岩石学报  2021, Vol. 37 Issue (4): 1061-1081, doi: 10.18654/1000-0569/2021.04.07   PDF    
辽-蒙交界地区晚侏罗世高硅花岗岩: 岩石成因与地质意义
杨智荔1,2,3, 张晓晖1,2, 袁玲玲4     
1. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029;
2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学, 北京 100049;
4. 中南大学地球科学与信息物理学院, 有色金属成矿预测与地质环境监测教育部重点实验室, 长沙 410083
摘要: 高硅(SiO2>70%)花岗岩不仅是指示大陆地壳成熟度的重要标志,而且蕴含大陆地壳分异机制和稀有金属元素运移行为的关键信息。跨越辽宁-内蒙古两地分布的白音花岩基是沿华北克拉通与中亚造山带边界断裂带侵位的重要的中生代高硅花岗岩,但其形成时代和岩石地球化学特征一直缺乏系统刻画。本次离子探针(SIMS)锆石U-Pb测年指示该花岗岩岩基于晚侏罗世(162~161Ma)侵位。岩体SiO2含量介于75.7%~77.3%;钙碱性、贫铁镁、弱过铝;富集Th与U,亏损Ba与Sr;稀土元素总量较低(∑REE=40.2×10-6~117×10-6),Eu负异常明显;Zr/Hf和Nb/Ta分异显著;这些特征契合高分异Ⅰ型花岗岩的典型元素地球化学行为。同时,白音花花岗岩具有低负的εNd(t)值(-3.5~-2.6)以及低正的锆石εHf(t)值(+0.1~+5.9)。元素与同位素地球化学示踪指示白音花花岗岩可能源自由中亚造山带型新生安山质地壳与少量古老地壳组成的复合源区,其部分熔融生成的原始酸性岩浆经历结晶分异形成高硅花岗岩。作为记录华北克拉通/中亚造山带边界断裂带晚侏罗世走滑/伸展活动的非造山型钉合岩体,白音花高硅花岗岩见证了蒙古-华北板块有别于早白垩世大规模上地壳伸展构造的中晚侏罗世区域弥散状中下地壳伸展行为。中晚侏罗世和早白垩世两段式地壳伸展轨迹不仅契合蒙古-鄂霍茨克构造域造山后重力垮塌过程,而且是促使新晋蒙古-华北板块大陆地壳垂向分异-成熟的高效途径。
关键词: 晚侏罗世    高硅花岗岩    地球化学    岩石成因    钉合岩体    华北克拉通    
Late Jurassic high silica granites from the border area between Liaoning and Inner Mongolia: Petrogenesis and tectonic implication
YANG ZhiLi1,2,3, ZHANG XiaoHui1,2, YUAN LingLing4     
1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. MOE Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geoscience and Info-Physics, Central South University, Changsha 410083, China
Abstract: High silica (>70% SiO2) granites not only present important hallmarks for the maturity of continental crust, but also encapsulate essential information for calibrating the mechanism of continental crustal differentiation and the mobility behavior of rare metal elements. This study documents one pivotal occurrence of Mesozoic high-silica granites from the border area between Liaoning and Inner Mongolia that coincides with the boundary between the North China Craton (NCC) and Central Asian Orogenic belt (CAOB), i.e., the Baiyinhua batholith. SIMS zircon U-Pb dating yields a well-constrained Late Jurassic emplacement age of ca. 162~161Ma for the batholith. The rocks range in SiO2 content from 75.7% to 77.3%, and exhibit calc-alkali and weakly peraluminous affinities. They are enriched in Th and U but depleted in Ba and Sr, with low rare earth element abundance (∑REE=40.2×10-6~117×10-6), strong negative Eu anomalies (δEu=0.10~0.47) as well as fractionated Zr/Hf and Na/Ta. These elemental features are typical of highly fractionated Ⅰ-type felsic magmas. With respect to isotopic composition, the granites are characterized with whole rock εNd(t) of -3.5~-2.6 and zircon εHf(t) of +0.1~+5.9. These elemental and isotopic characters suggest that the parental magma for the Baiyinhua granites might derive from the partial melting of a composite middle crustal protolith containing dominant relaminated juvenile intermediate plutonic components and minor ancient crustal ingredients, while its prolonged fractional crystallization culminated in the formation of high-silica granites. Acting as a kind of anorogenic stitching pluton indicative of Late Jurassic extensional/strike slip activities along the boundary faults between the NCC and the CAOB, the Baiyinhua granites might witness the prevalent diffusive middle-lower crustal extension in the newly-amalgamated North China-Mongolia plate during Middle-Late Jurassic, which is distinct from large-scale Early Cretaceous upper crustal extention. Such consistent two-stage extensional pattern across the NE continental Asia not only tends to agree well with the post-orogenic gravitational collapse in the northern Mongol-Okhotsk tectonic regime, but also is conducive to facilitating the vertical differentiation and maturation of the continental crust in the North China-Mongolia plate.
Key words: Late Jurassic    High silica granites    Geochemistry    Petrogenesis    Stitching pluton    North China Craton    

花岗岩是地球大陆地壳的重要组成,花岗岩研究是见证现代地质学滥觞与成熟的常青主题。肇始于20世纪70年代的花岗岩分类(Chappell and White, 1974; White and Chappell, 1977; Whalen et al., 1987; Frost et al., 2001)与实验岩石学(Vielzeuf and Holloway, 1988; Rapp et al., 1991; Beard et al., 1994; Gardien et al., 1995; Scaillet et al., 1995; Johannes and Holtz, 1996; Patiňo Douce, 1997; Gao et al., 2016)研究热潮不仅确立了岩浆源区性质、熔融温压条件与结晶分异作用等制约花岗岩成因的基本要素及其相互关系,而且奠定了花岗岩作为探究大陆地球动力学过程与地壳演化耦合联系的窗口地位(Pitcher, 1993; Barbarin, 1999; Bonin, 2007; 吴福元等, 2007)。21世纪以来高精度年代学与多元-多尺度精细地球化学示踪工具的常规化运用拓展了花岗岩研究的时空维度(Kemp and Hawkesworth, 2014; 王孝磊, 2017; 吴福元等, 2017),突出进展包括:准确厘定形成巨型复式花岗岩套的幕式岩浆的时序与过程(Cottam et al., 2010; Ducea et al., 2017),利用矿物微区元素和同位素示踪岩浆源区组成与岩浆演化过程(Hawkesworth and Kemp, 2006; Yang et al., 2007; Kemp et al., 2007; Kemp and Hawkesworth, 2014; Farina et al., 2014),以及基于精细花岗岩成因研究构建大陆地壳结构与壳幔物质交换的新型范式(Hacker et al., 2011, 2015; Kelemen and Behn, 2016)。近五年来,标志大陆地壳成熟的高硅(SiO2>70%)花岗岩成为花岗岩研究的前沿主题(Lee and Morton, 2015; 吴福元等, 2017)。这不仅在于高硅花岗岩成因契合大陆地壳垂向成分变化机制(Lee and Morton, 2015),而且在于其禀赋W、Sn、Nb、Ta、Li、Be、Sb和稀土元素等的稀有金属成矿特质(吴福元等, 2017)。

华北中生代花岗岩省是中国重要的显生宙花岗岩省之一(吴福元等, 2007)。其空间分布跨越古老克拉通和显生宙造山带两大单元;其活动历时不仅涵盖古亚洲洋和蒙古-鄂霍茨克洋的先后闭合,而且见证古太平洋构造帷幕的开启与演进。近年来基于高精度测年手段和精细地球化学示踪方法的一系列研究基本建立了两大构造单元内中生代花岗岩的详尽档案(Wu et al., 2011; Zhang et al., 2014a; Tang et al., 2018)。作为独立侵入体或复合岩基的重要组成部分,高硅花岗岩提供了精细表征中亚造山带新生地壳成熟的重要标志(Wu et al., 2003a, b; Li et al., 2018)和示踪华北克拉通破坏深部过程与背景(Zhang et al., 2008, 2014b)的重要依据;另一方面,高硅花岗岩构成东北地区多条中生代钼成矿带的主要赋矿岩体(Chen et al., 2017),其重要的多金属成矿效应由此可见一斑。

相较于其在华北克拉通与中亚造山带各自精细的时空分布格架,中生代高硅花岗岩在两大构造单元过渡区域的时空分布特征仍缺乏系统刻画。在发育白云鄂博-赤峰断裂带的西段地区,仅有零星的中侏罗世和早白垩世A型花岗岩报道(陈志广等, 2008; 解洪晶等, 2012)。而在赤峰-开原断裂带所在的东段地区,沿断裂带发育一系列燕山期花岗岩,其中以跨越内蒙古和辽宁两地分布的白音花岩基规模最大。该岩基既缺乏可靠精确的同位素年龄限定,岩石与元素地球化学方面仅有早期区域地质调查工作的零星资料(长春地质学院, 1996),同位素地球化学数据更是一片空白。由于其时代和源区归属与华北克拉通/中亚造山带界限这一中国重要区域地质问题直接相关,因此本次研究我们拟采用高精度离子探针(SIMS)锆石U-Pb测年手段确定其侵入时代,利用全岩元素和Sr-Nd同位素以及锆石Hf同位素示踪其岩浆属性和岩石成因;籍此讨论晚侏罗世花岗岩形成的构造背景,进而为界定华北克拉通北缘边界提供约束。

① 长春地质学院. 1996. 1︰50000区域地质调查报告(旧庙、沙宝台、哈尔套幅)

1 区域地质背景

作为东亚出露面积最大的最古老陆块,华北克拉通北以白云鄂博-赤峰-开原断裂为界与中亚造山带接壤,南与秦岭-大别-苏鲁造山带毗邻(图 1a)。以若干陆核上约3.8Ga初始地壳物质(Liu et al., 1992)和约3.45Ga不均一深部地幔(Wang et al., 2019)为起点,诸多冥古宙幼年地体经历新太古代(2.8~2.5Ga)大规模岩浆活动和巨量陆壳生长实现部分克拉通化(Zhai and Santosh, 2011)。基于针对太古宙末期地体格局和古元古代岩浆-构造热事件时空分布的不同认识,“克拉通内部活动带”模式强调古元古活动带在太古代末期初始克拉通化基础上经历有限裂解、俯冲与碰撞等演化过程(翟明国和彭澎, 2007; Zhai and Santosh, 2011, 2013);“克拉通内部造山带”模式倡导者认为,阴山陆块与鄂尔多斯陆块在~1.95Ga沿孔兹岩带碰撞对接形成西部陆块,燕辽-龙岗陆块与狼林陆块在~1.90Ga沿胶-辽-吉带拼合形成东部陆块,东西部陆块随后在~1.85Ga沿中央造山带拼合形成统一的华北克拉通基底(Zhao et al., 2002, 2005, 2012);此外,“克拉通边缘造山带”模式将克拉通中部和北缘阴山陆块分别视作一个晚太古代造山带和一个古元古代造山带,克拉通中西部陆块经由古元古代安第斯型增生-碰撞造山过程而形成(Kusky et al., 2007, 2016)。从1.78Ga到0.75Ga,华北克拉通进入“地球中年期”(Zhai et al., 2015),接受长期稳定沉积盖层并发育周期性裂谷事件,其中以与全球规模裂谷事件同步的1.32Ga燕辽大火成岩省最具代表(Zhang et al., 2017)。

图 1 研究区所在位置与区域地质简图 (a)东北亚大陆构造简图(据Zhou et al., 2018修改),研究区域用矩形表示;(b)辽-蒙交界地区白音花花岗岩岩体地质图(据辽宁省地质矿产局, 1971修改),采样点用五角星表示 Fig. 1 The tectonic location of the study area and sketch geological map (a) sketch tectonic map of the northeastern Asia (modified after Zhou et al., 2018), with the study area indicated by a rectangle; (b) sketch geological map for the Baiyinhua granites from the border area between Liaoning and Inner Mongolia, with the sample locations indicated by pentagrams

辽宁省地质矿产局. 1971. 辽宁省阜新市1:200000地质图及附注

中亚造山带是地球上规模最大以及历时最长的显生宙增生型造山带。旨在重建中亚造山带复杂增生历史的宏观范型,无论是早期的“单一岩浆弧持续俯冲-增生”模式(Şengör et al., 1993)还是当前主流的“多岛洋俯冲-增生”模式(Windley et al., 2007; Xiao et al., 2015),均认可古亚洲洋在华北-南蒙古构造域最终闭合。有关该构造域的当前诸多构造格局划分方案尽管细节有别,但可一致三分为南、北并置的两个复合陆块及位于其间的索伦缝合带(Xiao et al., 2003; Jian et al., 2008; Xu et al., 2013; Eizenhöfer and Zhao, 2018)。北部陆块可与南蒙复合地体(Badarch et al., 2002)相接,除共享中晚元古代结晶基底之外(Yarmolyuk et al., 2005; 孙立新等, 2013; Zhou et al., 2018),二者古生代皆以发育蛇绿混杂带、岛弧增生杂岩、活动大陆边缘岩浆和沉积建造为特征。南部陆块与华北克拉通相连,在内蒙中部称南造山带(Jian et al., 2008),向东延伸至吉林地区称辽源地体(Wilde and Zhou, 2015)。由蛇绿岩、增生楔和岩浆弧残片组成的索伦缝合带自西向东从索伦鄂博经由西拉木伦最后至长春-延吉一带(Eizenhöfer and Zhao, 2018)。

古生代时期华北克拉通北缘响应古亚洲洋裂解、扩展和消亡的造山旋回过程,地壳结构与成分相应发生重大调整,形成总体近东西向展布的阴山-燕山褶段带,并发育多期晚古生代岩浆岩带(张晓晖和翟明国, 2010)。其中包括可能记录白乃庙岛弧与华北克拉通碰撞后伸展过程的泥盆纪碱性杂岩(Zhang et al., 2010b)和镁铁-超镁铁岩-闪长岩(Zhang et al., 2009a);可能类似于安第斯弧岩浆岩的石炭纪-早二叠世镁铁-超镁铁岩体(Chen et al., 2009; Zhang et al., 2009a)、富闪深成岩套(Zhang et al., 2012c)和钙碱性辉长岩-闪长岩-花岗岩系列(Zhang et al., 2007, 2011);以及可能指示碰撞后伸展过程的晚二叠世钙碱性-碱性侵入岩(Zhang et al., 2009b, 2010c)。

随着古亚洲洋沿索伦缝合带的最终闭合(Eizenhöfer and Zhao, 2018),华北克拉通与北部中蒙地体拼合形成华北-蒙古联合板块并进入陆内演化阶段(Davis et al., 2001)。之后经历古亚洲洋构造域造山后伸展、蒙古-鄂霍茨克构造域与古太平洋构造域等多重构造体系叠加影响,断裂构造发育,岩浆活动频繁。代表性事件包括晚二叠世-早三叠世右旋走滑韧性变形(Zhang et al., 2005Wang and Wan, 2014)、中晚三叠世碱性岩浆岩带(Zhang et al., 2012b; Li et al., 2013a)、早中侏罗世两次挤压变形(Davis et al., 2001)、侏罗纪和白垩纪多期火山和岩浆侵入活动(Zhang et al., 2003, 2014a),以及一系列早白垩世变质核杂岩(Wang et al., 2011; Zhang and Yuan, 2016)和断陷盆地群(Meng et al., 2003; Cope and Graham, 2007)。

辽宁阜新县和内蒙古库伦旗的交界区域跨越华北克拉通北缘和古生代辽源增生地体,既具有典型克拉通前寒武纪基底,又发育显生宙多期构造域叠加影响的活动印记(图 1)。该地区基底建造主要为太古代-古元古代低角闪岩至麻粒岩相TTG片麻岩(Liu et al., 2011),记录了2.64~2.52Ga岩浆事件和约2.49Ga的麻粒岩相变质作用,反映发生在洋内弧体系的大陆地壳生长(Wang et al., 2015)。覆盖于基底之上的盖层包括新元古代长城系低变质-未变质沉积建造、零星分布的晚古生代海相-陆相火山沉积序列以及广泛出露的中生代陆相火山-沉积岩系;其中后者包括中侏罗统兴隆沟组(Meng et al., 2010)、上侏罗统蓝旗营组、下白垩统义县组和阜新组(Zhang et al., 2003)。

显生宙侵入岩建造遍布辽宁-内蒙古交界之地(图 1b)。早期的区域地质调查根据野外接触关系和岩性-组构特征将其归于海西期、印支期和燕山期三个侵位时代(迟广城和林维峰, 1999)。近年来系统的高精度锆石U-Pb年代学和岩石地球化学研究揭示,这些侵入杂岩主要包括晚二叠世(260~250Ma)的富闪深成岩-花岗岩系列(Zhang et al., 2012d)、中三叠世花岗岩系列和晚三叠世铁质花岗岩-辉绿岩系列(Zhang et al., 2012e; Yang et al., 2021)。南部北北东向展布的中晚侏罗世花岗质杂岩构成辽西医巫闾山晚侏罗世-早白垩世岩浆穹窿-变质核杂岩伸展构造体系的一部分(Zhang et al., 2014b),而北部可能沿华北克拉通北缘断裂带近东西向分布的一系列燕山期花岗岩目前仍缺乏系统研究。

2 岩体地质与岩相学特征

白音花岩基构成上述沿华北克拉通北缘断裂带近东西向燕山期岩浆岩带的重要组成。岩体大致呈北东-南西向展布于辽宁阜新县哈大图和内蒙古库伦旗白音花一带(图 1b),边部为不规则状,出露面积近200km2。侵入体南侧不整合侵入太古宙片麻岩,北侧与石炭系地层接触,部分被下白垩统火山沉积建造和第四系覆盖。岩体总体变形较弱,矿物定向组构不发育,但风化剥蚀作用影响比较严重。

侵入体主体岩性为二长花岗岩和钾长花岗岩,二者呈渐变过渡关系;此外,沿岩体内部裂隙或裂理发育花岗细晶岩和伟晶岩等伴生岩脉,脉体一般宽几十厘米到几米,延长几米至几十米以上。二长花岗岩具有似斑状结构,斑晶主要为钾长石、斜长石、石英和少量黑云母,含量占8%~10%(图 2a, b)。钾长石粒径约1.0~4.0mm,含量约3%,主要为自形-半自形结构,发育卡式双晶,部分矿物表面发生粘土化;斜长石斑晶约0.5~2.0mm,含量约2%,自形-半自形结构,发育聚片双晶;石英斑晶呈他形,粒度稍小于长石,粒径0.5~1.5mm,含量约3%;黑云母呈片状,含量约1%,粒径为0.5~1.0mm。基质为细粒结构,主要矿物为石英、钾长石、斜长石和黑云母。石英占基质的35%~40%,粒度0.05~0.5mm;钾长石含量约25%~30%,粒度为0.05~0.5mm;斜长石约25%~30%,发育聚片双晶,粒度为0.05~0.3mm;黑云母呈片状,含量约为1%~2%,大小为0.05~0.5mm。副矿物包括磷灰石、榍石和锆石。岩石风化面呈肉红色,新鲜面呈浅粉色。钾长花岗岩具有花岗结构,主要矿物有钾长石、斜长石、石英和少量云母(图 2c, d)。钾长石粒径约0.2~1.0mm,半自形结构,矿物表面高岭土化较强,含量约40% ~45%;斜长石粒径约0.2~0.5mm,呈半自形板状,发育聚片双晶,含量约15%~20%;石英呈他形粒状填充在长石之中,粒径约0.1~1.0mm,含量约30%~35%;黑云母粒径约0.2~1.0mm,呈自形-半自形片状,含量约3%~5%。副矿物包括磷灰石、榍石和锆石。岩石风化面黄褐-赭红色,新鲜面呈粉红-浅粉色。

图 2 白音花花岗岩矿物组成和结构 (a、b)具有似斑状结构的二长花岗岩;(c、d)具有花岗结构的钾长花岗岩. Pl-斜长石;Kf-钾长石;Qz-石英;Bt-黑云母 Fig. 2 Representative thin-section photographs of mineral constituents for the Baiyinhua granites (a, b) porphyritic monzogranites; (c, d) granitic K-feldspar granites. Pl-plagioclase; Kf-K-feldspar; Qz-quartz; Bt-biotite
3 分析方法 3.1 锆石SIMS U-Pb定年

单矿物锆石分选在河北省区域地质矿产调查研究所完成。将待测样品机械破碎至50~80目,采用常规磁选和重液方法分选出锆石,并在双目镜下挑纯后与锆石标样Plésovice(Sláma et al., 2008)和Qinghu(Li et al., 2013b)一起制靶抛光。测试前首先在光学显微镜下对样品靶进行透射光和反射光拍照,然后在扫描电镜实验室采用德国LEO1450VP扫描电子显微镜(SEM)获取阴极发光(CL)图像。综合观察透反射及CL图像,选取最佳测试点,最后将样品镀金待测。

锆石U-Th-Pb分析在中国科学院地质与地球物理研究所离子探针实验室CAMECAIMS-1280型离子探针上完成,详细流程参见Li et al. (2009)。测试时采用标准锆石Plésovice进行U-Th-Pb同位素的分馏校正,利用标准锆石Qinghu监测未知样品数据的精确度,实测204Pb值用于普通Pb校正,最后采用Isoplot软件处理数据并计算年龄。

3.2 全岩主量与微量元素分析

全岩主量元素在中国科学院地质与地球物理研究所岩矿制样与分析实验室完成,采用顺序式X射线荧光光谱仪(AXIOS-Minerals、XRF-1500)测试。样品分析过程中选用国家标准物质中心的GSR-1(花岗岩)和GSR-3(玄武岩)进行质量监控,对标准样品的分析结果表明,主量元素的分析精度为~1%(含量>10%)和~5%(含量 < 1.0%)。

全岩微量元素在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,采用Agilent 7500a型四极杆电感耦合等离子体质谱仪(ICP-MS),具体分析流程参见Liu et al. (2008)。样品分析中测定的标准物质为:AGV-2、BHVO-2、BCR-2、RGM-2,分析结果表明微量元素分析的精密度优于5%,准确度优于10%。

3.3 全岩Rb-Sr和Sm-Nd同位素测试

全岩Sr-Nd同位素分析在中国科学院地质与地球物理研究所稳定同位素实验室完成,具体试验分析流程参见Li et al. (2015)。根据样品中Rb、Sr、Sm和Nd含量,称取适量岩石粉末样品置于清洗干净的Teflon溶样罐中,再加入混合的87Rb-84Sr和149Sm-150Nd示踪剂,并用HF+HNO3+HClO4混合试剂在110℃左右的电热板上加热7天,采用两阶段离子交换层析法分离样品中Rb、Sr、Sm、Nd元素。样品测试使用仪器为Finnigan MAT262多接收热电离质谱仪。

3.4 锆石原位Lu-Hf同位素分析

锆石微区原位Lu-Hf同位素分析在中国科学院地质与地球物理研究所多接收等离子质谱实验室完成,仪器为配备了Geolas-193紫外激光剥蚀系统的Neptune多接收电感耦合等离子体质谱仪(LA-MC-ICPMS)。采用标准锆石MUD Tank(176Hf/177Hf=0.282833±25, 2σ)和GJ-1(176Hf/177Hf=0.282020±25, 2σ)双重外部标样监测实验过程中的仪器稳定性。分析点选择U-Pb年龄测试点上或者附近,详细分析流程参见Wu et al. (2006)

4 分析结果 4.1 锆石U-Pb定年结果

白音花花岗岩中2个代表性样品(FX10-8-3和FX10-9-5)中锆石的U-Pb分析结果见表 1。这些锆石呈自形到半自形等轴粒状或短柱状,长约30~200μm,长宽比为1:1~4:1。锆石CL图像显示清晰的同心震荡环带(图 3a, b),指示典型的岩浆锆石成因。针对细粒花岗岩样品FX10-8-3中27颗无裂隙损伤锆石的U-Pb分析获得Th、U含量分别为110×10-6~1350×10-6和172×10-6~1036×10-6,Th/U比值为0.64~3.21;206Pb/238U年龄值介于157.0~167.1Ma之间,27颗锆石分析点均落在谐和线上,形成谐和年龄为161.2±1.0Ma(MSWD=2.7)(图 3c)。斑状花岗岩样品FX10-9-5中19颗锆石的分析结果获得Th含量108×10-6~1697×10-6,U含量144×10-6~1591×10-6,Th/U比值0.38~1.07;所有分析点均落在一致曲线上,构成谐和年龄162.4±1.1Ma(MSWD=0.57)(图 3d)。2个样品的年龄谐和且在误差范围内高度一致,共同表征了白音花岩基的侵位时代。

表 1 晚侏罗世白音花花岗岩锆石U-Pb年龄 Table 1 SIMS zircon U-Pb analyses for Late Jurassic Baiyinhua granites

图 3 白音花花岗岩锆石阴极发光图像(a、b)和U-Pb年龄谐和图(c、d) Fig. 3 Representative cathodoluminescence (CL) images of the dated zircons (a, b) and zircon U-Pb concordia diagrams (c, d) for the Baiyinhua granites
4.2 元素地球化学特征

12件白音花花岗岩样品的全岩主-微量元素分析结果列于表 2。岩石SiO2含量变化于75.65%~77.29%,高Na2O(3.20%~3.98%)和K2O(4.43%~4.91%),Al2O3中等(12.40%~12.77%),贫CaO(0.39%~0.82%)、P2O5(0.01%~0.03%)和MgO(0.08%~0.30%)。在R2-R1分类图中(R1=4Si-11(Na+K)-2(Fe+Ti); R2=6Ca+2Mg+Al)(De La Roche et al., 1980),白音花花岗岩落在正长-碱长花岗岩区域(图 4a)。岩石呈弱过铝质特征,铝饱和指数ASI为1.02~1.15(A/CNK=molar Al2O3/(CaO+Na2O+K2O);A/NK=molar ratio of Al2O3/(Na2O+K2O))(图 4b)、钙碱性(图 4c)和镁-铁质(图 4d)。

表 2 晚侏罗世白音花花岗岩主量(wt%)和微量(×10-6)元素地球化学成分 Table 2 Major (wt%) and trace (×10-6) element composition for Late Jurassic Baiyinhua granites

图 4 白音花花岗岩分类图 (a) R2-R1分类图(De La Roche et al., 1980);(b) A/NK-A/CNK图(Maniar and Piccoli, 1989);(c) (Na2O+K2O-CaO)-SiO2 (Frost et al., 2001);(d) FeOT/(FeOT+MgO)-SiO2 (Frost et al., 2001) Fig. 4 Classification diagrams for the Baiyinhua granites (a) plot of R2 vs. R1 (De La Roche et al., 1980); (b) plot of A/NK vs. A/CNK (Maniar and Piccoli, 1989); (c) plot of (Na2O+K2O-CaO) vs. SiO2 (Frost et al., 2001); (d) plot of FeOT/(FeOT+MgO) vs. SiO2 (Frost et al., 2001)

在微量元素方面,白音花花岗岩具有相对较低的稀土元素含量(∑REE=40.2×10-6~117×10-6),球粒陨石标准化稀土元素配分图呈现弱右倾型模式((La/Yb)N=1.50~8.51)(图 5a),负Eu异常明显,δEu介于0.10~0.47。在原始地幔标准化微量元素蛛网图(图 5b)上,岩石富集Rb、K、Pb、Th、U等元素,而亏损Ba、Sr、P、Zr和Ti等。

图 5 白音花花岗岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized REE pattern (a) and PM-normalized trace element spiderdiagram (b) for the Baiyinhua granites (normalization values after Sun and McDonough, 1989)
4.3 全岩Sr-Nd与锆石Hf同位素特征

6件白音花花岗岩样品的Rb-Sr和Sm-Nd同位素分析结果见表 3。根据锆石U-Pb年龄分别计算出Sr同位素的初始比值为(87Sr/86Sr)t=0.701539~0.707151(图 6a),Nd同位素初始比值为(143Nd/144Nd)t=0.512251~0.512299,εNd(t)值介于-3.5~-2.6(图 6a, b);Nd同位素两阶段模式年龄tDM2Nd变化于1153~1234Ma(图 6b)。由于其fSm/Nd值(-0.57~-0.16)介于-0.60~+0.20之间,表明其模式年龄具地质意义(Jahn et al., 2000)。

表 3 晚侏罗世白音花花岗岩全岩Rb-Sr和Sm-Nd同位素分析数据 Table 3 Whole rock Sm-Nd and Rb-Sr isotopic data for Late Jurassic Baiyinhua granites

图 6 白音花花岗岩的同位素地球化学图解 (a)全岩εNd(t)-87Sr/86Sri图;(b)全岩εNd(t)-tDM2图;(c)锆石εHf(t)-U-Pb年龄图. 图(a)中辽宁北部早-中三叠世铁镁质熔体与花岗岩范围来源于Zhang et al.(2009a, b)和Zhang et al. (2010c),中-晚侏罗世医巫闾山闪长岩与花岗岩范围来源于Zhang et al.(2008, 2010d, 2014b). 图(b)中亚造山带花岗岩常见的tDM2范围来源于Jahn (2004). 图(c)中华北克拉通和中亚造山带范围来自于Yang et al. (2006),华北克拉通奥陶纪金伯利岩、早泥盆世碱性侵入岩、中泥盆世基性-超基性岩、石炭纪-二叠纪基性侵入岩、晚二叠-晚三叠花岗岩范围来源于Yang et al. (2009), Zhang et al. (2010b), Zhang et al. (2009b), Zhang et al. (2012c), Zhang et al. (2011)Yang et al. (2021) Fig. 6 Isotopic plots for the Baiyinhua granites (a) plot of whole-rock εNd(t) vs. 87Sr/86Sri; (b) plot of whole-rock εNd(t) vs. tDM2; (c) plot of zircon εHf(t) vs. U-Pb age. In Fig. 6a, the field for Early-middle Triassic mafic melts and granites from northern Liaoningare from Zhang et al.(2009a, b) and Zhang et al. (2010c). The field for Middle-late Jurassic diorites and granites from Yiwulüshan from Zhang et al.(2008, 2010d, 2014b). In Fig. 6b, common tDM2 range for the CAOB granites from Jahn (2004). In Fig. 6c, fields for the CAOB and NCC from Yang et al. (2006); fields for Ordovician kimberlites, Early Devonian alkaline intrusions, Middle Devonian mafic-ultramafic rocks, Carboniferous and Permian mafic intrusions and Late Permian to Late Triassic granites from the northern NCC from Yang et al. (2009), Zhang et al. (2010b), Zhang et al. (2009b), Zhang et al. (2012c), Zhang et al. (2011) and Yang et al. (2021), respectively

白音花花岗岩2件样品的锆石原位Hf同位素分析结果见表 4。根据锆石U-Pb年龄计算出样品FX10-8-3锆石Hf同位素分析点的初始比值(176Hf/177Hf)t变化范围为0.282676~0.282840,εHf(t)值变化于+0.1~+5.9(图 6c),锆石Hf两阶段模式年龄tDMC=831~1201Ma。样品FX10-9-5初始(176Hf/177Hf)t=0.282708~0.282804,εHf(t)=+1.3~+4.7,锆石Hf两阶段模式年龄tDMC=911~1128Ma。

表 4 晚侏罗世白音花花岗岩锆石Lu-Hf同位素分析数据 Table 4 In-situ zircon Lu-Hf isotopic data for Late Jurassic Baiyinhua granites
5 讨论 5.1 成因类型与岩石成因 5.1.1 成因类型

早期区域地质调查(长春地质学院, 1996)和我们的野外观察表明,组成白音花岩基的诸多花岗岩虽然结构有别,但其石英、钾长石和斜长石的主要矿物组成均一稳定,主量元素成分呈现高硅(SiO2>74%)和富碱(Na2O+K2O=7.85%~8.41%)特征,铁指数(FeOT/MgO)变化于2.85~7.00,这些特点符合高硅花岗岩定义(Lee and Morton, 2015)。同时,白音花花岗岩的低Sr(< 60×10-6)和高Rb(>200×10-6)丰度与美国南加州半岛岭岩基中的典型高硅花岗岩相当(Lee and Morton, 2015)。

由于高硅花岗岩普遍经历结晶分异作用的成因特点(吴福元等, 2017),因此甄别其岩浆属性与岩石成因需要结合多方面证据。就白音花花岗岩而言,一方面,其虽为过铝质,但绝大多数样品铝饱和指数ASI小于1.1(图 4b);其低P2O5含量说明磷在原始熔体中溶解度有限。这些特征与S型花岗岩明显冲突,而契合铝过饱和的高分异Ⅰ型花岗岩(Chappell et al., 2012; Clemens et al., 2011)。这与白音花花岗岩在Rb-Th图上表现出的典型Ⅰ型花岗岩演化趋势相一致(Chappell, 1999)(图 7c)。

图 7 白音花花岗岩的元素地球化学属性和结晶温度 (a) FeOT/MgO-10000×Ga/Al判别图(Whalen et al., 1987);(b) (K2O+Na2O)/CaO-(Zr+Nb+Ce+Y) 判别图(Whalen et al., 1987);(c) Th-Rb趋势图(Chappell, 1999);(d)全岩锆饱和温度(Watson and Harrison, 1983)与Al-Ti温度(Jung and Pfänder, 2007)计算结果 Fig. 7 The elemental affinity and crystallization temperature for the Baiyinhua granites (a) FeOT/MgO vs. 10000×Ga/Al discrimination diagram (Whalen et al., 1987); (b) (K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y) discrimination diagram (Whalen et al., 1987); (c) plot of Th vs. Rb (Chappell, 1999); (c) calculated temperatures from zircon saturation thermometry (Watson and Harrison, 1983) and Al-Ti thermometry (Jung and Pfänder, 2007)

另一方面,根据判别A型花岗岩的重要地球化学标志即高FeOT/MgO、Ga/Al和Zr+Nb+Y+Ce值,白音花花岗岩与典型A型花岗岩存在显著差别(图 7a, b)(Whalen et al., 1987),而其(Zr+Nb+Ce+Y)低于350和(Na2O+K2O)/CaO介于7~28的特征值均符合高分异花岗岩范畴(图 7b);虽然强分异A型花岗岩也可能落入高分异花岗岩区(King et al., 2001),但其仍有别于高分异Ⅰ型花岗岩。由于岩浆结晶温度随分异程度增加而降低,因此高分异Ⅰ型花岗岩通常具有较低的结晶温度,这可以体现在其较低的Zr丰度和相应的锆石饱和温度。根据Watson and Harrison (1983)基于锆石溶解度模拟提出的计算公式TZr(℃)=[12900/(lnDZr(496000/熔体)+0.85M+2.95)]-273.15,可以计算得到白音花花岗岩的锆石饱和温度为767~808℃。同时,白音花花岗岩的全岩Al2O3/TiO2介于84~157,利用火成岩熔融经验方程可以得到温度为665~788℃(Jung and Pfänder, 2007)(图 7d)。

岩浆中与特定矿物相关的微量元素行为可以示踪岩浆结晶分异过程。白音花花岗岩偏低的K/Rb(116~187)值和明显的Eu(δEu=0.10~0.47)负异常表明存在显著的长石分离结晶,而其趋低的稀土元素总含量(40.2×10-6~117×10-6)和轻重稀土比值(1.50~8.51)可能指示富含稀土元素独居石和帘石族等矿物的分离。同时,白音花花岗岩基本低于花岗岩体系岩浆-热液分界(Zr/Hf=26)的全岩Zr/Hf(20~26) 值既指示锆石的分离结晶(Pérez-Soba and Villaseca, 2010),又暗示岩浆演化后期流体的影响(Bau, 1996);类似地,白音花花岗岩低于上地壳(Nb/Ta=13.4; Rudnick and Gao, 2003)的Nb/Ta(7.3~9.7)值可能反映黑云母等分离结晶作用与岩浆-流体相互作用的双重影响(Stepanov et al., 2014; 陈璟元和杨进辉, 2015; Ballouard et al., 2016)。此外,白音花花岗岩与美国南加州半岛岭岩基中高硅花岗岩相当的高Rb(212×10-6~318×10-6)和Rb/Sr(3.8~14.1)值(图 5b)暗示二者相似的高分异残留岩浆属性(Lee and Morton, 2015)。

综合多项指标判断,晚侏罗世白音花花岗岩属于高分异Ⅰ型花岗岩。

5.1.2 岩浆源区与成因

尽管白音花花岗岩的高分异岩浆属性弱化了其元素地球化学行为携带的源区信息,但高保真的同位素地球化学特征提供了示踪源区的重要线索。大量实验岩石学和世界典型Ⅰ型花岗岩案例研究表明,Ⅰ型花岗质母岩浆基本衍生自:(1)幔源玄武质岩浆的结晶分异与同化混染;以及(2)不同地壳浆源岩石的部分熔融(Clemens et al., 2011及其中参考文献)。

虽然玄武质岩浆的结晶分异可能形成北美半岛岭岩基中的花岗质母岩浆及其分异的高硅花岗岩(Lee and Morton, 2015),但白音花花岗岩不太可能衍生自幔源玄武岩浆的分离结晶与同化混染过程。首先,白音花岩基岩性组成单一,缺乏岩浆分异过程中通常伴生的中基性岩石组成和连续性成分变化(Whitaker et al., 2008);其次,辽-蒙交界地区虽然发育大面积晚侏罗世-早白垩世中基性火山岩(黄华等, 2007),但它们的全岩εNd(t)值(-14~-6.36)明显比白音花花岗岩(-3.5~-2.6)富集,反映二者并无成因关联;再次,白音花花岗岩中基本没有镁铁质显微包体和变化不大的锆石Hf同位素组成指示其源区比较均一。

考虑到热模拟实验证明基性岩浆同化过程(包括机械混杂与化学混合)需要突破难以克服的能量障碍(Glazner, 2007),Ⅰ型花岗岩的地壳浆源岩石深熔论已是当前花岗岩研究的共识之一(吴福元等, 2007; 王孝磊, 2017),Clemens et al. (2011)更是直接提出中性浆源岩石是形成钙碱性Ⅰ型花岗岩的最适宜源岩。该论断与大量实验岩石学研究的实验结果不谋而合(Beard and Lofgren, 1991; Skjerlie and Johnston, 1993; Patiño Douce, 1997; Patiño Douce and McCarthy, 1998; Altherr and Siebel, 2002)。白音花花岗岩虽然经历一定的结晶分异作用,但其主量元素组成基本契合安山质源岩在中低压条件下部分熔融熔体的成分(图 8)。一方面,这说明白音花花岗岩经历的结晶分异程度不高,毕竟其仍然呈现弱分异高硅花岗岩的弱过铝质和钙碱性属性;另一方面,这暗示高硅花岗岩的结晶分异作用主要受控于对其主量元素影响不大的副矿物。

图 8 白音花花岗岩样品成分与各类源岩部分熔融实验结果对比(据Altherr and Siebel, 2002修改) (a)摩尔K2O/Na2O-A/CNK图;(b) Na2O-摩尔CaO/(MgO+FeOT)图;(c)摩尔Al2O3/(MgO+FeOT)-摩尔CaO/(MgO+FeOT)图;(d) Mg#-SiO2 Fig. 8 Comparison between the composition of Baiyinhua granite samples and the compositional fields of experimental melts derived from dehydration melting of various bulk compositions (modified after Altherr and Siebel, 2002) (a) plot of molar K2O/Na2O vs. A/CNK; (b) plot of Na2O (%) vs. molar CaO/(MgO+FeOT); (c) molar Al2O3/(MgO+FeOT) vs. molar CaO/(MgO+FeOT); (d) Mg# vs. SiO2 (%)

就位于克拉通-造山带过渡区域的辽-蒙交界区而言,我们针对晚二叠世-晚三叠世岩浆爆发幕的示踪研究揭示出一个包括新太古-古元古基性浆源物质、中新元古代多个裂谷期基性底侵物质和古生代安山质岛弧岩浆底垫物质等并置存在的多层地壳结构(Zhang et al., 2012d, e; Yang et al., 2021)。其中新晋安山质地壳可以通过俯冲物质上涌和底垫(relamination)模式而形成(Hacker et al., 2011, 2015; Kelemen and Behn, 2016),即活动大陆边缘俯冲板片熔融形成岛弧岩浆,其中较地幔岩轻但重于上地壳的长英质部分通过浮力上升并底垫在上覆大陆地壳底部,其之后熔融并与地幔的反应可以产生原始的高镁安山岩浆(Castro et al., 2013Kelemen and Behn, 2016)。这一新式大陆地壳演化范型不仅得到岩石学分析和热力学数字模拟支持(Castro et al., 2013; Maunder et al., 2016),而且更契合诸多大洋岛弧或活动大陆边缘岛弧的岩浆记录(Kelemen and Behn, 2016; Zhang et al., 2016; 张泽明等, 2019; Yang et al., 2020)以及华北克拉通北缘地壳地震波速结构模型(He et al., 2018)。

从其低负的全岩εNd(t)值(-3.5~-2.6)和低正的锆石εHf(t)值(+0.1~+5.9)来看,白音花花岗岩明显有别于相应同位素高度富集的辽西医巫闾山中晚侏罗世花岗岩(Zhang et al., 2014b),而与毗邻的一系列中晚三叠世铁质花岗岩相当(Zhang et al., 2012e)(图 6)。由于后者源自中亚造山带型安山质底垫物质与少量古老地壳物质的部分熔融(Zhang et al., 2012e; Yang et al., 2021),因此我们推测白音花花岗岩母岩浆主要来自于类似的新晋安山质地壳的部分熔融。这一主要源区不仅契合白音花花岗岩的Nd-Hf同位素解耦特征,而且得到区域上指示高镁中基性岩浆底垫过程的直接岩浆记录支持,后者包括沿赤峰-开原断裂带分布的晚二叠世高镁安山岩(Yuan et al., 2016)和辽西地区中侏罗世闪长岩(Zhang et al., 2014b)。

尽管辽-蒙交界地区的同期中基性火山岩在白音花花岗岩形成中没有物质贡献,但其所代表的陆内伸展背景下区域幔源岩浆底侵事件提供了诱发上述多层地壳部分熔融的必要热源,形成一个深部地壳热带(deep crustal hotzone, Annen et al., 2006)或者中地壳酸性MASH带(熔融-同化-存储-均一带, Schwindinger and Weinberg, 2017),复合地壳中的不同源岩发生脱水或含水熔融而产生密度和粘度相近的酸性岩浆,这些岩浆或独立、或相互混合形成地球化学特征多样的中酸性岩浆岩。其中,酸性熔体与幔源玄武质熔体反应形成晚侏罗世-早白垩世高镁安山岩(Zhang et al., 2003; 黄华等, 2007),中亚造山带型新生安山质地壳与少量古老地壳部分熔融析出原始酸性岩浆并经历结晶分异形成白音花高硅花岗岩。

5.2 地质意义

尽管华北克拉通破坏堪称新世纪以来中国固体地球科学最重要的研究主题之一(朱日祥等, 2012, 2020; Wu et al., 2019),但“槽台说”盛行时业已存在的诸多基础地质问题依然悬而未决,尤以克拉通与北部造山带的边界为甚。赤峰-开原深大断裂带作为台带分界虽然已成共识,但其实际确认因中新生代岩浆-构造事件改造和盖层覆盖而困难重重。岩浆源区主要为中亚造山带型新生地壳物质的白音花花岗岩岩基,与具有相似源区的中三叠世平安地花岗岩一道(Zhang et al., 2012e),提供了指示赤峰-开原深大断裂带在辽-蒙交界地区穿越位置的重要岩石学证据。就其限定地体边界的作用而论,二者皆可视作“钉合岩体”(Dickinson, 2008; 韩宝福等, 2010)。

与中三叠世平安地花岗岩属于可以限定古亚洲洋闭合时限的后碰撞型钉合岩体不同,晚侏罗世华北-蒙古板块腹地处于陆内非造山演化阶段,此时侵位的白音花花岗岩相当于非造山型钉合岩体。此类钉合岩体虽然不能准确限定地体增生或碰撞事件(韩宝福等, 2010),但仍可以指示诸如裂谷作用等重要的陆内伸展(Ryan, 2000)。由于高分异高硅花岗岩大部分产出于与伸展构造过程相关的造山后-非造山环境(吴福元等, 2015, 2017),因此白音花花岗岩可能记录了赤峰-开原深大断裂带晚侏罗世的伸展构造活动。

首先,白音花花岗岩弱过铝质(图 4b)、中等碱度、镁-铁质(图 4d)的地球化学属性契合诸多基于构造背景的花岗岩分类中的造山后花岗岩(Batchelor and Bowden, 1985; Maniar and Piccoli, 1989; Pearce, 1996)(图 9);其次,沿华北克拉通北缘中西段边界断裂带发育一些中晚侏罗世A型花岗岩,例如西拉木伦碾子沟二长花岗岩(陈志广等, 2008)和白乃庙地区道郎呼都格钾长花岗岩(解洪晶等, 2012),表明中晚侏罗世华北克拉通-中亚造山带过渡区域不仅普遍处于中下地壳伸展状态,而且其中上地壳已经趋于高度成熟。

图 9 白音花花岗岩的构造环境判别图解 (a) R2-R1构造环境判别图(Batchelor and Bowden, 1985);(b) Rb-(Y+Nb)判别图(Pearce et al., 1984; Pearce, 1996) Fig. 9 Tectonic discrimination plots for the Baiyinhua granites (a) R2 vs. R1 diagram (Batchelor and Bowden, 1985); (b) Rb vs. (Y+Nb) diagram (Pearce et al., 1984; Pearce, 1996)

此外,华北克拉通北部一系列盆地的沉积建造分析与控盆断裂系统的构造解析表明,这些盆地晚侏罗世发育典型的主动裂谷型火山-沉积充填序列,其演化受控于克拉通北缘断裂系统的张扭性走滑运动(李忠等, 2003; Davis et al., 2009; 孟庆任, 2017)。例如,受控于尚义-平泉断裂系的冀北承德寿王坟盆地发育厚达3500m的髫髻山组火山-沉积岩系(渠洪杰等, 2006);受控于朝阳-药王庙断裂带的辽西金羊盆地内晚侏罗世火山岩厚度超过1500m(Li et al., 2007)。

从蒙古-华北北部板块的视角来看,针对自西向东一系列早白垩世变质核杂岩核部侵入岩的研究揭示,该区域中下地壳层次的伸展穹窿构造在中晚侏罗世就已经启动(Charles et al., 2011; Wang et al., 2012; Zhang et al., 2012a; 林少泽等, 2014; Zhang and Yuan, 2016)。例如,南蒙古Zagan变质核杂岩中161~152Ma的岩浆穹窿(Donskaya et al., 2008),159~145Ma的云蒙山岩浆穹窿(Davis et al., 1996; Deng et al., 2004; Wang et al., 2012),163~150Ma的喀喇沁岩浆穹窿(Wang et al., 2012; 林少泽等, 2014),以及163~153Ma的辽西医巫闾山岩浆穹窿(Zhang et al., 2014b)。

这种以中下地壳弥散状伸展穹窿为特征的中晚侏罗世伸展域有别于以一系列变质核杂岩(Davis et al., 1996; Darby et al., 2004; Donskaya et al., 2008; Wang et al., 2011, 2012; Zhang et al., 2012a)和断陷盆地群(Meng et al., 2003; Ritts et al., 2001; Graham et al., 2001)为特征的早白垩世巨型地壳伸展省(Zhang and Yuan, 2016)。这两期大规模伸展构造制约了中生代华北克拉通破坏和蒙古-华北板块盆山系统分布的基本格局,从而为探究东北亚晚中生代大陆地球动力学过程提供了关键窗口。基于构造域影响时空范围的不同看法,东北亚大陆晚中生代地球动力学驱动机制一直存在(1)古太平洋板块俯冲(Davis et al., 2001; Zhang et al., 2010a; Ji et al., 2019; Wu et al., 2019)和(2)蒙古-鄂霍茨克洋闭合(Meng, 2003; Ritts et al., 2001; Wang et al., 2011)的二元之争。呈百家争鸣之势的具体动力学过程包括:俯冲板片断离(Meng, 2003)、岩石圈拆沉(Gao et al., 2004)、造山后重力垮塌(Graham et al., 2001; Zorin, 1999)、板片回撤与弧后伸展(Davis et al., 2001; Wu et al., 2019)、以及俯冲板块角度的交替变换(朱日祥等, 2020)。

仲裁上述二元范型和多种模式非本次高硅花岗岩案例研究所及。但我们注意到,首先,近期一系列古地磁和古地理重建一致认为蒙古-鄂霍茨克洋于中晚侏罗世最终闭合(Metelkin et al., 2010; Cocks and Torsvik, 2013; Wu et al., 2017; Sorokin et al., 2020),这在时间上与蒙古-华北板块西部中晚侏罗世岩浆活动更加吻合。其次,Meng et al. (2020)最近综合岩浆构造热事件和沉积记录等多方面的证据指出,晚三叠世-侏罗纪蒙古-鄂霍茨克板块南向俯冲的影响可达华北克拉通北缘。最后,青藏高原(England and Houseman, 1989; Houseman and Molnar, 1997)和地中海Alboran构造域(Platt et al., 2003)等新生代造山带实例表明,造山后重力垮塌可诱发时间间隔为20~40Ma的两段式地壳伸展过程(Rey et al., 2001, 2011);这基本对应新生代(44~7Ma)喜马拉雅巨型淡色高硅花岗岩带的三阶段侵位序列(吴福元等, 2015)。综合以上理由,我们推断华北克拉通北缘中晚侏罗世和早白垩世两段式地壳伸展主要受控于蒙古-鄂霍茨克构造域造山后的重力垮塌过程。

6 结论

(1) 辽宁阜新-内蒙古库伦交界地区的白音花花岗岩岩基侵位于晚侏罗世,其锆石U-Pb年龄为约162Ma。

(2) 白音花花岗岩岩基主要包括不同花岗结构的二长花岗岩和钾长花岗岩。它们富硅碱、贫铁镁、弱过铝;富集Th与U,亏损Ba与Sr;Eu负异常明显;Zr/Hf和Nb/Ta分异显著;这些元素特征契合典型高分异Ⅰ型花岗岩的相应地球化学行为。同时,这些花岗岩呈现低负的全岩εNd(t)值(-3.5~-2.6)和低正的锆石εHf(t)值(+0.1~+5.9)。这些元素与同位素地球化学特征指示白音花花岗岩可能源自由中亚造山带型新生安山质地壳与少量古老地壳组成的复合源区,其部分熔融析出的原始酸性岩浆经历结晶分异形成白音花高硅花岗岩。

(3) 白音花高硅花岗岩不仅是记录华北克拉通北缘断裂带晚侏罗世中下地壳伸展活动的非造山型钉合岩体,而且是指示蒙古-华北板块地壳高度成熟的重要标志。蒙古-华北板块中晚侏罗世和早白垩世两期迥异地壳伸展构造契合蒙古-鄂霍茨克构造域造山后重力垮塌的地球动力学过程。

致谢      衷心感谢俞良军老师对论文所给予的支持与帮助;感谢岩石圈演化国家重点实验室工作人员在SIMS锆石U-Pb定年、锆石Hf同位素、全岩Sr-Nd同位素和主量元素分析中提供的帮助。王晓霞研究员和另一名匿名审稿人的建设性修改意见使文章臻于完善,在此谨致衷心谢忱。

参考文献
Altherr R and Siebel W. 2002. Ⅰ-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415 DOI:10.1007/s00410-002-0352-y
Annen C, Blundy JD and Sparks RSJ. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505-539 DOI:10.1093/petrology/egi084
Badarch G, Cunningham WD and Windley BF. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110 DOI:10.1016/S1367-9120(02)00017-2
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44(3): 231-234 DOI:10.1130/G37475.1
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626 DOI:10.1016/S0024-4937(98)00085-1
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55 DOI:10.1016/0009-2541(85)90034-8
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333 DOI:10.1007/s004100050159
Beard JS and Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401 DOI:10.1093/petrology/32.2.365
Beard JS, Lofgren GE, Sinha AK and Tollo RP. 1994. Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications. Journal of Geophysical Research, 99(B11): 21591-21603 DOI:10.1029/94JB02060
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29 DOI:10.1016/j.lithos.2006.12.007
Castro A, Vogt K and Gerya T. 2013. Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 23(4): 1554-1566 DOI:10.1016/j.gr.2012.07.004
Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Chappell BW, Bryant CJ and Wyborn D. 2012. Peraluminous Ⅰ-type granites. Lithos, 153: 142-153 DOI:10.1016/j.lithos.2012.07.008
Charles N, Gumiaux C, Augier R, Chen Y, Zhu RX and Lin W. 2011. Metamorphic core complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences, 40(1): 261-278
Chen B, Suzuki K, Tian W, Jahn BM and Ireland T. 2009. Geochemistry and Os-Nd-Sr isotopes of the Gaositai Alaskan-type ultramafic complex from the northern North China craton: Implications for mantle-crust interaction. Contributions to Mineralogy and Petrology, 158(5): 683-702 DOI:10.1007/s00410-009-0404-7
Chen JY and Yang JH. 2015. Petrogenesis of the Fogang highly fractionated Ⅰ-type granitoids: Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31(3): 846-854 (in Chinese with English abstract)
Chen YJ, Zhang C, Wang P, Pirajno F and Li N. 2017. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geology Reviews, 81: 602-640 DOI:10.1016/j.oregeorev.2016.04.017
Chen ZG, Zhang LC, Wu HY, Wan B and Zeng QD. 2008. Geochemistry study and tectonic background of A-type host granite in Nianzigou molybdenum deposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia. Acta Petrologica Sinica, 24(4): 879-889 (in Chinese with English abstract)
Chi GC and Lin WF. 1999. Geological characteristics of Chahaershan and Xiaoouliying ultra units-granite in West Liaoning. Liaoning Geology, 16(4): 288-300 (in Chinese)
Clemens JD, Stevens G and Farina F. 2011. The enigmatic sources of Ⅰ-type granites: The peritectic connexion. Lithos, 126(3-4): 174-181 DOI:10.1016/j.lithos.2011.07.004
Cocks LRM and Torsvik TH. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews, 117: 40-79 DOI:10.1016/j.earscirev.2012.12.001
Cope TD and Graham SA. 2007. Upper crustal response to Mesozoic tectonism in western Liaoning, North China, and implications for lithospheric delamination. In: Zhai MG, Windley BF, Kusky TM and Meng QR (eds.). Mesozoic Sub-continental Lithospheric Thinning under Eastern Asia. Geological Society, London, Special Publications, 280(1): 201-222
Cottam M, Hall R, Sperber C and Armstrong R. 2010. Pulsed emplacement of the Mount Kinabalu granite, northern Borneo. Journal of the Geological Society, 167(1): 49-60 DOI:10.1144/0016-76492009-028
Darby BJ, Davis GA, Zhang XH, Wu FY, Wilde S and Yang JH. 2004. The newly discovered Waziyu metamorphic core complex, Yiwulü shan, western Liaoning Province, Northwest China. Earth Science Frontiers, 11(3): 145-155
Davis GA, Qian XL, Zheng YD, Tong HM, Gehrels GE, Shafiquallah M and Fryxell JE. 1996. Mesozoic deformation and plutonism in the Yunmeng Shan: A metamorphic core complex North of Beijing, China. In: Yin A and Harrison M (eds.). The Tectonic Evolution of Asia. New York: Cambridge University Press, 253-280
Davis GA, Zheng YD, Wang C, Darby BJ, Zhang CH and Gehrels G. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China. In: Hendrix MS and Davis GA (eds.). Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America Memoir, 194: 171-197
Davis GA, Meng JF, Cao WR and Du XQ. 2009. Triassic and Jurassic tectonics in the eastern Yanshan belt, North China: Insights from the controversial Dengzhangzi formation and its neighboring units. Earth Science Frontiers, 16(3): 69-86 DOI:10.1016/S1872-5791(08)60090-1
De La Roche H, Leterrier J, Grandclaude P and Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses: Its relationships with current nomenclature. Chemical Geology, 29(1-4): 183-210 DOI:10.1016/0009-2541(80)90020-0
Deng JF, Su SG, Mo XX, Zhao GC, Xiao QH, Ji GY, Qiu RZ, Zhao HL, Luo ZH, Wang Y and Liu C. 2004. The sequence of magmatic-tectonic events and orogenic processes of the Yanshan belt, North China. Acta Geologica Sinica, 78(1): 260-266
Dickinson WR. 2008. Accretionary Mesozoic-Cenozoic expansion of the Cordilleran continental margin in California and adjacent Oregon. Geosphere, 4(2): 329-353 DOI:10.1130/GES00105.1
Donskaya TV, Windley BF, Mazukabzov AM, Kröner A, Sklyarov EV, Gladkochub DP, Ponomarchuk VA, Badarch G, Reichow MK and Hegner E. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society, 165(1): 405-421 DOI:10.1144/0016-76492006-162
Ducea MN, Bergantz GW, Crowley JL and Otamendi J. 2017. Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology, 45(3): 235-238 DOI:10.1130/G38726.1
Eizenhöfer PR and Zhao GC. 2018. Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean. Earth-Science Reviews, 186: 153-172 DOI:10.1016/j.earscirev.2017.09.010
England P and Houseman G. 1989. Extension during continental convergence, with application to the Tibetan plateau. Journal of Geophysical Research, 94(B12): 17561-17579 DOI:10.1029/JB094iB12p17561
Farina F, Dini A, Rocchi S and Stevens G. 2014. Extreme mineral-scale Sr isotope heterogeneity in granites by disequilibrium melting of the crust. Earth and Planetary Science Letters, 399: 103-115 DOI:10.1016/j.epsl.2014.05.018
Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048 DOI:10.1093/petrology/42.11.2033
Gao P, Zheng YF and Zhao ZF. 2016. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos, 266-267: 133-157 DOI:10.1016/j.lithos.2016.10.005
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892-897 DOI:10.1038/nature03162
Gardien V, Thompson AB, Grujic D and Ulmer P. 1995. Experimental melting of biotite+plagioclase+quartz±muscovite assemblages and implications for crustal melting. Journal of Geophysical Research, 100(B8): 15581-15591 DOI:10.1029/95JB00916
Glazner AF. 2007. Thermal limitations on incorporation of wall rock into magma. Geology, 35(4): 319-322 DOI:10.1130/G23134A.1
Graham SA, Hendrix MS, Johnson CL, Badamgarav D, Badarch G, Amory J, Porter M, Barsbold R, Webb LE and Hacker BR. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. GSA Bulletin, 113(12): 1560-1579 DOI:10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
Hacker BR, Kelemen PB and Behn MD. 2011. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3-4): 501-516 DOI:10.1016/j.epsl.2011.05.024
Hacker BR, Kelemen PB and Behn MD. 2015. Continental lower crust. Annual Review of Earth and Planetary Sciences, 43: 167-205 DOI:10.1146/annurev-earth-050212-124117
Han BF, Guo ZJ and He GQ. 2010. Timing of major suture zones in North Xinjiang, China: Constraints from stitching plutons. Acta Petrologica Sinica, 26(8): 2233-2246 (in Chinese with English abstract)
Hawkesworth CJ and Kemp AIS. 2006. Evolution of the continental crust. Nature, 443(7113): 811-817 DOI:10.1038/nature05191
He YM, Zheng TY, Ai YS, Hou GB and Chen QF. 2018. Growth of the lower continental crust via the relamination of arc magma. Tectonophysics, 724-725: 42-50 DOI:10.1016/j.tecto.2018.01.006
Houseman GA and Molnar P. 1997. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophysical Journal International, 128(1): 125-150 DOI:10.1111/j.1365-246X.1997.tb04075.x
Huang H, Gao S, Hu ZC, Liu XM and Yuan HL. 2007. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning: Implication for delamination of newly formed lower crust. Science in China (Series D), 50(12): 1773-1786 DOI:10.1007/s11430-007-0121-x
Jahn BM, Wu FY and Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82-92 DOI:10.18814/epiiugs/2000/v23i2/001
Jahn BM. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR and Aitchison JC (eds.). Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226(1): 73-100
Ji Z, Meng QA, Wan CB, Zhu DF, Ge WC, Zhang YL, Yang H and Dong Y. 2019. Geodynamic evolution of flat-slab subduction of Paleo-Pacific Plate: Constraints from Jurassic adakitic lavas in the Hailar Basin, NE China. Tectonics, 38(12): 4301-4319 DOI:10.1029/2019TC005687
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an Early to Mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101(3-4): 233-259 DOI:10.1016/j.lithos.2007.07.005
Johannes W and Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin Heidelberg: Springer
Jung S and Pfänder JA. 2007. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6): 859-870 DOI:10.1127/0935-1221/2007/0019-1774
Kelemen PB and Behn MD. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geoscience, 9(3): 197-205 DOI:10.1038/ngeo2662
Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983 DOI:10.1126/science.1136154
Kemp AIS and Hawkesworth CJ. 2014. Growth and differentiation of the continental crust from isotope studies of accessory minerals. Treatise on Geochemistry, 4: 379-421
King PL, Chappell BW, Allen CM and White AJR. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514 DOI:10.1046/j.1440-0952.2001.00881.x
Kusky T, Li JH and Santos M. 2007. The Paleoproterozoic North Hebei Orogen: North China craton's collisional suture with the Columbia supercontinent. Gondwana Research, 12(1-2): 4-28 DOI:10.1016/j.gr.2006.11.012
Kusky TM, Polat A, Windley BF, Burke KC, Dewey JF, Kidd WSF, Maruyama S, Wang JP, Deng H, Wang ZS, Wang C, Fu D, Li XW and Peng HT. 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents. Earth-Science Reviews, 162: 387-432 DOI:10.1016/j.earscirev.2016.09.002
Lee CTA and Morton DM. 2015. High silica granites: Terminal porosity and crystal settling in shallow magma chambers. Earth and Planetary Science Letters, 409: 23-31 DOI:10.1016/j.epsl.2014.10.040
Li CF, Chu ZY, Guo JH, Li YL, Yang YH and Li XH. 2015. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Analytical Methods, 7(11): 4793-4802 DOI:10.1039/C4AY02896A
Li S, Wang T, Wilde SA and Tong Y. 2013a. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 126: 206-234 DOI:10.1016/j.earscirev.2013.06.001
Li S, Chung SL, Wang T, Wilde SA, Chu MF, Pang CJ and Guo QQ. 2018. Water-uxed crustal melting and petrogenesis of large-scale Early Cretaceous intracontinental granitoids in the southern Great Xing'an Range, North China. GSA Bulletin, 130(3-4): 580-597 DOI:10.1130/B31771.1
Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010
Li XH, Tang GQ, Gong B, Yang YH, Hou KJ, Hu ZC, Li QL, Liu Y and Li WX. 2013b. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36): 4647-4654 DOI:10.1007/s11434-013-5932-x
Li Z, Liu SF, Zhang JF and Wang QC. 2003. Typical basin-fill sequences and basin migration in Yanshan, North China: Response to Mesozoic tectonic transition. Science in China (Series D), 47(2): 181-192
Li Z, Li Y, Zhen JP and Han D. 2007. Late Mesozoic tectonic transition of the eastern North China Craton: Evidence from basin-fill records. In: Zhai MG, Windley BF, Kusky TM and Meng QR (eds.). Mesozoic Sub-continental Lithospheric Thinning Under Eastern Asia. Geological Society, London, Special Publications, 280(1): 239-265
Lin SZ, Zhu G, Zhao T, Song LH and Liu B. 2014. Structural characteristics and formation mechanism of the Kalaqin metamorphic core complex in the Yanshan area, China. Chinese Science Bulletin, 59(32): 3174-3189 (in Chinese) DOI:10.1360/N972014-00100
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342 DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu SW, Santosh M, Wang W, Bai X and Yang PT. 2011. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research, 20(1): 48-63 DOI:10.1016/j.gr.2011.01.003
Liu YS, Zong KQ, Kelemen PB and Gao S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2): 133-153 DOI:10.1016/j.chemgeo.2007.10.016
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Maunder B, van Hunen J, Magni V and Bouilhol P. 2016. Relamination of mafic subducting crust throughout Earth's history. Earth and Planetary Science Letters, 449: 206-216 DOI:10.1016/j.epsl.2016.05.042
Meng FX, Gao S, Yuan HL and Gong HJ. 2010. Permian-Triassic (260~220Ma) crustal growth of eastern Central Asian orogenic belt as revealed by detrital zircon studies. American Journal of Science, 310(5): 364-404 DOI:10.2475/05.2010.02
Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369(3-4): 155-174 DOI:10.1016/S0040-1951(03)00195-1
Meng QR, Hu JM, Jin JQ, Zhang Y and Xu DF. 2003. Tectonics of the Late Mesozoic wide extensional basin system in the China-Mongolia border region. Basin Research, 15(3): 397-415 DOI:10.1046/j.1365-2117.2003.00209.x
Meng QR. 2017. Development of sedimentary basins in eastern China during the Yanshanian Period. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 567-569 (in Chinese with English abstract)
Meng QR, Wu GL, Fan LG, Wei HH and Wang E. 2020. Late Triassic uplift, magmatism and extension of the northern North China block: Mantle signatures in the surface. Earth and Planetary Science Letters, 547: 116451 DOI:10.1016/j.epsl.2020.116451
Metelkin DV, Vernikovsky VA, Kazansky AY and Wingate MTD. 2010. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Research, 18(2-3): 400-419 DOI:10.1016/j.gr.2009.12.008
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746 DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Patiño Douce AE and McCarthy TC. 1998. Melting of crustal rocks during continental collision and Subduction. In: Hacker BR and Liou JG (eds.). When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer: Kluwer Academic Publishers, 27-55
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125 DOI:10.18814/epiiugs/1996/v19i4/005
Pérez-Soba C and Villaseca C. 2010. Petrogenesis of highly fractionated Ⅰ-type peraluminous granites: La Pedriza pluton (Spanish Central System). Geologica Acta, 8(2): 131-149
Pitcher WS. 1993. The Nature and Origin of Granite. Glasgow: Blackie Academic and Professional: 1-321
Platt JP, Whitehouse MJ, Kelley SP, Carter A and Hollick L. 2003. Simultaneous extensional exhumation across the Alboran basin: Implications for the causes of late orogenic extension. Geology, 31(3): 251-254 DOI:10.1130/0091-7613(2003)031<0251:SEEATA>2.0.CO;2
Qu HJ, Meng QR and Zhang YL. 2006. Late Jurassic volcano-sedimentary sequences, filling process and evolution of basins in the Chengde area, Yanshan tectonic belt, China. Geological Bulletin of China, 25(11): 1326-1337 (in Chinese with English abstract)
Rapp RP, Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25 DOI:10.1016/0301-9268(91)90092-O
Rey P, Vanderhaeghe O and Teyssier C. 2001. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342(3-4): 435-449 DOI:10.1016/S0040-1951(01)00174-3
Rey PF, Teyssier C, Kruckenberg SC and Whitney DL. 2011. Viscous collision in channel explains double domes in metamorphic core complexes. Geology, 39(4): 387-390 DOI:10.1130/G31587.1
Ritts BD, Darby BJ and Cope T. 2001. Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt, northern North China Block, Inner Mongolia. Tectonophysics, 339(3-4): 239-258 DOI:10.1016/S0040-1951(01)00115-9
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Amsterdam: Elsevier, 3: 1-64
Ryan B. 2000. The Nain-Churchill boundary and the Nain Plutonic Suite: A regional perspective on the geologic setting of the Voisey's Bay Ni-Cu-Co deposit. Economic Geology, 95(4): 703-724
Scaillet B, Pichavant M and Roux J. 1995. Experimental crystallization of leucogranite magmas. Journal of Petrology, 36(3): 663-705 DOI:10.1093/petrology/36.3.663
Schwindinger M and Weinberg RF. 2017. A felsic MASH zone of crustal magmas-feedback between granite magma intrusion and in situ crustal anatexis. Lithos, 284-285: 109-121 DOI:10.1016/j.lithos.2017.03.030
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0
Skjerlie KP and Johnston AD. 1993. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: Implications for the generation of anorogenic granites. Journal of Petrology, 34(4): 785-815 DOI:10.1093/petrology/34.4.785
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger S, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Sorokin AA, Zaika VA, Kovach VP, Kotov AB, Xu WL and Yang H. 2020. Timing of closure of the eastern Mongol-Okhotsk Ocean: Constraints from U-Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Research, 81: 58-78 DOI:10.1016/j.gr.2019.11.009
Stepanov A, Mavrogenes JA, Meffre S and Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167(6): 1009 DOI:10.1007/s00410-014-1009-3
Sun LX, Ren BF, Zhao FQ, Gu YC, Li YF and Liu H. 2013. Zircon U-Pb dating and Hf isotopic compositions of the Mesoporterozoic granitic gneiss in Xilinhot Block, Inner Mongolia. Geological Bulletin of China, 32(2-3): 327-340 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tang J, Xu WL, Wang F and Ge WC. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Science China (Earth Sciences), 61(5): 527-559 DOI:10.1007/s11430-017-9174-1
Vielzeuf D and Holloway JR. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system: Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98(3): 257-276 DOI:10.1007/BF00375178
Wang C, Song SG, Wei CJ, Su L, Allen MB, Niu YL, Li XH and Dong JL. 2019. Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants. Nature Geoscience, 12(8): 672-678 DOI:10.1038/s41561-019-0410-y
Wang T, Zheng YD, Zhang JJ, Zeng LS, Donskaya T, Guo L and Li JB. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30(6): TC6007
Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345 DOI:10.1016/j.lithos.2012.07.020
Wang W, Liu SW, Santosh M, Wang GH, Bai X and Guo RR. 2015. Neoarchean intra-oceanic arc system in the western Liaoning Province: Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 150: 329-364 DOI:10.1016/j.earscirev.2015.08.002
Wang XL. 2017. Some new research progresses and main scientific problems of granitic rocks. Acta Petrologica Sinica, 33(5): 1445-1458 (in Chinese with English abstract)
Wang ZH and Wan JL. 2014. Collision-induced Late Permian-Early Triassic transpressional deformation in the Yanshan tectonic belt, North China. The Journal of Geology, 122(6): 705-716 DOI:10.1086/677843
Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304 DOI:10.1016/0012-821X(83)90211-X
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Whitaker ML, Nekvasil H, Lindsley DH and McCurry M. 2008. Can crystallization of olivine tholeiite give rise to potassic rhyolites? An experimental investigation. Bulletin of Volcanology, 70(3): 417-434 DOI:10.1007/s00445-007-0146-1
White AJR and Chappell BW. 1977. Ultrametamorphism and granitoid genesis. Tectonophysics, 43(1-2): 7-22 DOI:10.1016/0040-1951(77)90003-8
Wilde SA and Zhou JB. 2015. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113: 909-921 DOI:10.1016/j.jseaes.2015.05.005
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022
Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003a. Highly fractionated Ⅰ-type granites in NE China (Ⅰ): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273 DOI:10.1016/S0024-4937(02)00222-0
Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003b. Highly fractionated Ⅰ-type granites in NE China (Ⅱ): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3-4): 191-204 DOI:10.1016/S0024-4937(03)00015-X
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1
Wu FY, Yang JH, Xu YG, Wilde SA and Walker RJ. 2019. Destruction of the North China craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173-195 DOI:10.1146/annurev-earth-053018-060342
Wu L, Kravchinsky VA, Gu YJ and Potter DK. 2017. Absolute reconstruction of the closing of the Mongol-Okhotsk Ocean in the Mesozoic elucidates the genesis of the slab geometry underneath Eurasia. Journal of Geophysical Research, 122(7): 4831-4851
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M and Chen HL. 2015. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507 DOI:10.1146/annurev-earth-060614-105254
Xie HJ, Wu G, Zhu MT, Liu J and Zhang LC. 2012. Geochronology and geochemistry of the Daolanghuduge A-type granite in Inner Mongolia, and its geological significance. Acta Petrologica Sinica, 28(2): 483-494 (in Chinese with English abstract)
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364 DOI:10.1016/j.gr.2012.05.015
Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China Craton. Earth and Planetary Science Letters, 246(3-4): 336-352 DOI:10.1016/j.epsl.2006.04.029
Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM. 2007. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153(2): 177-190
Yang YH, Wu FY, Wilde SA, Liu XM, Zhang YB, Xie LW and Yang JH. 2009. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chemical Geology, 264(1-4): 24-42 DOI:10.1016/j.chemgeo.2009.02.011
Yang ZL, Zhang XH and Yuan LL. 2020. Construction of an island arc and back-arc basin system in eastern Central Asian Orogenic belt: Insights from contrasting Late Carboniferous intermediate intrusions in Central Inner Mongolia, North China. Lithos, 372-373: 105672 DOI:10.1016/j.lithos.2020.105672
Yang ZL, Zhang XH and Yuan LL. 2021. Tracking decratonization process along a cratonic edge through Late Permian to late Triassic magmatic flare-up in northwestern Liaoning, North China Craton. Lithos, 380-381: 105916 DOI:10.1016/j.lithos.2020.105916
Yarmolyuk VV, Kovalenko VI, Sal'nikova EB, Kozakov IK, Kotov AB, Kovach VP, Vladykin NV and Yakovleva SZ. 2005. U-Pb age of syn- and post-metamorphic granitoids of South Mongolia: Evidence for the presence of Grenvillides in the Central Asian Foldbelt. Doklady Earth Sciences, 404(7): 986-990
Yuan LL, Zhang XH, Xue FH, Lu YH and Zong KQ. 2016. Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian Ocean and the orogen-craton boundary. Lithos, 258-259: 58-76 DOI:10.1016/j.lithos.2016.04.024
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005
Zhai MG and Santosh M. 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24(1): 275-297 DOI:10.1016/j.gr.2013.02.007
Zhai MG, Hu B, Zhao TP, Peng P and Meng QR. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics, 662: 153-166 DOI:10.1016/j.tecto.2015.01.019
Zhang BL, Zhu G, Jiang DZ, Li CC and Chen Y. 2012a. Evolution of the Yiwulushan metamorphic core complex from distributed to localized deformation and its tectonic implications. Tectonics, 31(4): TC4018
Zhang HF, Sun M, Zhou XH, Zhou MF, Fan WM and Zheng JP. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta, 67(22): 4373-4387 DOI:10.1016/S0016-7037(03)00377-6
Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA and Li M. 2010a. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implications for subduction-induced delamination. Chemical Geology, 276(3-4): 144-165 DOI:10.1016/j.chemgeo.2010.05.013
Zhang JJ, Wang T, Castro A, Zhang L, Shi XJ, Tong Y, Zhang ZC, Guo L, Yang QD and Iaccheri LM. 2016. Multiple mixing and hybridization from magma source to final emplacement in the Permian Yamatu pluton, the northern Alxa Block, China. Journal of Petrology, 57(5): 933-980 DOI:10.1093/petrology/egw028
Zhang SH, Zhao Y, Song B, Yang ZY, Hu JM and Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a Late Palaeozoic active continental margin. Journal of the Geological Society, 164(2): 451-463 DOI:10.1144/0016-76492005-190
Zhang SH, Zhao Y, Liu XC, Liu DY, Chen FK, Xie LW and Chen HH. 2009a. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110(1-4): 229-246 DOI:10.1016/j.lithos.2009.01.008
Zhang SH, Zhao Y, Song B, Hu JM, Liu SW, Yang YH, Chen FK, Liu XM and Liu J. 2009b. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China Craton: Geochronology, petrogenesis, and tectonic implications. GSA Bulletin, 121(1-2): 181-200
Zhang SH, Zhao Y, Ye H, Hou KJ and Li CF. 2012b. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1-18 DOI:10.1016/j.lithos.2012.08.009
Zhang SH, Zhao Y, Davis GA, Ye H and Wu F. 2014a. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Science Reviews, 131: 49-87 DOI:10.1016/j.earscirev.2013.12.004
Zhang SH, Zhao Y, Li XH, Ernst RE and Yang ZY. 2017. The 1.33~1.30Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125 DOI:10.1016/j.epsl.2017.02.034
Zhang XH, Wang H and Li TS. 2005. 40Ar/39Ar geochronology of the Faku tectonites: Implications for the tectonothermal evolution of the Faku block, northern Liaoning. Science in China (Series D), 48(5): 601-612 DOI:10.1360/03yd0208
Zhang XH, Mao Q, Zhang HF and Wilde SA. 2008. A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China Craton: Age, origin and tectonic significance. Geological Magazine, 145(3): 305-320 DOI:10.1017/S0016756807004311
Zhang XH and Zhai MG. 2010. Magmatism and its metallogenetic effects during the Paleozoic continental crustal construction in northern North China: An overview. Acta Petrologica Sinica, 26(5): 1329-1341 (in Chinese with English abstract)
Zhang XH, Zhang HF, Jiang N, Zhai MG and Zhang YB. 2010b. Early Devonian alkaline intrusive complex from the northern North China Craton: A petrological monitor of post-collisional tectonics. Journal of the Geological Society, 167(4): 717-730 DOI:10.1144/0016-76492009-110
Zhang XH, Zhang HF, Wilde SA, Yang YH and Chen HH. 2010c. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: Petrogenesis and implications for Phanerozoic continental crustal growth. Lithos, 117(1-4): 283-306 DOI:10.1016/j.lithos.2010.03.005
Zhang XH, Zhang HF, Jiang N and Wilde SA. 2010d. Contrasting Middle Jurassic and Early Cretaceous mafic intrusive rocks from western Liaoning, North China craton: Petrogenesis and tectonic implications. Geological Magazine, 147(6): 844-859 DOI:10.1017/S0016756810000373
Zhang XH, Mao Q, Zhang HF, Zhai MG, Yang YH and Hu ZC. 2011. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: The Early Permian Guyang batholith from the northern North China Craton. Lithos, 125(1-2): 569-591 DOI:10.1016/j.lithos.2011.03.008
Zhang XH, Gao YL, Wang ZJ, Liu H and Ma YG. 2012c. Carboniferous appinitic intrusions from the northern North China craton: Geochemistry, petrogenesis and tectonic implications. Journal of the Geological Society, 169(3): 337-351 DOI:10.1144/0016-76492011-062
Zhang XH, Xue FH, Yuan LL, Ma YG and Wilde SA. 2012d. Late Permian appinite-granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implications. Lithos, 155: 201-217 DOI:10.1016/j.lithos.2012.09.002
Zhang XH, Yuan LL, Xue FH and Zhang YB. 2012e. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton-orogen boundary. Lithos, 144-145: 12-23 DOI:10.1016/j.lithos.2012.03.022
Zhang XH, Yuan LL and Wilde SA. 2014b. Crust/mantle interaction during the construction of an extensional magmatic dome: Middle to Late Jurassic plutonic complex from western Liaoning, North China Craton. Lithos, 205: 185-207 DOI:10.1016/j.lithos.2014.07.006
Zhang XH and Yuan LL. 2016. Two-stage extensional pattern in the North China-Mongolian tract during Late Mesozoic: Insights from the spatial and temporal distribution of magmatic domes and metamorphic core complexes. In: Zhai MG, Zhao Y and Zhao TP (eds.). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 467-486
Zhang ZM, Ding HX, Dong X and Tian ZL. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275-294 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.01
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162 DOI:10.1016/S0012-8252(02)00073-9
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76 DOI:10.1016/j.precamres.2012.09.016
Zhou JB, Wilde SA, Zhao GC and Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93 DOI:10.1016/j.earscirev.2017.01.012
Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QK and Zheng TY. 2012. Destruction of the North China Craton. Science China (Earth Sciences), 55(10): 1565-1587 DOI:10.1007/s11430-012-4516-y
Zhu RX, Zhou ZH and Meng QR. 2020. Destruction of the North China Craton and its influence on surface geology and terrestrial biotas. Science Bulletin, 65(27): 2954-2965 (in Chinese)
Zorin YA. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56 DOI:10.1016/S0040-1951(99)00042-6
陈璟元, 杨进辉. 2015. 佛冈高分异Ⅰ型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约. 岩石学报, 31(3): 846-854.
陈志广, 张连昌, 吴华英, 万博, 曾庆栋. 2008. 内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景. 岩石学报, 24(4): 879-889.
迟广城, 林维峰. 1999. 辽西察哈尔山和小欧力营超单元花岗岩地质特征. 辽宁地质, 16(4): 288-300.
韩宝福, 郭召杰, 何国琦. 2010. "钉合岩体"与新疆北部主要缝合带的形成时限. 岩石学报, 26(8): 2233-2246.
黄华, 高山, 胡兆初, 柳小明, 袁洪林. 2007. 辽西彰武地区中生代高镁安山岩地球化学及其对新生下地壳拆沉作用的指示. 中国科学(D辑), 37(10): 1287-1300.
李忠, 刘少峰, 张金芳, 王清晨. 2003. 燕山典型盆地充填序列及迁移特征: 对中生代构造转折的响应. 中国科学(D辑), 33(10): 931-940.
林少泽, 朱光, 赵田, 宋利宏, 刘备. 2014. 燕山地区喀喇沁变质核杂岩的构造特征与发育机制. 科学通报, 59(32): 3174-3189.
孟庆任. 2017. 中国东部燕山期沉积盆地演化与资源效应. 矿物岩石地球化学通报, 36(4): 567-569. DOI:10.3969/j.issn.1007-2802.2017.04.007
渠洪杰, 孟庆任, 张英利. 2006. 燕山构造带承德地区晚侏罗世盆地火山-沉积地层充填过程和构造演化. 地质通报, 25(11): 1326-1337. DOI:10.3969/j.issn.1671-2552.2006.11.013
孙立新, 任邦方, 赵凤清, 谷永昌, 李艳峰, 刘卉. 2013. 内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征. 地质通报, 32(2-3): 327-340.
王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
解洪晶, 武广, 朱明田, 刘军, 张连昌. 2012. 内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义. 岩石学报, 28(2): 483-494.
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
张晓晖, 翟明国. 2010. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应. 岩石学报, 26(5): 1329-1341.
张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275-294.
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(地球科学), 42(8): 1135-1159.
朱日祥, 周忠和, 孟庆任. 2020. 华北克拉通破坏对地表地质与陆地生物的影响. 科学通报, 65(27): 2954-2965.