岩石学报  2021, Vol. 37 Issue (4): 957-973, doi: 10.18654/1000-0569/2021.04.01   PDF    
蛇绿岩研究之检讨与反思: 以“双沟蛇绿岩”为例
张旗     
中国科学院地质与地球物理研究所 北京 100029
摘要: “双沟蛇绿岩”是笔者最早研究的蛇绿岩之一,位于云南哀牢山带。双沟出露的岩石有二辉橄榄岩、辉长岩、辉绿岩、斜长花岗岩、玄武岩、硅质岩等。辉长岩亏损LREE,锆石U-Pb年龄为362~328Ma。玄武岩具N-MORB和E-MORB的特征,锆石U-Pb年龄为249Ma。研究认为,“双沟蛇绿岩”可能产于陆间小洋盆或裂谷或裂陷槽背景。但是,双沟没有可信的深海沉积和混杂堆积的记录,虽然岩石组合类似蛇绿岩,地球化学也具有MORB的特征,暗示双沟可能不是一个典型的蛇绿岩。如果双沟镁铁-超镁铁岩不是蛇绿岩,则晚古生代的哀牢山带就不存在一个有一定规模的洋盆,也不可能存在大陆碰撞的记录。双沟镁铁-超镁铁岩不是蛇绿岩是什么?可能是造山橄榄岩(Orogenic peridotite)。造山橄榄岩与蛇绿岩的岩石组合类似,蛇绿岩的橄榄岩产于洋壳之下;造山橄榄岩产于陆壳之下。检讨双沟蛇绿岩的研究,反思蛇绿岩的概念。笔者认为,斯泰因曼的“三位一体”概念是合适的,1972年彭罗斯会议的决议是正确的,1996年怀柔会议构造学家对蛇绿岩概念的理解是对的。考虑到混杂堆积对于蛇绿岩的重要性,建议将混杂堆积也作为与蛇绿岩相伴的一个重要指标加进来。如果这个想法合适,则一个完整的蛇绿岩组合将由三个要素组成:1)岩浆岩(包括地幔岩、堆晶岩、侵入岩和火山岩,代表大洋岩石圈的物质组成);2)深海沉积(代表洋盆顶部的物质组成);3)混杂堆积(代表洋盆消失、陆块碰撞的构造产物)。蛇绿岩不同于其他岩浆岩,其研究需要特殊的方法和思路,明白这一点,蛇绿岩研究才能走上正轨。双沟蛇绿岩研究遇到危机,中国其他一些蛇绿岩也可能需要重新审视。因此,检讨双沟蛇绿岩,对反思蛇绿岩的研究具有一定的意义。
关键词: 蛇绿岩    造山橄榄岩    双沟    检讨    反思    蛇绿岩三要素    岩石组合    混杂堆积    深海沉积    
Review and reflection on ophiolite research: Taking Shuanggou ophiolite as an example
ZHANG Qi     
Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: Shuanggou ophiolite, located in the Ailao Mountain Belt, Yunnan Province, is one of the first ophiolites studied by the author. The rocks exposed in Shuanggou include peridotite, gabbro, diabase, plagiogranite, basalt, silicalite and so on. The gabbro loses LREE, and the zircon U-Pb age is 362~328Ma. Basalt has the characteristics of N-MORB and E-MORB, and the zircon U-Pb age is 249Ma. Research suggests that Shuanggou ophiolite may be produced in the intercontinental small ocean basin or rift trough backgrounds. However, Shuanggou has no credible records of deep-sea deposit and mélange. Although its rock assemblage is similar to ophiolite, their geochemistry features also have MORB characteristics, suggesting that Shuanggou may not be a typical ophiolite. If the rock assemblage in Shuanggou were not an ophiolite suite, there would be no ocean basin of a certain scale in the Ailaoshan belt of the Late Paleozoic, and there would be no record of a continental collision. If Shuanggou is not a ophiolite, it may be orogenic peridotite since the rock assemblage of orogenic peridotite is similar to that of ophiolite. Peridotite of ophiolite is produced under oceanic crust; orogenic peridotite is produced under continental crust. By reviewing the research of Shuanggou ophiolite and reflecting on the concept of ophiolite, the author believes that Steinman's "Trinity" concept is appropriate, the resolution of the Penrose Conference in 1972 is correct, and the understanding of the concept of ophiolite by tectonic geologist at the Huairou Conference in 1996 is correct. Considering the importance of mélange for ophiolite, it is recommended to add mélange as an important indicator accompanying ophiolite. If this idea is appropriate, a complete ophiolite assemblage will consist of three elements, magmatic rocks (including mantle rocks, cumulite, intrusive rocks and volcanic rocks, representing the material composition of the oceanic lithosphere), deep-sea deposit (representing the material composition at the top of the ocean basin), and mélange (representing the tectonic products of the disappearance of ocean basins and collision of continental plates). Unlike other magmatic rocks, ophiolite requires special methods and special ideas. Only if we understand this point, ophiolite research can be on the right track. The research of Shuanggou ophiolite is in crisis, and some other ophiolites in China may also need to be reviewed. Therefore, reviewing the Shuanggou ophiolite may be meaningful to reflect on the research of ophiolite.
Key words: Ophiolite    Orogenic peridotite    Shuanggou    Review    Reflection    Three elements of ophiolite    Rock assemblage    Mélange    Deep-sea sediments    

“双沟蛇绿岩”是笔者最早研究的蛇绿岩之一,位于云南省哀牢山带。由于植被覆盖严重,该蛇绿岩带露头不好,仅在双沟一带出露非常好,其岩石组合也比较齐全。从1983年起,笔者和合作者以此作为基地耕耘多年,先后发表了一系列成果(张旗等, 1987, 1988, 1991, 1992, 1995b, 1996, 1997, 1998张旗, 1992, 1995黄忠祥等, 1993, 1995李秀云等,1993Zhang et al., 1994, 2008周德进等, 1995a, b陈友红等,1996张旗和周国庆,2001)。此外,中外许多学者也在此做过研究,基本上都肯定该地区出露的这套岩石组合是蛇绿岩,形成于裂谷或小洋盆环境(段新华和赵鸿,1981王凯元,1983杨家瑞,1986魏启荣和沈上越, 1995, 1997简平等, 1998a, b莫宣学等,1998沈上越等, 1998a, b2000魏启荣等,1999凌其聪等, 1999a, b; Wang et al., 2000董云鹏等,2000方维萱等, 2002; 王顺华和王照波,2004Yumul et al., 2008; Jian et al., 2009a, b; Fan et al., 2010; Lai et al., 2011, 2014a, b; 刘翠等,2011刘俊来等, 2011Lai, 2012; Liu et al., 2014, 2015, 2017a, b; Faure et al., 2016; Xia et al., 2016, 2020; Xu et al., 2019a, b, c, 2020; Hu et al., 2020)。

“双沟蛇绿岩”出露的岩石有二辉橄榄岩、辉长岩、辉绿岩、斜长花岗岩、玄武岩、硅质岩等,缺堆晶岩和辉绿岩岩墙群。文献报道的关于“双沟蛇绿岩”的年龄很多,其中,辉长岩和斜长花岗岩的锆石U-Pb年龄有383Ma、326Ma、339Ma、364Ma和334Ma等(Jian et al., 2009a, b; 简平等, 1998a, b; 钟大赉,1998Lai et al., 2004a, b),大体是是晚泥盆世至早石炭世的;玄武岩的年龄是249Ma(刘翠等,2011),为早三叠世的(年龄数据说明玄武岩不是双沟蛇绿岩配套的岩石组合,详见后述)。双沟的辉长岩很发育,具LREE亏损的特征,玄武岩是N-MORB和E-MORB的。辉长岩、辉绿岩、玄武岩的地球化学研究表明,双沟不存在弧岩浆岩的特征(Th/Ta比值近似等于1),是典型的小洋盆或陆间洋盆蛇绿岩的特征(张旗等, 1988, 1992, 1995bZhang et al., 1994, 2008张旗和周国庆,2001)。

从岩石学和地球化学角度,双沟蛇绿岩应当没有什么问题。我们以及许多学者对双沟做的岩石学、地球化学研究基本上是可信的。由于笔者的研究基本上是在20世纪80年代,数据的质量无法与今天相比,然而,我们根据这些数据得出的认识,在当时的情况下是可以接受的。但是,由于双沟没有深海沉积以及混杂堆积,因此,双沟是否是蛇绿岩就成了问题了。双沟镁铁-超镁铁岩不是蛇绿岩是什么?很可能是造山橄榄岩。什么是造山橄榄岩?笔者有专文论述(张旗等,2020),而双沟出露的全部岩石也基本上符合造山橄榄岩的特征。

为什么要检讨蛇绿岩的研究?因为需要从今天的高度去检讨早先认识的不足。科学是发展的,人们的认识是不断深化的。30~40年前的认识可能是对的,也可能有错误。根据今天的认识,笔者认为双沟镁铁-超镁铁岩可能不是蛇绿岩而是造山橄榄岩。双沟不是蛇绿岩,说明哀牢山不是一个缝合带,哀牢山不属于晚古生代的造山带。

为什么要反思蛇绿岩的研究?因为要创新蛇绿岩的研究,就要探讨蛇绿岩今后的发展方向。笔者认为,斯泰因曼的“三位一体”概念是合适的,1972年彭罗斯会议的决议是正确的,1996年怀柔会议构造学家对蛇绿岩概念的理解是对的(详见后述)。考虑到蛇绿岩的侵位与洋盆闭合、陆块碰撞的关系,认为将混杂堆积作为与蛇绿岩相伴的一个重要指标加进来可能是必要的。如果这个想法合适,蛇绿岩的概念将包括一套特定的岩石组合(地幔橄榄岩、堆晶岩、侵入岩和火山岩)、深海远洋沉积以及混杂堆积三个部分。一个蛇绿岩是否成立,取决于上述三个要素是否出现。只考虑蛇绿岩的岩石学和地球化学特征,它可能很难与造山橄榄岩区分开来(张旗等, 1992, 2020)。蛇绿岩是洋底扩张的产物,与蛇绿岩相伴的沉积岩是深海远洋沉积。洋盆闭合、陆块碰撞,蛇绿岩侵位,形成一种特殊的混杂堆积,把洋壳与陆壳物质搅合在一起,也是蛇绿岩的一个重要特征。看来,除了蛇绿岩岩石组合外,是否有远洋深海沉积?是否有混杂堆积?也是判断蛇绿岩的重要指标。蛇绿岩不同于其他岩浆岩,它产于特殊的环境,需要特殊的方法和特殊的思路。明白这一点,蛇绿岩研究才能走上正轨。

1 什么是蛇绿岩

什么是蛇绿岩?蛇绿岩产于洋盆扩张脊,是一套镁铁-超镁铁岩组合,反映了扩张脊(包括大洋中脊扩张脊、弧前扩张脊、弧后扩张脊以及小洋盆扩张脊等等)之下地幔岩及其部分熔融产物的结构及演化过程。蛇绿岩大体有如下特征:

(1) 扩张脊之下的岩浆。蛇绿岩的岩浆不同于大陆上的岩浆,由于洋底持续不断的扩张,有岩浆稳定的、持续不断地注入,因此,蛇绿岩岩浆房的温度可能保持很长时间,这应当有利于岩浆分离结晶作用的进行。因此,蛇绿岩的堆晶岩非常发育,包括橄榄岩、辉石岩、辉长岩等。堆晶岩之上为具均质结构的辉长岩,代表岩浆分离结晶形成堆晶岩之后留下来的残余岩浆。岩浆不断向上侵入,喷出于洋盆底部,于是,形成了一个典型的扩张脊下的岩浆系列(图 1Coleman, 1977; Bodinier and Godard, 2014)。

图 1 典型蛇绿岩剖面(据Boudier and Nicolas, 1985) Fig. 1 Lithology and thickness of a typical ophiolite sequence based on the Samial Ophiolite in Oman (after Boudier and Nicolas, 1985)

此外,蛇绿岩中具不对称冷凝边的辉绿岩岩墙群是海底扩张的直接证据,这是蛇绿岩一个独特的亮点,是其他所有岩浆岩不可能出现的现象,如塞浦路斯蛇绿岩、日喀则蛇绿岩、永珠蛇绿岩等(Coleman, 1977; 张旗等,1982; Boudier and Nicolas, 1985; 张旗和周国庆,2001; 王永胜等,2005)。虽然辉绿岩岩墙群并不总是能够出露,但是,有了它,就笃定是蛇绿岩了。

(2) 弧前蛇绿岩。最近的研究表明,蛇绿岩主要是弧前环境的,弧后的蛇绿岩较少见,而大洋中脊蛇绿岩基本上见不到(Pearce et al., 1984; Stern, 2004; Ishizuka et al., 2011; Whattam and Stern, 2011)。于是,蛇绿岩的地球化学主要是弧和弧前特征的,表现在蛇绿岩岩石组合上如出现强烈亏损的方辉橄榄岩、斜方辉石堆晶岩、玻安岩、高镁安山岩、弧前玄武岩、岛弧拉斑玄武岩等,顶部甚至可以出现一定规模的中酸性岩浆岩(Stern, 2004; Ishizuka et al., 2011; Whattam and Stern, 2011)。

(3) 深海沉积。洋中脊通常很深,大西洋中脊深度超过4000m,太平洋中隆深2500m。洋中脊还有一个特点是远离大陆,因此,与蛇绿岩伴生的一定是深海远洋沉积。Robertson (2002)认为,深海沉积是蛇绿岩形成构造背景最好的指示之一。意大利北部的阿尔卑斯山有许多地幔橄榄岩出露,著名的如Lanzo、Finero、Balmuccia和Baldissero等,它们是不是蛇绿岩存在争论。许多学者认为,与Lanzo和外Ligurides相比,内Ligurides的超镁铁质-镁铁质组合才是“真正的”蛇绿岩。与内Ligurides蛇绿岩伴生的是上侏罗统至古新统的含锰放射虫硅质岩、硅质灰岩、含石灰岩的页岩和蛇绿碳酸盐岩(ophicalcites,Piccardo, 1977; Rampone and Piccardo, 2000; Piccardo and Guarnieri, 2011; Bodinier and Godard, 2014)。

“ophicalcites”,百度译为“蛇绿石”,Artemyev and Zaykov (2010)译为“蛇纹岩碳酸盐岩”(clastic serpentinite-carbonate rocks),本文建议将其译为“蛇绿碳酸盐岩”。这是一种独特的沉积岩,最早发现于Liguria-Piemonte地区(Lemoine,1980)。该类岩石主要由橄榄岩的角砾与蛇纹岩、碳酸盐的基质组成的,蛇纹岩可呈透镜体状与蛇绿碳酸盐岩交互产出,蛇纹岩呈碎屑状角砾,大小不等(大的可达几十厘米)。角砾被碳酸盐胶结,有的基质也含有蛇纹石,局部形成微角砾岩。这种类型的深海远洋沉积常见于被动边缘和洋中脊。对碳酸盐的成因、CO2和CaO的来源存在争议,它们可能是不同的成因,包括海相碳酸盐溶解、变质、热液或地幔源的来源等(Lafay et al., 2017),主要产于洋底破裂带、洋底地幔岩剥露区、深海沟等背景(Lemoine, 1980; Artemyev and Zaykov, 2010; Lafay et al., 2017)。例如,如果有地幔橄榄岩出露于洋底,洋壳底部地形有明显变化,地幔橄榄岩崩塌滚落掉入深海碳酸盐沉积中,也可形成蛇绿碳酸盐岩(Lagabrielle and Cannat, 1990)。

此外,在日喀则蛇绿岩中还有一类蛇绿质沉积岩,被称为蛇绿质杂砂岩或蛇绿质碎屑岩或蛇绿质角砾岩(曹荣龙,1981吴浩若,1984王东安, 1986a, b),由具有一定分选的中等粒级砂屑被凝灰质、硅质胶结而成,砂屑是蛇绿质成分的,包括玄武岩的岩屑、斜长石、角闪石、辉石、葡萄石、绿帘石、蛇纹石以及磁铁矿等,无石英颗粒。砂屑一般磨圆度较差, 多呈棱角状和次棱角状。胶结物含量较少, 主是凝灰质和硅质, 多数已经变成微晶石英、雏晶状长石、鳞片状伊利石和绿泥石, 有些胶结物中还含有浊沸石和葡萄石等集合体(王东安, 1996a, b)。吴浩若(1984)指出,这套直接覆盖于蛇绿岩之上的沉积岩属于冲堆组。冲堆组是曹荣龙(1981)命名的,指出这是一套海沟浊积岩。吴浩若(1984)描述这套碎屑主要来自下伏的基性火山岩系,完好的长石和辉石晶屑以及蛇纹岩碎屑的存在, 说明沉积区离活动的海底山脊不远。冲堆组的大部分岩层富含放射虫而缺乏其他化石,碳酸盐含量很少,说明它们沉积深度低于碳酸盐补偿深度,大体相当于4000~5000m深度(吴浩若,1984)。王成善和余光明(1988)称这套正常沉积接触覆于雅鲁藏布江蛇绿岩套之上的沉积岩为蛇绿质碎屑岩-枕状玄武岩组合,反映了一种类似于大西洋洋脊类型的、慢速扩张的板块构造环境。

(4) 蛇绿混杂岩。洋盆闭合、陆块碰撞,产生强烈的构造挤压作用,不仅规模巨大而且持续时间很长,从而可以把两个陆块之间的物质(包括洋壳和陆壳物质)挤压成为杂乱无章的碎块,此即混杂堆积。混杂堆积的特点是把洋壳的物质和陆壳的物质搅在了一起,洋壳物质除了蛇绿岩外,还包括薄层的深海沉积岩(浊积岩、泥岩、硅质岩、锰结核等),陆壳物质则什么组分均有可能,但主要是一套大陆坡边缘的沉积岩,浅海相的泥岩、砂岩、浊积岩、灰岩等。混杂堆积的基质由洋壳物质和陆缘碎屑物组成(图 2),包括强烈片理化的玄武岩(蓝片岩、绿片岩)、深海浊积岩、硅质岩、蛇纹岩(地幔岩蚀变的,王斌等,2016)、千枚岩、砂岩、泥岩、片岩等。混杂堆积的块体主要由硬度大,很难被碾压成为塑性的物质组成的,常见的为陆缘的砂岩、灰岩、以及玄武岩、辉长岩、橄榄岩、硅质岩、堆晶岩等。

图 2 铜厂街蛇绿岩概略地质图(据杨嘉文, 1982资料改编) 1-三叠纪或侏罗纪红层;2-石炭-二叠纪灰岩、大理岩夹白云质灰岩地层;3-蛇绿混杂岩;4-超镁铁质岩,蛇纹岩;5-早泥盆世温泉组;6-前泥盆纪澜沧群变质岩;7-不整合界线;8-断层 Fig. 2 Geological map of the Tongchangjie ophiolite (modified after Yang, 1982)

(5) 肢解的蛇绿岩。由于碰撞带强烈的应力作用,不但形成了具有特殊意义的混杂岩(这是陆壳内的挤压变形不可能出现的),另外一个作用就是对洋壳物质产生巨大的破坏作用,使得在扩张脊处形成的蛇绿岩组合及其原始层序很难保存。因此,在板块碰撞带出现的蛇绿岩大多是被肢解了的。蛇绿岩完整层序只可能在碰撞时发生洋壳仰冲的情况下才能被保留下来,如日喀则蛇绿岩、阿曼蛇绿岩。洋壳物质由于很重,很软(相对于陆壳物质),发生仰冲的可能性很少,因此,世界上仰冲的蛇绿岩就特别宝贵。

(6) 与蛇绿岩伴随的变质作用。由于板块俯冲作用,洋壳物质大多消失在板块俯冲带,由于碰撞作用以及后期的剥蚀作用,洋壳物质才能部分被挤上来出露于地表,于是,蛇绿岩大多经历了低温高压变质作用的改造(变质程度达到蓝片岩相或绿片岩相)。蛇绿岩达到角闪岩相和榴辉岩相的情况很少见,原因可能是角闪岩相形成的深度较大,很难在碰撞带被挤出来。尤其榴辉岩,不仅形成的深度很大,而且榴辉岩的密度很大,甚至超过了地幔橄榄岩,因此,当板片变质达到榴辉岩相之后,它只可能向下运动,从而产生一个向下的力,拉着俯冲的板块加速向下俯冲,而不可能向上折返至地表。但是,蛇绿岩在侵位的过程中,可以产生强大的挤压力,这个压力也可以达到很高的压力,如阿曼Samail蛇绿岩仰冲就位时(Coleman, 1981)。蛇绿岩在仰冲就位的初期,由于仰冲橄榄岩温度较高(达1000℃),对接触带下方基性岩石有高温烘烤作用,形成变质底板。如阿曼Samail蛇绿岩中的变质底板从接触带向外依次发育有部分熔融、高角闪岩相(或麻粒岩相)、低角闪岩相、绿片岩相到低级变质的变质岩系列,直至无变质的围岩出露(Hacker, 1998)。有些蛇绿岩还可以伴随榴辉岩相物质,如许多蛇绿岩围岩中的变质岩,并不表明它们是深部蛇绿岩折返的产物,有些甚至是否是蛇绿岩也不清楚。例如秦岭、柴达木北缘-阿尔金及大别-苏鲁地区与超高压变质作用伴生的蛇绿岩,它们是否是蛇绿岩存在着争论(Liou, 1999; Liou et al., 2000, 2002; 张旗和周国庆,2001Song et al., 2004, 2005, 2009; 杨经绥等,2004Liu et al., 2005, 2007, 2010; 张贵宾等,2005Hermann et al., 2007; Hwang et al., 2008; Bozhilov et al., 2009; Song and Yem, 2009; 宋衍茹等, 2009; Shi et al., 2010; 张旗,2014朱小辉等,2014张旗等,2020; Chen et al., 2019, 2020)。而Bodinier and Godard (2014)在总结全球超镁铁岩时则把上述都归属于造山橄榄岩(图 3)。

图 3 造山橄榄岩的全球分布(据Bodinier and Godard, 2014) TI-Tinaquillo, 委内瑞拉北部; Ho-Horoman, 日本北海道; DS-Dabie, 中国大别-苏鲁超高压变质; Q-中国秦岭超高压变质带; ANQ-中国柴达木北缘-阿尔金超高压变质带; ZA-红海Zabargad岛 Fig. 3 Location of the main orogenic peridotite occurrences in the world (after Bodinier and Godard, 2014)

高压-超高压变质作用的成因存在争论,当前的主流观点认为其是形成于俯冲带深部以后再折返回来的。实际上这种见解存在很多问题。例如,Su et al. (2006)通过实验演示了石英经过非晶化可以在柯石英稳定的压力下迅速转变为柯石英,提出无需深俯冲,浅源地震即可形成柯石英。杨建军(2015)指出,地震瞬间产生的高温高压即可产生含柯石英的榴辉岩(Yang and Powell, 2006; Yang et al., 2014a, b; 杨建军,2015)。任纪舜等(2019)认为,上述超高压变质作用大多是在造山作用过程中动态超高压条件下形成的,仅用简单的静岩压力来计算其形成深度显然是不符合实际情况的。野外地质观察、构造地质学、变质岩石学、同位素地质学、地球化学、地球物理学以及物理实验等方面的研究表明,超高压变质作用并不是在上地幔而是在地壳内进行的,含柯石英的超高压变质岩仅位于上地壳下部的厚约10~12km的席状构造岩片内,要么与多层次的剪切作用有关,要么是强烈剪切引起的频繁地震的震源区瞬时超高压作用的结果。

2 什么是造山橄榄岩(orogenic peridotite)

许多研究者认为秦岭、柴北缘、阿尔金、大别-苏鲁等地与超高压变质作用伴生的超镁铁岩是蛇绿岩(杨经绥等,2004张贵宾等,2005朱小辉等,2014),而Bodinier and Godard (2014)则认为它们属于造山橄榄岩。那么,什么是造山橄榄岩呢?欧洲学者对此有比较深入的研究,术语也比较多,如陆壳亚类(Nicolas and Jackson, 1972)、山根带杂岩(Den Tex, 1969)、地幔核杂岩(Doblas and Oyarzun, 1989)和造山橄榄岩(Menzies, 1984; Tubía, 1994; Lorand et al., 2000)等。上述术语各有不同的含义,不同作者也有不同的理解,但是,一个基本的认识是,它们都不是蛇绿岩,而代表陆壳下的地幔。笔者早先还提出过一个义敦型的术语,表明也非蛇绿岩的含义(张旗等, 1987, 1990, 1992, 2020张旗,2014)。虽然“orogenic”这个词的含义并不是特别合适,实际上,“orogenic peridotite”大多是在陆壳伸展撕裂的条件下形成的,其成因大多与裂谷有关,如果称其为“裂谷橄榄岩”也不失为可行的选择(与任纪舜先生的交流)。因为,其侵位时有些虽然经历了强烈的挤压作用,但是其位置有些并不限于造山带。鉴于大多数学者都采用这个术语(Menzies, 1984; Lorand, 1989; Woodland et al., 1992; Shervais and Mukasa, 1991; Tubía, 1994; Reisberg and Lorand, 1995; Lorand et al., 1999; Lorand et al., 2000; Takazawa et al., 2000; Schmidt et al., 2000; Fabriès et al., 2001; Bodinier and Godard, 2014; Johanesen et al., 2014; Piccardo, 2016; Etiope et al., 2016),为了交流的方便,故笔者放弃义敦型的术语,采用国际上通行的术语,但是,其实质反映的是陆壳撕裂过程。周国庆(2008)详细讨论了蛇绿岩的定义与分类问题,文中提出的11个判别是否是蛇绿岩的标志,许多至今仍然是比较有价值的。

造山橄榄岩在岩石学和地球化学特征上类似蛇绿岩,笔者对此已有专文介绍(张旗等,2020),此处简单归纳造山橄榄岩的特点,重点放在与蛇绿岩的对比上。

(1) 地幔橄榄岩。造山橄榄岩大多以弱亏损的二辉橄榄岩为主,虽然也有强烈亏损的地幔橄榄岩;而蛇绿岩大多为强烈亏损的方辉橄榄岩,较少弱亏损的二辉橄榄岩。不同于蛇绿岩的地幔岩之处是,造山橄榄岩中往往出现强烈的地幔交代作用(如角闪橄榄岩和金云母橄榄岩等),如意大利阿尔卑斯山的橄榄岩以及北秦岭的松树沟岩体和安徽饶拔寨岩体等(Bodinier and Godard, 2014; 苏犁等,2005张旗,2015)。

(2) 堆晶岩。造山橄榄岩中堆晶岩很少,规模很小。例如义敦地区的堆晶岩,底部为单辉橄榄岩、向上为辉石岩和辉长岩。

(3) 辉绿岩。辉绿岩大多以岩墙或岩脉侵位于围岩中,不同于蛇绿岩的辉绿岩墙群。蛇绿岩的辉绿岩墙的围岩主要是辉绿岩(出现不对称冷凝边),也可以贯入辉长岩或玄武岩中(出现对称的冷凝边)。而与造山橄榄岩伴生的辉绿岩墙统统是对称的冷凝边,辉绿岩可以与地幔橄榄岩在一起,也可以单独产出,辉绿岩墙(或岩脉)的宽度可达几米至上百米(而蛇绿岩的辉绿岩岩墙宽度很少能够超过4m),辉绿岩的围岩为砂岩、页岩、火山岩、花岗岩等。在图 4中,蛇纹岩和辉绿岩频繁侵位在上三叠统图姆沟组地层中,显然与蛇绿岩无关。

图 4 四川白玉县擦哈柯地质草图和信手剖面图(据张旗等,1992) 1-地幔橄榄岩;2-辉绿岩;3-上三叠统图姆沟组大理岩夹白云质大理岩及千枚岩、灰岩 Fig. 4 Geological sketch and profile map of the Chahake in Baiyu County, Sichuan Province(after Zhang et al., 1992)

(4) 玄武岩。造山橄榄岩伴生的玄武岩通常是MORB或OIB类型的,如Zabargad、Ronda、Lanzo、义敦地区等(Frey et al., 1985; 张旗等,1990; Bodinier et al., 1991; Lorand et al., 2000; Acosta-Vigil et al., 2014; Johanesen et al., 2014; Sanfilippo et al., 2017),未见IAT的报道。而蛇绿岩玄武岩大多是IAT和MORB的,弧的特征明显。

(5) 伴生的沉积岩。与造山橄榄岩伴生的沉积岩大多是与裂谷作用有关的碎屑岩,也有硅质岩,但并非深海的。义敦地区的围岩是浅海相的上三叠统义敦群曲嘎寺组千枚岩、隧石条带灰岩夹砂岩及玄武岩、流纹岩以及二叠系钙质板岩、粉砂岩、砂岩夹灰岩及硅质岩等(张旗等, 1990, 1992)。

(6) 伴随的变质作用。造山橄榄岩大多属于高温橄榄岩(Boudier et al., 1988; Leblanc and Temagoult, 1989; Tubía et al., 2013, 1997; Bodinier and Godard, 2014; Johanesen et al., 2014),这与蛇绿岩的冷侵位是不一样的。如西班牙的Ronda橄榄岩是一个典型的、世界上最大的造山橄榄岩(约300km2),超覆侵位在长英质的变质基底之上,为一个热逆冲的推覆岩片(图 5)。变质基底在靠近橄榄岩部分变质程度很高,达到榴辉岩相(压力在1.4~1.7GPa之间,温度在790~1100℃之间),向下变质程度逐渐降低,显示变质作用的逆向分带(Boudier et al., 1988; Leblanc and Temagoult, 1989; Tubía et al., 2013; Johanesen et al., 2014)。据Tubía et al. (1997)研究,红海Zabargad岛橄榄岩的围岩接触带达到麻粒岩相;远离接触带,剪切应变和相关的再结晶作用迅速降低。因此,Zabargad片麻岩被认为是与地幔底辟侵入而变质变形的,片麻岩由长英质麻粒岩、辉长岩和角闪岩组成。变质岩浆岩和斜长角闪岩受地幔底辟侵入作用的影响,还引起了片麻岩的部分深熔作用。

图 5 西班牙Ronda岩体底部剖面图(据Bartoli et al., 2016),展示了从岩体底部向下变质程度逐渐降低的变化 Fig. 5 Bottom section of Ronda orogenic peridotite, Spain (after Bartoli et al., 2016)

造山橄榄岩由于是陆壳下的地幔,它或者由于陆块撕裂导致地幔上涌出现在地表,或者由于陆块的强烈挤压而被挤出地表,强烈的挤压作用可以导致形成中-高温和高压的榴辉岩相(如阿尔卑斯地区)或麻粒岩相(如红海的Zabargad)变质作用。对这套变质作用的机制存在争论,有人认为,阿尔卑斯超高压变质作用是陆壳深俯冲的结果,实际上很可能是造山橄榄岩挤出形成的。

3 双沟地幔岩是蛇绿岩还是造山橄榄岩?

“双沟蛇绿岩”出露于哀牢山变质岩带的西侧,围岩为一套二叠纪的碎屑岩夹灰岩、玄武岩及火山碎屑岩(局部有流纹岩) 地层。中-上三叠统一碗水组红层底砾岩中有超镁铁岩的砾石,表明橄榄岩是在晚三叠世之前侵位的(张旗等, 1988, 1992, 1995b)。双沟出露的岩石主要是地幔橄榄岩、辉长岩、辉绿岩和玄武岩,有少量硅质岩。上述组合是蛇绿岩常见的,也是造山橄榄岩常见的。双沟地幔岩主要是弱亏损的二辉橄榄岩,部分熔融现象十分发育,异剥橄榄岩很多,大的成为脉状沿变质橄榄岩片理分布,小的见于橄榄石与辉石的粒间(图 6),我们称其为“浸染橄榄岩”,是地幔岩的一种初始熔融现象(张旗等,1998)。双沟缺少堆晶岩,辉长岩规模很大,主要由具共结结构的角闪辉长岩组成,有伟晶辉长岩以及分异的闪长岩和斜长花岗岩细脉贯入,显示岩浆多期强烈活动的特征。辉绿岩呈脉状产出,有的呈破碎的角砾状, 被后来贯入的辉长岩胶结。双沟玄武岩比较发育(图 6图 7),主要为具斜长石斑晶的玄武岩,具N-MORB和E-MORB的特征,未见枕状熔岩。

图 6 “双沟蛇绿岩”地质略图(据张旗等,1992) 1-变质橄榄岩;2-地幔部分熔融的液滴(黑点)和异剥钙榴岩脉(短线, 同时表示岩脉的走向) 分布区;3-辉长岩和辉绿岩;4-玄武岩;5-上三叠统一碗水组红色碎屑岩;6-C-P浅变质碎屑岩 Fig. 6 Geological map of the Shuanggou ophiolite, Yunnan (after Zhang et al., 1992)

图 7 “双沟蛇绿岩”剖面图(据张旗等,1992) 1-C-P强烈剪切的浅变质碎屑岩;2-辉长岩;3-变质橄榄岩;4-玄武岩 Fig. 7 Section of the Shuanggou ophiolite(after Zhang et al., 1992)

从岩石组合上,双沟地幔岩是否是蛇绿岩无法说清。它可能不是蛇绿岩,根据下面几条:

(1) 时代上的矛盾。经过许多学者的研究,双沟已经积累了较多同位素年龄资料。其中,辉长岩、辉绿岩和斜长花岗岩的锆石U-Pb年龄和辉长岩的单斜辉石Ar-Ar年龄有383Ma、326Ma、339Ma、364Ma和334Ma等(简平等, 1998a, b, 1999; Jian et al., 2009a, b; 钟大赉,1998Lai et al., 2004a),大体是晚泥盆世至早石炭世的。但是,刘翠等(2011)测定的帽盒山玄武岩的年龄却是早三叠世的(249Ma),说明帽盒山玄武岩并非“双沟蛇绿岩”配套的岩石组合,这个结果是令人震惊的!从图 6图 7看,玄武岩是“双沟蛇绿岩”的重要组成,笔者从来没有怀疑过这一点。如果没有了帽盒山玄武岩,双沟就仅余地幔橄榄岩和辉长岩了。当然,双沟地区出露的玄武岩不少,是否统统是早三叠世的并不清楚,需要后续的仔细研究。

(2) 深海沉积问题。据学者的研究(魏启荣和沈上越,1995魏启荣等,1998沈上越等, 2000, 2001),哀牢山出露两类硅质岩:一类与变石英杂砂岩、砂质绢云板岩、硅质板岩等组成深海浊积岩建造;砂岩,硅质岩含丰富的放射虫化石,形成于晚泥盆世,出露于学堂、冬瓜林、川沟、金厂一带,认为是深海沉积。但是,剖面中存在中厚层变石英杂砂岩, 表明可能并非远洋深海沉积。另一类硅质岩为哀牢山蛇绿岩的组成单元,岩石组合为硅质岩、碳质钙质硅质绢云板岩、绢云硅质板岩、泥灰岩、泥晶灰岩等,为早石炭世的,显示半深海沉积的特征,暗示哀牢山蛇绿岩为小洋盆环境(魏启荣等,1998)。

(3) 混杂堆积问题。双沟没有混杂堆积出露,附近的蛇绿岩也未见混杂堆积存在,地幔橄榄岩通常与早古生代的浅变质岩断层接触,浅变质岩并不具备混杂岩的特征,上三叠统一碗水组不整合覆于其上。文献报道大多肯定金沙江、昌宁-孟连有混杂岩,而很少报道哀牢山有混杂岩的。

那么,如今我们如何认识“双沟蛇绿岩”问题呢?

(A) 笔者和许多学者根据双沟出现的岩石组合及其地球化学特征,认为双沟以及哀牢山构造带可能属于裂谷或裂陷槽或小洋盆环境,几乎没有人认为双沟代表比较宽阔的大洋环境。

(B) 将“双沟蛇绿岩”的岩石组合特征与造山橄榄岩进行对比,与其说它是蛇绿岩,还不如说它是造山橄榄岩更合适。双沟的地幔橄榄岩、辉长岩、辉绿岩和斜长花岗岩组合在一起,属于造山橄榄岩,是晚泥盆-早石炭世地壳减薄的产物,大体相当于今天红海的情况,可能相当于陆壳伸展撕裂的产物(张旗等,2020)。

(C) 年代学研究表明,双沟辉长岩、辉绿岩、斜长花岗岩是晚泥盆-早石炭世的,但是,双沟蛇绿岩所依托的帽盒山玄武岩却是早三叠世的,说明,双沟蛇绿岩的玄武岩并非蛇绿岩的成员,是后期岩浆作用的产物,与蛇绿岩无关。一个没有玄武岩的蛇绿岩是很难想象的。

(D) 双沟以及哀牢山带缺乏可靠的深海沉积,有些文献虽然也有深海的认识,但并非远洋深海沉积的特征,充其量类似今天红海的小洋盆规模。

(E) 双沟和哀牢山带缺乏混杂堆积,这一条对双沟蛇绿岩是致命的,说明双沟地幔橄榄岩虽然可能具有洋陆之间某些过渡的特征,但双沟镁铁-超镁铁岩应当不是蛇绿岩。

笔者否定了“双沟蛇绿岩”,但是,昌宁-孟连蛇绿岩带仍然是成立的。在这个蛇绿岩带内,有混杂堆积出露(如铜厂街地区,张旗等,1992张旗和周国庆,2001图 2),有远洋沉积出露(如覆盖在许多洋岛之上的远洋浅海相灰岩;刘本培等,1993钟大赉,1998)。昌宁-孟连蛇绿岩带向北与金沙江蛇绿岩带相连。早先认为哀牢山带也是蛇绿岩,与金沙江蛇绿岩带相连。金沙江蛇绿岩向南分为两支,一支是昌宁-孟连蛇绿岩带,一支是哀牢山蛇绿岩带。现在否定了双沟蛇绿岩,哀牢山这一支就不是洋盆了,而是一个陆间的裂谷或局部地区有小洋盆出现的陆壳撕裂的面貌,类似现今红海-印度洋-东非裂谷的面貌,三连点推测可能在现今大理市的北部。

4 讨论

对双沟蛇绿岩出现的误判告诉我们什么?有哪些需要检讨与反思的?有哪些经验教训值得记取呢?笔者认为,我们对蛇绿岩概念认识的不足以及知识面狭窄是一个重要的教训。例如,早先我们一见到地幔岩,见到MORB,还有硅质岩,就认为是蛇绿岩了;其实,情况还是比较复杂的。其次,蛇绿岩不同于其他岩浆岩,只专注于岩石学和地球化学研究是解决不了是否蛇绿岩的问题的。关于地幔岩问题前面已经讨论了,下面就其他几个问题谈一点初步的认识。

4.1 关于蛇绿岩概念的演变

吴福元等(2014)对这个问题有比较精辟的认识和概括;笔者(张旗,2014)也指出,蛇绿岩研究的历史悠久,从十九世纪初,地质学上就开始使用蛇绿岩这个术语了,指一个由超基性岩、辉长岩、辉绿岩、细碧岩和隧石组成的岩石组合。后来,Suess和许靖华认为这种蛇绿岩就是海洋地壳。到二十世纪二十年代,斯泰因曼(Steinmann)开始用蛇绿岩代表主要由蛇纹石化橄榄岩和少量辉长岩、玄武岩组成的岩石群体,并强调它与深海沉积物如放射虫隧石和粘土紧密共生。到赫斯(Hess)才建议将蛇纹岩、基性火山岩和隧石岩的组合称为斯泰因曼的“三位一体”,表示其紧密的共生关系(以上转赵宗溥,1984)。

笔者高度推崇斯泰因曼的研究,认为他是现代蛇绿岩理论的鼻祖,他把蛇绿岩从一个岩石的术语扩展成为一个具有一定构造含义的岩石组合的术语(张旗,2014)。斯泰因曼指出,人们应当把主要为超基性岩的同源组合作为蛇绿岩的唯一特征,超基性岩中的主要一个成员永远是橄榄岩(蛇纹岩),其次为辉长岩、辉绿岩、细碧岩,或苏长岩和有关岩石。什么是有关的岩石,按照斯泰因曼的解释,是被蛇纹岩侵位或贯入其中的深水沉积物。这些深海沉积物主要为燧石(放射虫硅质岩)、远海粘土和含依丁虫的石灰岩。因此,由蛇纹岩、辉绿岩-细碧岩和燧石组成的“斯泰因曼三位一体”,即是一个具有特定形成环境的一个岩石组合的术语。

1972年的彭罗斯会议坚持了斯泰因曼的见解,强调与一个蛇绿岩组合伴生的岩石有:上覆的沉积岩系,包括条带状硅质岩、薄层页岩夹层和少量灰岩;与纯橄榄岩相伴的豆荚状铬铁矿;富钠质的长英质侵入岩和喷出岩等。根据彭罗斯会议的定义,深海沉积物覆于蛇绿岩之上,为蛇绿岩的伴生岩石。深海沉积物在蛇绿岩研究中有重要的意义:深海沉积物与蛇绿岩相伴生,使之可以作为蛇绿岩存在的标志来对待;深海沉积物的形成环境与下伏蛇绿岩的形成环境是相关的;此外,深海沉积物中的微体化石还是确定蛇绿岩形成的上限时代及洋盆演化的重要依据(张旗和周国庆,2001)。

1996年在怀柔曾经召开过一次蛇绿岩讨论会,会上就蛇绿岩的定义作了专题讨论。有两种意见相持不下:一种认为蛇绿岩是一个岩石学的术语,应当限制在火成岩范畴;蛇绿岩伴生的深海沉积不是火成岩的概念,故不应当包括在蛇绿岩的范畴内。另一种认为蛇绿岩是蛇绿岩套的省略语,有其特定的构造含义,斯泰因曼“三位一体”的概念是适用的。大多数岩石学家坚持第一种见解,大多数构造学家同意第二种见解。笔者当时是赞同第一种见解的。时间过去20多年了,回忆起怀柔会议的争论,笔者认识到,构造学家坚持的认识是合理的,斯泰因曼的“三位一体”是比较确切地反映了蛇绿岩套这个概念的本质的(张旗,2014)。

但是,无论斯泰因曼的“三位一体”还是彭罗斯会议和怀柔会议对蛇绿岩的认识,都存在一个共同的问题,即没有强调混杂堆积对于蛇绿岩的重要性。从斯泰因曼到彭罗斯会议到怀柔会议,解决了洋盆底部岩石的组合问题,确定了蛇绿岩的组成要素。但是,未涉及洋盆底部岩石是如何出露在地表,如何出现在陆壳之上的问题。当然,人们也可以把混杂堆积作为蛇绿岩形成以后的一个单独的问题来考虑。混杂堆积的研究表明,这是一个独特的问题,混杂堆积只与洋盆闭合大陆碰撞有关。混杂堆积是一种构造岩,但是,它不同于大陆上的任何一种构造岩,其最重要的特征是把洋壳物质与陆壳物质混杂在一起。蛇绿岩剖面为什么大多很难保存?蛇绿岩为什么大多被肢解?洋盆闭合以后陆块的碰撞是最重要的原因。混杂堆积表述了蛇绿岩就位的过程及特征,有人认为,仰冲的蛇绿岩可以没有混杂堆积,其实也不尽然,如日喀则蛇绿岩的剖面保存相对完好,是蛇绿岩片仰冲形成的。日喀则蛇绿岩的混杂堆积现象仍然非常典型(张旗和周国庆,2001)。因此,混杂堆积对于蛇绿岩是须臾不可缺少的,它是蛇绿岩的一个构造作用指标,反映了蛇绿岩就位的特征。

考虑到蛇绿岩的侵位与洋盆闭合、陆块碰撞的关系,笔者建议将混杂堆积作为与蛇绿岩相伴的一个重要指标加进来。如果这个想法合适,蛇绿岩的概念将进一步明确,蛇绿岩的组合将进一步扩大。于是,一个完整的蛇绿岩组合将由三部分组成:岩浆岩(包括地幔橄榄岩、堆晶岩、侵入岩和火山岩,代表大洋岩石圈的物质组成);深海沉积(代表洋盆顶部的物质组成);混杂堆积(代表洋盆消失、陆块碰撞的构造产物)。

因此,蛇绿岩的术语就不单单是一个狭义的岩石学的术语,而是有构造含义的:蛇绿岩即蛇绿岩套、即蛇绿混杂岩、即蛇绿混杂岩套。把混杂堆积加进蛇绿岩的概念,这是一个新的问题,学术界是否认可尚不可知。笔者之所以提出这个问题,可以举两个实例予以说明。

一个是云南铜厂街蛇绿岩。铜厂街蛇绿岩岩石组合不如双沟发育,大多呈零星碎块分布在混杂岩中,混杂岩的基质主要由强烈褶皱变形的砂岩、页岩(陆壳物质)和绿片岩、蛇纹岩(洋壳物质)组成,块体有蛇纹石化的地幔橄榄岩、堆晶岩、辉长岩、辉绿岩、玄武岩及硅质岩、砂岩、灰岩等。从图 2看,铜厂街蛇绿岩的岩石组合星星点点,突出的是大片混杂岩的广泛分布。

另一个实例是北宽坪蛇绿岩。北秦岭有没有蛇绿岩已经争论多年了,许多人相信丹凤群相当于蛇绿岩,实际上问题比较多。从岩石学的角度,丹凤群很少具有蛇绿岩的特征,而更像一套弧系的岩石组合(张旗和周国庆,2001及其所引文献)。而对于宽坪群,仅有少数学者认为它可能是蛇绿岩(张宗清和张旗,1995张旗和周国庆,2001Dong et al., 2014潘桂棠等,2017),原因是宽坪群没有地幔橄榄岩出露。笔者考察发现,在宽坪群的北宽坪地区,原广东坪组即有明显的混杂堆积现象(图 8)。混杂堆积的基质主要由绿片岩组成,褶皱十分强烈,成分相当于N-MORB,灰岩作为混杂堆积的块体(张宗清和张旗,1995张旗和周国庆,2001),十分类似于铜厂街蛇绿混杂岩。有地幔橄榄岩固然是一个有力的证据,但是,地幔橄榄岩是否是蛇绿岩还需要研究。而有混杂堆积,且有绿片岩(N-MORB的玄武岩变质而成)作为混杂堆积的基质,这个证据比有没有地幔橄榄岩更重要,毕竟把洋壳物质与陆壳物质混杂在一起提供了洋盆闭合与大陆碰撞的事实。

图 8 陕西商县北宽坪-板桥一带地质图(据张寿广等,1991) 1-硅质大理岩; 2-石英岩;3-黑云母大理岩; 4-云母石英片岩; 5-绿片岩-斜长角闪岩; 6-花岗岩; 7-韧性剪切带; 8-地层界线; 9-断层; 10-老第三系红层; 11-古生界云架山群; 12-宽坪岩群; 13-采样位置 Fig. 8 Schematic geological map of North Kuanping and Banqiao area in the Shangxi County, Shaangxi Province (after Zhang et al., 1991)

研究蛇绿岩,不能只是把眼光盯在蛇绿岩上,而是要兼顾与岩浆岩有关的沉积岩和构造岩问题。蛇绿岩不同于其他岩浆岩,蛇绿岩研究最重要、最好的方法是填图(而且是网格法填图,辅以详细的剖面研究)。一个镁铁-超镁铁岩是否是蛇绿岩,不是主要靠岩石学和地球化学证据。确定是否是蛇绿岩主要依靠野外研究,依靠蛇绿岩与围岩的关系(深海沉积、混杂堆积)来决定的。野外如果确定是蛇绿岩,室内无论怎么研究,得出什么结论,也不可能否定它是蛇绿岩。相反,如果野外确定它不是蛇绿岩,室内不论怎样研究,得出什么结果,也不能把它变为蛇绿岩。而没有详细野外研究的蛇绿岩,没有确凿深海沉积或混杂堆积证据的蛇绿岩,是不足信的。

4.2 什么是MORB?

MORB有两个显著的特征:(1)Th和Ta的含量接近,Th/Ta比值接近1;(2)REE具平坦型分布。REE分布细分有LREE略富集的E-MORB和LREE亏损的N-MORB以及二者之间过渡的T-MORB。此外,还有P-MORB一说的,与E-MORB类似。大家往往一提到MORB,就认为是洋中脊玄武岩,就是蛇绿岩,这几乎成为不需要思考的联想了。

什么是MORB?MORB是在什么条件下形成的?按照学术界的认识,所谓MORB,即源岩是原始的或略亏损的地幔橄榄岩,在较低的压力下,中等至高的部分熔融程度的条件下形成的玄武岩就是MORB(Pearce et al., 1984)。洋中脊扩张中心具备这个条件,于是洋脊玄武岩绝大多数是MORB,包括N-MORB和E-MORB。但是,N-MORB并不仅仅限于洋中脊,在大火成岩省也可以出现,在洋底高原也可以出现,例如世界上最大的Ontong Java大火成岩省(洋底高原)就有许多N-MORB,可能是轴外洋脊与地幔柱相互作用的产物(off-axis ridge-plume interaction; Chen et al., 2021)。加勒比海大火成岩省(Caribbean Large Igneous Province (CLIP))的玄武岩主要是MORB的,包括N-MORB和E-MORB,连Gorgona岛的科马提岩都是强烈亏损LREE的(Ddürkefälden2019 et al., 2019)。与造山橄榄岩伴生的MORB(N-MORB、P-MORB、E-MORB)则更是常见(Hartmann and Wedepohl, 1993; Weyer et al., 2003; Brooker et al., 2004; Pelletier and Müntener, 2006; Wu et al., 2014; Sanfilippo et al., 2017)。

地幔橄榄岩的成分是比较一致的,虽然也有变化。全球地幔橄榄岩按照成分可分为弱亏损的二辉橄榄岩和强亏损的方辉橄榄岩及纯橄岩;按照压力的变化有尖晶石橄榄岩与石榴石橄榄岩;按照产出的构造环境有洋壳下的橄榄岩与陆壳下的橄榄岩。此外,依据橄榄岩中流体含量的不同,还有一类交代的橄榄岩,如角闪石橄榄岩和金云母橄榄岩等(张旗等,1995aWoodland et al., 1996; Morishita et al., 2001, 2007; Beccaluva et al., 2004; Grieco et al., 2004; 支霞臣等,2004; 苏犁等,2005Nozaka, 2014)。全球地幔橄榄岩,无论在什么情况下,Th和Ta的含量都是接近的(Pearce et al., 1984; 张旗和周国庆,2001)。因此,不论什么成分的地幔岩,无论什么地方的地幔岩,部分熔融形成的玄武岩只有MORB和OIB两类。地幔浅部,亏损地幔或弱亏损地幔,部分熔融程度中等至较高的情况下,形成的是MORB;深部地幔,富集地幔或部分熔融程度很低,形成OIB。洋壳下是这样,陆壳下也是这样,板内环境基本上都是这样。

因此,MORB并非洋中脊的专属岩石,不是见到MORB就是洋中脊,就是蛇绿岩。任何地幔橄榄岩部分熔融形成的大多数都是MORB,不论这个玄武岩是在洋盆还是大陆(岛弧环境和大陆下地幔有水加入的情况除外)。

4.3 红海型裂谷小洋盆的地幔橄榄岩是否是蛇绿岩?

现今的红海是由大陆裂解形成的初始洋盆,其地幔橄榄岩主要来源于陆壳之下的岩石圈地幔。如果伴随橄榄岩的MORB有相当的数量,则可能有部分软流圈地幔的卷入。红海虽然主体属于被动大陆边缘,洋壳非常少,但其深度也可达到3000~4000m,显然为深海沉积。那么,红海的Zabargad是蛇绿岩吗?类似的情况在阿尔卑斯、Ronda、哀牢山以及西藏永珠也能见到。西阿尔卑斯出露规模巨大的橄榄岩和少量的MORB,矿物学和地球化学资料表明这些橄榄岩都以岩石圈地幔来源为主。一种意见认为它们是造山橄榄岩,另一种意见认为那里存在大量的地质证据表明它们可能是新特提斯洋的一部分(Piccardo, 1977; Rampone and Piccardo, 2000; Piccardo and Guarnieri, 2011; Bodinier and Godard, 2014)。类似的例子在我国西藏永珠地区也存在,那里不仅发育我国保存最为完好的席状岩墙群,出露规模巨大的橄榄岩也表现出元古代克拉通型地幔的特征(王永胜,2005Zeng et al., 2018)。由于这类蛇绿岩记录的是小洋盆,主体是半深海沉积,这与哀牢山非常相似。由于是小洋盆,洋盆闭合也不可能出现明显的混杂堆积,它们是否是蛇绿岩呢?

看来,西阿尔卑斯、红海、哀牢山、永珠可能具有过渡类型的特征,他们可能是蛇绿岩,也可能不是蛇绿岩,关键看证据。前已述及,从蛇绿岩三要素来说,裂谷和小洋盆背景很难有深海沉积及混杂堆积,它们可能是陆壳撕裂形成的,由于构造体制的转变,撕裂的陆壳由伸展转变为挤压,小洋盆夭折,这时的地幔橄榄岩及若干地幔部分熔融物(辉长岩、玄武岩等),总体上不符合蛇绿岩的基本特征。但是,情况是复杂的。如双沟仅见地幔橄榄岩与辉长岩,双沟虽然有玄武岩,但并非地幔橄榄岩侵位同时期伴生的,因此,双沟可能不属于蛇绿岩。而永珠不同,永珠有典型的辉绿岩岩墙群,永珠应当属于蛇绿岩,虽然深海沉积并不典型,也没有混杂堆积。

5 结论

(1) 地幔岩有洋壳下与陆壳下之分,一个镁铁-超镁铁岩岩体是否是蛇绿岩,主要不取决于岩石组合,而取决于该岩体与周围岩石的关系:有没有深海沉积,有没有混杂堆积。硅质岩不一定都是深海的,与砂岩、泥岩等碎屑岩伴生的硅质岩并非深海沉积。混杂堆积是一类特殊的构造岩,是由洋壳与陆壳物质混杂在一起组成的。

(2) 蛇绿岩与造山橄榄岩的岩石组合类似。不同之处有两点:一是蛇绿岩有具不对称冷凝边的辉绿岩墙群,而造山橄榄岩则没有;二是蛇绿岩大多具弧的特征,大多为IAT+MORB的组合(还可以有玻安岩等高镁安山岩出现);而造山橄榄岩的玄武岩主要是MORB+OIB,显示板内伸展的背景。造山橄榄岩这个术语并不是很好,采用这个术语是鉴于这个术语被广泛采用。但是,其实质代表的是陆壳撕裂作用,是否造山并不一定。裂谷小洋盆的地幔岩是造山橄榄岩还是蛇绿岩,视证据多寡而定,有的是蛇绿岩(如永珠,有辉绿岩岩墙群),有的是造山橄榄岩(如双沟,缺少与地幔岩侵位同期的玄武岩)。

(3) 斯泰因曼“三位一体”的概念、1972年彭罗斯会议的决议、1986年怀柔会议的成果(主要指构造学家的认识)被实践证明是合适的。考虑到混杂堆积对于蛇绿岩的重要性,故建议将混杂堆积也作为与蛇绿岩相伴的一个指标。这样,一个完整的蛇绿岩组合将由三部分组成:岩浆岩(包括地幔岩、堆晶岩、侵入岩和火山岩,代表大洋岩石圈的物质组成);远洋深海沉积(代表洋盆顶部的物质组成);混杂堆积(代表洋盆消失、陆块碰撞的构造产物)。在这里,蛇绿岩即蛇绿岩套、即蛇绿混杂岩、即蛇绿混杂岩套。

(4) 新的研究表明,双沟更加类似造山橄榄岩而非蛇绿岩,说明哀牢山带或为裂谷或红海类型的初始洋盆。因此,哀牢山可能是古特提斯的金沙江-昌宁-孟连洋盆张开时的一个夭折的分支裂谷,其成因可能与三连点的作用有关,类似现今印度洋-红海-东非裂谷的状况。

(5) 蛇绿岩研究已经有100多年的历史了,蛇绿岩研究取得了很大的进步,同时也遇到了很多困惑甚至危机。解剖双沟蛇绿岩,重新审视蛇绿岩的概念,检讨和反思蛇绿岩的研究,发现问题,对今后蛇绿岩的研究可能是有意义的。

后记  双沟蛇绿岩是笔者最早研究的蛇绿岩之一,笔者对双沟岩石学、地球化学的研究孜孜不倦,却忽略了对双沟的围岩及构造的研究,误将双沟当成为蛇绿岩,从而铸成大错。其实,笔者在研究双沟蛇绿岩的同时,也发现了许多地幔橄榄岩并非蛇绿岩,如对义敦型岩体的研究(现已改称为造山橄榄岩)。但是,并未对双沟有所怀疑。古人云:朝闻道夕死可矣,解铃仍需系铃人。为此,笔者撰写此文检讨双沟蛇绿岩研究中的教训与失误,反思蛇绿岩进一步研究的方向,可谓亡羊补牢犹未为晚。蛇绿岩是一个古老的话题了,似乎没有多少新鲜东西,没有多少创新的余地了。其实不然,任何科学问题都没有顶峰,任何学术研究都没有天花板。只有秉承这种思想,才能在科学研究的长河中“让思想自由流淌”(印度哲学家克里希那穆提语),把你引向更新的领域,更高的境界。

致谢      感谢与石玉若研究员的交流,才启发了笔者对双沟蛇绿岩的检讨与反思;感谢与钟大赉院士、任纪舜院士、吴福元院士、翟明国院士、牛宝贵研究员、潘桂棠研究员、季建清教授、张尉博士、焦守涛博士的讨论;感谢在文章撰写过程中得到了康月蓝博士的帮助。感谢两位审稿人的评论与建议,为了回答审稿意见,本文讨论部分增加了一节。

参考文献
Acosta-Vigil A, Rubatto D, Bartoli O, Cesare B, Meli S, Pedrera A, Azor A and Tajčmanová L. 2014. Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos, 210-211: 147-167 DOI:10.1016/j.lithos.2014.08.018
Artemyev DA and Zaykov VV. 2010. The types and genesis of ophicalcites in Lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc (South Urals). Russian Geology and Geophysics, 51(7): 750-763 DOI:10.1016/j.rgg.2010.06.003
Bartoli O, Acosta-Vigil A, Tajčmanová L, Cesare B and Bodnar RJ. 2016. Using nanogranitoids and phase equilibria modeling to unravel anatexis in the crustal footwall of the Ronda peridotites (Betic Cordillera, S Spain). Lithos, 256-257: 282-299 DOI:10.1016/j.lithos.2016.03.016
Beccaluva L, Bianchini G, Bonadiman C, Siena F and Vaccaro C. 2004. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos, 75(1-2): 67-87 DOI:10.1016/j.lithos.2003.12.015
Bodinier JL and Godard M. 2014. Orogenic, ophiolitic, and abyssal peridotites. In: Treatise on Geochemistry: The Mantle and Core. 2nd Edition. New York: Elsevier, 103-167
Boudier F and Nicolas A. 1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth and Planetary Science Letters, 76(1-2): 84-92 DOI:10.1016/0012-821X(85)90150-5
Boudier F, Nicolas A, Ji S, Kienast J R and Mevel C. 1988. The gneiss of Zabargad Island: Deep crust of a rift. Tectonophysics, 150(1-2): 209-227 DOI:10.1016/0040-1951(88)90302-2
Bozhilov KN, Xu Z, Dobrzhinetskaya LF, Jin ZM and Green HW. 2009. Cation-deficient phlogopitic mica exsolution in diopside from garnet peridotite in SuLu, China. Lithos, 109(3-4): 304-313 DOI:10.1016/j.lithos.2008.04.003
Brooker RA, James GH and Blundy JD. 2004. Trace elements and Li isotope systematics in Zabargad peridotites: Evidence of ancient subduction processes in the Red Sea mantle. Chemical Geology, 212(1-2): 179-204 DOI:10.1016/j.chemgeo.2004.08.007
Cao RL. 1981. Lithological features and geological significance of Yarlung Zangbo jiang ophiolite belt and trench sediments in Xizang plateau. Geochimica, (3): 247-254 (in Chinese with English abstract)
Chao TP. 1984. Ophiolite and continental suture. Scientia Geologica Sinica, (4): 359-372 (in Chinese with English abstract)
Chen DL, Zhu XH, Ren YF and Tuo Y. 2020. Early Paleozoic Ocean in the North Qaidam: Constraints from Kaipinggou ophiolite. Acta Geologica Sinica, 94(Suppl.1): 6
Chen SS, Liu JQ, Gao R and Wang ZW. 2021. Geochemistry of Cretaceous basalts from the Ontong Java Plateau: Implications for the off-axis plume-ridge interaction. Chemical Geology, 564: 119815 DOI:10.1016/j.chemgeo.2020.119815
Chen X, Schertl HP, Cambeses A, Gu PY, Xu RK, Zheng YY, Jiang XJ and Cai PJ. 2019. From magmatic generation to UHP metamorphic overprint and subsequent exhumation: A rapid cycle of plate movement recorded by the supra-subduction zone ophiolite from the North Qaidam orogen. Lithos, 350-351: 105238 DOI:10.1016/j.lithos.2019.105238
Chen YH, Zhu JQ, Wu XK, Zhang Q, Xu P and Li XY. 1996. A proton microprobe study on mantle metasomatism for the Shuanggou ophiolite. Rock and Mineral Analysis, 15(3): 168-172 (in Chinese with English abstract)
Coleman RG. 1977. Ophiolites. Berlin: Springer-Verlag, 1-229
Coleman RG. 1981. Tectonic setting for ophiolite obduction in Oman. Journal of Geophysical Research: Solid Earth, 86(B4): 2497-2508 DOI:10.1029/JB086iB04p02497
Dürkefälden A, Hoernle K, Hauff F, Wernera R and Garbe-Schönberg D. 2019. Second-stage Caribbean Large Igneous Province volcanism: The depleted Icing on the enriched Cake. Chemical Geology, 509: 45-63 DOI:10.1016/j.chemgeo.2019.01.004
Den Tex E. 1969. Origin of ultramafic rocks, their tectonic setting and history: A contribution to the discussion of the paper "The origin of ultramafic and ultrabasic rocks" by P. J. Wyllie. Tectonophysics, 7(5-6): 457-488 DOI:10.1016/0040-1951(69)90016-X
Doblas M and Oyarzun M. 1989. "Mantle core complexes" and Neogene extensional detachment tectonics in the western Betic Cordilleras, Spain: An alternative model for the emplacement of the Ronda peridotite. Earth and Planetary Science Letters, 93: 76-84 DOI:10.1016/0012-821X(89)90185-4
Dong YP, Zhu BQ, Chang XY and Deng SX. 2000. Geochemistry of the two-type volcanic rocks from Ailaoshan suture zone and their tectonic implication. Geochimica, 29(1): 6-13 (in Chinese with English abstract)
Dong YP, Yang Z, Liu XM, Zhang XN, He DF, Li W, Zhang FF, Sun SS, Zhang HF and Zhang GW. 2014. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255: 77-95 DOI:10.1016/j.precamres.2014.09.008
Duan XH and Zhao H. 1981. The Ailaoshan-Tengtiaohe fracture: The subduction zone of an ancient plate. Acta Geologica Sinica, (4): 258-266 (in Chinese with English abstract)
Etiope G, Vadillo I, Whiticar MJ, Marques JM, Carreira PM, Tiago I, Benavente J, Jiménez P and Urresti B. 2016. Abiotic methane seepage in the Ronda peridotite massif, southern Spain. Applied Geochemistry, 66: 101-113 DOI:10.1016/j.apgeochem.2015.12.001
Fabriès J, Lorand JP and Guiraud M. 2001. Petrogenesis of the amphibole-rich veins from the Lherz orogenic lherzolite massif (Eastern Pyrenees, France): A case study for the origin of orthopyroxene-bearing amphibole pyroxenites in the lithospheric mantle. Contributions to Mineralogy and Petrology, 140: 383-403 DOI:10.1007/s004100000132
Fan WM, Wang YJ, Zhang AM, Zhang FF and Zhang YZ. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos, 119(3-4): 553-568 DOI:10.1016/j.lithos.2010.08.010
Fang WX, Hu RZ, Xie GQ and Su WC. 2002. Tectonolithostratigraphic units of the Ailaoshan area in Yunnan, China and their implications of tectonic evolution. Geotectonica et Metallogenia, 26(1): 28-36 (in Chinese with English abstract)
Faure M, Lin W, Chu Y and Lepvrier C. 2016. Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing. Tectonophysics, 683: 27-42 DOI:10.1016/j.tecto.2016.06.015
Frey FA, Suen CJ and Stockman HW. 1985. The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochimica et Cosmochimica Acta, 49(11): 2469-2491 DOI:10.1016/0016-7037(85)90247-9
Grieco G, Ferrario A and Mathez EA. 2004. The effect of metasomatism on the Cr-PGE mineralization in the Finero Complex, Ivrea Zone, Southern Alps. Ore Geology Reviews, 24(3-4): 299-314 DOI:10.1016/j.oregeorev.2003.05.004
Hacker BR. 1998. Metamorphic sole of an ophiolite. In: Fault-related Rocks: A Photographic Atlas. New Jersey: Princeton University Press
Hartmann G and Wedepohl KH. 1993. The composition of peridotite tectonites from the Ivrea Complex, northern Italy: Residues from melt extraction. Geochimica et Cosmochimica Acta, 57(8): 1761-1782 DOI:10.1016/0016-7037(93)90112-A
Hermann J, Gerald JDF, Malaspina N, Berry AJ and Scambelluri M. 2007. OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contributions to Mineralogy and Petrology, 153(4): 417-428 DOI:10.1007/s00410-006-0155-7
Hu WJ, Zhong H, Chu ZY, Zhu WG, Bai ZJ and Zhang C. 2020. Ancient refertilization process preserved in the plagioclase peridotites: An example from the Shuanggou ophiolite, Southwest China. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB017552
Huang ZX, Han S, Dong JQ, Jia XQ, Zhang Q and Zhao DS. 1993. Rare earth element geochemistry of Shuanggou ophiolites from Xinping County, Yunnan Province. Acta Petrologica et Mineralogica, 12(3): 205-212 (in Chinese with English abstract)
Huang ZX, Jia XQ, Dong JQ, Han S, Li XY and Zhou DJ. 1995. Preliminary study on the spatial distributionin of rare-earth element in serpentines. Acta Petrologica Sinica, 11(1): 16-27 (in Chinese with English abstract)
Hwang SL, Yui TF, Chu HT, Shen P, Iizuka Y, Yang HY, Yang J and Xu Z. 2008. Hematite and magnetite precipitates in olivine from the Sulu peridotite: A result of dehydrogenation-oxidation reaction of mantle olivine?. American Mineralogist, 93(7): 1051-1060 DOI:10.2138/am.2008.2784
Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M and Dunkley DJ. 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 306(3-4): 229-240 DOI:10.1016/j.epsl.2011.04.006
Jian P, Wang XF, He LQ and Wang CS. 1998a. U-Pb zircon dating of the Shuanggou ophiolite from Xingping County, Yunnan Province. Acta Petrologica Sinica, 14(2): 207-212 (in Chinese with English abstract)
Jian P, Wang XF, He LQ and Wang CS. 1998b. Geochronology of ophiolitic rocks from the Ailaoshan suture, Yunnan Province, southwestern China: Implications of Palaeotethyan evolution. Geology and Mineral Resources of South China, (1): 1-11 (in Chinese with English abstract)
Jian P, Wang XF, He LQ and Wang CS. 1999. U-Pb zircon dating of anothosite and plagiogranite from the Jinshajiang ophiolite belt. Acta Petrologica Sinica, 15(4): 590-593 (in Chinese with English abstract)
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113(3-4): 748-766 DOI:10.1016/j.lithos.2009.04.004
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys orogen in Southwest China (Ⅱ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006
Johanesen A, Platt JP, Kaplan MS and Ianno AJ. 2014. A revised thermal history of the Ronda peridotite, S. Spain: New evidence for excision during exhumation. Earth and Planetary Science Letters, 393: 187-199 DOI:10.1016/j.epsl.2014.01.024
Lafay R, Baumgartner LP, Stephane S, Suzanne P, German NH and Torsten V. 2017. Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): Processes of carbonate cementation. Lithos, 294-295: 319-338 DOI:10.1016/j.lithos.2017.10.006
Lagabrielle Y and Cannat M. 1990. Alpine Jurassic ophiolites resemble the modern central Atlantic Basement. Geology, 18(4): 319-322 DOI:10.1130/0091-7613(1990)018<0319:AJORTM>2.3.CO;2
Lai CK, Crawford AJ, Meffre SJM, Zaw K and Halpin JA. 2011. Tectonic evolution of the Ailaoshan fold belt and its SE Asia connection. In: Asia Oceania Geological Society (AOGS) 8th Meeting. Taipei, Taiwan, China
Lai CK. 2012. Tectonic evolution of the Ailaoshan fold belt in southwestern Yunnan, China. Ph. D. Dissertation. Hobart: University of Tasmania
Lai CK, Meffre S, Crawford AJ, Zaw K, Xue CD and Halpin J. 2014a. The Western Ailaoshan volcanic belts and their SE Asia connection: A new tectonic model for the Eastern Indochina Block. Gondwana Research, 26(1): 52-74 DOI:10.1016/j.gr.2013.03.003
Lai CK, Meffre S, Crawford AJ, Zaw K, Halpin JA, Xue CD and Salam A. 2014b. The Central Ailaoshan ophiolite and modern analogs. Gondwana Research, 26(1): 75-88 DOI:10.1016/j.gr.2013.03.004
Leblanc M and Temagoult A. 1989. Chromite pods in a lherzolite massif (Collo, Algeria): Evidence of oceanic-type mantle rocks along the West Mediterranean Alpine Belt. Lithos, 23(3): 153-162 DOI:10.1016/0024-4937(89)90002-9
Lemoine M. 1980. Serpentinites, gabbros and ophicalcites in the Piemont-Ligurian domain of the Western Alps: Possible indicators of oceanic fracture zones and of associated serpentinite protrusions in the Jurassic-Cretaceous Tethys. Archives des Science, 33: 103-116
Li XY, Zhou DJ, Zhang Q, Huang ZX, Han S, Jia XQ and Dong JQ. 1993. REE characteristics of partial melts in the mantle peridotite from Shuanggou, Yunnan Province. Acta Petrologica Sinica, 9(3): 308-311 (in Chinese with English abstract)
Ling QC, Cheng HL, Shen SY and Wei QR. 1999a. Mineralogy of the ophiolite in Ailaoshan, Yunnan Province. Acta Mineralogica Sinica, 19(1): 56-62 (in Chinese with English abstract)
Ling QC, Cheng HL and Shen SY. 1999b. The mineral chemistry and its genesis significance of the metamorphic peridotite in ophiolite of the south section of Ailao Mts. Yunnan Geology, 18(1): 47-52 (in Chinese with English abstract)
Liou JG. 1999. Petrotectonic summary of less intensively studied UHP regions. International Geology Review, 41(7): 571-586 DOI:10.1080/00206819909465158
Liou JG, Zhang RY and Jahn BM. 2000. Petrological and geochemical characteristics of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu Terrane, east-central China. International Geology Review, 42(4): 328-352 DOI:10.1080/00206810009465086
Liou JG, Zhang RY, Katayama I, Maruyama S and Ernst WG. 2002. Petrotectonic characterization of the Kokchetav Massif and the Dabie-Sulu Terrane: Ultrahigh-P metamorphism in the so-called P-T forbidden zone. Western Pacific Earth Sciences, 2(2): 119-148
Liu BP, Feng QL, Fang NQ, Jia JH and He FX. 1993. Tectonic evolution of Palaeo-Tethys poly-island-ocean in Changning-Menglian and Lancangjiang belts, southwestern Yunnan, China. Earth Science, 18(5): 529-539 (in Chinese with English abstract)
Liu C, Deng JF, Liu JL and Shi YL. 2011. Characteristics of volcanic rocks from Late Permian to Early Traissic in Ailaoshan tectono-magmatic belt and implications for tectonic settings. Acta Petrologica Sinica, 27(12): 3590-3602 (in Chinese with English abstract)
Liu HC, Wang YJ, Fan WM, Zi JW, Cai YF and Yang GL. 2014. Petrogenesis and tectonic implications of Late-Triassic high εNd(t)-εHf(t) granites in the Ailaoshan tectonic zone (SW China). Science China (Earth Sciences), 57(9): 2181-2194 DOI:10.1007/s11430-014-4854-z
Liu HC, Wang YJ, Cawood PA, Fan WM, Cai YF and Xing XW. 2015. Record of Tethyan Ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China). Gondwana Research, 27(3): 1292-1306 DOI:10.1016/j.gr.2013.12.013
Liu HC, Wang YJ, Guo XF, Fan WM and Song JJ. 2017a. Late Triassic post-collisional slab break-off along the Ailaoshan suture: Insights from OIB-like amphibolites and associated felsic rocks. International Journal of Earth Sciences, 106(4): 1359-1373 DOI:10.1007/s00531-016-1373-5
Liu HC, Wang YJ and Zi JW. 2017b. Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China). Journal of Asian Earth Sciences, 141: 112-124 DOI:10.1016/j.jseaes.2016.07.015
Liu JL, Tang Y, Song ZJ, Dung TM, Zhai YF, Wu WB and Chen W. 1998. The Ailaoshan belt in western Yunnan: Tectonic framework and tectonic evolution. Journal of Jilin University (Earth Science Edition), 41(5): 1285-1303 (in Chinese with English abstract)
Liu L, Yang JX, Chen DL, Wang C, Zhang CL, Yang YQ and Cao YT. 2010. Progress and controversy in the study of HP-UHP metamorphic terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21: 581-597 DOI:10.1007/s12583-010-0128-7
Liu XW, Jin ZM, Qu J and Wang L. 2005. Exsolution of ilmenite and Cr-Ti magnetite from olivine of garnet-wehrlite. Science in China (Series D), 48(9): 1368-1376 DOI:10.1360/03yd0590
Liu XW, Jin ZM and Green HW. 2007. Clinoenstatite exsolution in diopsidic augite of Dabieshan: Garnet peridotite from depth of 300km. American Mineralogist, 92(4): 546-552 DOI:10.2138/am.2007.2232
Lorand JP. 1989. Mineralogy and chemistry of Cu-Fe-Ni sulfides in orogenic-type spinel peridotite bodies from Ariege (Northeastern Pyrenees, France). Contributions to Mineralogy and Petrology, 103(3): 335-345 DOI:10.1007/BF00402920
Lorand JP, Pattou L and Gros M. 1999. Fractionation of platinum-group elements and gold in the upper mantle: A detailed study in Pyrenean orogenic lherzolites. Journal of Petrology, 40(6): 957-981 DOI:10.1093/petroj/40.6.957
Lorand JP, Schmidt G, Palme H and Kratz KL. 2000. Highly siderophile element geochemistry of the Earth's mantle: New data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies. Lithos, 53(2): 149-164 DOI:10.1016/S0024-4937(00)00017-7
Menzies MA. 1984. Chemical and isotopic heterogeneities in orogenic and ophiolitic peridotites. Geological Society, London, Special Publications, 13(1): 231-240
Mo XX, Shen SY and Zhu QW. 2017. Volcanics, Ophiolite and Mineralization of Middle-Southern Part in Sanjiang Area of Southwest China. Beijing: Geological Publishing House, 1-182 (in Chinese)
Morishita T, Arai S and Gervilla F. 2001. High-pressure aluminous mafic rocks from the Ronda peridotite massif, southern Spain: Significance of sapphirine- and corundum-bearing mineral assemblages. Lithos, 57(2-3): 143-161 DOI:10.1016/S0024-4937(01)00036-6
Morishita T, Arai S and Ishida Y. 2007. Occurrence and chemical composition of amphiboles and related minerals in corundum-bearing mafic rock from the Horoman peridotite complex, Japan. Lithos, 95(3-4): 425-440 DOI:10.1016/j.lithos.2006.09.006
Nicolas A and Jackson ED. 1972. Repartition en deux provinces des peridotites des chaines alpines longeant la Mediterranee: Implications geotectoniques. Schweiz Min. Petr. Mitt., 52: 479-495
Nozaka T. 2014. Metasomatic hydration of the Oeyama forearc peridotites: Tectonic implications. Lithos, 184-187: 346-360 DOI:10.1016/j.lithos.2013.11.012
Pan GT, Xiao QH and Yin FG, et al. 2017. Geotectonics of China. Beijing: Geological Publishing House (in Chinese)
Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds. ). Marginal Basin Geology. Geological Society, London Special Publications, 16: 77-94
Pelletier L and Müntener O. 2006. High-pressure metamorphism of the Lanzo peridotite and its oceanic cover, and some consequences for the Sesia-Lanzo zone (northwestern Italian Alps). Lithos, 90(1-2): 111-130 DOI:10.1016/j.lithos.2006.01.006
Piccardo GB. 1977. The ophiolite of the Liguria area: Petrology and geodynamic environment of its formation. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 33: 221-252
Piccardo GB and Guarnieri L. 2011. Gabbro-norite cumulates from strongly depleted MORB melts in the Alpine-Apennine ophiolites. Lithos, 124(3-4): 200-214 DOI:10.1016/j.lithos.2011.01.017
Piccardo GB. 2016. Evolution of the lithospheric mantle during passive rifting: Inferences from the Alpine-Apennine orogenic peridotites. Gondwana Research, 39(9): 230-249
Rampone E and Piccardo GB. 2000. The ophiolite-oceanic lithosphere analogue: New insights from the Northern Apennines (Italy). In: Dilek Y, Moores EM, Elthon D and Nicolas A (eds. ). Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, Special Paper. Boulder, CO: Geological Society of America, 349: 21-34
Reisberg L and Lorand JP. 1995. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature, 376(6536): 159-162 DOI:10.1038/376159a0
Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67 DOI:10.1016/S0024-4937(02)00160-3
Sanfilippo A, Tribuzio R, Ottolini L and Hamada M. 2017. Water, lithium and trace element compositions of olivine from Lanzo South replacive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes. Geochimica et Cosmochimica Acta, 214(11): 51-72
Schmidt G, Palme H, Kratz KL and Kurat G. 2000. Are highly siderophile elements (PGE, Re and Au) fractionated in the upper mantle of the earth? New results on peridotites from Zabargad. Chemical Geology, 163(1-4): 167-188 DOI:10.1016/S0009-2541(99)00136-9
Shen SY, Wei QR, Cheng HL and Mo XX. 1998a. Characteristics of ophiolites in Ailaoshan belt, "Sanjiang" region. Acta Petrologica et Mineralogica, 17(1): 1-8 (in Chinese with English abstract)
Shen SY, Wei QR, Cheng HL and Mo XX. 1998b. Metamorphic peridotites and their rock series in ophiolites of Ailaoshan, Yunnan Province. Chinese Science Bulletin, 43(4): 438-442 (in Chinese) DOI:10.1360/csb1998-43-4-438
Shen SY, Wei QR, Cheng HL, Mo XX and Feng QL. 2000. Characteristics of two sorts of silicalites in Ailao Mountain belt. Chinese Science Bulletin, 45(9): 988-992 (in Chinese) DOI:10.1360/csb2000-45-9-988
Shen SY, Wei QR, Cheng HL and Mo XX. 2001. Characteristics and geotectonic implications of two sorts of silicalites in Ailao Mountain belt, "Three-River" area. Acta Petrologica et Mineralogica, 20(1): 42-46 (in Chinese with English abstract)
Shervais JW and Mukasa SB. 1991. The Balmuccia orogenic lherzolite massif, Italy. Journal of Petrology, (2): 155-174
Shi RD, Griffin WL, O'Reilly SY, Zhao GC, Huang QS, Li J and Xu JF. 2010. Evolution of the Lüliangshan garnet peridotites in the North Qaidam UHP belt, Northern Tibetan Plateau: Constraints from Re-Os isotopes. Lithos, 117(1-4): 307-321 DOI:10.1016/j.lithos.2010.03.006
Song SG, Zhang LF and Niu YL. 2004. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, northern Tibetan Plateau, NW China. American Mineralogist, 89(8-9): 1330-1336 DOI:10.2138/am-2004-8-922
Song SG, Zhang LF, Niu YL, Su L, Jian P and Liu DY. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234(1-2): 99-118 DOI:10.1016/j.epsl.2005.02.036
Song SG, Niu YL, Zhang LF and Bucher K. 2009. The Luliangshan garnet peridotite massif of the North Qaidam UHPM belt, NW China: A review of its origin and metamorphic evolution. Journal of Metamorphic Geology, 27(9): 621-638 DOI:10.1111/j.1525-1314.2009.00848.x
Song YR, Ye K and Xu HJ. 2009. Upward mantle wedge convection recorded by Zhimafang orogenic garnet-lherzolite, Sulu UHP terrane, eastern China. Acta Petrologica Sinica, 25(1): 147-158 (in Chinese with English abstract)
Stern RJ. 2004. Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters, 226(3-4): 275-292 DOI:10.1016/S0012-821X(04)00498-4
Su L, Song SG and Zhou DW. 2005. Petrogenesis of Songshugou dunite body in the Qinling orogenic belt, Central China: Constraints from geochemistry and melt inclusions. Science in China (Series D), 48(8): 1146-1157 DOI:10.1360/03yd0037
Su WH, Liu SE, Xu DP, Wang WR, Yao B, Liu XM, Liu ZG and Zhong Z. 2006. Effects of local mechanical collision with shear stress on the phase transformation from α-quartz to coesite induced by high static pressure. Physical Review B, 73(14): 144110 DOI:10.1103/PhysRevB.73.144110
Takazawa E, Frey FA, Shimizu N and Obata M. 2000. Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process?. Geochimica et Cosmochimica Acta, 64(4): 695-716 DOI:10.1016/S0016-7037(99)00346-4
Tubía J. 1994. The Ronda peridotites (Los Reales nappe): An example of the relationship between lithospheric thickening by oblique tectonics and late extensional deformation within the Betic Cordillera (Spain). Tectonophysics, 238(1-4): 381-398 DOI:10.1016/0040-1951(94)90065-5
Tubía JM, Cuevas J and Ibarguchi JIG. 1997. Sequential development of the metamorphic aureole beneath the Ronda peridotites and its bearing on the tectonic evolution of the Betic Cordillera. Tectonophysics, 279(1-4): 227-252 DOI:10.1016/S0040-1951(97)00124-8
Tubía JM, Cuevas J and Esteban JJ. 2013. Localization of deformation and kinematic shift during the hot emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). Journal of Structural Geology, 50(B1): 148-160
Wang B, Chen B, Ji WH, Hong J, Yang B, Meng GL and Cao JF. 2016. Geological features of Djanydjer ophiolitic mélange and chronology of gabbro in Kyrgyz, South Tianshan. Earth Science Frontiers, 23(3): 198-209 (in Chinese with English abstract)
Wang CS and Yu GM. 1988. Evolution of the Mesozoic basin along the Yalung Zangbo River, Tibet. Journal of Chengdu College of Geology, 15(4): 48-56 (in Chinese with English abstract)
Wang DA. 1986a. The study on pelagic ophiolitic sedimentary rocks in Bailang-Jiding area, South Xizang (Tibet). Acta Petrologica Sinica, 2(3): 38-48 (in Chinese with English abstract)
Wang DA. 1986b. Diagenetic deuterogenic change of ophiolitic sedimentary rocks and its geological significance in the Rikeze area, South Tibet. Acta Sedimentologica Sinica, 4(1): 77-85 (in Chinese with English abstract)
Wang KY, Sun KX and Lu RP. 1983. Tectonic evolution in western Yunnan. In: Geology of the Qinghai Tibet Plateau (12). Beijing: Geological Publishing House, 187-199 (in Chinese)
Wang SH and Wang ZB. 2004. The discovery of structural mélange-ophiolite belt in the south section of Ailaoshan orogenic zone. Yunnan Geology, 23(3): 287-303 (in Chinese with English abstract)
Wang XF, Metcalfe I, Jian P, He LQ and Wang CS. 2000. The Jinshajiang-Ailaoshan suture zone, China: Tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences, 18(6): 675-690 DOI:10.1016/S1367-9120(00)00039-0
Wang YS, Qu YG, Wang ZH, Zheng CZ, Xie YH, Sun ZG and Zhang NK. 2005. Discovery of the Yunzhug sheeted dike swarm in northern Tibet, China: Evidence for seafloor spreading. Geological Bulletin of China, 24(12): 1150-1156 (in Chinese with English abstract)
Wei QR and Shen SY. 1995. Ophiolites in the Laowangzhai-Langnitang area: northern Ailao Mountains. Tethyan Geology, (19): 56-70 (in Chinese with English abstract)
Wei QR and Shen SY. 1997. Characteristics of three categories of arc volcanic rocks on the western side of Ailaoshan, Sanjiang area. Geological Science and Technology Information, 16(2): 13-18 (in Chinese with English abstract)
Wei QR, Shen SY and Mo XX. 1998. Characteristics and significance of silicolites in Ailaoshan area. Geological Science and Technology Information, 17(2): 29-34 (in Chinese with English abstract)
Wei QR, Shen SY and Yu HZ. 1999. The genesis of pyroxene basalts and plagioclase basalts in the Ailaoshan ophiolite zone, Yunnan. Tethyan Geology, (23): 39-45 (in Chinese with English abstract)
Weyer S, Muünker C and Mezger K. 2003. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system. Earth and Planetary Science Letters, 205(3-4): 309-324 DOI:10.1016/S0012-821X(02)01059-2
Whattam SA and Stern RJ. 2011. The 'subduction initiation rule': A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162(5): 1031-1045 DOI:10.1007/s00410-011-0638-z
Woodland AB, Kornprobst J and Wood BJ. 1992. Oxygen thermobarometry of orogenic lherzolite massifs. Journal of Petrology, 33(1): 203-230 DOI:10.1093/petrology/33.1.203
Woodland AB, Komprobst J, McPherson E, Bodinier JL and Menzies MA. 1996. Metasomatic interactions in the lithospheric mantle: Petrologic evidence from the Lherz massif, French Pyrenees. Chemical Geology, 134(1-3): 83-112 DOI:10.1016/S0009-2541(96)00082-4
Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite: A critical updated view. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract)
Wu HR. 1994. The Congdu Formation: Cretaceous deep-sea deposits in southern Xizang (Tibet) and its significance. Scientia Geologica Sinica, (1): 26-33 (in Chinese with English abstract)
Wu T, Xiao L, Ma CQ, Pirajno F, Sun Y and Zhan QY. 2014. A mafic intrusion of 'arc affinity' in a post-orogenic extensional setting: A case study from Ganluogou gabbro in the northern Yidun Arc Belt, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 94: 139-156 DOI:10.1016/j.jseaes.2014.08.026
Xia XP, Nie XS, Lai CK, Wang YJ, Long XP and Meffre S. 2016. Where was the Ailaoshan Ocean and when did it open: A perspective based on detrital zircon U-Pb age and Hf isotope evidence. Gondwana Research, 36: 488-502 DOI:10.1016/j.gr.2015.08.006
Xia XP, Xu J, Huang C, Long XP and Zhou ML. 2020. Subduction polarity of the Ailaoshan Ocean (Eastern Paleotethys): Constraints from detrital zircon U-Pb and Hf-O isotopes for the Longtan Formation. Geological Society of America Bulletin, 132(5-6): 987-996 DOI:10.1130/B35294.1
Xu J, Xia XP, Lai C, Long XP and Huang C. 2019a. When did the Paleotethys Ailaoshan Ocean close: New insights from detrital zircon U-Pb age and Hf isotopes. Tectonics, 38(5): 1798-1823 DOI:10.1029/2018TC005291
Xu J, Xia XP, Huang C, Cai KD, Yin CQ and Lai CK. 2019b. Changes of provenance of Permian and Triassic sedimentary rocks from the Ailaoshan suture zone (SW China) with implications for the closure of the eastern Paleotethys. Journal of Asian Earth Sciences, 170: 234-248 DOI:10.1016/j.jseaes.2018.10.025
Xu J, Xia XP, Lai CK, Zhou ML and Ma PF. 2019c. First identification of Late Permian Nb-enriched basalts in Ailaoshan Region (SW Yunnan, China): Contribution from Emeishan plume to subduction of eastern Paleotethys. Geophysical Research Letters, 46(5): 2511-2523 DOI:10.1029/2018GL081687
Xu J, Xia XP, Cai KD, Lai CK, Liu XJ, Yang Q, Zhou ML, Ma PF and Zhang L. 2020. Remnants of a Middle Triassic island arc on western margin of South China Block: Evidence for bipolar subduction of the Paleotethyan Ailaoshan Ocean. Lithos, 360-361: 105447 DOI:10.1016/j.lithos.2020.105447
Yang JJ and Powell R. 2006. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. Journal of Petrology, 47(10): 2047-2071 DOI:10.1093/petrology/egl036
Yang JJ, Huang MX, Wu QY and Zhang HR. 2014a. Coesite-bearing eclogite breccia: Implication for coseismic ultrahigh-pressure metamorphism and the rate of the process. Contributions to Mineralogy and Petrology, 167(6): 1013 DOI:10.1007/s00410-014-1013-7
Yang JJ, Fan ZF, Yu C and Yan R. 2014b. Coseismic formation of eclogite facies cataclasite dykes at Yangkou in the Chinese Su-Lu UHP metamorphic belt. Journal of Metamorphic Geology, 32(9): 937-960 DOI:10.1111/jmg.12101
Yang JJ. 2015. Coseismic high-pressure metamorphism: Observations and implications. Acta Petrologica Sinica, 31(9): 2465-2476 (in Chinese with English abstract)
Yang JR. 1986. The features of ophiolitic sequence and their geological significance in Shuanggou area, the central segment of Ailao Mountain. Yunnan Geology, 5(4): 292-302 (in Chinese with English abstract)
Yang JS, Shi RD, Wu CL and Chen SY. 2004. Recognition of Neoproterozoic ophiolite on the northern margin of the Qaidam basin: Evidence of the breakup of Rodinia?. Geological Bulletin of China, 3(9-10): 892-898 (in Chinese with English abstract)
Yumul GP Jr, Zhou MF, Wang CY, Zhao TP and Dimalanta CB. 2008. Geology and geochemistry of the Shuanggou ophiolite (Ailao Shan ophiolitic belt), Yunnan Province, SW China: Evidence for a slow-spreading oceanic basin origin. Journal of Asian Earth Sciences, 32(5-6): 385-395 DOI:10.1016/j.jseaes.2007.11.007
Zeng YC, Xu JF, Chen JL, Wang BD, Kang ZQ and Huang F. 2018. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau. Lithos, 300-301: 250-260 DOI:10.1016/j.lithos.2017.11.025
Zhang GB, Song SG, Zhang LF, Niu YL and Shu GM. 2005. Ophiolite-type mantle peridotite from Shaliuhe, North Qaidam UHPM belt, NW China and its tectonic implications. Acta Petrologica Sinica, 21(4): 1049-1058 (in Chinese with English abstract)
Zhang Q, Zhou YS and Li DZ. 1982. Sheeted dyke swarms within ophiolites in the Xigaze-Baining district, Xizang. In: Institue of Geology, Academica Sinica (ed. ). Petrology Research (1st Edition). Beijing: Geological Publishing House, 65-80 (in Chinese with English abstract)
Zhang Q, Zhang KW and Li DZ. 1987. The classification of basic and ultrabasic rocks from Hengduanshan Region. Acta Petrologica Sinica, 3(3): 46-54 (in Chinese with English abstract)
Zhang Q, Zhang KW, Li DZ and Wu HW. 1988. A preliminary study of Shuanggou ophiolite in Xinping County, Yunnan Province. Acta Petrologica Sinica, 4(4): 37-48 (in Chinese with English abstract)
Zhang Q, Zhao DS and Li DZ. 1991. Initial melting of mataperidotite in Shuanggou ophiolite from Xinping County, Yunnan Province. Acta Petrologica Sinica, 7(1): 1-15 (in Chinese with English abstract)
Zhang Q. 1992. The mafic-ultramafic rocks and Wilson Cycle. Acta Petrologica Sinica, 8(2): 168-176 (in Chinese with English abstract)
Zhang Q, Zhang KW and Li DZ. 1992. Mafic-ultramafic Rocks in Hengduan Mountains Region. Beijing: Science Press, 1-216 (in Chinese with English abstract)
Zhang Q, Zhou DJ, Zhao DS, Huang ZX, Han S, Jia XQ and Dong JQ. 1994. Ophiolites of the Hengduan Mountains, China: Characteristics and tectonic settings. Journal of Southeast Asian Earth Sciences, 9(4): 335-344 DOI:10.1016/0743-9547(94)90044-2
Zhang Q. 1995. Some problems concerning the ophiolite study. Acta Petrologica Sinica, 11(Suppl.): 228-240 (in Chinese with English abstract)
Zhang Q, Ma BL, Liu RX, Zhao DS, Fan QC, Li Q and Li XY. 1995a. A mantle fragments of continental lithosphere above a subduction zone: Geochemical characteristics of the Raobazhai ultramafic rocks, Anhui Province. Science in China (Series B), 25(8): 867-873 (in Chinese)
Zhang Q, Zhou DJ, Li XY, Chen Y, Huang ZX, Han S, Jia XQ and Dong JQ. 1995b. Characteristics and genesises of Shuanggou ophiolites, Yunnan Province, China. Acta Petrologica Sinica, 11(Suppl.): 190-202 (in Chinese with English abstract)
Zhang Q, Zhou DJ and Chen Y. 1997. A new type of oceanic crust and its dynamical significance. Chinese Science Bulletin, 42(1): 54-57 DOI:10.1007/BF02882522
Zhang Q, Xu P, Chen Y, Li XY, Chen YH, Wu XK, Zhu JQ and Gu YM. 1997. Constrants on trace element in micro area for mantle metasomatism: Study of proton microprobe for the Shuanggou ophiolite, Yunnan Province. Scientia Geologica Sinica, 32(1): 88-95 (in Chinese with English abstract)
Zhang Q, Chen Y and Qian Q. 1998. Two types of ophiolite sections and their genesis. Progress in Natural Science, 8(3): 326-330 (in Chinese)
Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press (in Chinese)
Zhang Q, Wang CY, Liu DY, Jian P, Qian Q, Zhou GQ and Robinson PT. 2008. A brief review of ophiolites in China. Journal of Asian Earth Sciences, 32(5-6): 308-324 DOI:10.1016/j.jseaes.2007.11.012
Zhang Q. 2014. Classifications of mafic-ultramafic rocks and their tectonic significance. Chinese Journal of Geology, 49(3): 982-1017 (in Chinese with English abstract)
Zhang Q. 2015. Some problems on the Xigaze ophiolite. Acta Petrologica Sinica, 31(1): 37-46 (in Chinese with English abstract)
Zhang Q, Zhang W, Jiang LL, Shi YR, Jiao ST, Wang CZ and Wang Z. 2020. Orogenic peridotite and its significance. Geological Bulletin of China, 39(10): 1489-1506 (in Chinese with English abstract)
Zhang SG, Wan YS, Liu GH, Cong RX and Zhao ZR. 1991. Metamorphic Geology of the Kuanping Group in the Northern Qinling Mountains. Beijing: Beijing Science and Technology Press (in Chinese with English abstract)
Zhang ZQ and Zhang Q. 1995. Geochemistry of metamorphosed Late Proterozoic Kuanping ophiolite in the Northern Qinling, China. Acta Petrologica Sinica, 11(Suppl.): 165-177 (in Chinese with English abstract)
Zhao ZP. 1984. Ophiolite and continental suture. Scientia Geologica Sinica, (4): 359-372 (in Chinese with English abstract)
Zhi XC, Jin YB, Meng Q and Gao TS. 2004. Trace element geochemistry of Raobazhai ultramafic complex, North Dabie Mountain. Acta Petrologica Sinica, 20(3): 463-472 (in Chinese with English abstract)
Zhong DL. 1998. Paleo-Tethyan Orogenic Belt in West Sichuan and West Yunnan. Beijing: Science Press, 1-231 (in Chinese)
Zhou DJ, Shen LP, Zhang Q, Xu RH, Zhou YS and Qiao GS. 1995a. The DUPAL anomaly of basalts in Paleo-Tethyan belts, western Yunnan. Progress in Geophysics, 10(2): 39-44 (in Chinese with English abstract)
Zhou DJ, Zhang Q, Li XY, Chen Y, Huang ZX, Han S, Jia XQ and Dong JQ. 1995b. Geochemistry of initial melting in Shuanggou mantle rock, Yunnan Province, China. Acta Petrologica Sinica, 11(Suppl.): 203-211 (in Chinese with English abstract)
Zhou GQ. 2008. Ophiolite: Some key aspects regarding its definition and classification. Journal of Nanjing University (Natural Sciences), 44(1): 1-24 (in Chinese with English abstract)
Zhu XH, Chen DL, Liu L, Zhao J and Zhang L. 2014. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lvliangshan area, North Qaidam. Acta Petrologica Sinica, 30(3): 822-834 (in Chinese with English abstract)
曹荣龙. 1981. 西藏雅鲁藏布江蛇绿岩带和深海沟沉积物的岩石学特征及其地质意义. 地球化学, (3): 247-254. DOI:10.3321/j.issn:0379-1726.1981.03.005
陈友红, 朱节清, 邬显慷, 张旗, 徐平, 李秀云. 1996. 双沟蛇绿岩中地幔交代作用的质子微探针研究. 岩矿测试, 15(3): 168-172.
董云鹏, 朱炳泉, 常向阳, 邓尚贤. 2000. 哀牢山缝合带中两类火山岩地球化学特征及其构造意义. 地球化学, 29(1): 6-13.
段新华, 赵鸿. 1981. 论哀牢山-藤条河断裂——古板块俯冲带. 地质学报, (4): 258-266.
方维萱, 胡瑞忠, 谢桂青, 苏文超. 2002. 云南哀牢山地区构造岩石地层单元及其构造演化. 大地构造与成矿, 26(1): 28-36. DOI:10.3969/j.issn.1001-1552.2002.01.006
黄忠祥, 韩松, 董金泉, 贾秀勤, 张旗, 赵大升. 1993. 云南新平县双沟蛇绿岩稀土元素地球化学研究. 岩石矿物学杂志, 12(3): 205-212.
黄忠祥, 贾秀勤, 董金泉, 韩松, 李秀云, 周德进. 1995. 云南双沟变质橄榄岩中蛇纹石的稀土元素空间分布. 岩石学报, 11(1): 16-27. DOI:10.3321/j.issn:1000-0569.1995.01.003
简平, 汪啸风, 何龙清, 王传尚. 1998a. 云南新平县双沟蛇绿岩U-Pb年代学初步研究. 岩石学报, 14(2): 207-212.
简平, 汪啸风, 何龙清, 王传尚. 1998b. 中国西南哀牢山蛇绿岩同位素地质年代学及大地构造意义. 华南地质与矿产, (1): 1-11.
简平, 汪啸风, 何龙清, 王传尚. 1999. 金沙江蛇绿岩中斜长岩和斜长花岗岩的U-Pb年龄及地质意义. 岩石学报, 15(4): 590-593. DOI:10.3321/j.issn:1000-0569.1999.04.012
李秀云, 周德进, 张旗, 黄忠祥, 韩松, 贾秀勤, 董金泉. 1993. 云南双沟地幔橄榄岩中部分熔融物的REE特征. 岩石学报, 9(3): 308-311. DOI:10.3321/j.issn:1000-0569.1993.03.009
凌其聪, 程惠兰, 沈上越, 魏启荣. 1999a. 云南哀牢山蛇绿岩的矿物学研究. 矿物学报, 19(1): 56-62.
凌其聪, 程惠兰, 沈上越. 1999b. 哀牢山南段蛇绿岩变质橄榄岩的矿物化学及其成因意义. 云南地质, 18(1): 47-52.
刘本培, 冯庆来, 方念乔, 贾进华, 何馥香. 1993. 滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化. 地球科学, 18(5): 529-539.
刘翠, 邓晋福, 刘俊来, 石耀霖. 2011. 哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境. 岩石学报, 27(12): 3590-3602.
刘俊来, 唐渊, 宋志杰, Dung TM, 翟云峰, 吴文彬, 陈文. 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285-1303.
莫宣学, 沈上越, 朱勤文. 1998. 三江中南段火山岩-蛇绿岩与成矿. 北京: 地质出版社, 1-128.
潘桂棠, 肖庆辉, 尹福光, 等. 2017. 中国大地构造. 北京: 地质出版社.
沈上越, 魏启荣, 程惠兰, 莫宣学. 1998a. "三江"哀牢山带蛇绿岩特征研究. 岩石矿物学杂志, 17(1): 1-8.
沈上越, 魏启荣, 程惠兰, 莫宣学. 1998b. 云南哀牢山带蛇绿岩中的变质橄榄岩及其岩石系列. 科学通报, 43(4): 438-442.
沈上越, 魏启荣, 程惠兰, 莫宣学, 冯庆来. 2000. 云南哀牢山带两类硅质岩特征. 科学通报, 45(9): 988-992. DOI:10.3321/j.issn:0023-074X.2000.09.018
沈上越, 魏启荣, 程惠兰, 莫宣学. 2001. "三江"地区哀牢山带两类硅质岩特征及大地构造意义. 岩石矿物学杂志, 20(1): 42-46. DOI:10.3969/j.issn.1000-6524.2001.01.006
宋衍茹, 叶凯, 续海金. 2009. 洋壳俯冲过程中的地幔楔上升对流: 来自芝麻坊石榴子石二辉橄榄岩早期变质的证据. 岩石学报, 25(1): 147-158.
苏犁, 宋述光, 周鼎武. 2005. 秦岭造山带松树沟纯橄岩体成因: 地球化学和岩浆包裹体的制约. 中国科学(D辑), 35(1): 38-47.
王斌, 陈博, 计文化, 洪俊, 杨博, 孟广路, 曹积飞. 2016. 吉尔吉斯南天山Djanydjer蛇绿混杂岩地质特征及辉长岩年代学研究. 地学前缘, 23(3): 198-209.
王成善, 余光明. 1988. 西藏雅鲁藏布江一带中生代沉积盆地的演化. 成都地质学院学报, 15(4): 48-56.
王东安. 1986a. 西藏南部白朗-吉定一带深海蛇绿质沉积岩系. 岩石学报, 2(3): 38-48.
王东安. 1986b. 西藏日喀则地区蛇绿质沉积岩的成岩后生变化及其地质意义. 沉积学报, 4(1): 77-85.
王凯元, 孙克祥, 卢瑞甫. 1983. 滇西地区大地构造演化. 见: 青藏高原地质文集(12). 北京: 地质出版社, 187-199
王顺华, 王照波. 2004. 哀牢山造山带南段构造混杂岩-蛇绿岩带的发现. 云南地质, 23(3): 287-303. DOI:10.3969/j.issn.1004-1885.2004.03.001
王永胜, 曲永贵, 王忠恒, 郑春子, 谢元和, 孙忠刚, 张宁克. 2005. 藏北永珠席状岩墙群的发现——海底扩张的证据. 地质通报, 24(12): 1150-1156. DOI:10.3969/j.issn.1671-2552.2005.12.010
魏启荣, 沈上越. 1995. 哀牢山北段老王寨-浪泥塘一带蛇绿岩的形成环境. 特提斯地质, (19): 56-70.
魏启荣, 沈上越. 1997. "三江"地区哀牢山西侧三类弧火山岩特征. 地质科技情报, 16(2): 13-18.
魏启荣, 沈上越, 莫宣学. 1998. 哀牢山硅质岩特征及其意义. 地质科技情报, 17(2): 29-34.
魏启荣, 沈上越, 禹华珍. 1999. 哀牢山蛇绿岩带两种玄武岩的成因探讨. 特提斯地质, (23): 39-45.
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩: 事实与臆想. 岩石学报, 30(2): 293-325.
吴浩若. 1984. 西藏南部白垩纪深海沉积地层——冲堆组及其地质意义. 地质科学, (1): 26-33.
杨建军. 2015. 震击高压变质作用: 观察与启示. 岩石学报, 31(9): 2465-2476.
杨家瑞. 1986. 哀牢山中段双沟一带蛇绿岩的序列特征及其地质意义. 云南地质, 5(4): 292-302.
杨经绥, 史仁灯, 吴才来, 陈松永. 2004. 柴达木盆地北缘新元古代蛇绿岩的厘定: 罗迪尼亚大陆裂解的证据. 地质通报, 23(9-10): 892-898.
张贵宾, 宋述光, 张立飞, 牛耀龄, 舒桂明. 2005. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义. 岩石学报, 21(4): 1049-1058.
张旗, 周云生, 李达周. 1982. 西藏日喀则-白朗地区蛇绿岩中的席状岩墙群. 见: 中国科学院地质研究所编. 岩石学研究(第一辑). 北京: 地质出版社, 65-80
张旗, 张魁武, 李达周. 1987. 横断山区基性-超基性岩的类型. 岩石学报, 3(3): 46-54. DOI:10.3321/j.issn:1000-0569.1987.03.006
张旗, 张魁武, 李达周, 吴海威. 1988. 云南新平县双沟蛇绿岩的初步研究. 岩石学报, 4(4): 37-48. DOI:10.3321/j.issn:1000-0569.1988.04.005
张旗, 赵大升, 李达周. 1991. 云南新平县双沟蛇绿岩中地幔岩初始熔融物. 岩石学报, 7(1): 1-15. DOI:10.3321/j.issn:1000-0569.1991.01.001
张旗. 1992. 镁铁-超镁铁岩与威尔逊旋回. 岩石学报, 8(2): 168-176. DOI:10.3321/j.issn:1000-0569.1992.02.007
张旗, 张魁武, 李达周. 1992. 横断山区镁铁-超镁铁岩. 北京: 科学出版社, 1-216.
张旗. 1995. 蛇绿岩研究中的几个问题. 岩石学报, 11(增): 228-240.
张旗, 马宝林, 刘若新, 赵大升, 樊祺诚, 李齐, 李秀云. 1995a. 一个消减带之上的大陆岩石圈地幔残片: 安徽饶拨寨超镁铁岩的地球化学特征. 中国科学(B辑), 25(8): 867-873.
张旗, 周德进, 李秀云, 陈雨, 黄忠祥, 韩松, 贾秀勤, 董金泉. 1995b. 云南双沟蛇绿岩的特征和成因. 岩石学报, 11(增): 190-202.
张旗, 周德进, 陈雨. 1996. 一种新的洋壳类型及其动力学意义. 科学通报, 41(11): 1025-1027. DOI:10.3321/j.issn:0023-074X.1996.11.018
张旗, 徐平, 陈雨, 李秀云, 陈友红, 邬显慷, 朱节清, 谷英梅. 1997. 地幔交代作用的微区微量元素证据——云南双沟蛇绿岩的质子探针研究. 地质科学, 32(1): 88-95.
张旗, 陈雨, 钱青. 1998. 两类蛇绿岩剖面及其成因的探讨. 自然科学进展, 8(3): 326-330. DOI:10.3321/j.issn:1002-008X.1998.03.011
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社.
张旗. 2014. 镁铁-超镁铁岩的分类及其构造意义. 地质科学, 49(3): 982-1017. DOI:10.3969/j.issn.0563-5020.2014.03.022
张旗. 2015. 日喀则蛇绿岩研究中的几个问题. 岩石学报, 31(1): 37-46.
张旗, 张维, 姜丽莉, 石玉若, 焦守涛, 王存智, 王振. 2020. 造山橄榄岩及其意义. 地质通报, 39(10): 1489-1506.
张寿广, 万渝生, 刘国惠, 从日祥, 赵子然. 1991. 北秦岭宽坪群变质地质. 北京: 北京科学技术出版社.
张宗清, 张旗. 1995. 北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征. 岩石学报, 11(增): 165-177.
赵宗溥. 1984. 蛇绿岩与大陆缝合线. 地质科学, (4): 359-372.
支霞臣, 靳永斌, 孟庆, 高天山. 2004. 大别山北部饶拔寨超镁铁岩体微量元素地球化学. 岩石学报, 20(3): 463-472.
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 1-231.
周德进, 沈丽璞, 张旗, 许荣华, 周云生, 乔广生. 1995a. 滇西古特提斯构造带玄武岩Dupal异常. 地球物理学进展, 10(2): 39-44.
周德进, 张旗, 李秀云, 陈雨, 黄忠祥, 韩松, 贾秀勤, 董金泉. 1995b. 云南双沟地幔岩中初始熔融物的地球化学. 岩石学报, 11(增): 203-211.
周国庆. 2008. 蛇绿岩研究新进展及其定义和分类的再讨论. 南京大学学报(自然科学), 44(1): 1-24.
朱小辉, 陈丹玲, 刘良, 赵姣, 张乐. 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义. 岩石学报, 30(3): 822-834.