岩石学报  2021, Vol. 37 Issue (3): 847-864, doi: 10.18654/1000-0569/2021.03.13   PDF    
滇东南官房钨矿床石榴子石原位LA-SF-ICP-MS U-Pb定年及地质意义
刘益1, 孔志岗1, 陈港2, 邵凤丽3, 唐燕文4, 孙滨1, 杨光树1, 蔡金定1     
1. 昆明理工大学国土资源工程学院, 昆明 650093;
2. 中国地质科学院矿产资源研究所, 北京 100037;
3. 临沂大学地质与古生物研究所, 临沂 276000;
4. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081
摘要: 官房矽卡岩型钨矿床位于滇东南薄竹山W多金属矿集区,大地构造上处于扬子地块、华夏地块、印支地块三大构造单元的接合部位。白钨矿呈浸染状赋存于石榴子石-辉石矽卡岩中。矽卡岩一般不直接与岩体接触,呈脉状或透镜状产于围岩中。精确的成岩成矿年龄的测定对于研究滇东南W-Sn矿床成岩成矿地质背景、矿床成因、成矿预测均具有重要意义。根据电子探针分析结果,石榴子石属钙铁榴石-钙铝榴石固溶体系列。石榴子石原位LA-SF-ICP-MS U-Pb年代学研究获得T-W图下交点年龄分别为101.3±5.4Ma(MSWD=2.0)、87.6±2.3Ma(MSWD=1.5),暗示该区可能存在早白垩世和晚白垩世两期矽卡岩成岩事件。综合研究表明,石榴子石原位U-Pb定年对于限定矽卡岩型W矿床的成矿时代是可行的。结合区域燕山晚期成岩成矿事件,认为~88Ma为该区W-Sn多金属矿主要成矿期,成矿作用与同期花岗岩密切相关;~101Ma可能为另外一期矽卡岩成岩事件,这一认识和发现对于区域找矿部署有很强的实践意义。
关键词: 官房钨矿    石榴子石    原位LA-SF-ICP-MS U-Pb    薄竹山    
In-situ LA-SF-ICP-MS U-Pb dating of garnet from Guanfang tungsten deposit in southeastern Yunnan Province and its geological significance
LIU Yi1, KONG ZhiGang1, CHEN Gang2, SHAO FengLi3, TANG YanWen4, SUN Bin1, YANG GuangShu1, CAI JinDing1     
1. Kunming University of science and technology, Faculty of Land Resources Engineering, Kunming 650093, China;
2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Institute of Geology and Paleontology, Linyi University, Linyi 276000, China;
4. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Abstract: The Guanfang skarn-type tungsten deposit is located in the Bozhushan tungsten polymetallic ore concentration area in southeastern Yunnan. It is situated at the junction of three major tectonic units of Yangtze block, Cathaysia block and Indosinian block. Scheelite is disseminated in garnet-pyroxene skarns which are generally not in direct contact with intrusive rocks and occur in vein or lenticular forms in host rocks. The accurate determination of petrogenetic and metallogenic age is of great significance for studying the petrogenetic and metallogenic geological background, genesis and metallogenic prediction of the W-Sn deposit in southeastern Yunnan. According to the results of electron microprobe analysis, the garnets are the series of andradite-almandite solid solution. In-situ LA-SF-ICP-MS U-Pb dating of the garnet from the Guanfang deposit yielded a lower intercep 206Pb/238U age of 101.3±5.4Ma (MSWD =2.0) and 87.6±2.3Ma(MSWD=1.5)in the Tera-Wasserburg Concordia diagram, respectively, suggesting that there may be two stages skarn petrogenetic events in Early Cretaceous and Late Cretaceous in this area. The comprehensive study shows that in-situ U-Pb dating of the garnet is feasible to constrain the metallogenic age of skarn-type tungsten deposit. Combined with the Late Yanshanian petrogenetic and metallogenic events, we suggest that ~88Ma is the main ore-forming period of W-Sn polymetallic deposits in the area, and the ore-forming process is closely related to the contemporaneous granites. ~101Ma may be another skarn petrogenetic and metallogenic event. This new finding and understanding is of great practical significance for regional prospecting deployment.
Key words: Guanfang tungsten deposit    Garnet    In situ LA-SF-ICP-MS U-Pb    Bozhushan    

滇东南自东向西发育老君山、薄竹山、个旧三个花岗岩体(图 1a),围绕三个岩体形成了三个著名的矿集区,构成滇东南W-Sn多金属成矿带,是华南西部岩浆-成矿带的重要组成部分(涂光炽,2002张洪培等,2006毛景文等, 2008a, 2020Li et al., 2019bMao et al., 2019)。薄竹山岩体东南官房一带的官房钨矿,包括菖蒲塘、腰店或团山、官房、二河沟、山水等五个矿段(大型,张亚辉和张世涛,2011),矿体多产于远离接触带的碳酸盐岩、碎屑岩的构造裂隙中,赋矿围岩主要为矽卡岩,以往研究多认为成岩成矿作用与薄竹山岩体相关,但长期以来花岗岩年代学的研究存在争议:张世涛和陈国昌(1997)根据岩体侵入接触关系,结合Rb-Sr定年结果,将23个侵入体建立了7个单元,归并为2个序列和1个独立单元,认为该岩体为多期次的复式岩体;程彦博等(2010)李建德(2018)应用LA-ICP-MS锆石U-Pb定年方法,获得近于一致的年龄(约88Ma);张亚辉(2013)获得的辉钼矿Re-Os等时线年龄91.55±3.4Ma,从而认为成岩成矿年代一致,为同一期岩浆作用的产物。近年来在官房一带深部和外围找矿实践表明,区内存在两类产状不同、矿物组合不同的矽卡岩,且含矿具有明显的差异,那么官房钨矿附近是否存在不同期次的成岩成矿作用导致成矿差异显著?因此急需加强该区年代学研究,更好地指导找矿实践。

图 1 滇东南地区大地构造略图(a, 据李建康等,2013)和官房矿区地质简图(b,据张亚辉和张世涛,2011修改) Fig. 1 Simplified geological map of southeastern Yunnan Province showing distribution of major tectonic units (a, modified after Li et al., 2013) and geological sketch map of the Guanfang mining district (b, Zhang and Zhang, 2011)

石榴子石是矽卡岩中常见的矿物,具有较高的U-Pb同位素体系封闭温度(>850℃;Mezger et al., 1989),因而其U-Pb同位素年龄可用于限定变质和岩浆作用时间(Barrie,1990Burton and O'Nions,1991)。但由于自然界中的石榴子石通常含有较低的U,较高的普通Pb和富U的包裹体等,导致石榴子石U-Pb定年没有得到广泛应用(Vance et al., 1998Lima et al., 2012Baxter and Scherer, 2013; 张立中等,2020)。近年来得益于激光剥蚀电感耦合等离子质谱(LA-ICP-MS)分析技术的发展,为成功获得石榴子石这一低U矿物高分辨率定年提供了可能,现可以对U含量低于1×10-6的样品进行定年(Tang et al., 2021),结合矿物学研究,可精确限定矽卡岩矿床成岩成矿时代。但目前,主要应用于矽卡岩型Fe-Cu-Ag-Pb-Zn矿床精确定年研究,针对矽卡岩型W多金属矿床的定年研究鲜有报道(Deng et al., 2017, 2019Seman et al., 2017Fu et al., 2018Gevedon et al., 2018Wafforn et al., 2018Yang et al., 2018Zhang et al., 2018, 2019; Li et al., 2019aLuo et al., 2019Zang et al., 2019杨超等,2019Duan et al., 2020林彬等,2020张立中等,2020张小波等,2020Tang et al., 2021)。本文在前人工作的基础上,尝试对官房钨矿床矽卡岩中的石榴子石进行原位LA-SF-ICP-MS U-Pb定年,精确测定矽卡岩成岩年龄,结合区内矽卡岩型钨矿床的特征,从而获取钨矿的成矿年代上限,这对于构建区域W-Sn成岩成矿的时间格架,正确认识矿床成因,掌握成矿规律,推动区域W-Sn找矿勘查突破具有重要意义(袁顺达等,2020)。

1 区域地质背景

滇东南大地构造上处于扬子地块、华夏地块、印支地块三大构造单元的接合部位(图 1a),是环太平洋与特提斯两大构造域复合作用的产物(周建平等,1998Roger et al., 2000Yan et al., 2006Cheng et al., 2013a)。官房钨矿所在的薄竹山矿集区与老君山矿集区、个旧矿集区等构成滇东南W-Sn多金属成矿带(涂光炽, 2002张洪培等,2006毛景文等, 2008b, 2020Li et al. 2019b)。

滇东南古生界沉积建造主要表现为砂泥质建造和碳酸盐建造,根据沉积界面一般可分为上、下两个构造层,寒武系-奥陶系为下构造层,为类复理石沉积,由下往上沉积特征趋于稳定;加里东运动之后泥盆系不整合面之上为上构造层。薄竹山矿集区位于滇东南W-Sn多金属成矿带中部,总体以薄竹山花岗岩体为中心,岩体南部、东部主要出露寒武系和奥陶系,西北部白牛厂一带寒武系出露也相对集中。薄竹山一带寒武系由下往上,由浅海陆棚相砂泥质沉积逐渐转化为滨海潮坪相白云质碳酸盐岩和砂泥质的沉积;奥陶系仅出露下统,岩性为浅海陆棚相砂岩、页岩、灰岩互层,地层被泥盆系超覆,缺失志留系。薄竹山岩体西部和岩体以北主要出露上古生界,中生界集中分布在岩体外围东北老回龙一带,且多缺失侏罗系、白垩系(张世涛和陈国昌,1997张亚辉等,2014)。

滇东南构造格架以发育不同方向深大断裂为主要特征,根据其活动程度可分为两类:一是长期演化运动的哀牢山断裂、红河断裂,该组断裂形成于中元古代,控制着一系列岩浆活动;二是形成于古生代并于海西期再次活动的同生大断裂,包括南盘江断裂、文麻断裂、弥勒-师宗断裂等,具继承性多期次特点。上述两种深大断裂控制了老君山、薄竹山、个旧三个矿集区的时空分布(图 1a)。区域内主要构造线方向为北东向,其次为北西向。薄竹山一带褶皱与断裂较为发育,薄竹山穹窿、白牛厂背斜、大黑山-老回龙向斜为区内主要褶皱;断裂分为北东、北西向断层,其中以北东向断层规模最大,多时空、多期次的褶皱断层相互叠加改造,使得成矿元素的运移更为有利(张世涛和陈国昌,1997)。

区内岩浆活动较为强烈,主要表现为二叠纪玄武岩的大面积喷发与燕山期酸性岩浆侵入,另外见有辉绿岩脉,辉长岩脉零星分布。二叠纪峨眉山玄武岩广泛分布于川滇黔地区,分布面积大于25×104km2,为一套大陆裂谷型拉斑玄武岩系列组合,喷发期大致为~260Ma,薄竹山岩体外围以北见有分布。较大的燕山期岩体包括老君山花岗岩体、薄竹山花岗岩体、个旧花岗岩体,其中薄竹山花岗岩体位于文山县城以西约30km处,呈纺锤状沿300°~320°方向展布,长约20km,宽2~10km,出露面积约120km2,主要岩性为黑云二长花岗岩,岩体侵入于古生界寒武系、奥陶系和泥盆系地层中,外接触带发育各种接触变质作用,如矽卡岩化、角岩化、大理岩化和硅化等(张世涛和陈国昌,1997解洪晶等,2009)。

2 矿床地质特征 2.1 矿区地质概况

矿区东侧出露薄竹山岩体所作底单元(K1-2S),岩性主要为黑云二长花岗岩,与矿区内地层呈侵入接触,近年来施工的钻探工程深部揭露花岗岩体(图 2),PD4坑道工程也揭穿花岗岩脉。地球化学数据显示,薄竹山花岗岩主要呈准铝质-弱过铝质,轻稀土富集,具中等负Eu异常,富集Rb、Th、La、Nd等大离子亲石元素,亏损Ta、Nb、P、Ti等高场强元素,属高分异S型花岗岩(程彦博等,2010李建德,2018)。

图 2 官房矿区Ⅵ勘探线剖面图 Fig. 2 Geological sections along exploration line Ⅵ of the Guanfang mining district

矿区出露地层简单(图 1b),仅见寒武系中统田蓬组(2t)出露。田蓬组上、下为一套碳酸盐岩,中部为一套碎屑岩,形成了一个小的海侵-海退-海侵的沉积旋回,属浅海陆棚碎屑相与碳酸盐岩台地边缘相的混合沉积。根据岩性特征,将田蓬组划分为四段九个亚段。矿区主要出露第一段(2t1),细分为三个亚段:(1)第三亚段(2t1-3)为黄色泥质粉砂岩、粉砂岩、大理岩,角岩化、石榴子石-辉石矽卡岩化发育,钨矿多产于石榴子石-辉石矽卡岩中,厚度253.38m。(2)第二亚段(2t1-2)为灰色薄至中厚层状灰岩、大理岩,常发育石榴子-辉石矽卡岩化,厚108.32m。(3)第一亚段(2t1-1)为灰黄色粉砂岩、泥质粉砂岩夹灰岩,厚102.68m(张亚辉,2013)。

矿区位于薄竹山花岗岩体南侧(图 1b),薄竹山穹窿的南翼总体为倾向南南东的单斜构造,倾角25°~53°。区内断裂构造发育近东西、北东、北西向三组断裂,其中F1断裂规模相对较大,为一正断层,走向近东西向,长度大于3.5km,倾向延深大于160m,断层倾向340°~8°,倾角60°~80°,局部向南陡倾。断层上盘地层主要为2t1-22t1-3,下盘地层主要为2t1-3,向东延入花岗岩体中。断层破碎带宽1m~5m不等。破碎带由断层角砾、断层泥等组成,角砾成分以炭质板岩、角岩为主,其次为大理岩(灰岩)、石英、方解石等,角砾呈次棱角状,大小不一,胶结物为泥质、方解石细脉及少量金属硫化物组成,见摩擦镜面,局部可见断层上盘为矽卡岩,下盘为花岗岩,说明断层为钨矿成矿后形成,铅锌矿体(KT11)赋存于该断裂带中。

2.2 矿体、矿石特征及围岩蚀变

目前官房钨矿经地表工程、地下穿脉平坑和钻孔控制11条矿体,包括10条钨矿体,1条铅锌矿体,钨矿体以KT1、KT3、KT5、KT6、KT9为主矿体,其余钨矿体规模较小,铅锌矿体为KT11(据2011年官房钨矿资源储量核实报告)。本次采样的KT5隐伏矿体分布于矿区中部偏南,走向近东西,长约165m,倾向北,倾角55°~66°,延深60m,矿体由PD4的三个穿脉控制,矿体产出标高1592~1642m,厚1.34~14.04m,平均5.90m,呈似层状、透镜状产出。矿石为矽卡岩型白钨矿,WO3含量0.25%~0.94%,平均0.80%;矿石矿物主要为白钨矿,脉石矿物为石榴子石、辉石、符山石等矽卡岩矿物;矿石主要呈自形-半自形粒状结构,浸染状构造,偶见团块状构造,手标本中可见白钨矿、石榴子石、辉石共生的团块状矿石等。矿区内近矿围岩蚀变明显,主要有矽卡岩化、大理岩化、角岩化、硅化等,尤以矽卡岩化最为常见,且与矿化关系密切,矽卡岩多见于层间破碎带,呈似层状、透镜状和脉状,多不与花岗岩体接触而形成远端矽卡岩,主要为(石榴子石)辉石矽卡岩,PD4中局部揭露花岗岩与碳酸盐岩接触带上的矽卡岩(图 2)。

根据矿区矿体地质特征、矿物共生组合及矿物的穿插关系(图 3),KT5所对应的成矿作用可划分为4个成矿阶段(图 4):(1)矽卡岩阶段:主要生成硅灰石、石榴子石、辉石等无水硅酸盐矿物,并伴随有白钨矿、磁铁矿生成,其中白钨矿多以半自形-他形细粒状分布于细-中粒辉石颗粒之间(图 3d)。(2)退化蚀变阶段:早期的矽卡岩矿物被交代,形成透闪石、阳起石、绿泥石和绿帘石等含水硅酸盐矿物。随着早期硅酸盐矿物被交代,大量的中-大颗粒白钨矿及磁铁矿开始析出(图 3e, f)。(3)石英-硫化物阶段:以石英+辉钼矿+少量其他硫化物(包括黄铁矿、黄铜矿、方铅矿、闪锌矿等)组合为特征,依据矿物间相互穿插关系,硫化物的形成顺序为早期黄铁矿-辉钼矿-磁黄铁矿→晚期黄铁矿-闪锌矿-黄铜矿,其中黄铁矿多呈自形-半自形粒状产出,而黄铜矿往往为他形晶。(4)碳酸盐-萤石阶段:主要矿物有石英、方解石、萤石、绿泥石等,发育石英-萤石-碳酸盐脉、萤石-方解石脉、无矿石英脉,基本不含硫化物,无钨矿化。石榴子石主要形成于矽卡岩阶段,白钨矿生长于矽卡岩阶段后期及退化蚀变阶段,多呈半自形-他形粒状,常嵌在辉石、符山石或阳起石、透闪石颗粒之间(图 3e, f)。

图 3 官房矿区石榴子石手标本及显微照片 (a)石榴子石-辉石矽卡岩(GF2020-25,GrtⅠ);(b)发育在灰岩中的辉石矽卡岩条带(钻孔CK13,GrtⅠ);(c)含钨石榴子石-辉石矽卡岩(GF2020-20,GrtⅡ);(d)石榴子石与辉石紧密共生(GF2020-19,GrtⅠ,单偏光);(e)中-大颗粒白钨矿与纤柱状阳起石共生(GF2020-23,GrtⅡ,单偏光);(f)白钨矿与透闪石共生(GF2020-23,GrtⅡ,正交偏光). Grt-石榴子石;Px-辉石;Act-阳起石;Tre-透闪石;Sch-白钨矿 Fig. 3 Hand samples and micrographs of typical garnets in the Guanfang deposit (a) garnet pyroxene skarn(GF2020-25, GrtⅠ); (b) pyroxene skarn band developed in limestone (Drilling CK13, GrtⅠ); (c)W-bearing garnet pyroxene skarn(GF2020-20, GrtⅡ); (d) garnets and pyroxene are closely paragenetic in the skarn(GF2020-19, GrtⅠ, plane-polarized light); (e) paragenesis of medium to large particle scheelite with fibrous columnar actinolite (GF2020-23, GrtⅡ, plane-polarized light); (f) scheelite associated with tremolite (GF2020-23, GrtⅡ, cross-polarized light). Grt-garnet; Px-pyroxene; Act-ctinolite; Tre-tremolite; Sch-scheelite

图 4 官房钨矿床主要矿物生成顺序表 Fig. 4 Formation sequence of main minerals of the Guanfang mining district

依据详细的野外调查和镜下观察,可见两类产状不同和矿物组合不同的矽卡岩,第一类矽卡岩仅见矽卡岩阶段矿物组合,见少量白钨矿,岩石多呈层状产于灰岩或大理岩层间裂隙中,局部呈脉状产于灰岩裂隙中,大理岩化较弱(图 3b),主要为浅褐色-浅灰色石榴子石-辉石矽卡岩、辉石矽卡岩(GrtⅠ),石榴子石多呈浅褐色,呈细粒状,单偏光下半自形-他形晶,正高突起,糙面较为显著,无环带结构,正交镜下具均质性,具一级灰干涉色,辉石多呈团块状与石榴子石共生(图 3a, b, d)。第二类矽卡岩呈层状产于大理岩层间破碎带中,主要为棕色-浅灰绿色石榴子石-辉石矽卡岩(图 3c)、符山石-辉石矽卡岩(GrtⅡ),常见阳起石、透闪石等退蚀变阶段矿物,见大量白钨矿,晚期见方解石、石英细脉穿插。石榴子石呈四角三八面体或菱形十二面体产出,半自形-他形晶,少量自形晶,粒径中等,正高突起,糙面较为显著,无环带结构,正交镜下具均质性,少量的锰铝榴石显示光性异常。

3 采样及分析方法 3.1 样品采集

样品采自官房钨矿的平硐PD4及钻孔CK13中,探矿工程主要揭露薄竹山花岗岩体所作底单元、寒武系下统田蓬组第一段第三亚段(2t1-3)。第一类矽卡岩在KT5附近的PD4矽卡岩带中采取石榴子石-辉石矽卡岩(GF2020-19),钻孔CK13采取辉石矽卡岩(GF2020-25、26、27);第二类矽卡岩在标高1616m的PD4中采取,采样点处为KT5的穿脉工程,沿矿体厚度方向间隔1m采样,岩性为含钨石榴子石-辉石矽卡岩(GF2020-20)、含钨符山石-辉石矽卡岩(GF2020-21、22、23、24),具体位置见图 2。本次采取的样品新鲜,9件样品均制成薄片观察,另外制成厚0.04mm的探针片以便分析:电子探针分析、U-Pb定年的样品从GF2020-19、GF2020-20切取,另外从GF2020-23、GF2020-25、GF2020-27中切取的样品,连同前2个样品进行激光微区单矿物分析。

3.2 分析方法

电子探针分析在中国科学院广州地球化学研究所矿物学与成矿学重点实验室完成,采用JEOL公司JXA-8230M电子探针分析。工作条件为加速电压为15kV,电流为20nA,束斑直径1~2μm。标样采用美国SPI公司的矿物标样,主要为:金红石(Ti)、透辉石(Ca、Si)、镁铝榴石(Al、Fe)、铁铝榴石(Si、Mg)、蔷薇辉石(Mn)。基质效应通过ZAF校正,分析精度一般优于1%~5%,分析流程及详细步骤参考He et al.(2021)

石榴子石微量元素分析在中国科学院海洋研究所大洋岩石圈与地幔动力学超净实验室完成,采用Photo Machine 193nm的ArF准分子激光发生器与Agilent 7900联机测试。考虑到石榴子石相对均一的物质成份,本次采用较大的激光剥蚀束斑(直径40μm)与较小的激光能量密度(4.72J/cm2)以确保单矿物不被击穿。单个测点一次分析53个元素,包括主量、微量元素,测试时间包括25秒的背景采集时间、50秒的激光剥蚀时间以及35秒清洗时间。分析流程及详细步骤参考Xiao et al.(2020),离线数据处理使用ICPMSDataCal(Liu et al., 2008Lin et al., 2016)。

石榴子石U-Pb定年在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。在进行测试之前,挑选合适的样品磨制约0.04mm厚的探针片,并结合偏光显微镜下石榴子石晶体特征以及主量元素测定结果,圈定晶体结构良好的钙铁榴石颗粒进行分析,测试时尽量避开矿物裂隙、包裹体及其它杂质部位,减少普通铅的影响。本次分析仪器为Thermo Element XR型高分辨磁质谱(HR-ICP-MS)和准分子激光剥蚀系统(GeoLasPro 193nm)联机。激光剥蚀束斑直径设置为32μm,激光能量密度为3J/cm2,剥蚀频率为5Hz,采用He作为剥蚀物质的载气(0.45L/S),Ar为辅助气。单点剥蚀采样用时90秒,包括背景采集时间20秒、激光剥蚀时间35秒以及清洗时间35秒。样品测试之前按NIST SRM 612、91500、Willsboro、QC04顺序各分析2次,每分析10~15个样品点后,重复上述标样顺序各分析2次,最终结束时,以与开始测试分析时相反的顺序各分析2次。分析时以标准锆石91500(1062Ma)为主标样,石榴子石标样QC04为质控样进行同位素分馏校正,QC04的206Pb/238U加权平均年龄为132.8±1.9Ma(MSWD=0.6,n=14),与推荐值在误差范围内一致(130±1Ma;Deng et al., 2017)。分析流程及详细步骤参考Tang et al.(2020, 2021),QC04、Willsboro的详细描述见Tang et al.(2021),锆石标样91500的U-Th-Pb同位素比值参考Wiedenbeck et al. (1995)。分析结果利用ICPMSDataCal软件进行处理(Liu et al., 2008Lin et al., 2016),所有样品的U-Pb年龄谐和图绘制利用Isoplot 4.5软件完成(Ludwig,2012)。

4 分析结果 4.1 主量元素分析结果

本次对官房钨矿采样的GF2020-19、GF2020-20两件样品,进行电子探针分析,分析结果详见表 1表 2

表 1 官房钨矿床石榴子石电子探针分析结果(wt%)及端元组分 Table 1 Components(wt%) and endmember compositions of garnets from the Guanfang tungsten deposit

表 2 官房钨矿床辉石电子探针分析结果(wt%)及端元组分 Table 2 Components(wt%) and endmember compositions of pyroxenes from the Guanfang tungsten deposit
4.1.1 石榴子石

Grt Ⅰ(样品GF2020-19):SiO2、CaO和MgO含量分别为35.67%~36.35%、32.96%~33.78%和0.42%~0.76%,Al2O3、TiO2和FeOT含量分别为8.57%~10.09%、0.24%~0.61%和17.59%~20.13%,MnO含量较低(< 0.1%)。化学成分计算表明,GrtⅠ属于钙铁榴石-钙铝榴石(And53.08Gro41.39~And60.15Gro32.73),含镁铝榴石(1.63%~2.98%)、铁铝榴石(2.57%~4.21%)和锰铝榴石(0.01%~0.07%)(表 1)。

Grt Ⅱ(样品GF2020-20):相对于GrtⅠ,其SiO2(35.48%~36.07%)和Al2O3(5.88%~8.49%)的含量相对减少,而TiO2(0.14%~0.69%)、MnO(0.01%~0.24%)、CaO(32.90%~33.77%)、MgO(0.35%~0.87%)和FeOT含量(19.93%~22.45%)相对增加。GrtⅡ属钙铁榴石-钙铝榴石(And60.56Gro33.57~And72.18Gro23.04),另有镁铝榴石(1.41%~3.42%)、铁铝榴石(1.81%~3.37%)和锰铝榴石(0.03%~0.54%)(表 1)。

分析表明,两期石榴子石均属钙铁榴石-钙铝榴石固溶体系列,早期石榴子石具有的钙铁榴石组分相对更低。在石榴子石三角分类图中,Grt Ⅰ、Grt Ⅱ均落入全球氧化型W矽卡岩型矿床范围(图 5)。

图 5 滇东南官房矿区石榴子石分类三角图解(底图据Meinert, 1992) Fig. 5 Triangular classification diagram of garnet from the Guanfang mining district in southeastern Yunnan Province (base map after Meinert, 1992)
4.1.2 辉石

与Grt Ⅰ共生的辉石,SiO2含量为49.37%~52.01%,CaO为23.12%~24.46%,FeOT为10.97%~19.81%,MnO为0.92%~1.70%,MgO为4.87%~11.00%,Al2O3、TiO2、Cr2O3、Na2O和K2O含量均小于1%,其辉石端元组分以透辉石(Di)和锰钙辉石(Jo)为主,少量钙铁辉石(Hd),透辉石含量为29.86%~64.12%,钙铁辉石含量为31.48%~64.97%,钙锰辉石含量为3.11%~5.78%(表 2)。

与Grt Ⅱ共生的辉石,SiO2含量为50.91%~54.79%,CaO为24.18%~25.97%,FeOT为2.07%~13.89%,MgO为9.41%~17.30%,MnO、Al2O3、TiO2、Cr2O3、Na2O和K2O含量均小于1%,其辉石端元组分以透辉石(Di)和锰钙辉石(Jo)为主,少量钙铁辉石(Hd),透辉石含量为55.66%~96.52%,钙铁辉石含量为2.03%~42.31%,锰钙辉石含量为1.44%~2.43%(表 2)。

分析表明,与石榴子石共生的辉石均以透辉石和钙铁辉石为主,与第一期石榴子石(GrtⅠ)共生的辉石钙铁辉石端元含量较高;而与第二期石榴子石(GrtⅡ)共生的辉石透辉石端元含量较高。

4.2 微量元素分析结果

GrtⅠ石榴子石稀土元素球粒陨石标准化配分曲线呈M型(图 6a),轻重稀土元素有一定的分异。ΣREE为50.14×10-6~81.19×10-6,LREE为40.81×10-6~69.89×10-6,HREE为9.33×10-6~17.96×10-6,LREE/HREE比值在2.39~6.19之间,(La/Yb)N=0.14~0.55,具有较明显的Eu正异常(δEu=1.22~1.40),具有明显的Ce异常,δCe=0.69~0.79(图 6a表 3)。高场强元素Nb、Ta、Zr、Hf含量分别为1.64×10-6~14.99×10-6、0.12×10-6~0.68×10-6、17.58×10-6~115.8×10-6、0.40×10-6~2.65×10-6

图 6 官房矿区石榴子石球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE patterns (a) and PM-normalized trace elements patterns (b) of the garnets from the Guanfang Mining district(normalization values after Sun and McDonough, 1989)

表 3 官房钨矿床石榴子石微量元素(×10-6)组成 Table 3 Content of trace elements (×10-6) of garnets in the Guanfang tungsten deposit

Grt Ⅱ石榴子石配分曲线与Grt Ⅰ相似,轻重稀土分异减弱,ΣREE为54.65×10-6~91.95×10-6,LREE为35.97×10-6~64.09×10-6,HREE为13.36×10-6~27.86×10-6,LREE/HREE比值在1.93~3.44之间,呈现出Eu负异常特征(δEu = 0.55~0.64),具有明显的Ce异常,δCe = 1.11~1.31(图 6a表 3)。高场强元素Nb、Ta、Zr、Hf含量分别为6.97×10-6~30.18×10-6、0.51×10-6~1.89×10-6、126.1×10-6~235.2×10-6、3.19×10-6~7.03×10-6

微量元素数据表明,所有的石榴子石具有极其亏损Rb、Ba、Sr、K等大离子亲石元素,2个样品的石榴子石亏损高场强元素(HFSE)且含量有较大的差异,另外稀土元素(REE) 差异也较大,主要体现在Eu异常(图 6a)。

4.3 石榴子石U-Pb年龄

LA-SF-ICP-MS获得的主要同位素信号,包括238U、206Pb、207Pb、202Hg、204Pb、232Th等在40秒信号采集区,数据整体平稳(图 7a, 7b),另外除辉石中存在少量的包裹体外,本次也没有在石榴子石中发现较大的流体包裹体,这些特征暗示石榴子石中的U主要来自矿物晶格中,因而石榴子石U-Pb年龄能够代表矿物的形成年龄。

图 7 官房矿区石榴子石LA-SF-ICP-MS U-Pb定年数据谱线 Fig. 7 Date curves of LA-SF-ICP-MS U-Pb dating of garnet from the Guanfang mining district

本次对GF2020-20(GrtⅡ)样品分析了25个U-Pb同位素测点,除测试过程中,可能剥蚀到细小的包裹体或者其他裂隙导致数据信号差,不稳定外,共获得22个有效数据点(表 4图 8),其Th含量为0.3×10-6~16.7×10-6,平均值为8.9×10-6;U含量为0.5×10-6~15.8×10-6,平均值为8.3×10-6;Pb含量为0.2×10-6~11.3×10-6,平均值为1.9×10-6207Pb/206Pb比值变化为0.10~0.87,207Pb/235U比值变化为0.03~43.63,206Pb/238U比值变化为0.01~0.93。因普通Pb含量较高,采用T-W反谐和图法进行普通铅校正(Yuan et al., 2008崔玉荣等, 2012郝爽等,2016; Tang et al., 2020, 2021)获得石榴子石样品T-W (207Pb/206Pb-238U/206Pb)图下交点年龄为87.6±2.3Ma(MSWD=1.5,n=22)。

表 4 官房钨矿床石榴子石原位LA-ICP-MS U-Pb定年分析结果 Table 4 LA-ICP-MS U-Pb dating of the garnets in the Guanfang tungsten deposit

图 8 官房矿区石榴子石LA-SF-ICP-MS U-Pb定年结果 Fig. 8 Result of LA-SF-ICP-MS U-Pb dating of garnet from the Guanfang mining district

另外对GF2020-19(Grt Ⅰ)样品分析了42个U-Pb同位素测点,共获得32个有效数据点(表 4图 8)。其Th含量为0.1×10-6~1.7×10-6,平均值为0.9×10-6;U含量为0.03×10-6~2.6×10-6,平均值为1.4×10-6;Pb含量为0.2×10-6~7.5×10-6,平均值为2.5×10-6207Pb/206Pb比值变化为0.44~0.94,207Pb/235U比值变化为0.01~0.93,206Pb/238U比值变化为0.03~43.63。T-W图下交点年龄为101.3±5.4Ma(MSWD=2.0,n=32)。

5 讨论 5.1 成岩成矿时代

官房钨矿床多产于远离接触带的碳酸盐岩、碎屑岩的构造裂隙中,赋矿围岩主要为矽卡岩,因此获得成岩成矿时代是正确理解成矿作用的关键(宋世伟等,2018)。以往对矽卡岩型矿床,通过岩体锆石U-Pb年龄与硫化物的Re-Os年龄约束成岩成矿年龄,但对矽卡岩的形成时代却鲜有精确的年代学制约。本次获得Grt Ⅱ石榴子石样品T-W图下交点年龄为87.6±2.3Ma(MSWD=1.5,n=22),代表了本期矽卡岩的成岩时代。程彦博等(2010)获得3个锆石LA-ICP-MS U-Pb年龄分别为86.51±0.52Ma、87.54±0.65Ma和87.83±0.39Ma;李建德(2018)获得7个锆石LA-ICP-MS U-Pb年龄介于87.33~91.17Ma之间,二者在误差范围内一致,限定了薄竹山花岗岩体的成岩时代。张亚辉(2013)通过对官房矿段PD4(1664m标高)矽卡岩内与白钨矿共生的含辉钼矿矽卡岩矿石采样,获得的辉钼矿Re-Os等时线年龄91.55±3.4Ma,限定了白钨矿成矿时代。三者在误差范围内一致,因此认为,~88Ma的花岗岩侵位、矽卡岩的成岩、白钨矿的成矿时代一致,代表了同一期的成岩成矿作用,也说明本次石榴子石U-Pb年龄可靠。根据官房矽卡岩型钨矿床的成矿特征,Grt Ⅱ石榴子石贯穿矽卡岩阶段,白钨矿在矽卡岩阶段后期生成,嵌布于石榴子石、辉石、透闪石、阳起石等矿物中(图 3d, e),矽卡岩成岩时代与白钨矿成矿近于一致,获得了石榴子石U-Pb年龄,也间接限定了白钨矿的成矿时代。

另外本次对KT5附近不含矿的矽卡岩采样分析,获得Grt Ⅰ石榴子石样品T-W图下交点年龄为101.3±5.4Ma(MSWD=2,n=32),~101Ma的矽卡岩成岩时代是首次报道的,外围薄竹山岩体尚未发现同期次花岗岩,暗示区内可能存在另一期的岩浆-热液活动。

5.2 滇东南W-Sn成矿作用期次

华南地区中生代成矿事件分为三个阶段,其中晚白垩世(第三期)钨锡铜多金属矿床主成矿期为100~90Ma(毛景文等,2008bMao et al., 2021)。前人的研究表明,薄竹山与老君山、个旧等成岩成矿年龄多集中在~90Ma,说明该区岩浆-热液活动和W-Sn成矿作用的高峰期发生在77~94Ma(Yan et al., 2006刘玉平等, 2007, 2011程彦博等,2010程彦博,2012张娟等,2012Feng et al., 2013李进文等,2013李开文等,2013王小娟, 2013, 2014刘艳宾等,2014Xu et al., 2015Zhang et al. 2016蓝江波等,2016赵震宇,2017李建德,2018王礼兵和艾金彪,2018郭佳,2019许赛华等,2019)。蓝江波等(2016)首次在都龙锡锌多金属矿金石坡矿段获得含斑二云母花岗岩锆石U-Pb加权平均年龄103.5±1.1Ma,95.9±0.9Ma,117.1±0.9Ma,说明区内存在更早的岩浆活动,综合已有研究成果,他将这一复式岩体形成年龄划分为80~88Ma、90~98Ma、100~118Ma等三幕。本次获得石榴子石样品T-W图下交点年龄101.3±5.4Ma、87.6±2.3Ma,分别对应第一、第三幕(图 9),因而认为其代表了两期独立的矽卡岩成岩事件,暗示滇东南地区至少存在~101Ma和~88Ma两期岩浆-热液事件,其中~88Ma为该区W-Sn多金属矿主要成矿期,成矿作用与同期花岗岩密切相关。野外观察和镜下鉴定结果显示,官房矿区~101Ma的矽卡岩中见微弱W矿化,说明该区早期可能存在一期与W成矿有关的岩浆-热液-成矿事件,但矿化较弱,这一认识和发现对于区域找矿部署有很强的实践意义。

6 结论

(1) 电子探针分析结果表明,官房矽卡岩钨矿床石榴子石属钙铁榴石-钙铝榴石固溶体系列,石榴子石特征暗示流体具有弱氧化性。

(2) 官房钨矿床石榴子石U-Pb年龄为101.3±5.4Ma、87.6±2.3Ma,官房钨矿区存在早白垩世(GrtⅠ)和晚白垩世(GrtⅡ)两期矽卡岩成岩事件。

(3) 综合区域上的成岩成矿年龄谱系,~88Ma为该区W-Sn多金属矿主要成矿期,成矿作用与同期花岗岩密切相关;~101Ma可能为另外一期矽卡岩成岩事件。

致谢      野外工作得到了云南省玉溪市天马金属制品有限公司李杰等的大力支持;研究工作得到了昆明理工大学朱杰勇教授、朱俊讲师、白光顺博士,中国科学院海洋研究所孙普助理研究员,中国科学院地球化学研究所陈应华博士等的帮助;审稿人对论文的进一步修改建议对提高论文质量大有裨益;在此一并表示衷心的感谢。

参考文献
Barrie CT. 1990. U-Pb garnet and titanite age for the Bristol Township lamprophyre suite, western Abitibi Subprovince, Canada. Canadian Journal of Earth Sciences, 27(11): 1451-1456 DOI:10.1139/e90-153
Baxter EF and Scherer EE. 2013. Garnet Geochronology: Timekeeper of Tectonometamorphic Processes. Elements, 9(6): 433-438 DOI:10.2113/gselements.9.6.433
Burton KW and O'Nions RK. 1991. HigrResolution garnet chronometry and the rates of metamorphic processes. Earth and Planetary Science Letters, 107(3-4): 649-671 DOI:10.1016/0012-821X(91)90109-U
Cheng YB and Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4): 258-276 DOI:10.1016/j.lithos.2010.08.013
Cheng YB, Mao JW, Chen XL and Li W. 2010. LA-ICP-MS zircon U-Pb dating of the Bozhushan granite in southeastern Yunnan Province and its significance. Journal of Jilin University (Earth Science Edition), 40(4): 869-878 (in Chinese with English abstract)
Cheng YB. 2012. Spatial-temperal evolution of the magmatism and mineralization in the Gejiu supergiant Sn polymetallic district and insights into several key problems. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-163 (in Chinese with English summary)
Cheng YB, Mao JW and Spandler C. 2013a. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos, 175-176: 213-229 DOI:10.1016/j.lithos.2013.04.002
Cheng YB, Mao JW, Chang ZS and Pirajno F. 2013b. The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geology Reviews, 53: 50-62 DOI:10.1016/j.oregeorev.2012.12.008
Cui YR, Zhou HY, Geng JZ, Li HK and Li HM. 2012. In situ LA-MC-ICP-MS U-Pb isotopic dating of monazite. Acta Geoscientica Sinica, 33(6): 865-876 (in Chinese with English abstract)
Deng XD, Li JW, Luo T and Wang HQ. 2017. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71 DOI:10.1007/s00410-017-1389-2
Deng XD, Luo T, Li JW and Hu ZC. 2019. Direct dating of hydrothermal tungsten mineralization using in situ wolframite U-Pb chronology by laser ablation ICP-MS. Chemical Geology, 515: 94-104 DOI:10.1016/j.chemgeo.2019.04.005
Duan Z, Gleeson SA, Gao WS, Wang FY, Li CJ and Li JW. 2020. Garnet U-Pb dating of the Yinan Au-Cu skarn deposit, Luxi District, North China Craton: Implications for district-wide coeval Au-Cu and Fe skarn mineralization. Ore Geology Reviews, 118: 103310 DOI:10.1016/j.oregeorev.2020.103310
Feng JR, Mao JW and Pei RF. 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits. Mineralogy and Petrology, 107(4): 573-589 DOI:10.1007/s00710-012-0253-3
Fu Y, Sun XM, Li DF and Lin H. 2018. U-Pb geochronology and geochemistry of U-rich garnet from the giant Beiya gold-polymetallic deposit in SW China: Constraints on skarn mineralization process. Minerals, 8(4): 128 DOI:10.3390/min8040128
Gevedon M, Seman S, Barnes JD, Lackey JS and Stockli DF. 2018. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet. Earth and Planetary Science Letters, 498: 237-246 DOI:10.1016/j.epsl.2018.06.036
Guo J. 2019. Tin mineralization events and fertility of granitoids in the Youjiang Basin, South China: The Gejiu and Dachang Sn-polymetallic districts as examples. Ph. D. Dissertation. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 1-175 (in Chinese with English summary)
Hao S, Li HM, Li GZ, Geng JZ, Zhou HY, Xiao ZB, Cui YR and Tu JR. 2016. The comparison of the principle and applicability between two methods of deducting the initial common lead for in situ LA-MC-ICP-MS U-Pb isotope dating of cassiterite. Geological Bulletin of China, 35(4): 622-632 (in Chinese with English abstract)
He PL, Huang XL, Yang F and Wang X. 2021. Mineralogy constraints on magmatic processes controlling adakitic features of Early Permian high-magnesium diorites in the Western Tianshan orogenic belt. Journal of Petrology, egaa114 DOI:10.1093/petrology/egaa114
Lan JB, Liu YP, Ye L, Zhang Q, Wang DP and Su H. 2016. Geochemistry and age spectrum of Late Yanshanian granites from Laojunshan area, southeastern Yunnan Province, China. Acta Mineralogica Sinica, 36(4): 441-454 (in Chinese with English abstract)
Li DF, Tan CY, Miao FY, Liu QF, Zhang Y and Sun XM. 2019a. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet. Ore Geology Reviews, 107: 587-599 DOI:10.1016/j.oregeorev.2019.03.011
Li JD. 2018. Geochemistry, zircon U-Pb geochronology and implication for tectonic setting of the Bozhushan granite in southeastern Yunnan Province, SW China. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-86 (in Chinese with English summary)
Li JK, Wang DH, Li HQ, Chen ZH and Mei YP. 2013. Late Jurassic-Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province. Earth Science (Journal of China University of Geosciences), 38(5): 1023-1036 (in Chinese with English abstract) DOI:10.3799/dqkx.2013.100
Li JW, Pei RF, Wang YL, She HQ, Feng CY, Guo ZJ, Wang HL and Xu K. 2013. Isotopic chronological studies of Dulong tin-zinc deposit in Yunnan Province. Mineral Deposits, 32(4): 767-782 (in Chinese with English abstract)
Li KW, Zhang Q, Wang DP, Cai Y and Liu YP. 2013. LA-MC-ICP-MS U-Pb geochronology of cassiterite from the Bainiuchang polymetallic deposit, Yunnan Province, China. Acta Mineralogica Sinica, 33(2): 203-209 (in Chinese with English abstract)
Li X, Zhao KD, Jiang SY and Palmer MR. 2019b. In-situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geology Reviews, 105: 223-235 DOI:10.1016/j.oregeorev.2018.12.023
Lima SM, Corfu F, Neiva AMR and Ramos JMF. 2012. U-Pb ID-TIMS dating applied to U-rich inclusions in garnet. American Mineralogist, 97(5-6): 800-806 DOI:10.2138/am.2012.3930
Lin B, Chen L, Liu ZY, Tang JX, Zou B and He W. 2020. Constraints on the geochronology of porphyry-skarn copper deposit from U-Pb dating of garnet: A case study of the Sangria copper deposit, Tibet. Acta Geologica Sinica, 94(10): 2883-2892 (in Chinese with English abstract)
Lin J, Liu YS, Yang YH and Hu ZC. 2016. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1(1): 5-27 DOI:10.1016/j.sesci.2016.04.002
Liu YB, Mo XX, Zhang D, Que ZY, Di YJ, Pu XM, Cheng GS and Ma HH. 2014. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province. Acta Petrologica Sinica, 30(11): 3271-3286 (in Chinese with English abstract)
Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong SN-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract)
Liu YP, Li ZX, Ye L, Tan HQ and Li ZY. 2011. Ar-Ar geochronology of tungsten mineralization in Laojunshan ore concentration area, southeastern Yunnan. Acta Mineralogica Sinica, 31(Suppl.1): 617-618 (in Chinese with English abstract)
Liu YS, Hu ZH, Gao S, Günther D, Xu J, Gao CG and Chen HL. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Luo T, Deng XD, Li JW, Hu ZC, Zhang W, Liu YS and Zhang JF. 2019. U-Pb geochronology of wolframite by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 34(7): 1439-1446 DOI:10.1039/C9JA00139E
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008a. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Cheng YB, Guo CL, Yang ZX and Feng JR. 2008b. Gejiu tin polymetallic ore-field: Deposit model and discussion for several points concerned. Acta Geologica Sinica, 82(11): 1455-1467 (in Chinese with English abstract)
Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB and Chen MH. 2019. Geology and metallogeny of tungsten and tin deposits in China. Society of Economic Geologists, Special Publication, 22: 411-482
Mao JW, Wu SH, Song SW, Dai P, Xie GQ, Su QW, Liu P, Wang XG, Yu ZZ, Chen XY and Tang WX. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model. Science Bulletin, 65(33): 3746-3762 (in Chinese)
Mao JW, Zheng W, Xie GQ, Lehmann B and Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology DOI:10.1130/G48615.1
Meinert LD. 1992. Skarns and skarn deposits. Geoscience Canada, 19(4): 145-162
Mezger K, Hanson GN and Bohlen SR. 1989. U-Pb systematics of garnet: Dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contributions to Mineralogy and Petrology, 101(2): 136-148 DOI:10.1007/BF00375301
Roger F, Leloup PH, Jolivet M, Lacassin R, Trinh PT, Brunel M and Seward D. 2000. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics, 321(4): 449-466 DOI:10.1016/S0040-1951(00)00085-8
Seman S, Stockli DF and McLean NM. 2017. U-Pb geochronology of grossular-andradite garnet. Chemical Geology, 460: 106-116 DOI:10.1016/j.chemgeo.2017.04.020
Song SW, Mao JW, Xie GQ, Song H, Chen GH, Rao JF and Ouyang YP. 2018. Identification of ore-related granitic intrusions in W skarn deposits: A case study of giant Zhuxi W skarn deposit. Mineral Deposits, 37(5): 940-960 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.In: Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42: 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tang YW, Cui K, Zheng Z, Gao JF, Han JJ, Yang JH and Liu L. 2020. LA-ICP-MS U-Pb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material: Implications for metallogenesis of South China. Gondwana Research, 83: 217-231 DOI:10.1016/j.gr.2020.02.006
Tang YW, Gao JF, Lan TG, Cui K, Han JJ, Zhang X, Chen YW and Chen YH. 2021. In situ low-U garnet U-Pb dating by LA-SF-ICP-MS and its application in constraining the origin of Anji skarn system combined with Ar-Ar dating and Pb isotopes. Ore Geology Reviews, 130: 103970 DOI:10.1016/j.oregeorev.2020.103970
Tu GC. 2002. Two unique mineralization areas in Southwest China. Bulletin of Mineralogy, Petrology and Geochemistry, 21(1): 1-2 (in Chinese with English abstract)
Vance D, Meier M and Oberli F. 1998. The influence of high U-Th Inclusions on the U-Th-Pb systematics of almandine-pyrope garnet: Results of a combined bulk dissolution, stepwise-leaching, and SEM study. Geochimica et Cosmochimica Acta, 62(21-22): 3527-3540 DOI:10.1016/S0016-7037(98)00252-X
Wafforn S, Seman S, Kyle JR, Stockli D, Leys C, Sonbait D and Cloos M. 2018. Andradite garnet U-Pb geochronology of the big Gossan skarn, Ertsberg-Grasberg mining district, Indonesia. Economic Geology, 113(3): 769-778 DOI:10.5382/econgeo.2018.4569
Wang LB and Ai JB. 2018. The Re-Os isotope feature and significance of molybdenite in Dulong Sn deposit of Maguan. Yunnan Geology, 37(3): 292-297 (in Chinese with English abstract)
Wang XJ, Liu YP, Bao T, Ye L, Zhang Q and He F. 2013. LA-MC-ICP-MS U-Pb dating of cassiterite from Dulong deposit in Yunnan Province and its significance. Acta Mineralogica Sinica, 33(Suppl.2): 616-617 (in Chinese)
Wang XJ, Liu YP, Miao YL, Bao T, Ye L and Zhang Q. 2014. In-situ LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta Petrologica Sinica, 30(3): 867-876 (in Chinese with English abstract)
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1-23 DOI:10.1111/j.1751-908X.1995.tb00147.x
Xiao YY, Chen S, Niu YN, Wang XH, Xue QQ, Wang GD, Gao YJ, Gong HM, Kong JJ, Shao FL, Sun P, Duan M, Hong D and Wang D. 2020. Mineral compositions of syn-collisional granitoids and their implications for the formation of juvenile continental crust and adakitic magmatism. Journal of Petrology, 61(3): egaa038 DOI:10.1093/petrology/egaa038
Xie HJ, Zhang Q, Zhu CH, Fan LW and Wang DP. 2009. Petrology and REE-trace element geochemistry of Bozhushan granite pluton in southeastern Yunnan Province, China. Acta Mineralogica Sinica, 29(4): 481-490 (in Chinese with English abstract)
Xu B, Jiang SY, Wang R, Ma L, Zhao KD and Yan X. 2015. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos, 218-219: 54-72 DOI:10.1016/j.lithos.2015.01.004
Xu SH, Ren T, Lv CL, Shi WM and Wang CY. 2019. Research progress on the Cretaceous highly fractionated S-type granite in the southeastern Yunnan, China. Acta Mineralogica Sinica, 39(2): 149-165 (in Chinese with English abstract)
Yan DP, Zhou MF, Wang CY and Xia B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4-6): 332-353 DOI:10.1016/j.jseaes.2005.10.011
Yang C, Yan J, Li QZ, Wang SN, Huang ZZ, Song SM and Zhang XD. 2019. Garnet and zircon U-Pb dating from the Xuqiao-Wugudun Pb-Zn deposit, Chizhou, Anhui Province. Chinese Journal of Geology, 54(3): 929-952 (in Chinese with English abstract)
Yang YH, Wu FY, Yang JH, Mitchell RH, Zhao ZF, Xie LW, Huang C, Ma Q, Yang M and Zhao H. 2018. U-Pb age determination of schorlomite garnet by laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 33(2): 231-239 DOI:10.1039/C7JA00315C
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382 DOI:10.1007/s00126-007-0166-y
Yuan SD, Zhao PL and Liu M. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607-618 (in Chinese with English abstract)
Zang ZJ, Dong LL, Liu W, Zhao H, Wang XS, Cai KD and Wan B. 2019. Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system. Scientific Reports, 9(1): 10382 DOI:10.1038/s41598-019-46868-4
Zhang HP, Liu JS, Li XB and Zhang XL. 2006. Relationship of granites to tin, silver, copper, lead, zinc, polymetallic deposits in southeastern Yunnan, China. Contributions to Geology and Mineral Resources Research, 21(2): 87-90 (in Chinese with English abstract)
Zhang J, Mao JW, Cheng YB and Li XL. 2012. 40Ar-39Ar phlogopite dating of stratified ore body and muscovite dating of greisens from Xinshan granite intrusion of Kafang tin-copper deposit in Gejiu area, Yunnan Province. Mineral Deposits, 31(6): 1149-1162 (in Chinese with English abstract)
Zhang LZ, Chen L, Wang GP, Deng XD and Li JW. 2020. Garnet U-Pb dating constraints on the timing of breccia pipes formation and genesis of gold mineralization in Yixingzhai gold deposit, Shanxi Province. Earth Science, 45(1): 108-117 (in Chinese with English abstract)
Zhang ST and Chen GC. 1997. The geological features and evolution of the Bozhu MT complex granite body in southeastern Yunnan. Yunnan Geology, 16(3): 222-232 (in Chinese with English abstract)
Zhang ST, Chen HY, Shu QH, Zhang Y, Chu GB, Cheng JM and Tian J. 2019. Unveiling growth histories of multi-generational garnet in a single skarn deposit via newly-developed LA-ICP-MS U Pb dating of grandite. Gondwana Research, 73: 65-76 DOI:10.1016/j.gr.2019.04.003
Zhang XB, Zhang ST, Chen HY, Liu JA, Chen JM, Chu GB and Li SS. 2020. Application of garnet U-Pb dating in the skarn deposit: A case study of Gaoyishan Wo (-Cu) deposit in Southeast Hubei Province. Journal of China University of Geosciences, 45(3): 150-162 (in Chinese with English abstract)
Zhang Y, Shao YJ, Zhang RQ, Li DF, Liu ZF and Chen HY. 2018. Dating ore deposit using garnet U-Pb geochronology: Example from the Xinqiao Cu-S-Fe-Au deposit, eastern China. Minerals, 8(1): 31 DOI:10.3390/min8010031
Zhang YH and Zhang ST. 2011. Geochemical characteristics of granite in the Guanfang tungsten deposit of Wenshan, Yunnan Province and its geological implications. Geology and Exploration, 47(6): 1002-1008 (in Chinese with English abstract)
Zhang YH. 2013. Late Yanshanian acidic magmatic hydrothermal mineralization in Bozhushan, Southeastern Yunnan. Ph. D. Dissertation. Kunming: Kunming University of Science and Technology: 1-168 (in Chinese with English summary)
Zhang YH, Zhang ST, Fan YH, Ma HJ, Zhang L and Zhang DZ. 2014. Geology and fluid inclusion study of the Guanfang skarn type W deposit, Wenshan County, Yunnan Province. Acta Petrologica Sinica, 30(3): 877-888 (in Chinese with English abstract)
Zhang YH, Zhang ST, Tan SC, Cui YL, Zhao ZF, Jiang YG, Jiang SD and Tao SY. 2016. The genetic relationship between the large Guanfang W deposit and granitic intrusions, in Yunnan Province, Southwest China: Evidence from U-Pb and Re-Os geochronology and Pb and Sr isotopic characteristics. Ore Geology Reviews, 79: 332-345 DOI:10.1016/j.oregeorev.2016.05.025
Zhao ZY. 2017. The magmatism and genesis of Dulong Zn-Sn polymetallic deposit in Maguan, Yunnan Province. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-182 (in Chinese with English summary)
Zhou JP, Xu KQ, Hua RM, Zhao YY and Zhu JC. 1998. Characteristics and genesis of exhalative sedimentary massive sulfides in southeastern Yunnan Province. Acta Mineralogica Sinica, 18(2): 158-168 (in Chinese with English abstract)
程彦博, 毛景文, 陈小林, 李伟. 2010. 滇东南薄竹山花岗岩的LA-ICP-MS锆石U-Pb定年及地质意义. 吉林大学学报(地球科学版), 40(4): 869-878.
程彦博. 2012. 个旧超大型锡多金属矿区成岩成矿时空演化及一些关键问题探讨. 博士学位论文. 北京: 中国地质大学(北京), 1-163
崔玉荣, 周红英, 耿建珍, 李怀坤, 李惠民. 2012. LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定. 地球学报, 33(6): 865-876.
郭佳. 2019. 华南右江盆地锡成矿事件与花岗岩锡成矿能力: 以个旧和大厂锡多金属矿区为例. 博士学位论文. 广州: 中国科学院广州地球化学研究所, 1-175
郝爽, 李惠民, 李国占, 耿建珍, 周红英, 肖志斌, 崔玉荣, 涂家润. 2016. LA-MC-ICP-MS测定锡石U-Pb同位素年龄时两种普通铅扣除方法的原理及适用性比较. 地质通报, 35(4): 622-632. DOI:10.3969/j.issn.1671-2552.2016.04.019
蓝江波, 刘玉平, 叶霖, 张乾, 王大鹏, 苏航. 2016. 滇东南燕山晚期老君山花岗岩的地球化学特征与年龄谱系. 矿物学报, 36(4): 441-454.
李建德. 2018. 滇东南薄竹山矿集区花岗岩地球化学特征、锆石U-Pb定年及其构造意义. 硕士学位论文. 北京: 中国地质大学(北京), 1-86
李建康, 王登红, 李华芹, 陈郑辉, 梅玉萍. 2013. 云南老君山矿集区的晚侏罗世-早白垩世成矿事件. 地球科学(中国地质大学学报), 38(5): 1023-1036.
李进文, 裴荣富, 王永磊, 佘宏全, 丰成友, 郭志军, 王浩琳, 徐可. 2013. 云南都龙锡锌矿区同位素年代学研究. 矿床地质, 32(4): 767-782. DOI:10.3969/j.issn.0258-7106.2013.04.010
李开文, 张乾, 王大鹏, 蔡伊, 刘玉平. 2013. 云南蒙自白牛厂多金属矿床锡石原位LA-MC-ICP-MS U-Pb年代学. 矿物学报, 33(2): 203-209.
林彬, 陈蕾, 刘振宇, 唐菊兴, 邹兵, 贺文. 2020. 石榴子石U-Pb精确测年对斑岩-矽卡岩型铜矿床成岩时限的制约: 以西藏桑日铜矿为例. 地质学报, 94(10): 2883-2892. DOI:10.3969/j.issn.0001-5717.2020.10.008
刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因. 岩石学报, 30(11): 3271-3286.
刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
刘玉平, 李正祥, 叶霖, 谭洪旗, 李朝阳. 2011. 滇东南老君山矿集区钨成矿作用Ar-Ar年代学. 矿物学报, 31(增1): 617-618.
毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008a. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526.
毛景文, 程彦博, 郭春丽, 杨宗喜, 冯佳睿. 2008b. 云南个旧锡矿田: 矿床模型及若干问题讨论. 地质学报, 82(11): 1455-1467.
毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(23): 3746-3672.
宋世伟, 毛景文, 谢桂青, 宋昊, 陈国华, 饶建锋, 欧阳永棚. 2018. 矽卡岩型钨矿床成矿相关岩体识别: 以江西景德镇朱溪超大型矽卡岩型钨矿床为例. 矿床地质, 37(5): 940-960.
涂光炽. 2002. 我国西南地区两个别具一格的成矿带(域). 矿物岩石地球化学通报, 21(1): 1-2. DOI:10.3969/j.issn.1007-2802.2002.01.001
王礼兵, 艾金彪. 2018. 马关县都龙锡矿中辉钼矿铼-锇同位素特征及意义. 云南地质, 37(3): 292-297. DOI:10.3969/j.issn.1004-1885.2018.03.007
王小娟, 刘玉平, 鲍谈, 叶霖, 张乾, 何芳. 2013. 云南都龙矿床LA-MC-ICP-MS锡石U-Pb测年及其意义. 矿物学报, 33(增2): 616-617.
王小娟, 刘玉平, 缪应理, 鲍谈, 叶霖, 张乾. 2014. 都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义. 岩石学报, 30(3): 867-876.
解洪晶, 张乾, 祝朝辉, 范良伍, 王大鹏. 2009. 滇东南薄竹山花岗岩岩石学及其稀土-微量元素地球化学. 矿物学报, 29(4): 481-490. DOI:10.3321/j.issn:1000-4734.2009.04.012
许赛华, 任涛, 吕昶良, 石伟民, 王彩艳. 2019. 滇东南白垩纪高分异S型花岗岩研究进展. 矿物学报, 39(2): 149-165.
杨超, 闫峻, 李全忠, 王思诺, 黄志忠, 宋世明, 张晓东. 2019. 安徽池州许桥-乌古墩铅锌矿石榴子石和锆石U-Pb定年. 地质科学, 54(3): 929-952.
袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39(4): 607-618.
张洪培, 刘继顺, 李晓波, 章霞林. 2006. 滇东南花岗岩与锡、银、铜、铅、锌多金属矿床的成因关系. 地质找矿论丛, 21(2): 87-90. DOI:10.3969/j.issn.1001-1412.2006.02.003
张娟, 毛景文, 程彦博, 李肖龙. 2012. 个旧卡房层状铜矿床金云母和云英岩化白云母40Ar-39Ar同位素年龄及意义. 矿床地质, 31(6): 1149-1162. DOI:10.3969/j.issn.0258-7106.2012.06.002
张立中, 陈蕾, 王国平, 邓晓东, 李建威. 2020. 石榴石U-Pb定年对山西义兴寨金矿床角砾岩筒时间的限制和金矿成因的指示. 地球科学, 45(1): 108-117.
张世涛, 陈国昌. 1997. 滇东南薄竹山复式岩体的地质特征及其演化规律. 云南地质, 16(3): 222-232.
张小波, 张世涛, 陈华勇, 刘俊安, 程佳敏, 初高彬, 李莎莎. 2020. 石榴子石U-Pb定年在矽卡岩矿床中的应用: 以鄂东南高椅山硅灰石(-铜)矿床为例. 地球科学, 45(3): 150-162.
张亚辉, 张世涛. 2011. 云南文山官房钨矿床花岗岩地球化学特征及其地质意义. 地质与勘探, 47(6): 1002-1008.
张亚辉. 2013. 滇东南薄竹山晚燕山期酸性岩浆热液成矿作用研究. 博士学位论文. 昆明: 昆明理工大学: 1-168
张亚辉, 张世涛, 范玉华, 马洪杰, 张磊, 张东泽. 2014. 云南省文山县官房钨矿床矿床地质和流体包裹体研究. 岩石学报, 30(3): 877-888.
赵震宇. 2017. 云南省马关县都龙锌锡多金属矿床-岩浆作用及矿床成因研究. 博士学位论文. 北京: 中国地质大学(北京), 1-182
周建平, 徐克勤, 华仁民, 赵懿英, 朱金初. 1998. 滇东南喷流沉积块状硫化物特征与矿床成因. 矿物学报, 18(2): 158-168. DOI:10.3321/j.issn:1000-4734.1998.02.007