岩石学报  2021, Vol. 37 Issue (3): 943-955, doi: 10.18654/1000-0569/2021.03.18   PDF    
非基体匹配分馏校正的LA-ICP-MS锡石微区U-Pb定年方法研究
陈靖1,2, 侯可军2, 王倩2, 袁顺达1,2, 陈岳龙1     
1. 中国地质大学(北京), 北京 100083;
2. 中国地质科学院矿产资源研究所, 北京 100037
摘要: 锡石原位微区U-Pb同位素测年,样品制备简单,具有高空间分辨率、高性价比、高效率等显著优势,是锡多金属矿床直接定年的有效手段。然而,基体效应的影响和标样的缺乏是制约该方法发展的关键。本次研究在He做载气以及加入不同辅助气(N2、水蒸气)条件下使用锆石作为外部标准物质对锡石标准和样品进行元素、同位素分馏校准,并采用Tera-Wasserburg图解法和207Pb法对普通铅进行校正。分析结果显示,氮气和水蒸气的引入,可以不同程度的提升Pb、U信号强度;3个不同的锡石标准和样品在He做载气及不同辅助气(N2、水蒸气)条件下获得的Tera-Wasserburg U-Pb下交点年龄及207Pb法普通铅校正后的206Pb/238U加权平均年龄在误差范围内都与文献报道值一致,并未发现明显基体效应的影响,显示采用锆石标准物质对不同类型锡矿床的锡石样品进行原位LA-ICP-MS U-Pb定年是可行的。
关键词: 锡石    LA-ICP-MS    U-Pb定年    基体效应    
In situ U-Pb dating of cassiterite by LA-ICP-MS without a matrix-matched standard
CHEN Jing1,2, HOU KeJun2, WANG Qian2, YUAN ShunDa1,2, CHEN YueLong1     
1. China University of Geosciences, Beijing 100083, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: In situ cassiterite U-Pb dating is an efficient method to directly determine the formation age of Sn-polymetallic deposits due to its simple pretreatment, high spatial resolution, high cost-efficient and fast analysis speed. The application of this method, however, is constrained by the influence of matrix effect and the lack of standard reference materials. In this study, the U-Pb age of cassiterite standard and unknow cassiterite samples were determined using different carrier gas and aux gas (N2, water vapor). Zircon was used as the external reference material for the calibration of element and isotope fractionation, Tera-Wasserburg diagram method and 207Pb method were used to correct the common lead. The results show that the introduction of N2 and water vapor during measurement can improve the sensitivity of U and Pb. Under different gas conditions, the age obtained from three different types of cassiterite samples were consistent with the previous report values within error, and no obvious matrix effect was found. This study shows that it is possible to use zircon as external standard for in situ LA-ICP-MS U-Pb dating of cassiterite.
Key words: Cassiterite    LA-ICP-MS    U-Pb dating    Matrix effect    

锡石(SnO2)属于金红石矿物族,是一种四方晶系的氧化物型含铀矿物,它不仅是各类锡多金属矿床中的主要矿石矿物,同时也是一种常见的副矿物,伴生于花岗岩有关的钨矿床、伟晶岩有关的锂铍铌钽矿及火山成因块状硫化物矿床。由于该矿物具有相对较高的U/Pb比值及较低的普通铅Pb含量,适合进行U-Pb同位素定年(刘玉平等, 2007; 袁顺达, 2007; Yuan et al., 2008; 袁顺达等, 2010; 杨柳等, 2015; Li et al., 2016)。

近些年来,关于锡石U-Pb同位素测年工作的报道越来越多,这些研究指示该方法是锡多金属矿床直接定年的有效手段。与ID-TIMS分析相比,原位LA-ICP-MS分析方法具有高空间分辨率、高性价比、高效率等明显优势,且样品制备简单(Yuan et al., 2010, 2011; Li et al., 2016; 涂家润等, 2019)。由于激光原位剥蚀过程中可能存在的基体效应,缺乏基体匹配的标样是制约锡石原位U-Pb定年的关键因素。近年来的研究工作中,主要采用了实验室锡石标准AY-4以及NIST系列玻璃作为外部标准物质对激光剥蚀传输以及质谱测试过程中的元素及同位素分馏进行校正;同时,由于锡石往往含有普通铅,如何对普通铅进行精确扣除或准确校正也是影响锡石微区原位U-Pb定年的关键因素。Yuan et al. (2011)首次尝试利用原位LA-ICP-MS U-Pb定年方法测定了华南芙蓉锡矿床的U-Pb年龄,他们使用经过ID-TIMS准确定值的锡石样品AY-4对测试过程中的元素同位素分馏进行校正,利用206Pb/207Pb-238U/207Pb作图获得“等时线”年龄,该方法对普通铅含量较高的年轻样品较为实用。Neymark et al. (2018)报道了一种不需要已知年龄锡石标样基体匹配校正的原位LA-ICP-MS U-Pb定年方法,该方法使用NIST 612做外标,对低Th含量锡石次级标准进行分馏校正,获得该锡石的Pb-Pb年龄,认为该样品Pb-Pb年龄与U-Pb年龄一致,从而获得U-Pb年龄测试值与真实值之间的分馏系数,再利用该系数校正锡石样品的同位素分馏,普通铅校正使用Tera-Wasserburg图解法,对系列样品的测定结果与前人其他方法报道的年龄在误差范围内一致。Cheng et al. (2019)采用NIST 612,Li et al. (2016)采用NIST 610做外部标准对测试过程中的元素及同位素分馏进行校正,并采用Tera-Wasserburg图解法对普通铅进行校正,获得的下交点年龄与ID-TIMS值在误差范围内一致,未发现明显基体效应的影响。对于基体效应的影响,周红英等(2015)提出,锡石和金红石由于同属金红石族,同为四方晶系,两者之间的基体效应并不明显;Luo et al. (2018)的研究表明,在剥蚀池前加入水蒸气可以显著抑制激光烧蚀和等离子电离过程中的元素分馏,并在此基础上建立了包括锆石、独居石、榍石在内的微区U-Pb定年方法。

在本次研究工作中,我们使用He做载气,同时引入不同辅助气体条件下尝试使用锆石作为外部标准物质对锡石标准和样品进行了同位素分馏校准,并采用Tera-Wasserburg图解法和207Pb法对普通铅进行校正,分析结果显示,在合适的实验分析条件及仪器参数下,并未发现明显基体效应的影响,证实使用锆石标准物质对不同来源的锡石样品进行原位LA-ICP-MS U-Pb定年是可行的。

1 标准和样品

锆石标样GJ-1。该锆石源自澳大利亚Macquarie大学大陆地球化学演化和矿床成因研究中心(GEMOC),锆石晶体呈无色透明,为1~2cm的宝石级等轴状巨晶,Jackson et al. (2004)利用TIMS方法获得该锆石的207Pb/206Pb年龄为608.5±0.4Ma。

锡石标样AY-4。该样品采自湖南芙蓉锡矿田安源矽卡岩性锡矿,ID-TIMS法获得的206Pb/238U年龄为158.2±0.4Ma(Yuan et al., 2011), 是目前使用最广泛的实验室参考标样;最近,Carr et al. (2020)新获得ID-TIMS年龄151.9±2.2Ma,但其获得的初始铅比值明显高于理论值。

锡石样品WLST。该样品采自内蒙古维拉斯托大型斑岩型锡矿床,翟德高等(2016)获得石英斑岩的锆石U-Pb年龄为135.7±2.2Ma,与Sn矿化密切相关的辉钼矿Re-Os年龄为125.7±2.2Ma;而Liu et al. (2016)获得的与Sn矿化密切相关的辉钼矿年龄为135±2Ma;刘瑞麟等(2018)获得的该矿床锡石U-Pb年龄为132.3±5.4Ma。

锡石样品XBD。该样品采自位于松潘-甘孜造山带北部雪宝顶伟晶岩型W-Sn-Be矿床,该矿床以盛产白钨矿、锡石、绿柱石、萤石等矿物晶体闻名(Liu et al., 2012),Sn和W储量达到49000t和271t。Zhang et al. (2014)Li et al. (2016)分别获得了该矿床锡石U-Pb年龄为193.6±6.0Ma和194.8±6.4Ma。

2 分析方法 2.1 实验条件

本次实验方法研究在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室的瑞索Resolution S155 193nm激光剥蚀系统与Bruker M90电感耦合等离子体质谱仪联用系统上进行(LA-ICP-MS)。NIST玻璃、锡石标准和样品镶嵌在1英寸圆形环氧树脂靶上,树脂和样品经过精心打磨,抛掉表面裂隙露出矿物颗粒新鲜面;对照BSE和CL图像进行结构检查,在无裂隙无包体的部位选点分析。正常情况下,激光剥蚀过程中采用氦气作载气、氩气为样品气,二者在Resolution S155双体积剥蚀池中混合后进入ICP-MS检测(图 1a),本次工作也研究了在剥蚀池之前引入氮气和水蒸气对测定结果的影响(图 1b, c)。实验采集204(Pb+Hg)、206Pb、207Pb、208Pb、232Th和238U的信号用于同位素比值计算,每个分析点采集20s的背景信号和40s的分析信号。测试开始前使用NIST SRM 610玻璃对仪器状态进行调谐,既获得最佳信号又保证剥蚀传输测定过程中的分馏最小(U/Th~1),氧化物产率最低(通常无水蒸气引入时ThO/Th小于0.4%),具体操作条件和参数设置见表 1所示。

图 1 激光剥蚀载气示意图(据Luo et al., 2018修改) (a)正常模式;(b)在剥蚀池前引入N2;(c)在剥蚀池前同时引入N2和水蒸气 Fig. 1 Schematic diagram of the experimental set-ups (modified after Luo et al., 2018) (a) normal mode; (b) N2 was introduced before the ablation cell; (c) N2 and water vapor were introduced before the ablation cell

表 1 锡石LA-ICP-MS微区U-Pb定年仪器参数 Table 1 Instrument parameters for LA-ICP-MS U-Pb dating of cassiterite
2.2 同位素分馏和普通铅校正

测试过程中的同位素分馏效应采用外部标准校正方法,采用锆石GJ-1作为外标,每测定8~10个样品点分析2次GJ-1。另外,为了尽最大可能减小剥蚀过程中的Downhole效应的影响, 本实验采用了大剥蚀直径(64μm或100μm)、低能量密度(6J/cm2)和低剥蚀频率(4Hz)的仪器条件,以获得较大剥蚀直径与剥蚀深度比,同位素比值分馏校正和结果计算采用ICPMSDataCal软件(Liu et al., 2008)。

普通铅校正是准确开展LA-ICP-MS法测定锡石U-Pb年龄的关键,同其他含U副矿物一样,常用的普通铅校正有204Pb法、207Pb法、208Pb法、Tera-Wasserburg法以及等时线法。204Pb法需要对204Pb进行准确测定,多用于高精度的ID-TIMS、MC-ICP-MS和SIMS法U-Pb年龄测定(Gehrels et al., 2008)。207Pb和208Pb校正方法是假定锡石样品初始238U/206Pb-207Pb/206Pb和238U/206Pb-208Pb/232Th是谐和的,208Pb校正法应用较少,需要准确测定208Pb/206Pb和232Th/238U的比值,以及选择合适的初始208Pb/206Pb比值,较适合低Th/U的样品(Cocherie, 2009);207Pb校正方法被广泛应用,仅需要准确测定238U/206Pb和207Pb/206Pb,以及普通铅的组成(Gibson and Ireland, 1996)。根据衰变原理,一套同时、同源及体系封闭的样品,只要具有不同放射成因Pb和普通铅的比值,这套样品的238U/204Pb-206Pb/204Pb,235U/204Pb-207Pb/204Pb及207Pb/204Pb-206Pb/204Pb会构筑一条等时线,等时线的斜率是年龄的函数,根据斜率即可计算出等时线年龄,该方法无需进行普通Pb的扣除,但同样需要对204Pb进行准确测定(Gulson and Jones, 1992);为克服204Pb难以准确的定的问题,Yuan et al. (2011)提出使用207Pb代替204Pb即使用238U/207Pb-206Pb/207Pb等时线代替传统等时线,该方法对U含量不高,放射性成因207Pb含量极低的年轻锡石样品完全可行,但对于年龄较老和U含量较高的锡石样品可能会产生较大误差。Tera and Wasserburg(1972a, b)、Chew et al. (2011)提出Tera-Wasserburg图解法,不需要将进行普通铅扣除直接将238U/206Pb和207Pb/206Pb投图,形成一条不一致线,该不一致线与谐和线的下交点即为样品的形成年龄,上交点为样品普通铅的同位素组成,还可以使用该普通铅同位素组成进行207Pb校正法对普通铅进行校正。本研究对含有普通铅的样品采用最后一种方法校正。各样品的谐和年龄与加权平均年龄的计算和绘图采用Isoplot程序(Ludwig, 2003)。

3 分析结果与讨论 3.1 分析结果

在本次研究中,我们在正常模式(He作载气)、剥蚀池前引入N2以及在剥蚀池前同时引入N2和水蒸气三种模式下使用锆石做外标对锡石标准和样品(AY-4、WLST、XBD)进行元素、同位素分馏校正,并对测定结果进行了比较(表 2表 3表 4图 2图 3图 4)。

表 2 正常He做载气条件下锆石做外标锡石LA-ICP-MS U-Pb定年结果 Table 2 LA-ICP-MS cassiterite U-Pb dationg using zircon as standard under normal carrier gas condition

表 3 引入N2条件下锆石做外标锡石LA-ICP-MS U-Pb定年结果 Table 3 LA-ICP-MS cassiterite U-Pb dationg using zircon as standard with N2 introduced

表 4 引入N2和水蒸气条件下锆石做外标锡石LA-ICP-MS U-Pb定年结果 Table 4 LA-ICP-MS cassiterite U-Pb dationg using zircon as standard with N2 and water vapor introduced

图 2 锡石标准样品AY-4微区U-Pb定年结果 (a)正常剥蚀模式;(b)在剥蚀池前引入N2;(c)在剥蚀池前同时引入N2和水蒸气 Fig. 2 U-Pb dating results of cassiterite AY-4 (a) normal mode; (b) N2 was introduced before the ablation cell; (c) N2 and water vapor were introduced before the ablation cell

图 3 锡石样品WLST(采自维拉斯托)微区U-Pb定年结果 (a)正常剥蚀模式;(b)在剥蚀池前引入N2;(c)在剥蚀池前同时引入N2和水蒸气 Fig. 3 U-Pb dating results of cassiterite WLST (from Weilasituo) (a) normal mode; (b) N2 was introduced before the ablation cell; (c) N2 and water vapor were introduced before the ablation cell

图 4 锡石样品XBD(采自雪宝顶)微区U-Pb定年结果 (a)在剥蚀池前引入N2;(b)在剥蚀池前同时引入N2和水蒸气 Fig. 4 U-Pb dating results of cassiterite XBD (from Xuebaoding) (a) N2 was introduced before the ablation cell; (b) N2 and water vapor were introduced before the ablation cell

锡石标准样品AY-4测定结果:分析均采用64μm剥蚀直径,正常剥蚀模式下通过对21个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为155.41±0.93Ma(MSWD=0.55),207Pb法普通铅校正后的206Pb/238U加权平均年龄为155.34±0.90Ma(MSWD=0.52)(图 2a);在剥蚀池前引入N2模式下通过对20个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为157.48±0.83Ma(MSWD=0.59),207Pb法普通铅校正后的206Pb/238U加权平均年龄为157.40±0.81Ma(MSWD=0.55)(图 2b);在剥蚀池前同时引入N2和水蒸气模式下通过对49个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为155.20±1.00Ma (MSWD=1.30),207Pb法普通铅校正后的206Pb/238U加权平均年龄为155.56±0.62Ma(MSWD=1.30)(图 2c)。

锡石样品WLST(采自维拉斯托)测定结果:分析均采用64μm剥蚀直径,正常剥蚀模式下通过对23个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为135.60±2.10Ma(MSWD=1.90),207Pb法普通铅校正后的206Pb/238U加权平均年龄为135.80±1.80Ma(MSWD=1.60)(图 3a);在剥蚀池前引入N2模式下通过对25个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为135.40±3.90Ma(MSWD=2.30),207Pb法普通铅校正后的206Pb/238U加权平均年龄为136.30±1.90Ma(MSWD=1.60)(图 3b)。在剥蚀池前同时引入N2和水蒸气模式下通过对26个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为134.50±1.00Ma(MSWD=0.71),207Pb法普通铅校正后的206Pb/238U加权平均年龄为134.33±0.97Ma(MSWD=0.73)(图 3c)。

锡石样品XBD(采自雪宝顶)测定结果:分析均采用100μm剥蚀直径,在本次研究中,鉴于该样品U-Pb含量较低(表 3图 4),故仅尝试在剥蚀池前引入N2及在剥蚀池前同时引入N2和水蒸气两种模式下进行锡石U-Pb定年测定。在剥蚀池前引入N2模式下通过对15个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为193.70±5.00Ma(MSWD=1.00),207Pb法普通铅校正后的206Pb/238U加权平均年龄为191.80±4.10Ma(MSWD=0.40)(图 4a)。在剥蚀池前同时引入N2和水蒸气模式下通过对15个点实验数据进行分析,获得的Tera-Wasserburg U-Pb下交点年龄为193.70±4.80Ma(MSWD=0.98),207Pb法普通铅校正后的206Pb/238U加权平均年龄为191.20±4.10Ma(MSWD=0.50)(图 4b)。

3.2 N2和水蒸气对灵敏度的影响

前人的研究表明,在剥蚀池等离子体前引入N2等活性气体可以有效提高灵敏度(胡兆初等, 2013; Luo et al., 2018),本研究根据前人的经验在剥蚀池前引入N2以及N2和水蒸气混合气作为辅助气进行了对比研究。结果显示,在剥蚀池前引入~5mL/min的N2做辅助气时,Pb信号强度提升~1.5倍,而U的信号未有明显的变化;而在使用~5mL/min N2及使用Thermofisher neptune雾化器及雾室在~200mL/min He做载气引入水蒸气混合做辅助气时,U信号增加近1.5倍,Pb信号提高近2.5倍,这对准确获取U、Pb含量低的锡石样品U-Pb年龄有重要意义(图 5)。

图 5 不同载气及辅助气条件下信号强度标准化比较 Fig. 5 Comparison of signal intensity standardization under different gas conditions
3.3 基体效应对测定结果的影响

基体效应被认为是影响微区U-Pb定年准确性的重要影响因素(刘志超等, 2011; Winefordner et al., 2000),涂家润等(2019)崔玉荣等(2017)研究表明,基体效应对准确测定锡石U-Pb年龄影响明显;但也有研究表明,在对某些矿物进行微区U-Pb定年时,基体效应影响不明显(Hou et al., 2020; Cheng et al., 2019; Xiong et al., 2020)。在本次研究中,3种激光载气及辅助气模式下使用锆石标准GJ-1对3个不同的锡石标准和样品进行元素、同位素分馏校正,获得了与文献报道在误差范围内一致的年龄结果,也表明在锡石微区U-Pb定年过程中,基体效应不明显。基体效应之所以对矿物激光剥蚀微区U-Pb定年有影响,有一种可能的原因是由于剥蚀速率的差别,产生了由于剥蚀深度产生的分馏效应(Downhole fractionation)。本次研究对锡石微区U-Pb定年时,为了获得足够的分析信号往往使用大的剥蚀直径,也使用了相对较低的能量密度和剥蚀频率,以获得较大剥蚀直径与剥蚀深度比,降低了Downhole分馏的影响,在三种载气和辅助气情况下单点分析锆石GJ-1和锡石标样AY-4的206Pb/238U比值随剥蚀时间改变的分馏因子F(Fryer et al., 1995)基本一致,也显示在分析测试过程中受基体效应影响不明显(图 6)。

图 6 不同载气及辅助气条件下锆石GJ-1及锡石AY-4 206Pb/238U随剥蚀时间变化的分馏因子 Fig. 6 Fractionation factor of 206Pb/238U during a continous ablation process for zircon GJ-1 and cassiterite AY-4 under different gas conditions
4 结论

在采用大的剥蚀直径、相对较低剥蚀能量密度及剥蚀频率条件下,在He作载气及引入不同辅助气(N2、水蒸气)条件下,以锆石为标准进行锡石的微区原位U-Pb定年是完全可行的,3个不同类型矿床锡石标准和样品测试所获结果在误差范围内与文献报道值一致,基体效应影响并不明显;进行锡石微区U-Pb定年时,在剥蚀池前引入适量的N2以及N2和水蒸气混合气作为辅助气可以不同的提高U、Pb灵敏度,对测定低U、Pb含量样品具有良好效果。

致谢      感谢审稿专家提出的宝贵意见和编辑的辛勤工作。

参考文献
Carr PA, Zink S, Bennett VC, Norman MD, Amelin Y and Blevin PL. 2020. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole granite polymetallic system, eastern Australia. Chemical Geology, 539: 119539 DOI:10.1016/j.chemgeo.2020.119539
Cheng YB, Spandler C, Kemp A, Mao JW, Rusk B, Hu Y and Blake K. 2019. Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu tin district. American Mineralogist, 104(1): 118-129 DOI:10.2138/am-2019-6466
Chew DM, Sylvester PJ and Tubrett MN. 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280(1-2): 200-216 DOI:10.1016/j.chemgeo.2010.11.010
Cocherie A. 2009. Common-Pb correction in laser U-Pb geochronology using MC-ICPMS and a multi-ion counting system. Geochimica et Cosmochimica Acta, 73(Supplement): A233
Cui YR, Tu JR, Chen F, Hao S, Ye LJ, Zhou HY and Li HM. 2017. The reseach advances in LA-(MC)-ICP-MS U-Pb dating of cassiterite. Acta Geologica Sinica, 91(6): 1386-1399 (in Chinese with English abstract)
Fryer BJ, Jackson SE and Longerich HP. 1995. The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM- ICP-MS) in the Earth sciences. The Canadian Mineralogist, 33(2): 303-312
Gehrels GE, Valencia VA and Ruiz J. 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3): 2008Q03017
Gibson GM and Ireland TR. 1996. Extension of Delamerian (Ross) orogen into western New Zealand: Evidence from zircon ages and implications for crustal growth along the Pacific margin of Gondwana. Geology, 24(12): 1087-1090 DOI:10.1130/0091-7613(1996)024<1087:EODROI>2.3.CO;2
Gulson BL and Jones MT. 1992. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites. Geology, 20(4): 355-358 DOI:10.1130/0091-7613(1992)020<0355:CPFDDO>2.3.CO;2
Hou ZH, Xiao YL, Shen J and Yu CL. 2020. In situ rutile U-Pb dating based on zircon calibration using LA-ICP-MS, geological applications in the Dabie orogen, China. Journal of Asian Earth Sciences, 192: 104261 DOI:10.1016/j.jseaes.2020.104261
Hu ZC, Liu SH, Lin L, Liu YS and Gao S. 2013. Study on in situ analysis of trace elements and isotopes by laser based on active matrix. In: Abstracts of the 14th Annual Meeting of Chinese Society of Mineralogy, Petrology and Geochemistry. Nanjing: Chinese Society for Mineralogy, Petrology and Geochemistry (in Chinese)
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69 DOI:10.1016/j.chemgeo.2004.06.017
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-322 DOI:10.1016/j.oregeorev.2015.07.016
Liu RL, Wu G, Li TG, Chen GZ, Wu LW, Zhang PC, Zhang T, Jiang B and Liu WY. 2018. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing'an Range and their geological significance. Earth Science Frontiers, 25(5): 183-201 (in Chinese with English abstract)
Liu Y, Deng J, Shi GH and Sun DS. 2012. Geochemical and morphological characteristics of coarse-grained tabular beryl from the Xuebaoding W-Sn-Be deposit, Sichuan Province, western China. International Geology Review, 54(14): 1673-1684 DOI:10.1080/00206814.2012.667904
Liu YF, Jiang SH and Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geology Reviews, 75: 150-173 DOI:10.1016/j.oregeorev.2015.12.006
Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu ZC, Wu FY, Guo CL, Zhao ZF, Yang JH and Sun JF. 2011. In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS. Chinese Science Bulletin, 56(33): 2772-2781 (in Chinese) DOI:10.1360/csb2011-56-33-2772
Ludwig KR. 2003. User's manual for isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 4
Luo T, Hu ZC, Zhang W, Liu YS, Zong KQ, Zhou L, Zhang JF and Hu SH. 2018. Water vapor-assisted "universal" nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry. Analytical Chemistry, 90(15): 9016-9024 DOI:10.1021/acs.analchem.8b01231
Neymark LA, Holm-Denoma CS and Moscati RJ. 2018. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chemical Geology, 483: 410-425 DOI:10.1016/j.chemgeo.2018.03.008
Tera F and Wasserburg GJ. 1972a. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14(3): 281-304 DOI:10.1016/0012-821X(72)90128-8
Tera F and Wasserburg GJ. 1972b. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions. Earth and Planetary Science Letters, 17(1): 36-51 DOI:10.1016/0012-821X(72)90257-9
Tu JR, Cui YR, Zhou HY, Li HM, Hao S and Li GZ. 2019. Review of U-Pb dating methods for cassiterite. Geological Survey and Research, 42(4): 241-249 (in Chinese with English abstract)
Winefordner JD, Gornushkin IB, Pappas D, Matveev OI and Smith BW. 2000. Novel uses of lasers in atomic spectroscopy. Journal of Analytical Atomic Spectrometry, 15(9): 1161-1189 DOI:10.1039/a910219l
Xiong YQ, Shao YJ, Cheng YB and Jiang SY. 2020. Discrete Jurassic and Cretaceous mineralization events at the Xiangdong W(-Sn) deposit, Nanling Range, South China. Economic Geology, 115(2): 385-413 DOI:10.5382/econgeo.4704
Yang L, Xu YJ and Zheng P. 2015. The oretical basis and methodical progress of U-Pb isotope dating of cassiterite. Land & Resources Herald, 12(4): 35-39 (in Chinese with English abstract)
Yuan SD. 2007 Geochronology and geochemistry of the Xianghualing tin-polymetallic deposit, Hunan Province, China. Ph. D. Dissertation. Beijing: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382 DOI:10.1007/s00126-007-0166-y
Yuan SD, Li HM, Hao S, Geng JZ and Zhang DL. 2010. LA-MC-ICP-MS U-Pb dating of cassiterite in the giant Furong tin deposit, Hunan Provice and its geological applications. Mineral Deposits, 29(Suppl.1): 543-544 (in Chinese)
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242 DOI:10.1016/j.oregeorev.2011.08.002
Zhai DG, Liu JJ, Li JM, Zhang M, Li BY, Fu X, Jiang HC, Ma LJ and Qi L. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its geological significance. Mineral Deposits, 35(5): 1011-1022 (in Chinese with English abstract)
Zhang DL, Peng JT, Coulson IM, Hou LH and Li SJ. 2014. Cassiterite U-Pb and muscovite 40Ar-39Ar age constraints on the timing of mineralization in the Xuebaoding Sn-W-Be deposit, western China. Ore Geology Reviews, 62: 315-322 DOI:10.1016/j.oregeorev.2014.04.011
Zhou HY, Li HK, Li HM, Cui YR, Geng JZ, Zhang J, Tu JR and Ye LJ. 2015. Standard material for rutile U-Pb isotopic dating. Acta Geologica Sinica, 89(Suppl.1): 64-66 (in Chinese)
崔玉荣, 涂家润, 陈枫, 郝爽, 叶丽娟, 周红英, 李惠民. 2017. LA-(MC)-ICP-MS锡石U-Pb定年研究进展. 地质学报, 91(6): 1386-1399. DOI:10.3969/j.issn.0001-5717.2017.06.016
胡兆初, 刘圣华, 林琳, 刘勇胜, 高山. 2013. 活性基体改进激光原位微量元素和同位素分析技术研究. 见: 中国矿物岩石地球化学学会第14届学术年会论文摘要. 南京: 中国矿物岩石地球化学学会, 1
刘瑞麟, 武广, 李铁刚, 陈公正, 武利文, 章培春, 张彤, 江彪, 刘文元. 2018. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义. 地学前缘, 25(5): 183-201.
刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
刘志超, 吴福元, 郭春丽, 赵子福, 杨进辉, 孙金凤. 2011. 磷钇矿U-Pb年龄激光原位ICP-MS测定. 科学通报, 56(33): 2772-2781.
涂家润, 崔玉荣, 周红英, 李惠民, 郝爽, 李国占. 2019. 锡石U-Pb定年方法评述. 地质调查与研究, 42(4): 241-249.
杨柳, 徐耀鉴, 郑平. 2015. 锡石U-Pb同位素定年的理论基础及方法进展. 国土资源导刊, 12(4): 35-39.
袁顺达. 2007. 香花岭锡多金属矿床同位素年代学及地球化学. 博士学位论文. 贵阳: 中国科学院地球化学研究所
袁顺达, 李惠民, 郝爽, 耿建珍, 张东亮. 2010. 湘南芙蓉超大型锡矿锡石原位LA-MC-ICP-MS U-Pb测年及其意义. 矿床地质, 29(增1): 543-544.
翟德高, 刘家军, 李俊明, 张梅, 李泊洋, 付旭, 蒋胡灿, 马立军, 漆亮. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022.
周红英, 李怀坤, 李惠民, 崔玉荣, 耿建珍, 张健, 涂家润, 叶丽娟. 2015. 金红石U-Pb同位素定年标准物质. 地质学报, 89(增1): 64-66.