岩石学报  2021, Vol. 37 Issue (3): 747-768, doi: 10.18654/1000-0569/2021.03.07   PDF    
粤东金坑Sn-Cu矿成岩成矿年代学格架与Sn-Cu共生成矿作用
江丞曜1, 刘鹏1, 钱龙兵2, 毛景文1,3,4     
1. 长安大学地球科学与资源学院, 西安 710054;
2. 广东省有色金属地质局九三一队, 汕头 515047;
3. 中国地质大学(北京)科学研究院, 北京 100083;
4. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037
摘要: 金坑Sn-Cu矿床是粤东地区新发现的典型Sn-Cu共生矿床。矿区发育花岗闪长斑岩、中粗粒黑云母花岗岩和细粒花岗岩等多种侵入岩以及高基坪组火山岩,而这些岩石的年代学格架,及其与成矿过程关系还不清楚。因此,本文以粤东地区新发现的金坑铜锡矿床为研究对象,系统开展不同岩性侵入岩锆石和矿石锡石的U-Pb年龄测定,旨在浅析Sn-Cu共生成矿机制和成矿背景。结果表明,矿区中粗粒黑云母花岗岩和细粒花岗岩的锆石U-Pb年龄为145.2±1.2Ma和144.1±2.2Ma,这些年龄与该矿床的锡石U-Pb年龄(144.2±5.6Ma)在误差范围内一致,表明区内中粗粒黑云母花岗岩和细粒花岗岩与锡矿成矿关系密切。此外,获得花岗闪长斑岩U-Pb年龄为147.4±1.1Ma,且花岗闪长斑岩和高基坪组火山岩具有较高Cu含量,表明Cu可能来自于这两类岩石。结合前人研究成果,我们认为早白垩世矿区内发生了含锡中粗粒黑云母花岗岩和细粒花岗岩的侵位,其分异出富锡的还原性流体由于物理化学条件的变化析出了锡石;随着水岩反应的进行,流体萃取了围岩中的Cu、Pb、Zn等成矿元素,随着流体温度、盐度的持续下降,Cu、Pb、Zn和剩余的Sn在构造带内析出沉淀,从而造成了Sn-Cu共生成矿。
关键词: 金坑    LA-ICP-MS U-Pb定年    铜锡共生    锡石    粤东    
Geochronological framework and coexisting Sn-Cu mineralization of Jinkeng Sn-Cu deposit in eastern Guangdong, China
JIANG ChengYao1, LIU Peng1, QIAN LongBing2, MAO JingWen1,3,4     
1. School of Earth Sciences and Resources, Chang'an University, Xi'an 710054, China;
2. 931 Team, Geology Bureau for Nonferrous Metals of Guangdong Province, Shantou 515047, China;
3. Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China;
4. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The Jinkeng Sn-Cu deposit is a typical coexisting Sn-Cu deposit newly discovered in the eastern Guangdong Province. Volcanic rocks of Gaojiping Formation and various intrusive rocks including granodiorite porphyry, biotite granite and fine-grained granite are developed in the mining area. However, the geochronology of these rocks and their relationship with mineralization are still unclear. In this paper, we systematically determined the U-Pb ages of zircon and cassiterite from different intrusive rocks or ore body from the Jinkeng Sn-Cu deposit, in order to investigate the mechanism of coexisting Sn-Cu mineralization and metallogenic setting. Zircon U-Pb dating of the biotite granite and fine-grained granite in the Jinkeng deposit yielded concordant ages of 145.2±1.2Ma and 144.1±2.2Ma, consistent with the cassiterite U-Pb age (144.2±5.6Ma), indicating a genetic link between the biotite granite and fine-grained granite and the Sn mineralization. In addition, the granodiorite porphyry with a U-Pb age of 147.4±1.1Ma and the volcanic rocks of the Gaojiping Formation having high Cu contents, likely suggesting a Cu source. Combined with the previous studies, we propose the Sn-bearing granite intruded during the Early Cretaceous in the mining area, and then evolved high-Sn fluids resulted in cassiterite precipitation due to the change of physicochemical conditions. With the progress of fluid-rock reactions, Cu, Pb and Zn were extracted from the surrounding rock by fluid. Cu, Pb, Zn and remaining Sn precipitated coevally in the structures with the decrease of fluid temperature and salinity, which resulted in coexisting Sn-Cu mineralization.
Key words: Jinkeng Sn-Cu deposit    LA-ICP-MS U-Pb dating    Coexistence of tin and copper    Cassiterite    Eastern Guangdong Province    

锡与铜具有相差迥异的地球化学特征。与锡矿相关的花岗岩一般具有还原性和高分异的特点,绝大多数为过铝质到弱过铝质的S型花岗岩(Lehmann, 1982, 1990; Taylor, 1988),近年来也报道了许多与锡矿床有密切成因联系的A型和I型花岗岩(Zhao et al., 2012; Zhou et al., 2012; Liu et al., 2018b)。而与铜矿相关的花岗岩一般都呈现氧化性和中低分异的特点, 多为准铝质I型花岗岩类(Sillitoe,2010)。当岩浆处于还原性的低氧逸度条件下时,锡不会以Sn4+的形式进入到黑云母等早期结晶的矿物中,而是会以Sn2+的形式富集在更高分异的岩浆中并最终进入到流体相中;而当岩浆处于高氧逸度情况下,Sn4+会与Ti4+发生类质同象替换从而进入早期的镁铁质矿物相中,因此无法在残余岩浆中富集(Heinrich, 1990; Lehmann, 1990; Taylor and Wall, 1992)。而与铜矿有关的花岗质岩浆一般处于氧化性的高氧逸度条件下,在这种条件下,岩浆中绝大多数的S会以SO42-和SO2的形式溶解在硅酸盐熔体中,避免了S以S2-的形式大量存在而导致的Cu硫化物的过饱和而过早的沉淀,从而有利于Cu在残余岩浆中的富集并最终进入到流体相中(Richards,2003; Sillitoe, 2010; Blundy et al., 2015)。但实际上,在一些大型锡矿中又往往含有相当数量的铜矿,如云南个旧锡矿和广西的大厂锡矿,均具有大量的铜。那么,造成锡铜共生的原因是什么?是多期热液成矿活动的叠加,还是同一期成矿过程中的不同产物?

金坑铜锡多金属矿床位于粤东莲花山断裂带的北东段,是近些年来在粤东地区新发现的典型的锡铜共生矿床。前人对金坑铜锡多金属矿开展了成岩成矿年代学以及岩石地球化学研究,获得与锡矿化有关的中粗粒黑云母花岗岩和细粒花岗岩的锆石U-Pb年龄分别为144.7±0.8Ma和141.1±1.3Ma,锡矿石中辉钼矿年龄为139.3±2.5Ma (Qiu et al., 2017b)。然而,金坑铜锡矿与锡成矿有关的花岗岩具有高分异、还原性特征,不具有形成铜矿化的潜力。矿区发育多种岩性侵入岩,包括花岗闪长斑岩、中粗粒黑云母花岗岩和细粒花岗岩,这些岩石形成时代是多少?是否与铜矿化有关,尚不清楚。因此,本文通过系统性的对金坑矿区出露的各类岩浆岩开展锆石U-Pb定年,结合锡石U-Pb年龄和前人研究成果,建立矿区成岩成矿年代学格架,尝试探讨锡铜共生成矿机制。

1 区域地质背景

粤东地区位于我国东南沿海地区,武夷山成矿带东段,区内以发育大规模火山-侵入岩为特征。区内出露地层主要为上三叠统到下侏罗统的火山-沉积岩地层和第四系沉积地层。其中上三叠统小坪组(T3x)地层为一套由含砾砂岩、石英砂岩、粉砂岩、砂页岩组成的浅海相、滨海相和近海三角洲相沉积,该组地层为区内出露最古老地层,与下伏地层接触关系不明,与上覆地层整合接触。侏罗系地层包括:①下侏罗统金鸡组(J1j),该组地层为区内分布最广泛地层,为一套由长石石英砂岩、石英砂岩、粉砂岩和页岩组成的海陆交互相碎屑沉积建造;②中侏罗统漳平组(J2zh)为一套海陆交互相建造,分为两个岩性段,第一个岩性段由灰紫色和灰绿色凝灰岩夹砂岩、页岩,第二个岩性段为长石石英砂岩;③上侏罗统高基坪组(J3g)为一套火山熔岩和火山碎屑岩建造,按岩性分为上下两段,下段为流纹岩、流纹质凝灰岩、英安岩等,上段为流纹质凝灰岩、流纹岩等。三叠系至侏罗系地层均受到了岩浆岩的侵入所带来的热变质作用影响,同时,断裂带中的沉积地层也受到了动力变质作用的影响。

区内的断裂构造十分发育,以北东向深大断裂最为发育,还发育有东西向断裂、北西向次级断裂,以上断裂形成了粤东地区复杂的断裂构造格架(图 1)。莲花山断裂带横穿本区,该断裂带自北向南依次为丰顺-海丰,惠来-饶平断裂带和普宁-潮安断裂带(谢窦克和商玉强,1989)。北东向断裂与北西向、东西向断裂交汇位置常发育火山岩盆地、花岗质岩石及其相关的矿产(徐晓春和岳书仓,1999刘鹏,2018)。区内出露的侵入岩主要是侏罗-白垩纪花岗岩,多呈岩基和岩株状产出。侏罗纪花岗岩主要为二长花岗岩、黑云母花岗岩、花岗闪长斑岩等,主要出露位置位于粤东地区的中西部和东北部(图 1)。白垩纪花岗岩主要为黑云母花岗岩、二长花岗岩以及花岗斑岩等,主要分布在粤东地区的西北部、中部和南部(图 1),受北东向断裂带控制。

图 1 粤东地区地质矿产简图(据刘鹏等,2015a) Fig. 1 Geological map of eastern Guangdong Province (after Liu et al., 2015a)

粤东地区晚中生代时大规模的岩浆活动促成了该区域发育大量的相关矿产,主要包括钨、锡、铜、铅、锌等。这些矿产主要沿北东向的莲花山断裂带及其次级断裂交汇部位分布,与区内晚中生代火山-侵入岩密切相关。区内锡矿分布最为广泛,其种类多样,最主要的类型为锡石-硫化物型锡矿,如吉水门、长埔、横田、牛头山、厚婆坳、金坑等,该类矿床的矿体多受断裂控制,大量发育锡石-硫化物脉;此外,还有云英岩型钨锡矿,如飞鹅山钨锡矿;斑岩型钨矿,如莲花山钨矿(刘鹏,2018)。

2 矿床地质特征

金坑铜锡多金属矿床位于广东省揭西县城北北西方向约10km处,构造位置位于粤东莲花山断裂带的北东段(图 1)。矿区发育三个矿段,分别为马山、崆角、赤告岭和黄竹嶂,主体矿段为马山和崆角(图 2)。目前该区的金属量为:Cu 110, 807t、Sn 7, 809t、Pb 26, 552t和Zn 147, 493t,平均品位分别为0.68%、0.29%、1.43%和1.68%(广东省有色金属地质局九三一队,2015)。

图 2 金坑矿区地质简图(据Qiu et al., 2017b) Fig. 2 Simplified geological map of the Jingkeng deposit (after Qiu et al., 2017b)

① 广东省有色金属地质局九三一队. 2015. 广东省揭西县金坑矿区铜锡铅锌矿普查报告. 1-108

矿区内的主要赋矿地层包括上侏罗统流纹岩、流纹质晶屑凝灰岩、凝灰质砂页岩以及石榴石构造片岩等(图 2)。地层走向25°~45°,倾向SE,倾角30°左右。地层受到了明显的变质作用影响,可见片理化、糜棱岩化等(图 3)。其中,流纹岩受动力变质作用影响之后具有明显的片理构造,呈灰色,具流纹构造、斑状结构,斑晶含量15%~20%,为石英、钾长石、斜长石和黑云母,粒度0.2~0.3mm; 基质含量80%~85%, 包括石英、黑云母以及绢云母,粒度多小于0.15mm。流纹质晶屑凝灰岩呈灰色,凝灰结构,主要矿物包括长英质晶屑(70%)、岩屑(10%)、绢云母(10%)和黑云母(10%)(图 3)。

图 3 金坑矿区火山岩手标本及其对应镜下照片 (a、b)流纹岩;(c、d)受变质作用流纹质晶屑凝灰岩. 矿物缩写: Qtz-石英;Pl-斜长石;Bt-黑云母;Ser-绢云母 Fig. 3 Hand specimen and microphotographs of the Jinkeng volcanics (a, b) rhyolite; (c, d) metamorphic rhyolitic crystal fragment tuff. Mineral abbreviations: Qtz-quartz; Pl-plagioclase; Bt-biotite; Ser-sericite

矿区内的重要控矿构造为NE向宽约1.5km的韧性剪切带,马山一带的NE向断裂和崆角矿段的NW向断裂,其都属于莲花山断裂带的次级分支构造(图 2)。

矿区内的侵入岩主要包括花岗闪长斑岩、中粗粒黑云母花岗岩和细粒花岗岩(图 4d)。花岗闪长斑岩主要出露在崆角矿段;细粒花岗岩主要出露在黄竹嶂、马山和崆角矿段,中粗粒黑云母花岗岩主要出露于矿区的北西角;中粗粒黑云母花岗岩出露于矿区外围北西方向(图 2)。中粗粒花岗岩与细粒花岗岩侵位于花岗闪长斑岩和高基坪组的火山岩中(图 4b),是相对晚期侵入的岩体,且两种花岗岩之间形成一种渐变的过渡联系。

图 4 金坑矿区野外地质特征 (a)构造破碎带中的花岗闪长斑岩;(b)细粒花岗岩侵入到花岗闪长斑岩中;(c)似层状矿体;(d)中粗粒花岗岩;(e)花岗闪长斑岩与凝灰岩界线;(f、i)石香肠构造;(g)板岩化凝灰岩;(h)糜棱岩化花岗闪长斑岩 Fig. 4 Field characteristics of the Jinkeng deposit (a) granodiorite-porphyry in tectonic belt; (b) fine-grained granite invaded into granodiorite-porphyry; (c) stratiform-like orebody; (d) biotite granite; (e) boundary between granodiorite porphyry and tuff; (f, i) boudinage structure; (g) slatelization tuff; (h) mylonitize granodiorite-porphyry

其中,高基坪组火山岩和大部分花岗闪长斑岩受到韧性剪切带的影响发生变形,也有少量距韧性剪切带较远的花岗闪长斑岩未发生变形,而中粗粒黑云母花岗岩和细粒花岗岩受影响较小(图 4a, b, e-h),暗示该韧性剪切带活动时间为花岗闪长斑岩侵位之后,中粗粒黑云母花岗岩和中细粒花岗岩侵位之前。韧性剪切带内出现糜棱岩化和片理岩化,而在构造破碎带附近,发育富含石榴石的构造片岩。

矿区内矿体较多而厚度较小、多呈脉状、透镜状、似层状(图 4c图 5)。矿体多赋存在细粒花岗岩内外接触带的花岗闪长斑岩和上侏罗统的高基坪组流纹岩、凝灰岩中,受构造破碎带和构造蚀变带等控制。

图 5 金坑矿区0线(a)与20线(b)钻孔剖面图(据广东省有色金属地质局九三一队,2015) Fig. 5 Geological cross-sections of exploration lines (a) No. 0 and (b) No. 20 of the Jinkeng deposit

矿区内的矿石可分为三类:①锡石-硫化物-石英-黑云母型:呈暗灰绿色,脉状构造,主要矿石矿物包括黄铜矿、黄铁矿、闪锌矿,其次是锡石,多为它形粒状;脉石矿物为石英、黑云母、绿泥石(图 6h)。②石英-黑云母-石榴石-硫化物型:呈灰白色,脉状构造,矿石矿物主要为黄铁矿、闪锌矿、方铅矿,少量的黄铜矿;脉石矿物为石英、黑云母、石榴石和方解石(图 6l)。③石英-黑云母-毒砂-硫化物型:呈灰色,脉状构造,主要矿石矿物黄铁矿、黄铜矿、闪锌矿、毒砂;脉石矿物为石英、黑云母。矿石构造多为浸染状构造、脉状构造和块状构造(图 6a-c)。④石英-方解石-硫化物型:脉状构造,主要矿石矿物为闪锌矿。方铅矿、黄铜矿、黄铁矿,主要脉石矿物为方解石和石英。常见的结构有:(1)黄铁矿、毒砂、锡石等的自型-半自形结构(图 6b, d);(2)闪锌矿、方铅矿的他形粒状结构(图 6c);(3)黑云母被绿泥石所交代形成的交代结构(图 6j, k);(4)石榴子石内的裂隙被闪锌矿、黄铜矿充填的填隙结构(图 6e)。

图 6 金坑矿区矿石镜下照片 (a)黄铜矿、黄铁矿与方铅矿共生;(b)他形粒状毒砂与黄铁矿共生,黄铜矿交代黄铁矿;(c)方铅矿、闪锌矿与黄铜矿共生;(d)毒砂与半自形磁黄铁矿共生,磁黄铁矿被闪锌矿和黄铁矿交代;(e)闪锌矿沿石榴石裂隙充填;(f)他形黄铜矿、闪锌矿与黑云母、绿泥石;(g)他形黄铜矿、闪锌矿与石榴石、黑云母、绿泥石和石英;(h、i)锡石、黄铁矿、黄铜矿和闪锌矿共生;(j)黄铜矿、闪锌矿、黑云母和绿泥石被后期的方解石脉切穿;(k)方解石脉与他形黄铜矿、闪锌矿、石榴子石、黑云母、绿泥石和石英;(l)黄铜矿、闪锌矿沿石榴子石裂隙填充. 矿物缩写:Apy-毒砂;Py-黄铁矿;Po-磁黄铁矿;Ccp-黄铜矿;SP-闪锌矿;Gn-方铅矿;Cst-锡石;Grt-石榴石;Chl-绿泥石;Cal-方解石 Fig. 6 Photomicrographs showing variations in mineralization within the Jinkeng deposit (a) chalcopyrite coexisting with pyrite and galena; (b) xenomorphic granular arsenopyrite coexisting with pyrite, replacement of pyrite by chalcopyrite; (c) galena coexisting with sphalerite and chalcopyrite; (d) arsenopyrite coexisting with hypautomorphic pyrrhotite, replacement of pyrrhotite by sphalerite and pyrite; (e) garnet fissure filling sphalerite; (f) xenomorphic chalcopyrite, sphalerite, biotite and chlorite; (g) xenomorphic chalcopyrite, sphalerite, garnet, biotite, chlorite and quartz; (h, i) cassiterite coexisting with pyrite, chalcopyrite and sphalerite; (j) chalcopyrite, sphalerite, biotite and chlorite cut through by calcite veins; (k) calcite veins, xenomorphic chalcopyrite, sphalerite, garnet, biotite, chlorite and quartz; (l) garnet fissure filling sphalerite and chalcopyrite. Mineral abbreviations: Apy-arsenopyrite; Py-pyrite; Po-pyrrhotite; Ccp-chalcopyrite; Sp-sphalerite; Gn-galena; Cst-cassiterite; Grt-garnet; Chl-chlorite; Cal-calcite

矿区的围岩蚀变包括黑云母化、硅化、绿泥石化和因动力变质产生的石榴石化。结合野外和镜下特征,可以划分出四个成矿阶段:(1)动力变质阶段;(2)锡石-硫化物阶段;(3)石英-毒砂-硫化物阶段;(4)石英-方解石-硫化物阶段。(1)动力变质阶段,韧性剪切带在动力变质作用过程中形成了石榴石和绢云母,石榴石发生了破碎并被之后的热液活动改造,形成了石英-黑云母-石榴石-硫化物型矿石(图 6e);(2)锡石-硫化物阶段,主要矿物为黄铜矿、黄铁矿、闪锌矿、方铅矿、锡石、石英、黑云母以及少量毒砂和绿泥石(图 6f),围岩蚀变主要是黑云母化、硅化和绿泥石化,形成锡石-硫化物-石英-黑云母型矿石(图 6i);(3)石英-毒砂-硫化物阶段,主要矿物为石英、黑云母、毒砂、黄铜矿和黄铁矿,形成石英-黑云母-毒砂-硫化物型矿石;(4)石英-方解石-硫化物阶段,主要矿物是方解石、石英、少量黄铜矿、黄铁矿、方铅矿和闪锌矿,形成石英-方解石-硫化物型矿石,围岩蚀变为方解石化和硅化(图 6j, k)。

3 样品特征及测试方法 3.1 样品特征

为研究区内岩浆活动特点,建立成岩成矿年代学格架,本文采集了金坑矿区三种不同岩性的侵入岩样品。

JK01和JK54分别为变形和未变形的花岗闪长斑岩,斑状结构,斑晶主要为斜长石(10%)、钾长石(5%~10%),基质主要为长石(45%)、石英(20%)、黑云母(15%)。斜长石粒径为2~3.5mm,半自形柱状,具聚片双晶,表面脏,可见显微鳞片状绢云母;钾长石可见卡式双晶,粒径2~3mm,为半自形板状;石英粒径0.5~1mm,他形粒状(图 7a, b)。

图 7 金坑矿区岩体手标本及其对应镜下照片 (a、b)变质的花岗闪长斑岩;(c、d)中粗粒黑云母花岗岩;(e、f)细粒花岗岩;(g、h)未变质花岗闪长斑岩. 矿物缩写: Kfs-钾长石 Fig. 7 Hand specimen and microphotographs of the Jinkeng igneous rocks (a, b) metamorphic granodiorite-porphyry; (c, d) biotite granite; (e, f) fine-grained granite; (g, h) granodiorite-porphyry. Mineral abbreviations: Kfs- K-feldspar

JK08为中粗粒的黑云母花岗岩,呈花岗结构,灰白色,主要矿物为钾长石(35%)、石英(30%)、斜长石(25%)、黑云母(5%~10%)。钾长石粒径多为3~5mm,呈半自形板状,表面较脏;斜长石粒径为2~4mm,呈半自形柱状-板状,可隐约见聚片双晶,表面脏;石英,他形粒状,粒径0.3~1.5mm;黑云母呈叶片状零星分布,粒径多小于1mm,部分被绿泥石交代(图 7c, d)。

JK49、JK50为细粒花岗岩,灰白色,花岗结构,主要矿物成分为石英(35%)、钾长石(35%)、斜长石(25%)、黑云母(1%~5%)。钾长石粒径为0.3~2.0mm,呈半自形柱状,表面较脏,具高岭土化;斜长石粒径为0.2~2mm,呈半自形柱状,可见聚片双晶;石英为他形粒状,粒径0.3~1.5mm;黑云母为片状,粒径为0.1~0.15mm(图 7ef)。

锡石测试样品JK45为崆角矿段的石英脉型矿石,该石英脉受到韧性剪切带动力变形的影响,其延伸形态受到韧性剪切带控制(图 4i)。

3.2 锡石U-Pb定年

锡石的单矿物分选、制靶和阴极发光图像的采集是在廊坊市拓轩岩矿检测服务有限公司进行的。破碎样品后,经过磁选法和重选法粗选后在双目镜下挑出晶型较好、透明度良好的锡石。将锡石颗粒用双面胶固定在载玻片上,放上PVC环,然后注入按一定比例充分混合的环氧树脂和固化剂,待树脂固化后,将样品与载玻片剥离并作抛光制靶。阴极发光图像拍摄所用仪器型号为TESCAN MIRA3场发射电镜。根据阴极发光图像,避开裂缝和包裹体等,选择合适的测点位置,以减少普通铅的影响。

锡石的LA-ICP-MS U-Pb同位素和微量元素分析是在南京大学内生金属矿床成矿机制研究国家重点实验室完成的。所使用的仪器为ASI Resolution LR 193nm ArF准分子激光剥蚀系统与Thermo Fisher ICAP QC电感耦合等离子体质谱仪。测试的激光束斑为43μm,频率为6Hz,能量密度为4.1J/cm2。采用NIST SRM 614玻璃作为校正微量元素和207Pb/206Pb比值的外部标样, 使用Cligga Head锡石作为校正238U/206Pb的外部标样。Cligga Head锡石采于英国康沃尔锡成矿省,具有一定含量的普通Pb,其ID-TIMS U-Pb年龄为285.14±0.25Ma (2σTapster and Bright, 2020)。锡石U-Pb定年的监控标样为Yankee,采于澳洲东部新英格兰省与Mole花岗岩有关的Yankee脉型锡矿,其ID-TIMS U-Pb年龄为246.48±0.51Ma (2σCarr et al., 2020)。

每分析12个样品点测试2次NIST SRM614,每分析6个样品点测试2次CLGH锡石标样。每个样品点分析包括20s的背景信号采集和40s的样品信号采集。同位素测试采用时间分辨模式。204Pb扫描时间为8ms,206Pb和208Pb为15ms,238U和232Th的扫描时间为20ms,207Pb为20ms。锡石U-Pb同位素和微量元素的数据还原利用ICPMSDataCal 10.1软件处理(Liu et al., 2010)。待测样品的207Pb/206Pb比值利用NIST SRM614校正,206Pb/238U比值利用CLGH锡石校正,具体校正方法参考Chew et al. (2014)Roberts et al. (2017)。同位素比值误差为1σ。锡石Tera-Wasserburg U-Pb谐和图和206Pb/238U加权平均年龄谱图利用Isoplot 4.5绘制(Ludwig,2003)。详细分析方法见Li et al. (2016b)Zhang et al. (2017)

3.3 锆石U-Pb定年

锆石的单矿物分选、制靶和阴极发光(CL)照相工作是在廊坊市拓轩岩矿检测服务有限公司进行的。将5~10kg岩石样品粉碎后,通过常用的重选和磁选在双目镜下挑选出具代表性的锆石,然后使用浓度3%的稀HNO3清洗样品表面,从而除去样品表面的污染。然后把锆石颗粒粘在双面胶上注入环氧树脂并打磨抛光,之后对锆石颗粒进行透射、反射和CL图像的拍摄,并结合图像选择合适的测点位置。

LA-ICP-MS锆石的U-Pb同位素定年和微量元素含量分析工作是在西北大学大陆动力学教育部重点实验室完成的。采用了GeoLas200M型193nmArF准分子激光剥蚀系统、Agilent7500a型等离子质谱仪(ICP-MS)以及ComPex102 Excimer激光器联用系统。锆石的微量元素、U-Th-Pb同位素测定在一个点上同时完成。激光剥蚀过程的载气为He,激光束斑直径为30μm,频率为6Hz,激光剥蚀深度为20~30μm,每个样品点的时间分析数据包括大约为20~30s的背景信号和50s的样品信号,详细的仪器参数见Yuan et al. (2004)。分析处理中使用GJ-1和NIST SRM610作为标样进行同位素和微量元素分馏校正,每分析8个样品点测试1个SRM610、2个GJ-1、1个Plesovice标样,观察仪器状态和测试的重现性。分析数据的离线处理和空白数据的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算使用ICPMSDateCal (Liu et al., 2010)完成。采用ISOPLOT(Ludwig, 2003)进行协和图绘制以及加权年龄计算。

4 测试结果 4.1 锡石U-Pb测年结果

锡石U-Pb测年样品JK45,为石英脉型矿石,锡石呈黄褐色-深褐色,半自形晶体,共36个测点。207Pb/206Pb比值变化范围为0.130~0.970,238U/206Pb比值变化范围为1.414~43.133, 207Pb/235U比值变化范围为0.345~81.161。在207Pb/206Pb-238U/206Pb Tera-Wasserburg年龄图解上获得下交点年龄为144.2±5.6Ma (MSWD=3.4)(表 1图 8)。

表 1 金坑矿区LA-ICP-MS锡石U-Pb定年结果 Table 1 LA-ICP-MS U-Pb dating results of cassiterite for the Jinkeng deposit

图 8 金坑锡石U-Pb定年Tera-Wasserburg年龄图 Fig. 8 Tera-Wasserburg U-Pb age diagram for cassiterite in the Jinkeng deposit
4.2 锆石U-Pb测年结果

样品JK01(变形花岗闪长斑岩)中的锆石晶形较好,呈柱状至长柱状,棱角清晰,颗粒长度80~240μm,晶体可见清晰的致密韵律环带(图 9),Th含量为58×10-6~356×10-6,U含量为236×10-6~859×10-6,Th/U比值范围为0.21~0.73(表 2),应为岩浆成因锆石(Zhang et al., 2020)。样品JK01的206Pb/238U年龄的加权平均值为147.4±1.2Ma (MSWD=2.2)(图 10a)。

图 9 样品部分锆石CL图像及测点位置,示年龄 Fig. 9 CL images and analytical positions for measured zircons, showing ages

表 2 三种不同岩性侵入岩的锆石LA-ICP-MS U-Pb定年结果 Table 2 LA-ICP-MS zircon U-Pb dating from three granitoids

图 10 金坑矿区侵入岩锆石U-Pb年龄协和图解 (a)变形花岗闪长斑岩(JK01);(b)中粗粒黑云母花岗岩(JK08);(c)细粒花岗岩(JK49);(d)钠化细粒花岗岩(JK50);(e)未变形花岗闪长斑岩(JK54) Fig. 10 U-Pb age concordia diagram and weighted mean age calculation for granitoids in Jinkeng deposit (a) metamorphic granodiorite-porphyry; (b) biotite granite; (c) fine-grained granite; (d) albitization fine-grained granite; (e) granodiorite-porphyry

样品JK08 (中粗粒黑云母花岗岩) 中的锆石晶形较好,呈柱状,少数为长柱状,棱角清楚,颗粒长度130~190μm,多数晶体的幔部可见清晰的韵律环带(图 9),Th含量为112×10-6~1213×10-6,U含量为268×10-6~3649×10-6,Th/U比值范围为0.19~0.72(表 2),为岩浆成因锆石。样品JK08的206Pb/238U年龄的加权平均值为145.2±1.2Ma (MSWD=2.2) (图 10b)。

样品JK49(细粒花岗岩)中的锆石晶形较好,呈长柱状,棱角清晰,颗粒长度120~200μm,晶体可见清晰的致密韵律环带,其CL照片较其它样品颜色更浅(图 9),Th含量为49×10-6~966×10-6,U含量为175×10-6~1844×10-6,Th/U比值范围为0.20~0.62(表 2),应为岩浆成因锆石。JK49的206Pb/238U年龄的加权平均值为144.1±2.2Ma (MSWD=3.3) (图 10c)。

样品JK50(钠化细粒花岗岩)中的锆石晶形较好,呈柱状至长柱状,棱角清晰,颗粒长度150~250μm,晶体可见清晰的致密韵律环带(图 9),Th含量为56×10-6~854×10-6,U含量为145×10-6~1258×10-6,Th/U比值范围为0.19~0.89(表 2),应为岩浆成因锆石。JK50的206Pb/238U年龄的加权平均值为144.7±1.3Ma (MSWD=2.0) (图 10d)。

样品JK54(未变形花岗闪长斑岩)中的锆石晶形较好,呈柱状至长柱状,棱角清晰,颗粒长度110~220μm,晶体可见较清晰的韵律环带(图 9),Th含量为101×10-6~430×10-6,U含量为242×10-6~1487×10-6,Th/U比值范围为0.10~0.97(表 2),应为岩浆成因锆石。JK54的206Pb/238U年龄的加权平均值为147.4±1.1Ma (MSWD=1.4) (图 10e)。

各样品的数据投影点位于206Pb/238U-207Pb/235U谐和图的谐和线之上和附近,表明其未受后期热液活动影响。

5 讨论 5.1 区内成岩成矿年代学格架

本次工作中,我们获得金坑矿区花岗闪长斑岩、中粗粒黑云母花岗岩和细粒花岗岩的锆石U-Pb年龄分别为147.4±1.1Ma、145.2±1.2Ma和144.1±2.2Ma,锡石U-Pb年龄为144.2±5.6Ma,表明金坑铜锡多金属矿床的成矿时间为早白垩世初期(144Ma左右)。该成矿年龄与中粗粒黑云母花岗岩和细粒花岗岩的成岩年龄在误差范围一致。Qiu et al. (2017b)对金坑铜锡矿床的相关岩体进行了系统的分析,分析发现中粗粒黑云母花岗岩和细粒花岗岩都为准铝质高钾钙碱性系列岩石,为下地壳部分熔融并混入少量幔源物质而形成的准铝质I型花岗岩,并且具有高分异和低氧逸度的特征。同时,Qiu et al. (2017b)发现中粗粒黑云母花岗岩和细粒花岗岩的F、Sn含量远高于粤东地区上下地壳Sn含量的平均值(表 3),显示出这两类花岗岩富F和Sn。综上,我们认为中粗粒花岗岩和细粒花岗岩与锡成矿有关。

表 3 金坑矿区各岩性成矿元素统计对比(×10-6) Table 3 The major metal elements concentrations of rocks in the Jinkeng deposit (×10-6)

Liu et al. (2018b)对粤东成矿系列进行了划分,划分出三个成矿阶段:①中晚侏罗世(170~155Ma) 斑岩Cu-Au成矿系列;②早白垩世(145~135Ma)W-Sn-Pb-Zn成矿系列;③晚白垩世(110~90Ma)斑岩-浅成低温热液Cu-Au-Mo矿床。本文统计了粤东地区部分岩浆岩和W-Sn-Cu金属矿床年龄(图 11),可见粤东地区的岩浆活动和铜、锡金属矿床成岩成矿主要集中在两个阶段:第一阶段为中晚侏罗世的170~152Ma,第二阶段为早白垩世的147~135Ma。从表中数据可见,多数W-Sn矿床成岩成矿年龄集中在早白垩世,而铜矿床主要集中在中晚侏罗世。金坑锡铜矿床(144.2±5.6Ma,锡石U-Pb)(本文);丘增旺等(2017)对粤东淘锡湖锡多金属矿床的花岗斑岩进行了锆石U-Pb定年,得到花岗斑岩侵位年龄为141.8±1Ma;丘增旺等(2016)对广东省海丰县长埔锡多金属矿床中与矿化密切关联的石英斑岩进行了锆石U-Pb定年,得到其年龄为145±0.9Ma;刘鹏等(2015a)对粤东田东钨锡矿的粗粒花岗岩和细粒花岗岩进行了锆石U-Pb,分别得到年龄为158±1.3Ma和140.5±0.8Ma;Qiu et al. (2017c)对粤东大道山锡矿与矿床相关的花岗斑岩进行了锆石U-Pb定年,得到其年龄为153.2±1.2Ma;王小雨等(2016)对粤东新寮岽铜多金属矿床中与成矿密切联系的石英闪长岩进行了锆石U-Pb定年,得到年龄为161±1Ma;Jia et al. (2020)对粤东钟丘洋铜矿流纹质凝灰岩进行锆石U-Pb定年,得到年龄为164.7±1.3Ma;刘鹏(2018)对粤东鸿沟山铜矿的花岗闪长斑岩中的锆石进行U-Pb定年工作,得到年龄为155.7±2Ma。

图 11 粤东晚侏罗世-早白垩世成岩成矿事件年龄分布图 数据来源:丘增旺等, 2016, 2017; 闫庆贺等,2018刘鹏等,2015a刘鹏,2018李海立等,2016王小雨等,2016Liu et al., 2017, 2018a, b; Qiu et al., 2017c; Zhou et al., 2016; Zhang et al., 2015a Fig. 11 Age distribution map of Late Jurassic to Early Cretaceous diagenetic mineralization events in eastern Guangdong Data sources: Qiu et al., 2016, 2017a, c; Yan et al., 2018; Liu et al., 2015a, 2017, 2018a, b; Zhou et al., 2016; Zhang et al., 2015a
5.2 锡铜共生成矿机制

作为亲石元素的锡和作为亲铜元素的铜,两者的地球化学性质有很大的差异。主流观点认为,一般与锡矿相关的花岗岩类属于钛铁矿系列,为过铝质或弱过铝质且不含角闪石的富Sn、F、B元素、高分异、还原性S型花岗岩,而与铜矿相关的花岗岩类型一般属于磁铁矿系列,为准铝质的中低分异、氧化性I型花岗岩(Lehmann, 1982, 1990Taylor,1988Sillitoe,2010Richards,2011)。但是也有一些学者发现幔源物质能对锡矿成矿做出贡献,如澳大利亚东部的Ardlethan锡矿和Renison锡矿的与矿床有关的花岗岩在形成过程中有幔源物质的贡献(Walshe et al., 2011)。

在还原条件下,大部分Sn以Sn2+的形式存在于残余熔体中(Lehmann, 1990);而F的富集有利于降低熔体粘度并降低固相线温度,这有助于结晶分异作用的发生。富F与低氧逸度的条件有利于Sn向后期的岩浆热液中富集。金坑铜锡矿床的中粗粒黑云母花岗岩和细粒花岗岩的特征符合含锡花岗岩的特征,同时Qiu et al.(2017b)对中粗粒黑云母花岗岩和中细粒花岗岩的分析发现,两类花岗岩的Cu元素丰度显著低于中东部地壳的Cu元素丰度均值和粤东高基坪组火山岩(表 3);而野外的矿化现象主要集中于细粒花岗岩的内接触带以及外接触带的花岗闪长斑岩和高基坪组火山岩的断裂构造中,这都显示出矿体形成于火山岩与花岗闪长斑岩形成之后。在典型的斑岩铜矿的形成过程中,成矿母岩一般有较高氧逸度、中低分异的特点,这与Qiu et al. (2017b)发现的金坑花岗岩具有高度分异、较低氧逸度的特点有很大差异,同时这两类花岗岩的Cu、Zn和Pb含量明显较低,暗示是除了这两种花岗岩之外的地质体对金坑矿区的铜铅锌矿化提供了主要成矿物质来源。金坑矿床硫化物Pb同位素与岩体和火山岩地层都较为接近,暗示赋矿围岩也提供了成矿物质(丘增旺,2017);矿区内的高基坪组火山岩具有较高Cu、Pb、Zn含量(表 3),应为重要的铜铅锌矿化成矿物质来源之一;而花岗闪长斑岩形成时间早于前述的两类花岗岩,在时间上对应于粤东中晚侏罗世的Cu成岩成矿事件,与粤东中晚侏罗世铜矿的花岗质岩石有着相似的特征,暗示着花岗闪长斑岩可能是Cu、Pb、Zn等成矿元素的重要来源。这样的一种围岩富含Cu、Pb、Zn元素而侵入花岗岩体富含Sn元素的特征在个旧矿田的卡房矿区铜锡共生矿床中也有体现(毛景文等, 2008a; Guo et al., 2018; 李翔,2019),并且都展现出Cu、Pb、Zn储量大于Sn储量的特点。

一般来讲,Sn会在还原性体系中更倾向于与Cl-或F-结合形成络合物进入流体相中迁移富集(Heinrich et al., 1999; Lehmann, 1990)。金坑含锡花岗岩作为富F岩体(围岩蚀变出现萤石等富F矿物),其晚期形成的还原性流体中Sn则可能主要会以SnCl3-和SnF2的形式富集迁移。但是近年来一些学者发现,在高氧逸度热液流体中,如果Cl-达到一定浓度,锡能够以Sn4+形式与Cl-以及H2O结合,以[SnCl3(H2O)3]+和[SnCl5(H2O)]-的形式进行迁移富集(Schmidt, 2018)。而对Cu而言,通常认为其倾向于在高氧化性和高盐度的情况下与Cl-结合形成络合物在流体相中迁移富集(Burnham and Ohmoto, 1980),但也有研究发现,Cu在与还原硫(HS-、H2S和S2-)结合后会倾向于进入气相进行迁移富集(Pokrovski et al., 2005; Heinrich et al., 1999, 2004)。金坑锡矿中的硫化物中可见较多的磁黄铁矿,同时也未见硫酸盐矿物,因此可以确定矿区内的成矿流体中的S应该主要以还原性S的形式出现。

综合这些特征,我们认为金坑矿床金属元素的迁移和沉淀机制为:第一阶段,富含SnCl2和SnF2的还原性流体进入区内异常发育的构造中,在这样相对开放体系中,流体氧逸度快速增加,Sn2+氧化为Sn4+,同时可能由于大气水的加入导致流体温度、盐度下降,Sn以锡石(SnO2)形式在细粒花岗岩接触带沉淀。第二阶段,随着流体与围岩间的水岩反应不断进行,流体从围岩中萃取出Cu、Pb等金属元素时也获取了大量还原性的S,随着盐度不断降低的流体中H2S、HS-组分的不断增加和还原性升高,Cu可能会在这样的富S、较低盐度的体系中与还原硫结合后倾向于进入气相运移富集(Simon et al., 2006),在流体温度和盐度进一步降低时,Cu、Pb、Zn元素在外接触带构造带中大量析出;由于流体在第一阶段所遭遇的氧化,流体中剩余的Sn以稳定的Sn4+-Cl络合物形式存在,此时伴随着流体温度与盐度降低,这些剩余的Sn也发生沉淀,形成锡石-硫化物组合。最后阶段由于大气降水的继续加入和成矿流体继续向外侧运移,其温度与盐度继续降低,少量硫化物继续沉淀,形成方解石-硫化物脉。这样的一种锡铜共生机理与云南个旧矿田锡铜共生矿床中含Sn花岗质岩浆热液萃取了玄武岩中Cu和碳酸盐岩中的Pb、Zn并发生沉淀的矿化过程相类似(毛景文等, 2008a; 李翔, 2019; Guo et al., 2018)。

5.3 成矿模型及动力学背景

前人对粤东地区中晚侏罗世至早白垩世的成岩成矿事件进行了大量工作,发现该成岩成矿期可分为两个成矿阶段,第一阶段为中晚侏罗世(170~155Ma),以发育斑岩-矽卡岩型铜矿床为代表,第二阶段为早白垩世(145~135Ma),以发育与花岗岩有关的钨锡矿床为主(刘鹏,2018)。而与粤东地区紧邻的南岭地区的成岩成矿事件,从时间上来看,南岭地区钨锡矿的成岩成矿时代主要集中在晚侏罗世160~150Ma,在早白垩世时较少;而粤东沿海地区钨锡矿的成岩成矿时间特点正好相反,更多的集中在早白垩世,到了晚侏罗世,粤东地区主要出现铜矿而少见钨锡矿,且南岭钨锡矿的主要成矿时代相对于粤东钨锡矿的主要成矿时代早了10~20Myr (毛景文等, 2004a, b, 2007, 2008bPeng et al., 2006Yuan et al., 2008, 2011, 2015, 2018; Hu et al., 2012a, b; Mao et al., 2013, 2019, 2021; 刘鹏等, 2015a, bQiu et al., 2017b; 丘增旺等,2017; 刘鹏,2018)。Liu et al. (2018b)分析对比了南岭与粤东的与钨锡矿有关的岩石,发现具有非常相似的岩石地球化学特征,均富集Si、K、Li、Rb、Nb、Ta、Ga、Cs、U、Th及REE元素,亏损Fe、Mg、Ti、Ca、Ni、Cr、Sr和Ba等,有着平缓的稀土元素配分曲线和强烈的负Eu异常,且岩石类型都为高分异的I型或A型花岗岩;这样的特征似乎指示着这两个地区与成矿有关的岩石可能具有相似的物质源区与岩浆过程;而在放射性同位素特征上,粤东地区钨锡矿具有相对更高的εHf(t)值,表明有更多地幔物质加入,可能是华南地区中生代不同时期的深部动力学过程差异造成的(Hu and Zhou, 2012)。

前人分析认为南岭地区160~150Ma的钨锡成矿事件可能是因为古太平洋板块的俯冲方向和角度发生变化,并发生了板片断裂或出现板片窗,产生的地幔物质上涌后与地壳发生底侵作用,形成了壳幔混源高分异I型或A型花岗质岩石和大量流纹质火山岩(高基坪组火山岩等),并导致南岭的大规模W-Sn矿化,这些岩石且具有变化范围很大的εNd(t)值变化范围,表明岩浆源区有相当的地幔物质参与(毛景文等, 2007, 2008; Ling et al., 2009; 章荣清等,2010; Mao et al., 2011, 2013, 2014, 2021; Shu et al., 2011; 袁顺达等,2012; Zhang et al., 2015b; Qiu et al., 2017b; 丘增旺等,2017; 刘鹏,2018Yuan et al., 2019)。而粤东地区在这一时间段内主要发生了Cu-Mo-Au成矿事件。王小雨等(2016)对粤东新寮岽铜矿中与成矿有关的石英闪长岩的锆石U-Pb年龄、岩石地球化学和锆石Hf同位素分析后,发现其岩体岩体成岩年龄为161±1Ma,源区为壳幔混源,可能为俯冲板片部分熔融并与地幔橄榄岩相互作用形成,且在上侵过程中混染古老地壳物质;Jia et al. (2020)对粤东钟丘洋铜矿的流纹质凝灰岩分析后发现,其锆石U-Pb年龄为164.7±1.3Ma,流纹质凝灰岩在形成过程中混入了少量幔源物质;此外,刘鹏(2018)报道了粤东鸿沟山铜金矿和鹅地铜金矿的岩体锆石U-Pb年龄,分别为156.0Ma和169.4Ma。这都反映出粤东地区存在着的这一期中晚侏罗世的Cu-Mo-Au成岩成矿事件。前人研究表明粤东与南岭地区在中晚侏罗世都处在伸展构造背景下,两地区此时的地球动力学背景为:Izanagi板块在俯冲过程中的方向与角度发生变化发生板片断裂拆沉或出现板片窗,引发板内伸展,导致软流圈地幔上涌,玄武质岩浆底侵地壳造成地壳熔融,形成的长英质岩浆后与一定比例地幔物质混合,沿构造带上侵,并形成大量的流纹质岩石和花岗质岩石(Zhou and Li, 2000; Li and Li, 2007; Guo et al., 2012; Mao et al., 2013; Li et al., 2016a; 王小雨等,2016; Qiu et al., 2017b; 刘鹏,2018)。

越来越多的研究认为早白垩世粤东地区属于由古太平洋板块回撤时所形成的伸展构造背景(Zhou et al., 2006; Mao et al., 2013; Liu et al., 2017, 2018a, b; Qiu et al., 2017b; Yan et al., 2017, 2018; 刘鹏,2018)。粤东地区早白垩世动力学背景为:古太平洋板块回撤导致了岩石圈伸展减薄,软流圈地幔对下地壳的底侵,下地壳部分熔融后与地幔物质混合后沿莲花山断裂带上升,形成高度分异的花岗质岩类,并最终导致了包括金坑锡矿在内的粤东地区的大规模W-Sn矿化(Liu et al., 2016, 2017, 2018a, b; Qiu et al., 2017b; Yan et al., 2017, 2018)。而与粤东地区相邻的南岭地区在早白垩世时的成岩成矿事件较弱,结合两地区在钨锡成岩成矿峰期上的时间差,可能是因为随着俯冲板块的后撤,从而造成了地幔物质大规模上涌(刘鹏,2018), 地壳物质重熔,经过强烈的结晶分异作用,形成了与钨锡矿有关的花岗岩。

综上所述,金坑铜锡多金属矿床的成矿过程可分为以下几个阶段:(1)中晚侏罗世(175~152Ma)时古太平洋俯冲角度发生变化,造成软流圈地幔上涌,造成地壳的部分熔融,形成的混入地幔物质的长英质岩浆沿莲花山断裂带上涌,喷发形成高基坪组火山岩和花岗闪长斑岩;(2)至晚侏罗世末期(152~148Ma),古太平洋板块运动方向的调整造成了粤东岩石圈的挤压,华南岩浆活动进入平静期(Li et al., 2010);(3)早白垩世初期时(147~145Ma),随着古太平洋板块的逐步后撤,粤东地区由挤压逐步转变为伸展环境,此时发生了金坑矿区花岗闪长斑岩的侵位(147Ma);(4)伴随着莲花山断裂的强烈左行压扭(刘鹏,2018邹和平等,2000),金坑矿区的高基坪组火山岩与花岗闪长斑岩发生了强烈的变形变质;(5)古太平洋板块的进一步后撤,造成了粤东地区的伸展构造环境,软流圈地幔上涌,地壳部分熔融形成的长英质岩浆沿莲花山断裂带上涌,经历分异演化形成高度分异的中粗粒黑云母花岗岩和细粒花岗岩;(6)残余岩浆中大量含Sn岩浆热液出溶并沿着剪切构造带迁移,在迁移过程中萃取了高基坪组火山岩与花岗闪长斑岩中的Cu、Pb、Zn等成矿元素,在构造带内析出沉淀,形成严格受构造控制的矿体。

6 结论

(1) 粤东金坑铜锡多金属矿床的花岗闪长斑岩、中粗粒黑云母花岗岩和细粒花岗岩的形成年龄分别为147.4±1.1Ma、145.2±1.2Ma和144.1±2.2Ma,锡石形成年龄为144.2±5.6Ma,即其成岩成矿时间为早白垩世初期的145Ma左右,属于燕山期成矿。

(2) 金坑矿区的围岩具有中低分异、中高氧逸度,低Sn、高Cu的特点;而两类花岗岩具有高分异、低氧逸度,且有高Sn、低Cu的特征。结合区域成岩成矿事件、前人研究成果以及本文中进行的年代学工作,我们认为金坑铜锡多金属矿床的成矿物质可能来源于花岗岩体和赋矿围岩,含Sn花岗岩岩浆热液萃取了围岩中的Cu、Pb、Zn等成矿元素,并最终在构造带内富集沉淀,最终形成矿体。

致谢      感谢西北大学大陆动力学国家重点实验室包志安老师在实验过程中提供的帮助;感谢袁顺达老师在成文过程中的帮助和指导;感谢两位匿名审稿人提出的宝贵建议。

参考文献
Blundy J, Mavrogenes J, Tattitch B, Sparks S and Gilmer A. 2015. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs. Nature Geoscience, 8(3): 235-240 DOI:10.1038/ngeo2351
Burnham CW and Ohmoto H. 1980. Late-stage process in felsic magmatism. In: Ishihara S and Takenouchi S (eds.). Granitic Magmatism and Related Mineralization. Mining Geology, Special Issue, 8: 1-11
Carr PA, Zink S, Bennett VC, Norman MD, Amelin Y and Blevin PL. 2020. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole granite polymetallic system, eastern Australia. Chemical Geology, 539: 119539 DOI:10.1016/j.chemgeo.2020.119539
Chew DM, Petrus JA and Kamber BS. 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363: 185-199 DOI:10.1016/j.chemgeo.2013.11.006
Gao S, Luo TC, Zhang BR, Zhang HF, Han YM, Zhao ZD and Kern H. 1999. Structure and composition of the continental crust in East China. Science in China (Series D), 42(2): 129-140 DOI:10.1007/BF02878511
Guo F, Fan W, Li C, Zhao L, Li H and Yang J. 2012. Multi-stage crust-mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces. Lithos, 150: 62-84 DOI:10.1016/j.lithos.2011.12.009
Guo J, Zhang RQ, Li CY, Sun WD, Hu YB, Kang DM and Wu JD. 2018. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627-642 DOI:10.1016/j.oregeorev.2017.11.033
Heinrich CA. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology, 85(3): 453-481
Heinrich CA, Gunther D, Audétat A, Ulrich T and Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8): 755-758 DOI:10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
Heinrich CA, Driesner T, Stefánsson A and Seward TM. 2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology, 32(9): 761-764 DOI:10.1130/G20629.1
Hu RZ and Zhou MF. 2012. Multiple Mesozoic mineralization events in South China: An introduction to the thematic issue. Mineralium Deposita, 47(6): 579-588 DOI:10.1007/s00126-012-0431-6
Hu RZ, Bi XW, Jiang GH, Chen HW, Peng JT, Qi YQ, Wu LY and Wei WF. 2012a. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, southeastern China. Mineralium Deposita, 47(6): 623-632 DOI:10.1007/s00126-011-0396-x
Hu RZ, Wei WF, Bi XW, Peng JT, Qi YQ, Wu LY and Chen YW. 2012b. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos, 150: 111-118 DOI:10.1016/j.lithos.2012.05.015
Jia LH, Mao JW and Zheng W. 2020. Geochronology, geochemistry, and Sr-Nd-Hf-O isotopes of the Zhongqiuyang rhyolitic tuff in eastern Guangdong, SE China: Constraints on petrogenesis and tectonic setting. Geological Journal, 55(7): 5082-5100 DOI:10.1002/gj.3702
Lehmann B. 1982. Metallogeny of tin: Magmatic differentiation versus geochemical heritage. Economic Geology, 77(1): 50-59 DOI:10.2113/gsecongeo.77.1.50
Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer, 1-211
Li B, Jiang SY, Lu AH, Lai JQ, Zhao KD and Yang T. 2016a. Petrogenesis of Late Jurassic granodiorites from Gutian, Fujian Province, South China: Implications for multiple magma sources and origin of porphyry Cu-Mo mineralization. Lithos, 264: 540-554 DOI:10.1016/j.lithos.2016.09.020
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016b. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-222 DOI:10.1016/j.oregeorev.2015.07.016
Li HL, Xiao HL, Fan FP, Chen LZ, Liu JX and Chen XT. 2016. Molybdenite Re-Os isotopic age of Fei'eshan tungsten and molybdenum polymetallic deposit in Chao'an, Guangdong. Acta Geologica Sinica, 90(2): 231-239 (in Chinese with English abstract)
Li X. 2019. Micro-geochemical analysis and metallogenic mechanism of tin-copper associated deposits: Case studies of the Neves Corvo deposit in Portugal and the Gejiu deposit in Yunnan, China. Ph. D. Dissertation. Wuhan: China University of Geosciences (Wuhan), 1-150 (in Chinese)
Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34: 117-134 DOI:10.1111/j.1751-908X.2010.00036.x
Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182 DOI:10.1130/G23193A.1
Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Economic Geology, 104(2): 303-321 DOI:10.2113/gsecongeo.104.2.303
Liu L, Xu XS and Xia Y. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397-407 DOI:10.1016/j.gr.2015.09.009
Liu P, Chen YB, Mao JW, Wang XY, Yao W, Chen XT and Zeng XJ. 2015a. Zircon U-Pb age and Hf iostopic characteristics of granite from the Tiandong Tungsten-Sn polymetallic deposit in eastern Guangdong Province and its significance. Acta Geologica Sinica, 89(7): 1244-1257 (in Chinese with English abstract)
Liu P, Cheng YB, Wang XY, Zhang X, Gao FY and Liao ZG. 2015b. Zircon U-Pb geochronology and characteristics of Hf isotope from the Taoziwo Sn deposit in eastern Guangdong Province and their significance. Acta Petrologica et Mineralogica, 34(5): 620-636 (in Chinese with English abstract)
Liu P, Mao JW, Cheng YB, Yao W, Wang XY and Hao D. 2017. An Early Cretaceous W-Sn deposit and its implications in southeast coastal metallogenic belt: Constraints from U-Pb, Re-Os, Ar-Ar geochronology at the Feie'shan W-Sn deposit, SE China. Ore Geology Reviews, 81: 112-122 DOI:10.1016/j.oregeorev.2016.09.023
Liu P. 2018. The W-Sn metallogeny and its geodynamic setting, eastern Guangdong Province, Southeast Coast. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-205 (in Chinese)
Liu P, Mao JW, Pirajno F, Jia LH, Zhang F and Li Y. 2018a. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: Constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes. Mineralium Deposita, 53(6): 797-814 DOI:10.1007/s00126-017-0779-8
Liu P, Mao JW, Santosh M, Bao ZA, Zeng XJ and Jia LH. 2018b. Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie'shan W-Sn deposit in the eastern Guangdong Province, SE China: Implications for W-Sn mineralization and geodynamic setting. Lithos, 300-301: 330-347 DOI:10.1016/j.lithos.2017.12.015
Liu P, Mao JW, Santosh M, Xu LG, Zhang RQ and Jia LH. 2018c. The Xiling Sn deposit, eastern Guangdong Province, Southeast China: A new genetic model from 40Ar/39Ar muscovite and U-Pb cassiterite and zircon geochronology. Economic Geology, 113(2): 511-530 DOI:10.5382/econgeo.2018.4560
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KR. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-70
Mao JW, Li XF, Lehmann B, Chen W, Lan XM and Wei SL. 2004a. 40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 23(2): 164-175 (in Chinese with English abstract)
Mao JW, Xie GQ, Li XF, Zhang CQ and Mei YX. 2004b. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Science Frontiers, 11(1): 45-54 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)
Mao JW, Cheng YB, Guo CL, Yang ZX and Feng JR. 2008a. Gejiu tin polymetallic ore-field: Deposit model and discussion for several points concerned. Acta Geologica Sinica, 82(11): 1455-1467 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008b. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Pirajno F and Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings: An introduction to the special issue. Ore Geology Reviews, 43(1): 1-7 DOI:10.1016/j.oregeorev.2011.09.003
Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294 DOI:10.1007/s00126-012-0446-z
Mao JW, Pirajno F, Lehmann B, Luo MC and Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576-584 DOI:10.1016/j.jseaes.2013.09.002
Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB and Chen MH. 2019. Geology and metallogeny of tungsten and tin deposits in China. Society of Economic Geologists Special Publication, 22: 411-481
Mao JW, Zheng W, Xie GQ, Lehmann B and Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology DOI:10.1130/G48615.1
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41(7): 661-669 DOI:10.1007/s00126-006-0084-4
Pokrovski GS, Roux J and Harrichoury JC. 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology, 33(8): 657-660 DOI:10.1130/G21475AR.1
Qiu ZW, Wang H, Yan QH, Li SS, Wang LM, Bu A, Mu SL, Li P and Wei XP. 2016. Zircon U-Pb geochronology and Lu-Hf isotopic composition of quartz porphyry in the Changpu Sn polymetallic deposit, Guangdong Province, SE China and their geological significance. Geochimica, 45(4): 374-386 (in Chinese with English abstract)
Qiu ZW. 2017. Magmatism and metallogenesis of the Jinkeng Sn polymetallic deposit, eastern Guangdong. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-143 (in Chinese with English summary)
Qiu ZW, Wang H, Yan QH, Li SS, Wang LM, Bu A, Wei XP, Li P and Mu SL. 2017a. Zircon U-Pb geochronology, geochemistry and Lu-Hf isotopes of granite porphyry in Taoxihu tin polymetallic deposit, Guangdong Province, SE China and its geological significance. Geotectonica et Metallogenia, 41(3): 516-532 (in Chinese with English abstract)
Qiu ZW, Yan QH, Li SS, Wang H, Tong LX, Zhang RQ, Wei XP, Li P, Wang LM, Bu A and Yan LM. 2017b. Highly fractionated Early Cretaceous Ⅰ-type granites and related Sn polymetallic mineralization in the Jinkeng deposit, eastern Guangdong, SE China: Constraints from geochronology, geochemistry, and Hf isotopes. Ore Geology Reviews, 88: 718-738 DOI:10.1016/j.oregeorev.2016.10.008
Qiu ZW, Li SS, Yan QH, Wang H, Wei XP, Li P, Wang LM and Bu A. 2017c. Late Jurassic Sn metallogeny in eastern Guangdong, SE China coast: Evidence from geochronology, geochemistry and Sr-Nd-Hf-S isotopes of the Dadaoshan Sn deposit. Ore Geology Reviews, 83: 63-83 DOI:10.1016/j.oregeorev.2016.11.015
Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533 DOI:10.2113/gsecongeo.98.8.1515
Richards JP. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1-26 DOI:10.1016/j.oregeorev.2011.05.006
Roberts NMW, Rasbury ET, Parrish RR, Smith CJ, Horstwood MAS and Condon DJ. 2017. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochemistry, Geophysics, Geosystems, 18(7): 2807-2814 DOI:10.1002/2016GC006784
Schmidt C. 2018. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(Ⅳ) species. Geochimica et Cosmochimica Acta, 220: 499-511 DOI:10.1016/j.gca.2017.10.011
Shu XJ, Wang XL, Sun T, Xu XS and Dai MN. 2011. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: Implications for petrogenesis and W-Sn mineralization. Lithos, 127(3-4): 468-482 DOI:10.1016/j.lithos.2011.09.019
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41 DOI:10.2113/gsecongeo.105.1.3
Simon AC, Pettke T, Candela PA, Piccoli PM and Heinrich CA. 2006. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochimica et Cosmochimica Acta, 70(22): 5583-5600 DOI:10.1016/j.gca.2006.08.045
Tapster S and Bright JWG. 2020. High-precision ID-TIMS cassiterite U-Pb systematics using a low-contamination hydrothermal decomposition: Implications for LA-ICP-MS and ore deposit geochronology. Geochronology, 2(2): 425-441 DOI:10.5194/gchron-2-425-2020
Taylor JR. 1988. The partitioning of tin from granitic magmas: Ph. D. Dissertation. Melbourne: Monash University, 1-223
Taylor JR and Wall VJ. 1992. The behavior of tin in granitoid magmas. Economic Geology, 87(2): 403-420 DOI:10.2113/gsecongeo.87.2.403
Walshe JL, Solomon M, Whitford DJ, Sun SS and Foden JD. 2011. The role of the mantle in the genesis of tin deposits and tin provinces of Eastern Australia. Economic Geology, 106(2): 297-305 DOI:10.2113/econgeo.106.2.297
Wang WX, Guan SK and Zhang HX. 1987. Intermediate-acid volcanic rocks in coastal areas of eastern Guangdong and their relationship with minerals. Journal of Guangdong Institute of Geological Science and Technology, 5: 36-76 (in Chinese)
Wang XY, Mao JW, Chen YB, Liu P and Zhang XK. 2016. Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartz-diorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong Province. Geological Bulletin of China, 35(8): 1357-1375 (in Chinese with English abstract)
Xie DK and Shang YQ. 1989. Lithosphere plate-terrane tectonics of the Southeast China continent. Bulletin Nanjing Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 10(4): 1-12 (in Chinese)
Xu XC and Yue SC. 1999. Source material and metallization of tin (tungsten, copper) polymetallic deposits in eastern Guangdong Province. Scientia Geologica Sinica, 34(1): 78-89 (in Chinese with English abstract)
Yan QH, Li SS, Qiu ZW, Wang H, Wei XP, Li P, Dong R and Zhang XY. 2017. Geochronology, geochemistry and Sr-Nd-Hf-S-Pb isotopes of the Early Cretaceous Taoxihu Sn deposit and related granitoids, SE China. Ore Geology Reviews, 89: 350-368 DOI:10.1016/j.oregeorev.2017.05.026
Yan QH, Wang H, Qiu ZW, Wei XP, Li P, Dong R, Zhang XY and Zhou KL. 2018. Origin of Early Cretaceous A-type granite and related Sn mineralization in the Sanjiaowo deposit, eastern Guangdong, SE China and its tectonic implication. Ore Geology Reviews, 93: 60-80 DOI:10.1016/j.oregeorev.2017.12.014
Yan QH, Wang H, Qiu ZW, Wang M, Mu SL, Wang LM, Bu A, Wang SM, Li SS, Wei XP and Li P. 2018. Zircon and cassiterite U-Pb ages and Lu-Hf isotopic compositions of Tashan tin-bearing porphyry in Guangdong Province, SE China and its geological significance. Geotectonica et Metallogenia, 42(4): 718-731 (in Chinese with English abstract)
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382 DOI:10.1007/s00126-007-0166-y
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242 DOI:10.1016/j.oregeorev.2011.08.002
Yuan SD, Liu XF, Wang XD, Wu SH, Yuan YB, Li XK and Wang TZ. 2012. Geological characteristics and 40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787-3797 (in Chinese with English abstract)
Yuan SD, Mao JW, Cook NJ, Wang XD, Liu XF and Yuan YB. 2015. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China. Ore Geology Review, 65: 283-293 DOI:10.1016/j.oregeorev.2014.10.006
Yuan SD, Williams-Jones AE, Mao JW, Zhao PL, Yan C and Zhang DL. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5): 1193-1208 DOI:10.5382/econgeo.2018.4587
Yuan SD, Williams-Jones AE, Romer RL, Zhao PL and Mao JW. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: Insights from the Nanling Region, China. Economic Geology, 114(5): 1005-1012 DOI:10.5382/econgeo.4669
Zhang RQ, Lu JJ, Zhu JC, Yao Y, Gao JF, Chen WF and Zhao ZJ. 2010. Zircon U-Pb geochronology and Hf isotopic compositions of Hehuaping granite porphyry, southern Hunan Province, and its geological significance. Geological Journal of China Universities, 16(4): 436-447 (in Chinese with English abstract)
Zhang RQ, Lu JJ, Wang RC, Yang P, Zhu JC, Yao Y, Gao JF, Li C, Lei ZH, Zhang WL and Guo WM. 2015a. Constraints of in situ zircon and cassiterite U-Pb, molybdenite Re-Os and muscovite 40Ar-39Ar ages on multiple generations of granitic magmatism and related W-Sn mineralization in the Wangxianling area, Nanling Range, South China. Ore Geology Reviews, 65: 1021-1042 DOI:10.1016/j.oregeorev.2014.09.021
Zhang RQ, Lu JJ, Lehmann B, Li CY, Li GL, Zhang LP, Guo J and Sun WD. 2017. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284 DOI:10.1016/j.oregeorev.2016.10.039
Zhang W, Lentz DR, Thorne KG and Massawe RJR. 2020. Late Silurian-Early Devonian slab break-off beneath the Canadian Appalachians: Insights from the Nashwaak Granite, west-central New Brunswick, Canada. Lithos, 358-359: 105393 DOI:10.1016/j.lithos.2020.105393
Zhang Y, Yang JH, Sun JF, Zhang JH, Chen JY and Li XH. 2015b. Petrogenesis of Jurassic fractionated Ⅰ-type granites in Southeast China: Constraints from whole-rock geochemical and zircon U-Pb and Hf-O isotopes. Journal of Asian Earth Sciences, 111: 268-283 DOI:10.1016/j.jseaes.2015.07.009
Zhao KD, Jiang SY, Yang SY, Dai BZ and Lu JJ. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22(1): 310-324 DOI:10.1016/j.gr.2011.09.010
Zhou XM and Li WX. 2000. Origin of late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287 DOI:10.1016/S0040-1951(00)00120-7
Zhou XM, Sun T, Shen WZ, Shu LS and Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33 DOI:10.18814/epiiugs/2006/v29i1/004
Zhou ZH, Mao JW and Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. Journal of Asian Earth Sciences, 49: 272-286 DOI:10.1016/j.jseaes.2012.01.015
Zhou ZM, Ma CQ, Xie CF, Wang LX, Liu YY and Liu W. 2016. Genesis of highly fractionated Ⅰ-Type granites from Fengshun complex: Implications to tectonic evolutions of South China. Journal of Earth Science, 27(3): 444-460 DOI:10.1007/s12583-016-0677-3
Zou HP, Wang JH and Qiu YX. 2000. 40Ar/39Ar ages of the Nan'ao shear zone and the Lianhuashan shear zone in Guangdong Province and their geological significance. Acta Geoscientia Sinica, 21(4): 356-364 (in Chinese with English abstract)
高山, 骆庭川, 张本仁, 张宏飞, 韩吟文, 赵志丹, Kern H. 1999. 中国东部地壳的结构和组成. 中国科学(D辑), 29(3): 204-213.
李海立, 肖惠良, 范飞鹏, 陈乐柱, 刘建雄, 陈叙涛. 2016. 广东潮安飞鹅山钨钼多金属矿床辉钼矿Re-Os同位素定年. 地质学报, 90(2): 231-239. DOI:10.3969/j.issn.0001-5717.2016.02.003
李翔. 2019. 锡铜共生矿床微区地球化学分析及成矿机制研究-以葡萄牙Neves Corvo和云南个旧矿床为例. 博士学位论文. 武汉: 中国地质大学(武汉), 1-150
刘鹏, 程彦博, 毛景文, 王小雨, 姚薇, 陈叙涛, 曾晓剑. 2015a. 粤东田东钨锡多金属矿床花岗岩锆石U-Pb年龄、Hf同位素特征及其意义. 地质学报, 89(7): 1244-1257.
刘鹏, 程彦博, 王小雨, 张翔, 高风颖, 廖正国. 2015b. 粤东桃子窝锡矿区火山-次火山岩和花岗岩锆石U-Pb年龄、Hf同位素特征及其意义. 岩石矿物学杂志, 34(5): 620-636.
刘鹏. 2018. 东南沿海粤东地区钨锡成矿作用与成矿动力学背景. 博士学位论文. 北京: 中国地质大学(北京), 1-205
毛景文, 李晓峰, Lehmann B, 陈文, 蓝晓明, 魏绍六. 2004a. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义. 矿床地质, 23(2): 164-175.
毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004b. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-54.
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. DOI:10.3969/j.issn.1000-0569.2007.10.002
毛景文, 程彦博, 郭春丽, 杨宗喜, 冯佳睿. 2008a. 云南个旧锡矿田: 矿床模型及若干问题讨论. 地质学报, 82(11): 1455-1467.
毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008b. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526.
丘增旺, 王核, 闫庆贺, 李莎莎, 汪礼明, 卜安, 幕生禄, 李沛, 魏小鹏. 2016. 广东长埔锡多金属矿床石英斑岩锆石U-Pb年代学、Hf同位素组成及其地质意义. 地球化学, 45(4): 374-386. DOI:10.3969/j.issn.0379-1726.2016.04.003
丘增旺. 2017. 粤东金坑锡多金属矿床成岩成矿作用研究. 博士学位论文. 北京: 中国科学院大学, 1-143
丘增旺, 王核, 闫庆贺, 李莎莎, 汪礼明, 卜安, 魏小鹏, 李沛, 幕生禄. 2017. 广东陶锡湖锡多金属矿床花岗斑岩锆石U-Pb年代学、地球化学、Hf同位素组成及其地质意义. 大地构造与成矿学, 41(3): 516-532.
王文校, 关世魁, 张焕新. 1987. 粤东沿海地区中酸性火山岩及其与矿产关系. 广东地质科技研究所汇刊, 5: 36-76.
王小雨, 毛景文, 程彦博, 刘鹏, 张兴康. 2016. 粤东新寮岽铜多金属矿区石英闪长岩锆石U-Pb年龄、地球化学及Hf同位素组成. 地质通报, 35(8): 1357-1375. DOI:10.3969/j.issn.1671-2552.2016.08.016
谢窦克, 商玉强. 1989. 东南大陆岩石圈板块地体构造. 中国地质科学院南京地质矿产研究所所刊, 10(4): 1-12.
徐晓春, 岳书仓. 1999. 粤东锡(钨、铜)多金属矿床的成矿物质来源和成矿作用. 地质科学, 34(1): 78-89. DOI:10.3321/j.issn:0563-5020.1999.01.009
闫庆贺, 王核, 丘增旺, 王敏, 幕生禄, 汪礼明, 卜安, 王赛蒙, 李莎莎, 魏小鹏, 李沛. 2018. 粤东塌山斑岩型锡多金属矿床锆石及锡石U-Pb年代学、Hf同位素组成及其地质意义. 大地构造与成矿学, 42(4): 718-731.
袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李雪凯, 王铁柱. 2012. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究. 岩石学报, 28(12): 3787-3797.
章荣清, 陆建军, 朱金初, 姚远, 高剑锋, 陈卫锋, 招湛杰. 2010. 湘南荷花坪花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、Hf同位素制约及地质意义. 高校地质学报, 16(4): 436-447. DOI:10.3969/j.issn.1006-7493.2010.04.003
邹和平, 王建华, 邱元禧. 2000. 广东南澳和莲花山韧性剪切带40Ar/39Ar年龄及其地质意义. 地球学报, 21(4): 356-364. DOI:10.3321/j.issn:1006-3021.2000.04.004