度年代学的持续发展,部分学者获得了一些塔里木盆地古元古代年代学数据,显示了塔里木盆地古元古代构造-热事件的存在(表 1)。如辛后田等(2011, 2012)将塔里木盆地古元古代构造格架分为古元古代中期(2.15~2.10Ga)的陆壳俯冲、古元古代晚期(2.05~1.93Ga)的碰撞造山、古元古代末期(1.87~1.85Ga)后造山等三个阶段。但塔里木克拉通内部古元古代岩浆岩相比华北和扬子克拉通研究程度较低,尤其是对特殊类型的岩浆岩系统研究缺乏,制约了我们对塔里木克拉通构造演化过程的认识。

图 1 塔里木克拉通区域构造图(据Lu et al., 2008改编) 研究区夹持于古亚洲洋和特提斯洋两大构造域间,区内分布有西昆仑山、东昆仑山、祁连山、天山等近东西向的构造带 Fig. 1 Regional tectonic framework of the Tarim Craton (modified after Lu et al., 2008)

表 1 塔里木盆地古元古代岩浆岩和变质岩岩性、位置和年龄汇总 Table 1 Summary of lithology, sampling locations and zircon U-Pb geochronology of the magmatic and metamorphic rocks in the Tarim Craton

特殊类型的岩浆岩或岩石组合能指示其形成时的构造环境。A型花岗岩具有无水、碱性的特征,并多形成于非造山的构造环境,其常与碰撞后或者弧后的地壳伸展减薄有关。塔里木克拉通内分布了一些古元古代A型花岗岩(Long et al., 2012; Yu et al., 2014; 王玉玺等, 2017; 高山林等, 2018)。前人对这些A型花岗岩的地球化学特征和成因的歧义解释,造成我们对塔里木克拉通的古元古代构造环境及记录的哥伦比亚超大陆演化的地质信息认识不清。本文通过对塔里木克拉通内古元古代A型花岗岩进行了全面的综述,将其分为两期(图 2),分别形成于岛弧和碰撞后裂谷环境。这一发现为我们更好认识塔里木克拉通的古元古代构造环境及记录的哥伦比亚超大陆演化的地质信息,提供了新的证据。

图 2 塔里木盆地古元古代岩浆岩(a)、变质岩(c)年龄频谱图以及A型花岗岩年龄分布图(b) 数据来自表 1 Fig. 2 Relative probability plots of published zircon U-Pb ages of the Paleoproterozoic magmatic and metamorphic rocks in the Tarim Craton (a, c) and age spectrum of the Paleoproterozoic A-type granitoids (b)
1 塔里木克拉通前寒武纪地质背景

塔里木克拉通北接中亚造山带,南临滇缅特提斯构造带,前寒武纪地层露头出露于塔里木盆地周缘,分别位于塔西北的阿克苏-乌什地区、塔东北的库鲁克塔格地区、塔西南的叶城、西昆仑地区以及塔东南的阿尔金地区(Han et al., 2011; Zhang et al., 2013)。塔里木克拉通前寒武纪构造演化主要分为太古代盆地基底演化阶段、古元古代塔里木盆地对哥伦比亚超大陆聚合和裂解的响应阶段以及新元古代塔里木盆地对Rodinia超大陆的聚合和裂解的响应等阶段(Long et al., 2012, 2015; Huang et al., 2017)。塔里木盆地发育有丰富的古老烃源岩和油气资源,是我国古老深层-超深层油气勘探和主要产区之一,也是古老深层-超深层油气研究的热点地区(Zhu et al., 2018, 2019a, b, 2020b, c, d; 朱光有等, 2017, 2018)。

郭新成等(2013)采用LA-ICP-MS U-Pb测年方法获得了赫罗斯坦杂岩体中紫苏辉石麻粒岩的原岩形成时代为3137.3±4.1Ma,其地球化学特征与TTG岩石相似,该年龄被认为代表了塔里木克拉通可能存在太古代古陆核。该杂岩体被2.34Ga和2.41Ga花岗质岩体侵入,并经历了1.9Ga的角闪岩相到麻粒岩相的变质作用(郭新成等, 2013; Ye et al., 2016)。塔里木克拉通塔东北的“托格杂岩体”主要由TTG岩系和花岗岩组成(2492~2337Ma; 郭召杰等, 2003; 陆松年, 1992)。陆松年(1992)测定其中片麻岩的锆石TIMS年龄为2582±11Ma。随着塔里木盆地前寒武纪地质研究的不断深入,在塔东的敦煌地区、塔西南的西昆仑构造带以及塔东南的阿尔金地区陆续发现了大面积的TTG岩体。敦煌地区的TTG主要形成年代为2.70~2.72Ga(Zong et al., 2013)和2.50~2.56Ga(赵燕等, 2013),该地区的TTG岩体的Hf同位素研究显示新太古代出现了显著的地壳增生(赵燕等, 2013)。阿尔金北缘同样也发育有太古代岩体,前人将之命名为米兰岩群,该岩群主要为一套高角闪岩-麻粒岩相高级变质岩系,其中的盖力克正片麻岩年龄为2674±142Ma(崔军文等, 1999)。如引言中提到,塔里木克拉通内分布有一些古元古代地质记录。此外,塔里木克拉通还分布有大量中新元古代沉积盖层、变质岩和岩浆岩。Zhang et al.(2003, 2007)通过Sm-Nd全岩等时线年龄确定了塔西南连卡特群中火成岩的年龄为1.2Ga,通过变质矿物角闪石和黑云母40Ar/39Ar年龄为1.05~1.02Ga。但He et al. (2014)发现塔里木库鲁克塔格和阿克苏地区的新元古代碎屑岩均缺乏1.3~1.0Ga的碎屑锆石年代学记录。Chen et al. (2004)Zhan et al. (2007)报道了侵入阿克苏蓝片岩并且未变质的基性岩墙SHRIMP U-Pb的年龄分别为803Ma和785Ma;Zhang et al. (2009)张健等(2014)分别通过SHRIMP U-Pb定年方法获得该基性岩墙的年代为759Ma和760Ma。此外,Lu et al. (2017)通过对阿克苏蓝片岩的碎屑锆石年代学研究获得最年轻的锆石峰值为790Ma。Liou et al. (1996)获得阿克苏蓝片岩中多硅白云母40Ar/39Ar年龄为750Ma、阿克苏蓝片岩全岩Rb-Sr等时线年龄为698±26Ma。Yong et al. (2013)在阿克苏蓝片岩内同样获得了750Ma的多硅白云母40Ar/39Ar坪年龄,该40Ar/39Ar坪年龄代表了阿克苏蓝片岩低温(300~400℃)变质年龄。前人研究将塔里木克拉通罗迪尼亚超大陆裂解分为四期:前二期以820~800Ma和780~760Ma的超铁镁质-铁镁质杂岩、A型花岗岩和大规模分布的基性岩墙群为代表(Long et al., 2011; Zhang et al., 2011, 2009);第三期以780~770Ma的库鲁克塔格双峰式侵入岩为代表(Xu et al., 2009; Zhang et al., 2011, 2013);第四期以650~635Ma的基性岩墙群、安山岩以及钾质花岗岩为代表(Zhu et al., 2008, 2011)。

本次研究以古元古代晚期A型花岗岩为研究对象,分别综述了塔里木克拉通北部沙雅隆起、西北缘大红山、东南缘敦煌地块和东北缘兴格尔等地区的古元古代晚期A型花岗岩。通过详细综述研究区古元古代晚期A型花岗岩岩石主微量元素、Nd-Hf同位素和同位素年龄等信息,重新解释塔里木克拉通古元古代晚期A型花岗岩时空分布特征和成因,为更好认识塔里木克拉通的古元古代构造环境及记录的哥伦比亚超大陆演化的地质信息,提供了新的证据。

2 塔里木克拉通古元古代晚期A型花岗岩年代学和地球化学特征 2.1 塔里木克拉通古元古代晚期A型花岗岩岩相学和年代学特征

塔里木克拉通北部沙雅隆起、西北缘大红山、东南缘敦煌地块和东北缘兴格尔等地区的古元古代晚期A型花岗岩相学和年代学特征如下:

(1) 东北缘兴格尔A型花岗岩:Long et al. (2012)在塔里木克拉通东北缘兴格尔地区塔北变质体识别出古元古代A型片麻状花岗岩,其中锆石Th/U比值为0.15~0.95,34颗锆石的LA-ICPMS锆石加权平均年龄为1915±13Ma。其原岩为中粒至粗粒二云母花岗岩,主要含有20%~35%石英、35%~45%碱性长石、15%~25%斜长石、10%~15%黑云母、10%白云母、< 5%的角闪石和副矿物(如锆石、磷灰石和磁铁矿等)。

(2) 北部沙雅隆起A型花岗岩:高山林等(2018)在塔里木克拉通北部沙雅隆起QG2井识别出古元古代杂岩体,其包含了钾长花岗岩、黑云母二长花岗岩、石英二长岩等浅变质中酸性岩,和板岩、角闪片岩、透辉石岩、片麻岩等变质岩。其中的钾长花岗岩锆石U-Pb年龄为1847±19Ma。

(3) 西北缘大红山A型花岗岩:王玉玺等(2017)在塔里木东南缘识别出古元古代片麻状二长花岗岩和片麻状正长花岗岩,前者锆石U-Pb年龄为1732±7Ma。片麻状二长花岗岩为肉红色,细粒花岗结构,片麻状构造,主要矿物包含42%斜长石、32%钾长石、24%石英、少量黑云母和角闪石,以及榍石、锆石、磷灰石、独居石、萤石等副矿物。片麻状正长花岗岩为浅肉红色,中细粒花岗结构,片麻状构造,主要矿物包含50%钾长石、10%斜长石、37%石英和少量黑云母和角闪石,副矿物主要有榍石、锆石等。

(4) 敦煌地块A型花岗岩:敦煌杂岩位于敦煌市东南方向20km处,由太古代(2.67Ga)英云闪长质片麻岩和古元古代晚期花岗岩组成,并经历了强烈的古元古代晚期高达麻粒岩相的变质作用。Yu et al. (2014)在敦煌杂岩识别出了A型花岗岩,对其四组锆石进行了U-Pb年龄测定,测定结果分别为1779±7Ma、1777±5Ma、1770±4Ma和1774±3Ma。敦煌花岗岩体主要呈岩墙或岩块状产出,且被后期闪长质岩脉或辉绿岩脉切割;花岗岩主要包括30%~40%钾长石、25%~35%斜长石、15%~25%石英和少量角闪石及榍石等矿物。

2.2 塔里木克拉通古元古代晚期A型花岗岩元素地球化学特征

塔里木克拉通周缘四地的古元古代晚期A型花岗岩地球化学特征如下:

(1) 东北缘兴格尔A型花岗岩:兴格尔A型花岗岩具有较高的SiO2(75.45%~78.49%)、K2O(3.84%~5.46%)和Na2O(1.85%~3.54%)含量,较低的MnO(< 0.06%)、MgO(0.06%~0.56%)、CaO(0.37%~0.97%)、TiO2(0.01%~0.35%)和P2O5(< 0.05%)含量(Long et al., 2012)。Al2O3含量为10.31%~13.80 %,Fe2O3T为0.19%~3.27 %。其A/NK和A/CNK比值分别为1.14~1.26和0.97~1.13(图 3),在QAP上落在二长花岗岩和花岗岩区内(图 4)。富集轻稀土元素,其(La/Yb)N比值为7~64,同时表现为强烈的Eu负异常,其Eu/Eu*=0.18~0.83。蛛网图表现出强烈的Sr、Ti、Nb、Ta和U的负异常(图 5b)。

图 3 塔里木克拉通古元古代晚期A型花岗岩硅碱图(a,底图据Le Bas et al., 1986)、SiO2-K2O图解(b,底图据Le Maitre et al., 2004)和A/CNK-A/NK图解(c,底图据Maniar and Piccoli, 1989) Fig. 3 TAS (a, base map after LeBas et al., 1986), SiO2 vs. K2O (b, base map after Maitre et al., 2004) and A/CNK vs. A/NK (c, base map after Maniar and Piccoli, 1989) diagrams for the Paleoproterozoic A-type granitoids in the Tarim Craton

图 4 塔里木克拉通古元古代A型花岗岩QAP图解(底图据Strecheisen, 1976) Fig. 4 QAP diagram for the Paleoproterozoic A-type granitoids in the Tarim Craton (base map after Strecheisen, 1976)

图 5 塔里木克拉通古元古代A型花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b) (标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the Paleoproterozoic A-type granitoids in the Tarim Craton (normalization values after Sun and McDonough, 1989)

(2) 北部沙雅隆起A型花岗岩:样品的SiO2含量为66.32%~76.39%、碱含量(Na2O+K2O)为7.13%~8.93%、FeOT为1.53%~4.43%、CaO为0.78%~2.91%、TiO2为0.29%~0.57%、MgO为0.09%~0.27%、P2O5为0.01%~0.07%,K2O/Na2O为2.28~3.71、Mg#为9.36~14.0。Al2O3含量为11.20%~13.46%,铝饱和指数(A/CNK)为0.89~0.99,CIPW标准矿物中未见刚玉,属于准铝质钾质花岗岩(图 3c)。样品的稀土元素总量为64.4×10-6~212.7×10-6,轻稀土与重稀土比值(LREE/HREE)为8.05~9.19,(La/Yb)N为10.2~13.8、(La/Sm)N为2.06~5.37、(Gd/Yb)N为1.71~3.06。样品表现为右倾的轻稀土富集的稀土元素配分图(图 5a),轻稀土分异作用显著,重稀土相对平坦,Eu/Eu*=0.82~1.03。微量元素蛛网图上样品明显富集Rb、Ba、U、K、Th、Pb等大离子亲石元素,亏损Nb、Ta等高场强元素,相对富集Zr、Hf等高场强元素,Sr、Ti、P元素则表现出明显的负异常(图 5b)。

(3) 西北缘大红山A型花岗岩:大红山花岗岩具富硅(SiO2=71.14%~75.85%)、富碱(Na2O+K2O=8.32%~9.94%)和贫铝(Al2O3=11.99%~13.13%)特征,K2O/Na2O=1.12~1.65。MgO、CaO、P2O5含量相对偏低,分别为0.05%~0.13%、0.74%~1.33%、0.01%~0.03%。样品A/NK和A/CNK比值分别为0.92~1.15和0.82~0.98,属于准铝质花岗岩(图 3c)。在K2O-SiO2图解上,样品落在高钾钙碱性系列(图 3b)。大红山花岗岩具有高的稀土总含量(634×10-6~1401×10-6),轻稀土与重稀土比值(LREE/HREE)为1.70~7.56,(La/Yb)N为4.70~25.51、(La/Sm)N为2.67~5.31、(Gd/Yb)N为1.26~2.78。其稀土元素配分图表现为典型的略右倾的“海鸥型”样式(图 5a),Eu/Eu*=0.08~0.30。微量元素显示较高Rb(81×10-6~737×10-6)、Th(17×10-6~1470×10-6)、Ga(28×10-6~52×10-6)、Nb(53×10-6~2840×10-6)、Zr(325×10-6~1680×10-6)、Y(62×10-6~220×10-6)、Yb(6×10-6~24×10-6)、Sr(9×10-6~79×10-6)、Ni(0.3×10-6~1.8×10-6),Rb/Sr比值为1.06~10.54。原始地幔标准化微量元素蛛网图呈现略微右倾的锯齿状,相对富集大离子亲石元素Rb、Th、K,相对亏损Sr、P、Ti、Eu等(图 5b)。

(4) 敦煌地块A型花岗岩:敦煌A型花岗岩具有较高的SiO2(70.83%~76.24%)和K2O(4.35%~5.13%)含量及K2O/Na2O比值(1.50~1.64),较低的MgO(0.17%~0.27%)、TiO2(0.32%~0.35%)和MnO(0.03%~0.06%)。样品A/NK和A/CNK比值分别为0.92~1.10和1.01~1.28,属于准铝质到弱过铝质花岗岩(图 3c)。所有的样品具有相似的球粒陨石标准化稀土元素配分图(图 5a),富集轻稀土元素,(La/Yb)N为9~27,Eu强烈负异常,Eu/Eu*=0.10~0.61。在原始地幔标准化蛛网图上显示强烈亏损Nb、Sr、P和Ti,富集Rb、K、La、Ce、Zr、Hf、Nd和Sm(图 5b)。

2.3 塔里木克拉通古元古代晚期A型花岗岩Nd-Hf同位素地球化学特征

Yu et al. (2014)Long et al. (2012)分别对敦煌地块A型花岗岩和兴格尔A型花岗岩开展了锆石原位Lu-Hf同位素研究,分别代表了两类不同的A型花岗岩。第一类A型花岗岩谐和的22个分析测试点176Hf/177Hf(t)值为0.28121~0.28137,εHf(t)值为-13~-5.2,t2DM为2.9~3.3Ga(图 6)。第二类A型花岗岩176Hf/177Hf(t)值为0.28149~0.28190,εHf(t)值为-5.9~+8.7,t2DM为1.9~2.8Ga(图 6);只有Yu et al. (2014)对敦煌地块A型花岗岩开展了全岩Sm-Nd同位素研究,其εHf(t)值为-6.2~-2.5,t2DM为2.3~2.7Ga。

图 6 塔里木克拉通古元古代A型花岗岩锆石εHf(t)与锆石U-Pb年龄图解 亏损地幔、基性地壳和平均地壳演化线据Yang et al. (2008) Fig. 6 Plot of zircon εHf(t) versus their apparent ages of the the Paleoproterozoic A-type granitoids in the Tarim Craton
3 讨论 3.1 塔里木克拉通古元古代晚期A型花岗岩时空分布和成因

塔里木克拉通内古元古代晚期A型花岗岩主要分布在塔里木克拉通东北缘兴格尔、北部沙雅隆起、西北缘大红山、东南缘敦煌地块等四地。根据其年龄可将其分为1.95Ga和1.85~1.73Ga两期(图 2),前者即为前述第一类A型花岗岩,包括东北缘兴格尔A型花岗岩;后者为前述第二类,包括北部沙雅隆起、东南缘大红山和东南缘敦煌地块等A型花岗岩。

两期塔里木克拉通内古元古代晚期A型花岗岩按其地球化学特征可分为两类:第一类为1.92Ga的东北缘兴格尔A型花岗岩;第二类为1.85~1.73Ga塔里木克拉通北部沙雅隆起、东南缘大红山和东南缘敦煌地块等A型花岗岩。相比较而言,第一类A型花岗岩形成时代较老,SiO2含量和A/CNK比值较高、K2O含量较低(图 3),在QAP图中落于花岗岩和二长花岗岩,而第二类几乎全部落于二长花岗岩区域内(图 4)。但两类花岗岩具有相似的微量元素组成,显示出相似的微量元素蛛网图和稀土元素配分图(图 5):稀土元素配分图件明显的Eu的负异常,微量元素蛛网图可见强烈的Nb-Ta、Sr、P和Ti的负异常。两类样品均显示了较高的Y、Ce、Zr和Nb含量,较高的Y/Nb、Ce/Nb、FeOT/MgO和FeOT/(FeOT+MgO)比值。在图 7a-c中,两类样品点均落于A型花岗岩区域内。在图 7d-e内,第一类样品点落在A2花岗岩区域内,第二类样品点落在A1和A2型花岗岩的过渡区域内。

图 7 塔里木克拉通古元古代A型花岗岩地球化学特征判别图 (a) FeOT/MgO对(Zr+Nb+Ce+Y)(据Whalen et al., 1987);(b) FeOT/(FeOT+MgO)对SiO2(据Frost and Frost, 2001);(c) Zr对(Zr+Nb+Ce+Y)(据Whalen et al., 1987);(d) Ce/Nb对Y/Nb; (e) Y-Nb-Ce (d, e据Eby, 1992) Fig. 7 Diagrams for distinguishing between A1 and A2 of the the Paleoproterozoic granitoids in the Tarim Craton

A型花岗岩有四种潜在的成因,即(1)地幔源区的部分熔融;(2)幔源基性岩浆的分离结晶;(3)壳源源区的部分熔融;(4)壳源和幔源岩浆的混合(Eby, 1990, 1992; Turner et al., 1992; Shellnutt and Zhou, 2007; Pankhurst et al., 2013)。Hirose (1997)实验表明地幔橄榄岩部分熔融一般形成基性到高镁的安山岩。塔里木克拉通内晚古元古代A型花岗岩具有较高的SiO2含量(66.3%~78.5%)和较低的MgO含量(0.05%~0.56%),因此其不可能直接来源于地幔橄榄岩的部分熔融。幔源基性岩浆的分离结晶形成A型花岗岩往往伴生大范围的同期基性岩或者中性岩(Turner et al., 1992),而塔里木克拉通内未见大量的同期基性岩和中性岩分布,所以塔里木克拉通内古元古代晚期A型花岗岩也不可能来源于幔源基性岩浆的分离结晶。塔里木克拉通内古元古代晚期A型花岗岩未见暗色包体报道,壳源和幔源岩浆的混合成因也不太可能。综上可见,塔里木克拉通内古元古代晚期A型花岗岩最可能的成因是壳源源区的部分熔融。两类A型花岗岩均具有高硅、钙碱性(图 3b)和准铝质到弱过铝质(A/CNK=0.83~1.13)的特征。Frost and Frost (2011)提出英云闪长岩和花岗闪长岩部分熔融,可以形成高硅、钙碱性和准铝质到A型花岗岩。Patiño Douce (1997)也认为英云闪长岩和花岗闪长岩低压环境的部分熔融,可以形成具A型花岗岩地球化学特征的酸性岩浆。因此,塔里木克拉通内古元古代晚期A型花岗岩可能来源于具英云闪长岩和花岗闪长岩成分特征的地壳的部分熔融。

3.2 塔里木克拉通古元古代晚期A型花岗岩成岩构造环境

随着近年全球地质学家对A型花岗岩开展详细的研究,人们发现A型花岗岩的成岩构造背景可能形成于活动大陆边缘弧、弧后伸展、碰撞后伸展和板内等多种构造背景(Collins et al., 1982; Eby, 1992; Turner et al., 1992; Jung et al., 2000; Shellnutt and Zhou, 2007; Xiao et al., 2010; Qu et al., 2012; Chen et al., 2015)。Eby (1992)将A型花岗岩进一步分为A1和A2两个亚型,其中的A1型花岗岩与OIB伴生,形成于非造山环境,而A2花岗岩多与岛弧玄武岩伴生,形成于后造山、活动大陆边缘、弧后盆地等构造环境(图 7d, e)。与A2型花岗岩相比,A1型花岗岩具有较低的Y/Nb和Ce/Nb比值,以及较高的Nb含量,较低的Y含量。在图 7d-e中,塔里木克拉通内第一类A型花岗岩更倾向于落在A2区域,而第二类花岗岩显示出A2花岗岩向A1花岗岩过渡的特征。此外,A1花岗岩更低的Sr(平均值大于17×10-6)和更高的Yb含量(平均值小于15.7×10-6)。第一类A型花岗岩Sr元素含量为36×10-6~141×10-6,Yb含量为0.8×10-6~4.9×10-6,明显不同于A1型花岗岩,而与A2型花岗岩一致。相比较而言,第二类花岗岩Sr和Yb变化范围很大,Sr=12×10-6~173×10-6,Yb=1×10-6~24×10-6,呈现出明显A2花岗岩向A1花岗岩过渡的特征。因此,塔里木克拉通内古元古代晚期两类A型花岗岩可能形成于不同的构造背景,即第一类花岗岩为A2花岗岩,可能形成于后造山、活动大陆边缘、弧后盆地等构造环境;而第二类花岗岩则更倾向于非造山构造环境。

为了进一步论证塔里木克拉通内古元古代晚期两类A型花岗岩成岩构造环境的异同,我们将所有样品点投在构造环境判别图上(图 8)。可以看到,第一类花岗岩多落在火山弧花岗岩的区域内,而第二类花岗岩则多落在板内花岗岩范围内。这一判定结果与前述讨论一致。因此,我们提出塔里木克拉通内古元古代晚期两类A型花岗岩可能形成于不同的构造背景,第一类花岗岩与古大洋俯冲相关,可能形成于活动大陆边缘或弧后盆地等构造环境,而第二类花岗岩则形成于非造山构造环境(比如碰撞后伸展或者陆内伸展裂解等)。

图 8 塔里木克拉通古元古代A型花岗岩构造环境判别图解(底图据Pearce et al., 1984) VAG-弧花岗岩;syn-COLG-同碰撞花岗岩;WPG-板内花岗岩;ORG-洋中脊斜长花岗岩 Fig. 8 Tectonic discrimination diagrams for the Paleoproterozoic A-type granitoids in the Tarim Craton (base map after Pearce et al., 1984)
3.3 塔里木克拉通古元古代晚期两期构造事件的厘定及其对哥伦比亚超大陆演化的指示意义

塔里木克拉通内晚古元古代A型花岗岩可以明显的分为两期,即如图 2b所示的1.92Ga和1.85~1.73Ga。同时,图 2a还总结了塔里木克拉通内部的古元古代晚期的岩浆和变质作用年龄,我们可以看到其岩浆和变质年龄也可以分为两期,峰值分别为1.93Ga和1.85Ga、1.95Ga和1.84Ga。A型花岗岩、岩浆岩和变质岩显示出一致的两期特征,说明塔里木克拉通内部存在显著不同的两期古元古代晚期构造-岩浆事件。这两期构造-岩浆事件在华北克拉通也有发现(Dong et al., 2013)。对于华北克拉通内1.95Ga和1.85Ga两期构造事件代表的地质意义,不同学者有不同的解释(董春艳等, 2012a, b; 马铭株等, 2012; Dong et al., 2013)。本研究对塔里木克拉通内古元古代晚期两期A型花岗岩的研究可能为恢复两期构造事件的地质意义提供参考,即~1.95Ga可能代表的是古大洋俯冲形成的俯冲型造山事件,而 < 1.85Ga可能表碰撞型事件及造山之后陆内伸展。

Zhao et al.(2002a, 2004)提出在2.1~1.8Ga,全球范围内发生了大规模的造山事件,各个古老克拉通拼合形成了哥伦比亚超大陆。目前哥伦比亚超大陆研究的焦点在于其拼合和开始裂解时间有争论。国内关于哥伦比亚超大陆演化研究多集中在华北克拉通。比如,华北克拉通中部带1.78Ga的熊耳-太行基性岩墙(群)标志着哥伦比亚超大陆裂解的起始(Peng et al., 2008; He et al., 2009; Zhao et al., 2009; Wang et al., 2010; Cui et al., 2013)。在塔里木克拉通东南部的欧龙布鲁克微陆块中获得变质表壳岩达肯大坂岩群的变质年龄1.95~1.91Ga,深熔成因的长英质浅色体形成年龄为1.94Ga,被认为代表发生了与哥伦比亚超超大陆聚合有关的构造热事件(刘东晓等, 2017)。在欧龙布鲁克微陆块中还发现了与哥伦比亚超大陆裂解相关的环斑花岗岩(1.78Ga)和基性岩墙(1.85Ga)。本文总结出的两期A型花岗岩在华北克拉通也有发现,比如华北克拉通西缘贺兰坳拉谷南段泾源A型花岗岩体(1.80Ga; Lu et al., 2008),两期分别形成于俯冲型造山和碰撞造山后伸展环境,分别对应于哥伦比亚超大陆聚合和裂解过程。因此,塔里木克拉通古元古代晚期的岩浆和构造记录说明,哥伦比亚超大陆可能在1.85Ga左右至少部分已经开始裂解。

4 结论

(1) 塔里木克拉通存在1.95Ga和1.85~1.73Ga两期不同的古元古代晚期A型花岗岩。

(2)~1.95Ga花岗岩具有相对较高的SiO2和Sr含量、Y/Nb和Ce/Nb比值、较低的εHf(t)值(-13~-5.2),为A2型花岗岩,形成于活动大陆边缘或弧后伸展等构造环境;而1.85~1.73Ga花岗岩具有相对较低的SiO2和Sr含量、Y/Nb和Ce/Nb比值、和较高的εHf(t)(-5.9~+8.7)和εNd(t)(-6.2~-2.5)值,为A2向A1过渡类型,形成于碰撞后伸展或者陆内伸展裂解背景。

(3) 塔里木克拉通内部存在两期不同的古元古代晚期构造-岩浆事件,分别对应于俯冲型造山和碰撞造山后伸展环境,可能分别记录了哥伦比亚超大陆聚合和裂解过程。

致谢      感谢评审专家和编辑老师认真细致的审稿,您们的诸多建设性意见使本文质量得以提高。

参考文献
Cawood PA and Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82(3-4): 217-256 DOI:10.1016/j.earscirev.2007.03.003
Cawood PA, Strachan RA, Pisarevsky SA, Gladkochub DP and Murphy JB. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118-126 DOI:10.1016/j.epsl.2016.05.049
Cawood PA, Zhao GC, Yao JL, Wang W, Xu YJ and Wang YJ. 2018. Reconstructing South China in Phanerozoic and precambrian supercontinents. Earth-Science Reviews, 186: 173-194 DOI:10.1016/j.earscirev.2017.06.001
Chen NS, Gong SL, Sun M, Li XY, Xia XP, Wang QY, Wu FY and Xu P. 2009. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions. Journal of Asian Earth Sciences, 35(3-4): 367-376 DOI:10.1016/j.jseaes.2008.10.004
Chen NS, Liao FX, Wang L, Santosh M, Sun M, Wang QY and Mustafa HA. 2013a. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China cratons and implications for assembly of the Columbia supercontinent. Precambrian Research, 228: 102-116 DOI:10.1016/j.precamres.2013.01.013
Chen NS, Gong SL, Xia XP, Geng HY, Wang L, Sun M and Kusky TM. 2013b. Zircon Hf isotope of Yingfeng rapakivi granites from the Quanji Massif and ~2.7Ga crustal growth. Journal of Earth Science, 24(1): 29-41 DOI:10.1007/s12583-013-0309-2
Chen WT, Zhou MF and Zhao XF. 2013c. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77 DOI:10.1016/j.precamres.2013.03.011
Chen XC, Hu RZ, Bi XW, Zhong H, Lan JB, Zhao CH and Zhu JJ. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos, 212-215: 93-110 DOI:10.1016/j.lithos.2014.11.010
Chen Y, Xu B, Zhan S and Li YG. 2004. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 133(3-4): 271-281 DOI:10.1016/j.precamres.2004.05.002
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
Cui JW, Tang ZM, Deng JF, Yue YJ, Meng JS and Yu QF. 1999. Altyn Fault System. Beijing: Geological Publishing House: 1-90 (in Chinese)
Cui ML, Zhang LC, Zhang BL and Zhu MT. 2013. Geochemistry of 1.78Ga A-type granites along the southern margin of the North China Craton: Implications for Xiong'er magmatism during the break-up of the supercontinent Columbia. International Geology Review, 55(4): 496-509 DOI:10.1080/00206814.2012.736709
Dong CY, Ma MZ, Liu SJ, Xie HQ, Liu DY, Li XM and Wan YS. 2012. Middle Paleoproterozoic crustal extensional regime in the North China Craton: New evidence from SHRIMP zircon U-Pb dating and whole-rock geochemistry of meta-gabbro in the Anshan-Gongchangling area. Acta Petrologica Sinica, 28(9): 2785-2792 (in Chinese with English abstract)
Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125 DOI:10.1007/s11430-012-4459-3
Dong RF, Li SL and Feng XC. 1999. Characteristics of Shengou gneiss complex of Neoarchean from Kuluktag of Xinjiang. Xinjiang Geology, 17(1): 83-88 (in Chinese with English abstract)
Dong X, Zhang ZM and Tang W. 2011. Precambrian tectono-thermal events of the northern margin of the Tarim Craton: Constraints of zircon U-Pb chronology from high-grade metamorphic rocks of the Korla, Xinjiang. Acta Petrologica Sinica, 27(1): 47-58 (in Chinese with English abstract)
Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134 DOI:10.1016/0024-4937(90)90043-Z
Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Evans DAD. 2013. Reconstructing pre-Pangean supercontinents. GSA Bulletin, 125(11-12): 1735-1751 DOI:10.1130/B30950.1
Frost CD and Frost BR. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39-53 DOI:10.1093/petrology/egq070
Gao SL, Zhang ZP, Liu SL, Yang X and Zhang FS. 2018. The discovery and tectonic significance of Paleoproterozoic A-type granite in Shaya uplift of the North Tarim Craton. Acta Petrologica Sinica, 34(7): 2017-2029 (in Chinese with English abstract)
Ge RF, Zhu WB, Wu HL, Zheng BH and He JW. 2013. Timing and mechanisms of multiple episodes of migmatization in the Korla Complex, northern Tarim Craton, NW China: Constraints from zircon U-Pb-Lu-Hf isotopes and implications for crustal growth. Precambrian Research, 231: 136-156 DOI:10.1016/j.precamres.2013.03.005
Gong SL, Chen NS, Wang QY, Kusky TM, Wang L, Zhang L, Ba J and Liao FX. 2012. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance: LA-ICPMS U-Pb zircon geochronology and geochemistry. Gondwana Research, 21(1): 152-166 DOI:10.1016/j.gr.2011.07.011
Goodge JW, Vervoort JD, Fanning CM, Brecke DM, Farmer GL, Williams IS, Myrow PM and DePaolo DJ. 2008. A positive test of east Antarctica-Laurentia juxtaposition within the Rodinia supercontinent. Science, 321(5886): 235-240 DOI:10.1126/science.1159189
Guo XC, Zheng YZ, Gao J and Zhu ZX. 2013. Determination and geological significance of the Mesoarchean craton in western Kunlun Mountains, Xinjiang, China. Geological Review, 59(3): 401-412 (in Chinese with English abstract)
Guo ZJ, Zhang ZC, Liu SW and Li HM. 2003. U-Pb geochronological evidence for the Early Precambrian complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 19(3): 537-542 (in Chinese with English abstract)
Han BF, He GQ, Wang XC and Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth-Science Reviews, 109(3-4): 74-93 DOI:10.1016/j.earscirev.2011.09.001
Hao GJ, Lu SN, Xin HT and Wang HC. 2004. The constitution and importance geological events of Pre-Devonian in the Dulan, Qinghai. Journal of Jilin University (Earth Science Edition), 34(4): 495-501, 516 (in Chinese with English abstract)
He JW, Zhu WB, Ge RF, Zheng BH and Wu HL. 2014. Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: Implications for supercontinent reconstruction and crustal evolution. Precambrian Research, 254: 194-209 DOI:10.1016/j.precamres.2014.08.016
He YH, Zhao GC, Sun M and Xia XP. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168(3-4): 213-222 DOI:10.1016/j.precamres.2008.09.011
He ZY, Zhang ZM, Zong KQ and Dong X. 2013. Paleoproterozoic crustal evolution of the Tarim Craton: Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. Journal of Asian Earth Sciences, 78: 54-70 DOI:10.1016/j.jseaes.2013.07.022
Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25(1): 42-44 DOI:10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
Hou GT, Santosh M, Qian XL, Lister GS and Li JH. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395-409 DOI:10.1016/j.gr.2008.01.010
Huang CH and Gao ZJ. 1986. Isotopic geologic age of zircon in mixed complex of Kuruktag Region in Xinjiang and its geologycal significance. Xinjiang Geology, 4(2): 94-96 (in Chinese with English abstract)
Huang ZY, Long XP, Wang XC, Zhang YY, Du L, Yuan C and Xiao WJ. 2017. Precambrian evolution of the Chinese Central Tianshan Block: Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles. Precambrian Research, 295: 24-37 DOI:10.1016/j.precamres.2017.04.014
Jung S, Hoernes S and Mezger K. 2000. Geochronology and petrogenesis of Pan-African, syn-tectonic, S-type and post-tectonic A-type granite (Namibia): Products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos, 50(4): 259-287 DOI:10.1016/S0024-4937(99)00059-6
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 745-750 DOI:10.1093/petrology/27.3.745
Le Maitre RW, Bateman P, Dudek Keller AJ, Lameyre Le Bas MJ, Sabine PA, SchmidR, Sorensen H, Streckeisen A, Wolley AR and Zanetti B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell: 193-198
Le Maitre RW, Bateman P, Dudek Keller AJ, Lameyre Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wolley AR and Zanetti B. 2004. A Classification of Igneous Rocks and Glossary of Terms. 1. Oxford: Blackwell, Cambridge University Press: 93-120
Lee JS. 1939. The Geology of China. London: Thomas Murby Co., 1-70
Lei RX, Wu CZ, Chi GX, Chen G, Gu LX and Jiang YH. 2012. Petrogenesis of the Palaeoproterozoic Xishankou pluton, northern Tarim block, Northwest China: Implications for assembly of the supercontinent Columbia. International Geology Review, 54(15): 1829-1842 DOI:10.1080/00206814.2012.678045
Li HM, Lu SN, Zheng JK, Yu HF, Zhao FQ, Li HK and Zou YC. 2001. Dating of 3.6Ga zircons in granite-gneiss from the eastern Altyn Mountains and its geological significance. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 259-262 (in Chinese with English abstract)
Li JH, Qian XL, Hou GT, Liu SW and Chen J. 2000. Late palaeoproterozoic to early mesoproterozoic tectonic framework and major tectono-thermal episodes of North China: New interpretation of "Lvliang Orogeny". Earth Science (Journal of China Universtiy of Geosciences), 25(1): 15-20 (in Chinese with English abstract)
Li QW, Zhao JH and Wang W. 2019. Ca.0Ga mafic dikes in the Kongling Complex, South China: Implications for the reconstruction of Columbia. Journal of Asian Earth Sciences, 169: 323-335 DOI:10.1016/j.jseaes.2018.09.022
Li XY, Chen NS, Xia XP, Sun M, Xu P, Wang QY and Wang XY. 2007. Onstraints on timing of the early-Paleoproterozoic magmatism and crustal evolution of the Oulongbuluke microcontinent: U-Pb and Lu-Hf isotope systematics of zircons from Mohe granitic pluton. Acta Petrologica Sinica, 23(2): 513-522 (in Chinese with English abstract)
Liao FX, Zhang L, Chen NS, Sun M, Santosh M, Wang QY and Mustafa HA. 2014. Geochronology and geochemistry of meta-mafic dykes in the Quanji Massif, NW China: Paleoproterozoic evolution of the Tarim Craton and implications for the assembly of the Columbia supercontinent. Precambrian Research, 249: 33-56 DOI:10.1016/j.precamres.2014.04.015
Liou JG, Graham SA, Maruyama S and Zhang RY. 1996. Characteristics and tectonic significance of the Late Proterozoic Aksu blueschists and diabasic dikes, Northwest Xinjiang, China. International Geology Review, 38(3): 228-244 DOI:10.1080/00206819709465332
Liu DX, Wang YX, Jia ZL, Wang XW, Zhang X, Wang J and Ma YD. 2017. The high-heat events in the Tarim Craton after assembly of the Columbia supercontinent. Journal of Lanzhou University (Natural Sciences), 53(6): 727-731, 739 (in Chinese with English abstract)
Liu HC, Zi JW, Cawood PA, Cui X and Zhang LM. 2020. Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents. Precambrian Research, 337: 105558 DOI:10.1016/j.precamres.2019.105558
Long XP, Yuan C, Sun M, Zhao GC, Xiao WJ, Wang YJ, Yang YH and Hu AQ. 2010. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180(3-4): 272-284 DOI:10.1016/j.precamres.2010.05.001
Long XP, Sun M, Yuan C, Kröner A and Hu AQ. 2012. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: Implications for the reconstruction of the Columbia supercontinent. Precambrian Research, 222-223: 474-487 DOI:10.1016/j.precamres.2011.09.009
Long XP, Wilde SA, Yuan C, Hu AQ and Sun M. 2015. Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth. Precambrian Research, 260: 76-90 DOI:10.1016/j.precamres.2015.01.008
Lu SN. 1992. Geological evolution of Proterozoic in Kuruktage, Xinjiang. In: Bulletin of the Tianjin Institue of Geology 26-27. Geological Society of China, 287-300 (in Chinese)
Lu SN. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Beijing: Geological Publishing House, 1-125 (in Chinese)
Lu SN, Yu HF, Li HK, Chen ZH, Wang HC, Zhang CL and Xiang ZQ. 2006. Early Paleozoic suture zones and tectonic divisions in the "Central China Orogen". Geological Bulletin of China, 25(12): 1368-1380 (in Chinese with English abstract)
Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77-93 DOI:10.1016/j.precamres.2007.04.017
Lu YZ, Zhu WB, Ge RF, Zheng BH, He JW and Diao ZP. 2017. Neoproterozoic active continental margin in the northwestern Tarim Craton: Clues from Neoproterozoic (meta)sedimentary rocks in the Wushi area, Northwest China. Precambrian Research, 298: 88-106 DOI:10.1016/j.precamres.2017.06.002
Ma MZ, Wan YS, Xu ZY, Liu SJ, Xie HQ, Dong CY and Liu DY. 2012. Late Paleoproterozoic K-feldspar pegmatite veins in Daqingshan area, North China Craton: SHRIMP age and Hf composition of zircons. Geological Bulletin of China, 31(6): 825-833 (in Chinese with English abstract)
Ma XX, Shu LS, Santosh M and Li JY. 2013. Paleoproterozoic collisional orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia supercontinent. Precambrian Research, 228: 1-19 DOI:10.1016/j.precamres.2013.01.009
Maniar PD and Piccoli P. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Medig KPR, Turner EC, Thorkelson DJ and Rainbird RH. 2016. Rifting of Columbia to form a deep-water siliciclastic to carbonate succession: The Mesoproterozoic Pinguicula Group of northern Yukon, Canada. Precambrian Research, 278: 179-206 DOI:10.1016/j.precamres.2016.03.021
Meert JG. 2002. Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Research, 5(1): 207-215 DOI:10.1016/S1342-937X(05)70904-7
Mints MV. 2018. A neoarchean-proterozoic supercontinent (ca.2.8~0.9Ga): An alternative to the model of supercontinent cycles. Doklady Earth Sciences, 480(1): 555-558 DOI:10.1134/S1028334X18050045
Murphy JB and Nance RD. 1991. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology, 19(5): 469-472 DOI:10.1130/0091-7613(1991)019<0469:SMFTCC>2.3.CO;2
Nance RD, Murphy JB and Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Research, 25(1): 4-29 DOI:10.1016/j.gr.2012.12.026
Pankhurst MJ, Schaefer BF, Turner SP, Argles T and Wade CE. 2013. The source of A-type magmas in two contrasting settings: U-Pb, Lu-Hf and Re-Os isotopic constraints. Chemical Geology, 351: 175-194 DOI:10.1016/j.chemgeo.2013.05.010
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746 DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce JA, Harris NBW and Tindle AG. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks. Journal of Petrology, 25: 956-983 DOI:10.1093/petrology/25.4.956
Pehrsson SJ, Berman RG, Eglington B and Rainbird R. 2013. Two Neoarchean supercontinents revisited: The case for a Rae family of cratons. Precambrian Research, 232: 27-43 DOI:10.1016/j.precamres.2013.02.005
Peng P, Zhai MG, Ernst RE, Guo JH, Liu F and Hu B. 2008. A 1.78Ga large igneous province in the North China craton: The Xiong'er volcanic province and the North China dyke swarm. Lithos, 101(3-4): 260-280 DOI:10.1016/j.lithos.2007.07.006
Qu XM, Wang RJ, Xin HB, Jiang JH and Chen H. 2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan Plateau. Lithos, 146-147: 264-275 DOI:10.1016/j.lithos.2012.05.006
Rast N. 2002. Mid-proterozoic supercontinent rodinia: Its basis and extent. Gondwana Research, 5(1): 205 DOI:10.1016/S1342-937X(05)70903-5
Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22 DOI:10.1016/S1342-937X(05)70883-2
Santosh M. 2010. Assembling north china craton within the columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149-167 DOI:10.1016/j.precamres.2010.02.003
Sears JW and Price RA. 2002. The hypothetical mesoproterozoic supercontinent columbia: Implications of the Siberian-West Laurentian connection. Gondwana Research, 5(1): 35-39 DOI:10.1016/S1342-937X(05)70885-6
Shellnutt JG and Zhou MF. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chemical Geology, 243(3-4): 286-316 DOI:10.1016/j.chemgeo.2007.05.022
Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1): 1-33 DOI:10.1016/0012-8252(76)90052-0
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Turner SP, Foden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179 DOI:10.1016/0024-4937(92)90029-X
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419 DOI:10.1007/BF00402202
Wang C, Li RS, Li M, Meert JG and Peng Y. 2015. Palaeoproterozoic magmatic-metamorphic history of the Quanji Massif, Northwest China: Implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?. International Geology Review, 57(13): 1772-1790 DOI:10.1080/00206814.2015.1026849
Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of khondalites from the Jining complex, North China Craton. International Geology Review, 53(2): 212-229 DOI:10.1080/00206810903028144
Wang QY, Pan YM, Chen NS, Li XY and Chen HH. 2009. Proterozoic polymetamorphism in the Quanji Block, northwestern China: Evidence from microtextures, garnet compositions and monazite CHIME ages. Journal of Asian Earth Sciences, 34(5): 686-698 DOI:10.1016/j.jseaes.2008.10.008
Wang W, Zhou MF, Zhao XF, Chen WT and Yan DP. 2014. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent. Sedimentary Geology, 309: 33-47 DOI:10.1016/j.sedgeo.2014.05.004
Wang XD, Lv XB, Cao XF, Wang YF and Liu W. 2018. Palaeo-Mesoproterozoic magmatic and metamorphic events from the Kuluketage block, Northeast Tarim Craton: Geochronology, geochemistry and implications for evolution of Columbia. Geological Journal, 53(1): 120-138 DOI:10.1002/gj.2881
Wang XL, Jiang SY and Dai BZ. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204-216 DOI:10.1016/j.precamres.2010.08.007
Wang YX, Wang JR, Zhou XL, Wang HT, Di PF, Wang XW and Chen WF. 2017. The Cracking of Columbia Supercontinent: Evidence from the Dahongshan A-type granite in the southeastern Tarim Craton. Acta Geologica Sinica, 91(11): 2369-2386 (in Chinese with English abstract)
Worsley TR, Nance D and Moody JB. 1984. Global tectonics and eustasy for the past 2 billion years. Marine Geology, 58(3-4): 373-400 DOI:10.1016/0025-3227(84)90209-3
Xiao QH, Lu XX, Wang F, Sun YG, Wei YD and Xing ZY. 2004. Age of Yingfeng rapakivi granite pluton on the north flank of Qaidam and its geological significance. Science in China (Series D), 47(4): 357-365 DOI:10.1360/02YD0472
Xiao WJ, Han CM, Yuan C, Sun M, Zhao GC and Shan YH. 2010. Transitions among Mariana-, Japan-, Cordillera- and Alaska-type arc systems and their final juxtapositions leading to accretionary and collisional orogenesis. In: Kusky TM, Zhai MG and Xiao W (eds.). The Evolving Continents: Understanding Processes of Continental Growth. Geological Society, London, Special Publications, 338(1): 35-53
Xin HT, Zhao FQ, Luo ZH, Liu YS, Wan YS and Wang SQ. 2011. Determination of the Paleoproterozoic geochronological framework in Aqtashtagh area in southeastern Tarim, China, and its geological significance. Acta Geologica Sinica, 85(12): 1977-1993 (in Chinese with English abstract)
Xin HT, Luo ZH, Liu YS, Wang SQ and Zhang LZ. 2012. Geological features and significance of Palaeoproterozoic carbonatite of crustal origin in Aqtashtagh area of Southeast Tarim Basin, China. Earth Science Frontiers, 19(6): 167-178 (in Chinese with English abstract)
Xu B, Xiao SH, Zou HB, Chen Y, Li ZX, Song B, Liu DY, Zhou CM and Yuan XL. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168(3-4): 247-258 DOI:10.1016/j.precamres.2008.10.008
Xu ZQ, He BZ, Zhang CL, Zhang JX, Wang ZM and Cai ZH. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples. Precambrian Research, 235: 150-162 DOI:10.1016/j.precamres.2013.06.001
Yang JH, Wu FY, Wilde SA, Belousova E and Griffin WL. 2008. Mesozoic decratonization of the North China block. Geology, 36(6): 467-470 DOI:10.1130/G24518A.1
Ye XT, Zhang CL, Santosh M, Zhang J, Fan XK and Zhang JJ. 2016. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca.4Ga A-type granites and Paleoproterozoic intrusive complex. Precambrian Research, 275: 18-34 DOI:10.1016/j.precamres.2015.12.017
Yong WJ, Zhang L, Hall CM, Mukasa SB and Essene EJ. 2013. The 40Ar/39Ar and Rb-Sr chronology of the Precambrian Aksu blueschists in western China. Journal of Asian Earth Sciences, 63: 197-205 DOI:10.1016/j.jseaes.2012.05.024
Yu SY, Zhang JX, Zhao XL, Gong JH and Li YS. 2014. Geochronology, geochemistry and petrogenesis of the Late Palaeoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: Implications for the break-up of the Columbia supercontinent. Geological Magazine, 151(4): 629-648 DOI:10.1017/S0016756813000538
Zhan S, Chen Y, Xu B, Wang B and Faure M. 2007. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research, 154(3-4): 143-158 DOI:10.1016/j.precamres.2007.01.001
Zhang CL, Dong YG, Zhao Y, Wang AG and Guo KY. 2003. Geochemistry of Mesoproterozoic volcanic rocks in the western Kunlun Mountains: Evidence for plate tectonic evolution. Acta Geologica Sinica, 77(2): 237-245
Zhang CL, Li ZX, Li XH, Yu HF and Ye HM. 2007. An Early Paleoproterozoic high-K intrusive complex in southwestern Tarim block, NW China: Age, geochemistry, and tectonic implications. Gondwana Research, 12(1-2): 101-112 DOI:10.1016/j.gr.2006.10.006
Zhang CL, Li ZX, Li XH and Ye HM. 2009. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 35(2): 167-179 DOI:10.1016/j.jseaes.2009.02.003
Zhang CL, Yang DS, Wang HY, Takahashi Y and Ye HM. 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity with different mantle sources. Gondwana Research, 19(1): 177-190 DOI:10.1016/j.gr.2010.03.012
Zhang CL, Zou HB, Li HK and Wang HY. 2013. Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315 DOI:10.1016/j.gr.2012.05.009
Zhang J, Zhang CL, Li HK, Ye XT, Geng JZ and Zhou HY. 2014. Revisit to time and tectonic environment of the Aksu blueschist terrane in northern Tarim, NW China: New evidence from zircon U-Pb age and Hf isotope. Acta Petrologica Sinica, 30(11): 3357-3365 (in Chinese with English abstract)
Zhang JX, Gong JH and Yu SY. 2012. c. 1.85Ga HP granulite-facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: Evidence from U-Pb zircon dating of mafic granulites. Journal of the Geological Society, 169(5): 511-514 DOI:10.1144/0016-76492011-158
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002a. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162 DOI:10.1016/S0012-8252(02)00073-9
Zhao GC, Sun M and Wilde SA. 2002b. Reconstruction of a pre-Rodinia supercontinent: New advances and perspectives. Chinese Science Bulletin, 47(19): 1585-1588
Zhao GC, Sun M, Wilde SA and Li SZ. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: Records in the North China Craton. Gondwana Research, 6(3): 417-434 DOI:10.1016/S1342-937X(05)70996-5
Zhao GC, Sun M, Wilde SA and Li SZ. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123 DOI:10.1016/j.earscirev.2004.02.003
Zhao GC, He YH and Sun M. 2009. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181 DOI:10.1016/j.gr.2009.02.004
Zhao Y, Diwu CR, Sun Y, Zhu T and Wang HL. 2013. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province. Acta Petrologica Sinica, 29(5): 1698-1712 (in Chinese with English abstract)
Zhou MF, Zhao XF, Chen WT, Li XC, Wang W, Yan DP and Qiu HN. 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam. Earth-Science Reviews, 139: 59-82 DOI:10.1016/j.earscirev.2014.08.013
Zhu GY, Du DD, Chen WY, Sun QS, Li TT, Zhang ZY and Chen ZY. 2017. The Discovery and exploration significance of the old thick black mudstones in the southwestern margin of Tarim Basin. Acta Petrolei Sinica, 38(12): 1335-1342, 1370 (in Chinese with English abstract)
Zhu GY, Du DD, Chen WY, Sun QS, Li TT, Zhang ZY and Chen ZY. 2018. Discovery of Precambrian thick black mudstones and its implication for hydrocarbon exploration in the Southwest Tarim Basin. Petroleum Research, 3(2): 124-131 DOI:10.1016/j.ptlrs.2018.06.006
Zhu GY, Cao YH, Yan L, Yang HJ, Sun CH, Zhang ZY, Li TT and Chen YQ. 2018. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin. Natural Gas Geoscience, 29(6): 755-772 (in Chinese with English abstract)
Zhu GY, Zhang ZY, Zhou XX, Li TT, Han JF and Sun CH. 2019a. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930 DOI:10.1016/j.earscirev.2019.102930
Zhu GY, Milkov AV, Zhang ZY, Sun CH, Zhou XX, Chen FR, Han JF and Zhu YF. 2019b. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. AAPG Bulletin, 103(7): 1703-1743 DOI:10.1306/11211817132
Zhu GY, Liu HC, Zhang TT, Chen WY, Xiao JW, Zhao K and Yan HH. 2020a. Internal versus external locations of the South China Craton within Rodinia during the Cryogenian: Provenance history of the Nanhua basin. GSA Bulletin DOI:10.1130/B35619.1
Zhu GY, Li TT, Zhang ZY, Zhao K, Zhang KJ, Chen WY, Yan HH and Wang PJ. 2020b. Distribution and geodynamic setting of the Late Neoproterozoic-Early Cambrian hydrocarbon source rocks in the South China and Tarim blocks. Journal of Asian Earth Sciences, 201: 104504 DOI:10.1016/j.jseaes.2020.104504
Zhu GY, Yan HH, Chen WY, Yan L, Zhang KJ, Li TT, Chen ZY, Wu GH and Santosh M. 2020c. Discovery of Cryogenian interglacial source rocks in the northern Tarim, NW China: Implications for Neoproterozoic paleoclimatic reconstructions and hydrocarbon exploration. Gondwana Research, 80: 370-384 DOI:10.1016/j.gr.2019.10.016
Zhu GY, Li JF, Zhang ZY, Wang M, Xue N, He T and Zhao K. 2020d. Stability and cracking threshold depth of crude oil in 8000 m ultra-deep reservoir in the Tarim Basin. Fuel, 282: 118777 DOI:10.1016/j.fuel.2020.118777
Zhu WB, Zhang ZY, Shu LS, Lu HF, Su JB and Yang W. 2008. SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: Implications for the long-lasting breakup process of Rodinia. Journal of the Geological Society, 165(5): 887-890 DOI:10.1144/0016-76492007-174
Zhu WB, Zheng BH, Shu LS, Ma DS, Wan JL, Zheng DW, Zhang ZY and Zhu XQ. 2011. Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla mafic dykes: Constrains on the Neoproterozoic continental breakup in the Tarim Block, Northwest China. Journal of Asian Earth Sciences, 42(5): 791-804 DOI:10.1016/j.jseaes.2010.11.018
Zong KQ, Liu YS, Zhang ZM, He ZY, Hu ZC, Guo JL and Chen K. 2013. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China. Precambrian Research, 235: 251-263 DOI:10.1016/j.precamres.2013.07.002
崔军文, 唐哲民, 邓晋福, 岳永君, 孟令顺, 余钦范. 1999. 阿尔金断裂系. 北京: 地质出版社, 1-90.
董春艳, 马铭株, 刘守偈, 颉颃强, 刘敦一, 李雪梅, 万渝生. 2012a. 华北克拉通古元古代中期伸展体制新证据: 鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学. 岩石学报, 28(9): 2785-2792.
董春艳, 万渝生, 徐仲元, 刘敦一, 杨振升, 马铭株, 颉颃强. 2012b. 华北克拉通大青山地区古元古代晚期孔兹岩系: 锆石SHRIMP U-Pb定年. 中国科学(地球科学), 42(12): 1851-1862.
董富荣, 李嵩龄, 冯新昌. 1999. 库鲁克塔格地区新太古代深沟片麻杂岩特征. 新疆地质, 17(1): 83-88.
董昕, 张泽明, 唐伟. 2011. 塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定. 岩石学报, 27(1): 47-58.
高山林, 张仲培, 刘士林, 杨鑫, 张福顺. 2018. 塔里木克拉通北部沙雅隆起古元古代A型花岗岩的发现及其构造意义. 岩石学报, 34(7): 2017-2029.
郭新成, 郑玉壮, 高军, 朱志新. 2013. 新疆西昆仑中太古界古陆核的确定及地质意义. 地质论评, 59(3): 401-412. DOI:10.3969/j.issn.0371-5736.2013.03.001
郭召杰, 张志诚, 刘树文, 李惠民. 2003. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据. 岩石学报, 19(3): 537-542.
郝国杰, 陆松年, 辛后田, 王惠初. 2004. 青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件. 吉林大学学报(地球科学版), 34(4): 495-501, 516.
黄存焕, 高振家. 1986. 新疆库鲁克塔格地区混合杂岩中锆石同位素地质年龄及某地质意义. 新疆地质, 4(2): 94-96.
李惠民, 陆松年, 郑健康, 于海峰, 赵风清, 李怀坤, 左义成. 2001. 阿尔金山东端花岗片麻岩中3.6Ga锆石的地质意义. 矿物岩石地球化学通报, 20(4): 259-262. DOI:10.3969/j.issn.1007-2802.2001.04.016
李江海, 钱祥麟, 候贵廷, 刘树文, 陈晶. 2000. "吕梁运动"新认识. 地球科学(中国地质大学学报), 25(1): 15-20.
李晓彦, 陈能松, 夏小平, 孙敏, 徐平, 王勤燕, 王新宇. 2007. 莫河花岗岩的锆石U-Pb和Lu-Hf同位素研究: 柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束. 岩石学报, 23(2): 513-522.
刘东晓, 王玉玺, 贾志磊, 王晓伟, 张翔, 王军, 马永东. 2017. 塔里木克拉通Columbia聚合后大陆裂解的高热事件痕迹. 兰州大学学报(自然科学版), 53(6): 727-731, 739.
陆松年. 1992. 新疆库鲁克塔格元古宙地质演化. 见: 中国地质科学院天津地质矿产研究所文集(26-27). 中国地质学会, 287-300
陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社, 1-125.
陆松年, 于海峰, 李怀坤, 陈志宏, 王惠初, 张传林, 相振群. 2006. "中央造山带"早古生代缝合带及构造分区概述. 地质通报, 25(12): 1368-1380. DOI:10.3969/j.issn.1671-2552.2006.12.004
马铭株, 万渝生, 徐仲元, 刘守偈, 颉颃强, 董春艳, 刘敦一. 2012. 华北克拉通大青山地区古元古代晚期钾长伟晶岩脉SHRIMP锆石U-Pb定年和Hf同位素组成. 地质通报, 31(6): 825-833. DOI:10.3969/j.issn.1671-2552.2012.06.001
王玉玺, 王金荣, 周小玲, 王怀涛, 第鹏飞, 王晓伟, 陈万峰. 2017. Columbia超大陆裂解: 来自塔里木克拉通东南缘大红山A型花岗岩的证据. 地质学报, 91(11): 2369-2386. DOI:10.3969/j.issn.0001-5717.2017.11.001
辛后田, 赵凤清, 罗照华, 刘永顺, 万渝生, 王树庆. 2011. 塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义. 地质学报, 85(12): 1977-1993.
辛后田, 罗照华, 刘永顺, 王树庆, 张利忠. 2012. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义. 地学前缘, 19(6): 167-178.
张健, 张传林, 李怀坤, 叶现韬, 耿建珍, 周红英. 2014. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据. 岩石学报, 30(11): 3357-3365.
赵燕, 第五春荣, 孙勇, 朱涛, 王洪亮. 2013. 甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 29(5): 1698-1712.
朱光有, 杜德道, 陈玮岩, 孙琦森, 李婷婷, 张志遥, 陈志勇. 2017. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义. 石油学报, 38(12): 1335-1342, 1370. DOI:10.7623/syxb201712001
朱光有, 曹颖辉, 闫磊, 杨海军, 孙崇浩, 张志遥, 李婷婷, 陈永权. 2018. 塔里木盆地8000m以深超深层海相油气勘探潜力与方向. 天然气地球科学, 29(6): 755-772.