岩石学报  2021, Vol. 37 Issue (3): 717-732, doi: 10.18654/1000-0569/2021.03.05   PDF    
赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究
刘敏1, 宋世伟1, 崔玉荣2, 陈国华3, 饶建锋3, 欧阳永棚3     
1. 中国地质大学(北京), 北京 100083;
2. 中国地质调查局天津地质矿产研究所, 天津 300170;
3. 江西省地质矿产勘查开发局九一二大队, 鹰潭 335001
摘要: 钨和铜由于地球化学行为存在明显差异,导致二者通常很难同时发生大规模的成矿作用。然而,江南钨矿带却出现了以石门寺和朱溪为代表的钨(铜)矿床。本文对朱溪钨(铜)矿床中最为重要的铜矿化作用开展了研究,即对形成于新元古代浅变质岩与古生代碳酸盐岩不整合界面附近的似层状钨(铜)矿体进行了精细的矿物学微区原位测试分析。厘定了朱溪矿床深部似层状钨(铜)矿体中铜矿化的形成时代为150.2±2.4Ma,与朱溪矿床的钨矿化时代及钨矿化相关岩体的成岩时代近于一致;揭示了深部似层状钨(铜)矿体中白钨矿、磷灰石的形成与朱溪矿床成矿相关岩浆高程度结晶分异形成的残余岩浆热液流体相关;结合朱溪矿床高分异残余岩浆(流体)具有高度还原的特征,初步提出朱溪矿床成矿过程中,钨来自于高分异残余岩浆热液流体,而铜来自于岩浆热液流体对基底地层中铜元素的萃取。
关键词: 朱溪矿床    白钨矿    磷灰石    原位分析    成矿时代    
In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province
LIU Min1, SONG ShiWei1, CUI YuRong2, CHEN GuoHua3, RAO JianFeng3, OUYANG YongPeng3     
1. Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China;
2. Tianjin Institute of Geology and Mineral Resources, China Geological Survey, Tianjin 300170, China;
3. 912 Party of Jiangxi Bureau of Geology and Mineral Exploration, Yingtan 335001, China
Abstract: Due to the obvious differences in geochemical behavior for tungsten and copper in magmatic systems, it is usually difficult to occurring large-scale Cu- and W-mineralization at the same time. However, tungsten (copper) deposits represented by Shimensi and Zhuxi deposits appear in the Jiangnan tungsten belt. This study focuses on the most important copper mineralization occurred in the Zhuxi W (Cu) deposit, which formed the stratiform-like W(Cu) ore body near the unconformity interface between the Neoproterozoic metamorphic rock and the Paleozoic carbonate rock. In situ micro-zone analysis have been performed on the scheelite and apatite from the stratiform-like W(Cu) ore body. The LA-ICP-MS U-Pb data on the apatite show a Lower intercept age of 150.2±2.4Ma on the Tera-Wasserburg concordia diagrams, which represents the copper mineralization in the stratiform-like W(Cu) ore body and is closely consistent with the tungsten mineralization age and the diagenetic age of the granitic rocks associated with tungsten mineralization. The geochemical characteristics of scheelite and apatite reveal that the formation of scheelite and apatite grains in the stratiform-like W(Cu) ore body is genetically associated with the residual magmatic hydrothermal fluids formed from the highly fractionated magma system that induced the tungsten mineralization of the Zhuxi deposit. In view of the highly fractionated residual magma system of the Zhuxi deposit is characterized by highly reductive features. This study preliminarily proposed that during the mineralization process of the Zhuxi deposit, tungsten is derived from the highly fractionated magmatic system, while copper comes from the extraction of the basement strata by the magmatic hydrothermal fluid.
Key words: Zhuxi deposit    Scheelite    Apatite    In-situ analysis    Metallogenic age    

钨作为亲石元素,在地幔熔融和硅酸岩岩浆演化过程中,表现出高度不相容的性质,最终导致W在地壳中(约1×10-6)相对于地幔(约13×10-9~16×10-9)显著富集(Rudnick and Gao, 2003);而铜作为亲硫元素,与钨表现出截然不同的地球化学性质,相对于主要起源于地壳的钨元素,铜更可能起源于地幔(Richards, 2015),俯冲洋壳(毛景文等, 2014; mungall, 2002; sun et al., 2015)或加厚地壳底部的硫化物堆晶体(Chiaradia, 2014; Hou et al., 2015)。钨、铜的矿化作用常与中酸性、酸性花岗质岩浆活动密切相关,但二者在花岗质岩浆演化过程中却表现出明显不同的地球化学性质:铜在花岗质岩浆中的富集需要岩浆具有高氧逸度,并且岩浆热液流体越早出溶,越有利于铜在残余岩浆体系中的富集(Candela, 1992; Jugo et al., 2005);钨在花岗质岩浆的演化过程中主要呈W6+存在,为稳定的不相容元素(Fonseca et al., 2014; O'Neill et al., 2008),因而氧逸度对花岗质岩浆体系中钨的富集没有明显的控制作用(Blevin and Chappell, 1992),岩浆热液流体越晚出溶,越有利于钨在残余岩浆热液体系中的富集(Meinert, 1993; Newberry and Swanson, 1986)。钨、铜的成矿岩浆源区不同和岩浆演化过程中元素地球化学行为不同,暗示着同一花岗质岩浆活动不大可能同时导致大规模的钨、铜矿化作用。例如,在我国华南地区,中晚侏罗世古太平洋板块俯冲过程中形成了一系列沿东南沿海地区分布的铜矿床,而晚侏罗世则在弧后伸展带形成了一系列钨锡矿床(Yuan et al., 2007, 2019; Hu and Zhou, 2012; Hu et al., 2012a, b; Mao et al., 2021; 袁顺达等, 2012a, b)。

值得注意的是,近年来的地质勘探工作在长江中下游地区斑岩-矽卡岩型铜多金属矿带南侧的江南钨矿带上,发现了多个钨铜共生的矽卡岩-斑岩型钨矿床(图 1)。例如,大湖塘矿区石门寺矿床中,WO3金属量达74万吨,铜金属量达40万吨(项新葵等, 2013);朱溪矿床中WO3金属量达344万吨,而铜金属量达11万吨(Ouyang et al., 2019),并且紧邻朱溪钨矿床还存在一个矿石中发育明显白钨矿矿化的小型铜矿床(图 2Song et al., 2019)。鉴于朱溪矿床中“钨铜共生”现象明显,并且这种钨铜密切共生的成矿现象在国际上也是罕见现象(蒋少涌等, 2015),朱溪矿床“钨铜共生”的地质特征已经引起了矿床学研究者的关注。准确厘定成矿时代是成矿机制研究的基础,对于朱溪钨矿化时代,前人研究一致表明该矿床中钨成矿时代约为150Ma(Pan et al., 2017; Song et al., 2019; 于全等, 2018),与朱溪成矿相关的S型花岗岩形成时代吻合(Chen et al., 2016; Song et al., 2018b; Zhang et al., 2020; 刘经纬等, 2017)。值得注意的是,由朱溪成矿相关岩浆高度演化产生的残余岩浆遭受灰岩混染时形成的含白钨矿钙长岩内,低氧逸度条件才能形成的富Mn钛铁矿(Feenstra and Peters, 1996)广泛存在,而磁铁矿却完全缺失(Song et al., 2018a);并且朱溪矿床成矿相关岩体内含有S型花岗岩的特征矿物——岩浆成因白云母(Song et al., 2018b);由此说明朱溪成矿相关岩浆为壳源的还原性岩浆,显然不可能提供大量高氧逸度条件下才能富集成矿的铜元素(Ishihara, 1981)。

图 1 江南钨矿带及长江中下游斑岩矽卡岩铜-金-钼-铁多金属成矿带矿床分布图(据Mao et al., 2017修改) 1-中侏罗统-白垩系沉积岩和火山岩;2-石炭系-下三叠统层状海相碎屑岩和碳酸盐岩,中三叠统-上三叠统近海相碎屑岩;3-石炭世中酸性侵入体;4-侏罗世中酸性侵入体;5-江南古陆:新元古代浅变质岩及沉积岩;6-新元古代中酸性侵入体;7-新元古代蛇绿岩;8-河流湖泊;9-钨矿床;10-锡矿床;11-铜矿床;12-金矿床;13-铅锌矿床;14-铁矿床 Fig. 1 Distribution of the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north and the Jiangnan tungsten belt (JNB) in the south (modified after Mao et al., 2017) 1-Middle Jurassic to Cretaceous sedimentary and volcanic rocks; 2-Cambrian to Early Triassic marine clastic and carbonate rocks, and Middle Triassic to Early Jurassic paralic clastic rocks; 3-Cretaceous granitoids; 4-Jurassic granitoids; 5-Jiangnan Massif: Neoproteroizoic epimetamorphic and sedimentary rocks; 6-Neoproterozoic granite; 7-Neoproterozoic ophiolite; 8-river and lake; 9-W deposit; 10-Sn deposit; 11-Cu deposit; 12-Au deposit; 13-Pb-Zn deposit; 14-Fe deposit

图 2 朱溪钨-铜矿床地质简图(据陈国华等, 2012修改) 1-第四系沉积物;2-晚侏罗世煌斑岩脉;3-二叠系碎屑岩;4-二叠系碳酸盐岩;5-石炭系灰岩;6-石炭系白云岩;7-新元古代片岩夹火山岩;8-新元古代花岗斑岩;9-断裂构造;10-勘探线及编号;11-河流;12-钻孔 Fig. 2 Geological map of the Zhuxi W-Cu deposit (modified after Chen et al., 2012) 1-Quaternary sediments; 2-Late Jurassic lamprophyre dykes; 3-Permian detrital rock; 4-Permian carbonate; 5-Carboniferous carbonate; 6-Carboniferous dolomite; 7-Proterozoic phyllite intercalated with volcanic rocks; 8-Neoproterozoic granite porphyry; 9-fault; 10-exploration line and its serial number; 11-river; 12-drill hole

前人对朱溪矿床中铜的成矿时代也进行了研究。例如,Pan et al. (2017)对浅部(786~1192m)的硫化物脉中的辉钼矿进行了Re-Os定年,获得了145.1±1.5Ma的等时线年龄;Song et al. (2019)对浅部(991.8m)浸染状铜矿石中与黄铜矿紧密共生的榍石进行了原位U-Pb定年工作,在Tera-Wasserburg谐和图解上获得下交点年龄为149±2.6Ma;Ouyang et al. (2019)对深部(2099m)蚀变花岗岩中与黄铜矿共生的白云母进行40Ar-39Ar年龄测定,获得了147.39±0.94Ma的坪年龄。虽然这些研究工作说明朱溪矿床中在大规模钨矿化发生过程中伴随着铜矿化作用;但是,这些研究工作所获得的成矿时代并不能限定朱溪矿床中主要铜矿体的形成时代,因为朱溪矿床中的铜矿化主要发生在新元古代浅变质岩与古生代碳酸盐岩的不整合面附近的钨铜矿体中(1200~1800m,图 3)。此外,朱溪矿床中还存在形成时代早于成钨岩体的花岗闪长岩脉(~160Ma; 贺晓龙等, 2018),该类偏中性的花岗闪长岩脉更可能在成因上与铜矿化作用相关。为此,要客观揭示朱溪矿床中的“钨铜共生”机制,急需精确限定朱溪矿床深部不整合面附近钨(铜)矿体的铜矿化时代。

图 3 朱溪钨-铜矿床42线勘探线剖面图(据王先广等, 2014修改) 1-第四系;2-晚侏罗世黑云母二长花岗岩;3-晚侏罗世细粒花岗岩;4-晚侏罗世花岗斑岩;5-三叠系碎屑岩;6-二叠系碎屑岩;7-二叠系碳酸盐岩;8-石炭系灰岩;9-石炭系白云岩;10-新元古代片岩夹火山岩;11-矽卡岩;12-大理岩;13-钨矿体;14-钨铜矿体;15-蚀变花岗岩内浸染状钨矿体;16-铜矿体;17-钻孔 Fig. 3 Cross section showing the tungsten and copper mineralization of No.42 exploration line of the Zhuxi deposit (modified after Wang et al., 2014) 1-Quaternary; 2-Late Jurassic biotite monzogranite; 3-Late Jurassic fine-grained granite; 4-Late Jurassic granite porphyry; 5-Triassic detrital rocks; 6-Permian detrital rocks; 7-Permian carbonate rocks; 8-Carboniferous limestone; 9-Carboniferous dolomite; 10-Proterozoic phyllite intercalated with volcanic rocks; 11-skarn; 12-marble; 13-tungsten orebody; 14-tungsten-copper orebody; 15-disseminated tungsten orebody in altered granite; 16-copper orebody; 17-drill hole

本研究针对朱溪矿床深部不整合面附近形成的似层状钨(铜)矿体中与黄铜矿紧密共生的磷灰石、白钨矿,开展了精细的原位微区分析测试。计划以宏观、微观地质证据为基础,结合白钨矿、磷灰石的地球化学特征,以期揭示似层状钨(铜)矿体中白钨矿、黄铜矿是否为同一热液流体结晶形成,论证该热液流体成因上是否与朱溪矿床成矿相关岩浆形成的高分异残余岩浆密切相关。拟通过似层状钨(铜)矿体中磷灰石的原位U-Pb同位素定年工作,精确限定朱溪矿床中最重要的铜矿化作用的形成时代,厘定朱溪矿床中“钨铜共生”的特殊地质现象是否为同期形成。

1 成矿地质背景

朱溪矿床位于江南钨矿带,该矿带是过去十年确定的一个世界级钨矿带,探明资源量达606万吨(毛景文等, 2020; Mao et al., 2019)。江南钨矿带上出露的地层由前寒武纪基底和显生宙盖层组成(图 1)。前寒武纪基底分布于阳兴-常州断裂以南,由中元古代的田里片岩,早元古代双溪钨群火山碎屑岩,以及中-新元古代沉积岩和蛇绿岩混杂体组成(Ye et al., 2007; Zhao et al., 2011);并且前寒武纪基底由一个明显的不整合面划分为2个低绿片岩相变质序列(Wang et al., 2012; Zhao and Cawood, 2012)。前人对出露于不同区域的不整合面之下的前寒武基底有着不同的命名,如安徽省南部和江西省东北部的溪口群,江西省北部和东北部的双桥山群,湖南省北部的冷家溪群,桂州东北部的梵净山群以及广西省北部的四堡群(Zhao and Cawood, 2012);其中,双桥山群广泛分布于江南古陆中部(图 1),主要由千枚岩和变质火山岩组成,部分地区保留了原始的沉积构造,并且沉积物粒度向上逐渐变粗(Mao et al., 2017)。位于不整合面之上的前寒武纪基底(南华系)的形成伴随南华盆地的发育,如分布于湖南省的板溪群,广西省北部的丹洲群以及江西省的登山群;南华系主要由砂岩、板岩、砾岩、泥质岩及少量碳酸盐岩、细碧岩和火山碎屑岩组成(Wang et al., 2007)。传统认为不整合面之下的前寒武纪基底由中元古代变质地层组成,但是近年来的锆石U-Pb同位素研究证明这些地层形成于新元古代中期(Zhao and Cawood, 2012)。这些不整合面之下的前寒武纪基底早期沉积于活动大陆边缘,并在扬子和华夏板块拼合过程中发生强烈地褶皱变形;而不整合面之上的变质基底形成于碰撞后的伸展盆地中,仅发生微弱的变形(Wang and Li, 2003; Wang et al., 2007; Zhao et al., 2011)。因此,江南古陆前寒武基底中的不整合面的形成时间代表了扬子与华夏板块的拼合时间(Wang et al., 2007)。相对于广泛出露于江南钨矿带上的前寒武变质基底,上覆的显生宙地层零星地分布在江南古陆周围(图 1),这些地层包括志留系到上三叠统的海相碎屑岩和碳酸盐岩,中三叠统到下侏罗统的近海碎屑岩,中-上侏罗统的沉积岩和火山岩,以及在一系列北东向展布的陆内拉分盆地内沉积的白垩系红色砂岩(Mao et al., 2017)。

江南古陆内的岩浆活动以中酸性花岗质岩浆活动为主,并且花岗质侵入体主要形成于晋宁运动和燕山运动期。例如,位于江南古陆西南部的新元古代摩天岭、元宝山和本洞花岗质侵入体(870~740Ma),位于江南古陆中部的九岭花岗质侵入体(828~819Ma),以及位于江南古陆东北部的许村、歙县和休宁花岗质侵入体(838~823Ma)(Li et al., 2003; Wu et al., 2006; 宋昊等, 2015)。这些新元古代花岗质岩体主要由含堇青石的过铝质花岗质侵入体组成(Wang et al., 2014)。燕山期的花岗质侵入体可以进一步划分为两组,第一组主要侵位于149~136Ma(Chen et al., 2016; Huang and Jiang, 2014; Mao et al., 2015, 2017; Pan et al., 2018; Song et al., 2012, 2018b; Zhang et al., 2020, 2021; Zhu et al., 2014; 陈雪霏等, 2013; 孔志岗等, 2018; 李岩等, 2014; 秦燕等, 2010; 王先广等, 2015),主要由二长花岗岩和一些花岗闪长岩、碱性花岗岩组成,这些侵入体属于准铝质到过铝质的高钾钙碱性花岗岩。燕山期第二组花岗质侵入体主要侵位于129~102Ma(Dai et al., 2018; Zhao et al., 2017; 胡正华等, 2018),主要由具有过铝质特征的二长花岗岩组成。根据成矿年代学研究,江南古陆钨矿带上的钨矿床主要与燕山期第一组花岗质侵入体(149~136Ma)密切相关(Huang and Jiang, 2014; Zhu et al., 2014; Chen et al., 2016; Mao et al., 2017; Pan et al., 2017; Su et al., 2018; Song et al., 2018b);但也有一些钨矿化作用与燕山期第二组花岗质侵入体相关,如香炉山矽卡岩钨矿床(Dai et al., 2018)和近年来新发现的东坪石英脉型钨矿床(胡正华等, 2018)。

2 矿床地质特征

朱溪矿区内出露的地层由前寒武变质基底和古生代沉积岩盖层组成,变质基底主要为新元古代双桥山群的千枚岩、板岩和杂砂岩,而变质基底之上的盖层从下至上(图 2图 3)包括:(1)石炭系白云岩,主要由灰色白云岩和白云质灰岩组成;(2)石炭系灰岩,主要由灰色-浅灰色灰岩组成;(3)二叠系碳酸盐岩,主要由深灰色灰岩组成,并在其底部出现一层石英细砂岩作为与石炭系碳酸盐岩的分界标志;(4)二叠系碎屑岩,主要由泥岩和以砂岩为夹层的白云岩、硅质灰岩组成;(5)三叠系碎屑岩,主要由泥质碳酸盐岩、细砾岩、岩屑石英砂岩组成。地质勘探显示石炭系白云岩、灰岩和二叠系碳酸盐岩都发生了明显的钨矿化作用。

朱溪矿区地表出露的岩脉以煌斑岩脉为主,仅在地表见花岗斑岩小范围的出现(图 2)。然而,地质勘探揭示朱溪床中主要出现三种类型的花岗质侵入体(图 3):(1)黑云母二长花岗岩,主要出现于地表以下2000m的深部,是朱溪矿区内最主要的花岗质侵入体。黑云母花岗岩主要由石英(~40vol.%)、钾长石(~27vol.%)、斜长石(~23vol.%)、黑云母(~5vol.%)、白云母(~3vol.%),及锆石、磷灰石、钛铁矿等副矿物(~2vol.%)组成,其中锆石和磷灰石通常呈矿物包裹体包裹于黑云母中,而钛铁矿则常呈粒状被石英和长石包裹。(2)细粒花岗岩,主要以岩脉形式出现于地表以下400m至2000m的深度,并且主要由石英(~43vol.%)、钾长石(~20vol.%)、斜长石(~28vol.%)、黑云母(~2vol.%)、白云母(~4vol.%),及锆石、磷灰石、钛铁矿、金红石等副矿物(~3vol.%)组成。(3)花岗斑岩,以脉体形式主要出现于地表以下800m至1800m的深度,斑晶含量约为15vol.%,由~13vol.%石英和~2vol.%白云母组成,基质主要由石英(~45vol.%)、白云母(~35vol.%)、黄铁矿(~3vol.%)及锆石、磷灰石(~2vol.%)等副矿物组成。除了这些常见的长英质岩体(脉)外,朱溪矿床中还出现了两类形成与高分异残余岩浆密切相关的罕见岩脉,分别为含白钨矿钙长岩脉和含白钨矿钠长岩脉(Song et al., 2018a, 2021)。

根据成矿元素组合,朱溪矿床的矿化类型可以分为钨矿化和铜矿化,并且以钨矿化为主(图 3)。值得注意的是黄铜矿通常和白钨矿共生(图 3图 4k-n),即使是紧邻朱溪钨矿床的朱溪铜矿(地表小型铜矿床)中的块状铜矿石也见大量粒状白钨矿被黄铜包裹(Song et al., 2019)。此外,仅有少量不含或仅含少量白钨矿的铜矿体出现在浅部,但以白钨矿为主(几乎不含黄铜矿)的钨矿体却在朱溪矿床中广泛出现。同时,根据矿石类型,朱溪矿床中可以识别出以下三种主要的钨矿化类型(Song et al., 2019)。

图 4 朱溪矿床代表性矿石手标本(a、c、f、i、k、m)及微观地质特征照片(b、d、e、g、h、j、l、n)(据Song et al., 2019) (a)热液矿脉穿插钙质大理岩;(b)白钨矿和白云母、萤石、石英紧密共生;(c)蚀变花岗岩发生浸染状矿化;(d)蚀变花岗中长石发生强烈蚀变;(e)白钨矿和黄铜矿紧密共生;(f)脉状矽卡岩矿石;(g)脉状石榴石矽卡岩与大理岩接触带微观地质特征;(h)白钨矿呈粒状与石榴石紧密共生;(i)块状矽卡岩矿石;(j)白钨矿呈粒状生长于辉石、石榴石粒间;(k)块状钨铜矿石;(l)白钨矿与磁黄铁矿、黄铜矿、自然铋、辉铋矿紧密共生;(m)钨铜矿脉穿插蛇纹石化白云质大理岩;(n)黄铜矿、白钨矿、蛇纹石紧密共生(a、c、f、i、k、m:荧光灯下拍摄;b、g、j:透射光;d、h:正交偏光;e、l、m:反射光.手标本与显微照片对应关系: a-b; c-d, e; f-g, h; i-j; k-l; m-n). Ap-磷灰石;Bis-辉铋矿;Cal-方解石;Ccp-黄铜矿;Fl-萤石;Grt-石榴石;Mbl-大理岩;Ms-白云母;Pl-斜长石;Po-磁黄铁矿;Pyx-辉石;Qz-石英;Sch-白钨矿;Srp-蛇纹石 Fig. 4 Photograph (under ultraviolet light, a, c, f, i, k, m) and representative transmitted (b, g, j), perpendicular polarized (d, h) and reflected (e, l, n) photomicrographs of the different ore of the Zhuxi deposit (after Song et al., 2019) (a) veined W ore superimposed on calcic marble; (b) scheelite is intergrown with fluorite and muscovite at the contact zone of veined ore and marble; (c) disseminated W and Cu mineralization occurred in the altered granites; (d) scheelite, muscovite, quartz and completely altered plagioclase in the altered granite; (e) scheelite coexisting with chalcopyrite and apatite in the altered granite; (f) veined garnet skarn superimposed on the calcic marble; (g) contact zone of the veined garnet skarn with calcic marble; (h) scheelite coexisting with garnet and calcite in the center of the veined garnet skarn; (i) pyroxene-garnet skarn formed in the magnesian marble; (j) scheelite occurring as interstitial grains between garnet and pyroxene; (k) massive Cu (W) ore hosted in the Carboniferous dolomite; (l) chalcopyrite coexisting with pyrrhotite, sphalerite, bismuthine, native bismuth and scheelite; (m) veined Cu (W) ore superimposed on serpentine in the dolomitic marble; (n) chalcopyrite coexisting with pyrrhotite, scheelite, calcite and serpentine (correspondence between the hand specimen and the photomicrographs: a-b; c-d, e; f-g, h; i-j; k-l; m-n). Ap-apatite; Bis-bismuthinite; Cal-calcite; Ccp-chalcopyrite; Fl-fluorite; Grt-garnet; Mbl-marble; Ms-muscovite; Pl-plagioclase; Po-pyrrhotite; Pyx-pyroxene; Qz-quartz; Sch-scheelite; Srp-serpentine

(1) 热液脉型矿化:该类型矿化主要呈以石英+白钨矿+白云母+萤石组合的细脉穿插在二叠系灰岩或钙质矽卡岩中(图 3图 4a, b),这些热液矿脉的宽度可以从0.2cm变化到大于10cm。

(2) 蚀变花岗岩型矿化:这些花岗岩主要侵位于石炭纪灰岩和二叠纪碳酸盐岩中(图 3),蚀变花岗岩中的斜长石几乎完全被蚀变交代,仅保留了外形(图 4c, d),并且白钨矿、黄铜矿呈浸染状分布在这些蚀变花岗岩中(图 4a);可见白钨矿、黄铜矿与白云母、萤石紧密共生(图 4e)。

(3) 矽卡岩型矿化:该类型矿化是朱溪矿床中最重要的矿化类型,根据矿体形态可以进一步细分为层状矽卡岩矿体和脉状矽卡岩矿体。层状矽卡岩矿体中,几乎所有的碳酸盐岩都完全遭受交代作用而形成矽卡岩,这些矽卡岩中绝大部分发生以钨为主的矿化作用,并且白钨矿在石榴石和辉石的粒间间隙中生长(图 4i, j),并伴随着一些磁黄铁矿的结晶。同时,在层状矽卡岩和内矽卡岩中出现了一些透镜状的W(Cu)矿体,在这些W(Cu)矿体中,白钨矿和黄铜矿、磁黄铁矿、闪锌矿、辉铋矿及自然铋共生(图 3图 4k, l)。在脉状矽卡岩发育的地层中,碳酸盐岩部分或完全转变为大理岩,并且被矽卡岩脉所穿插,矽卡岩脉和大理岩之间有着十分清晰的界线(图 4f, m)。此外,脉状矽卡岩中,白钨矿通常和石榴石一起在脉状矽卡岩的中部结晶(图 4f-h)。

3 样品准备及测试方法

首先磨制加厚探针片(~300μm),通过显微镜下观察,选取代表性的磷灰石和白钨矿颗粒在中国地质科学院矿产资源研究所电子探针实验室进行背散色(BSE)图像拍摄,明确这些矿物的内部结构。尽管BSE图像显示白钨矿颗粒内部成分均一,没有分带特征;但是,前人研究表明,即使BSE图像下均一的白钨矿颗粒,通常在CL图像下也会显示出不均匀的特征(Poulin et al., 2016)。为此,本研究在中国地质科学院地质研究所自然资源部大陆动力学重点实验室对待分析的白钨矿进行阴极发光图像(CL)拍摄,进一步通过CL图像来更好地观察白钨矿的内部结构。如图 5所示,磷灰石(图 5f)和白钨矿(图 5h)分别在BSE图像和CL图像中均表现出相对均一的特征,没有明显的分带特征。在明确矿物内部结构的基础上,选取合适的点位进行电子探针、LA-ICP-MS微量元素、LA-MC-ICP-MS U-Pb同位素测试分析。

图 5 朱溪矿床深部似层状钨(铜)矿体代表性矿石手标本和微观地质特征图像 (a)白钨矿、黄铜矿共生呈脉状穿入大理岩化白云岩中(荧光灯下拍摄);(b、c)磷灰石呈自形粒状被大片黄铜矿包裹,并可见少量黄铜矿被自形磷灰石包裹;(d)黄铜矿沿白钨矿颗粒边缘呈不规则状、脉状生长;(e)自形粒状磷灰石被黄铜矿和白钨矿包裹;(f)被黄铜矿包裹的磷灰石的背散射(BSE)图像;(g)半自形粒状的粗粒白钨矿;(h)半自形粒状的粗粒白钨矿的阴极发光(CL)图像. (b)-(e), (g)为反射光图像 Fig. 5 Photograph (under ultraviolet light, a) and representative reflected (b-e, g), backscattered electron (f) and cathodoluminescence (h) photomicrographs of the stratiform-like ore of the Zhuxi deposit (a) scheelite and chalcopyrite superimposed on the marbleized dolomite in the form of veins; (b, c) the euhedral apatite grains are surrounded chalcopyrite, and a small amount of chalcopyrite is enclosed by apatite grains; (d) chalcopyrite grows irregularly and vein-like along the edges of scheelite grains; (e) the euhedral apatite grains are wrapped by chalcopyrite and scheelite; (f) the Backscatter (BSE) image of apatite wrapped by chalcopyrite; (g) the euhedral and subhedral coarse-grained scheelite; (h) the cathodoluminescence (CL) image for the euhedral and subhedral coarse-grained scheelite

磷灰石微量元素测试分析在中国地质大学(北京)科学研究院LA-ICP-MS实验室完成,所用仪器为连接New Wave 193ss激光剥蚀系统的Agilent 7500a型质谱仪。实验过程中,激光剥蚀束斑直径约为50μm,可控激光能量8.5J/cm2,采集时间为45s,以He为载气,流量为0.98L/min。激光剥蚀方式为单点方式,激光器工作频率为10Hz。电感耦合等离子体质谱仪的冷却气为氮气,流量为15L/min,辅助器为氩气,流量为1.15L/min。测试每5个未知点后,进行一次NISTsRM 610测试。为增强能量的稳定性,整个激光剥蚀路径以Ar气作为载体(1.13L/min)。Ti、Zr、Nb、Hf、Ta、206Pb、208Pb、Th和U的计数时间为40ms,207Pb的计数时间为20ms,204Pb的计数时间为100ms,其他元素的计数时间为20ms。微量元素处理过程选用NISTsRM 610玻璃作为外标,磷灰石的43Ca含量(根据电子探针测试的平均CaO含量计算)作为内标,并使用GLITTER软件(Griffin et al., 2008)进行处理。

白钨矿微量元素微区原位测试分析工作在中国地质科学院国家地质实验测试中心内完成,测试方法采用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)。使用仪器为Thermo Element Ⅱ单接收四极杆等离子质谱仪,配合激光剥蚀系统为New Wave UP-213。实验采用He作为剥蚀物质的载气,激光波长213nm、激光束斑直径为50μm、脉冲频率10Hz、能量0.176mJ、密度23~25J/cm2,测试过程中首先遮挡激光束进行空白背景采集15s,然后进行样品连续剥蚀采集45s,停止剥蚀后继续吹扫15s清洗进样系统,单点测试分析时间75s。等离子质谱测试参数为冷却气流速(Ar)15.55L/min;辅助气流速(Ar)0.67L/min;载气流速(He)0.58L/min;样品气流速0.819L/min,射频发生器功率1205W。大部分元素检测限设定为0.1×10-6以下,运行精度 < 10%。微量元素处理过程选用NISTsRM 610玻璃作为外标,白钨矿的43Ca含量(根据电子探针测试的单个样品平均CaO含量计算)作为内标,并使用GLITTER软件(Griffin et al., 2008)进行处理。

磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年在中国地质调查局天津地质调查中心实验测试室完成。所用仪器为Neptune多接收电感耦合等离子体质谱仪,激光剥蚀系统为UP193 ArF准分子激光器,采用的波长为193nm,脉冲宽度为5ns。测试过程中激光剥蚀束斑为55μm、激光频率为8Hz、激光能量密度为10J/cm2。采用磷灰石标准OtterLake对分析过程中的U、Pb同位素分馏进行校正(Barfod et al., 2005; Chew et al., 2011),采用NISTsRM 610玻璃作为外标计算磷灰石的U、Pb含量,数据处理采用ICPMSDataCal程序(Liu et al., 2010)和Isoplot程序(Ludwig, 2003)进行分析和作图。详细的分析过程见周红英等(2012)

4 测试结果

电子探针测试数据如表 1示,白钨矿和磷灰石的主要成分组成CaO、P2O5、WO3含量较为均一,白钨矿具有相对较低的MoO3含量(0.45%~0.59%),而磷灰石具有富F(1.75%~2.31%)而贫Cl(≤0.01%)的特征。

表 1 朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石电子探针成分测试结果(wt%) Table 1 EPMA chemical composition (wt%) of the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit

LA-ICP-MS微量元素数据如表 2所示,白钨矿的稀土元素含量整体较低,并且变化不大(∑REE:1.69×10-6~13.72×10-6),而磷灰石的稀土含量变化较大(∑REE:0.61×10-6~77.02×10-6)。但是白钨矿和磷灰石具有一致的正Eu异常(2.04~7.24和1.65~29.92)和负Ce异常(0.43~0.54和0.19~0.51)(图 6)。

表 2 朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石LA-ICP-MS稀土元素测试结果(×10-6) Table 2 LA-ICP-MS chemical composition (×10-6) of the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit

图 6 朱溪矿床深部似层状钨(铜)矿体及含白钨矿钠长岩所含白钨矿(a)和磷灰石(b)球粒陨石标准化稀土元素配分模式曲线图(标准化值据Boynton, 1984) 钠长岩所含白钨矿、磷灰石数据来源于Song et al. (2021) Fig. 6 Chondrite-normalized REE patterns of scheelite (a) and apatite (b) grains from the stratiform-like W(Cu) ore and the scheelite-bearing albitite of the Zhuxi tungsten deposit (normalization values after Boynton, 1984) Data of scheelite and apatite in the scheelite-bearing albitite from Song et al. (2021)

表 3所示,磷灰石原位LA-MC-ICP-MS U-Pb同位素测试结果表明本研究所测试的磷灰石颗粒的U含量为30×10-6~345×10-6,平均值为102×10-6,具有较高的U含量,确保了所测试磷灰石颗粒具有较高含量的放射性成因Pb,能获取可靠的磷灰石结晶年龄。测试结果显示这些所测试的磷灰石的U-Pb同位素组成在Tera-Wasserburg谐和图解上的下交点年龄为150.2±2.4Ma(图 7)。

表 3 朱溪矿床深部似层状钨(铜)矿体磷灰石原位LA-MC-ICP-MS U-Pb同位素测试结果 Table 3 In situ LA-ICP-MS U-Pb dating results for the apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit

图 7 朱溪矿床似层状钨(铜)矿体所含磷灰石LA-ICP-MS U-Pb定年结果 Fig. 7 LA-MC-ICP-MS U-Pb age for apatite grains from the stratiform-like W(Cu) ore of the Zhuxi tungsten deposit
5 讨论 5.1 磷灰石、白钨矿原位微区分析对似层状钨(铜)矿体钨、铜矿化的限定

从手标本可以看出朱溪深部似层状钨(铜)矿体中黄铜矿和白钨矿呈脉状穿入大理岩化的白云岩中(图 5a),镜下显示白钨矿和黄铜矿虽然共生(图 5b-d),但是可见黄铜矿沿白钨矿裂隙生长(图 5d)。为此,这些似层状钨(铜)矿体中钨、铜是否为同期形成,并且与前人研究朱溪矿床已报道的成岩、成矿时代(~150Ma)是否一致,需要进一步研究厘定。如图 6所示,尽管似层状钨(铜)矿体中的白钨矿和磷灰石的稀土配分曲线变化较大,但二者整体上具有近于一致的配分模式。鉴于稀土元素性质相似,并且白钨矿与磷灰石在空间上紧密共生,说明白钨矿和磷灰石是从同一热液体系结晶形成。同时,白钨矿和磷灰石均表现出明显一致的负Ce异常(0.43~0.54和0.19~0.51;表 2),同样说明空间上共生的白钨矿和磷灰石结晶于相同的热液体系;而且白钨矿和磷灰石均表现出明显的正Eu异常(2.04~7.24和1.65~29.92;表 2),说明白钨矿和磷灰石结晶的体系中Eu呈Eu2+与Ca2+发生了显著的替代作用,进一步指示白钨矿和磷灰石均结晶于还原体系。此外,白钨矿、钼钨钙矿是一个连续的固溶体系列的两个端元,在氧化条件下容易形成富含钼钙矿(CaMoO4)的白钨矿,而在还原条件下则有利于形成纯的白钨矿和辉钼矿(Hsu and Galli, 1973)。因此,白钨矿中的Mo含量可以反映成矿流体中白钨矿结晶时的氧化还原条件变化。例如,在Skrytoe还原型矽卡岩钨矿床中的白钨矿的Mo含量十分低(通常为0.001%~0.05%,很少有超过0.2%)(Soloviev and Kryazhev, 2017),而Kara氧化型的矽卡岩钨矿中的白钨矿却具有中等含量的Mo(~3% MoO3)(Zaw and Singoyi, 2000)。为此,朱溪似层状钨(铜)矿体中白钨矿具有较低的MoO3含量(0.45%~0.59%;表 1),同样说明白钨矿结晶时的热液体系氧逸度较低。

此外,鉴于稀土元素族各种元素地球化学行为十分相似、通常具有共同变化的特点,似层状钨(铜)矿体中的白钨矿和磷灰石与朱溪成矿相关岩浆极端分异情况下产生的残余岩浆(已经达到流体饱和)结晶的含白钨矿钠长岩(Song et al., 2021)中的白钨矿(图 6a)和磷灰石(图 6b)具有相似的稀土配分曲线,暗示似层状钨(铜)矿体的形成在成因上与高分异残余岩浆释放的热液流体密切相关。值得注意的是,朱溪钠长岩中的磷灰石相对于似层状钨(铜)矿体中的磷灰石具有显著较高的稀土含量,同时显示出明显的负Eu异常;这种现象很可能是由于钠长岩中磷灰石结晶晚于富钠斜长石的结晶,而富钠斜长石的大量结晶导致了残余岩浆体系中稀土元素的富集和Eu元素的亏损,进而导致钠长岩中晚期结晶的磷灰石继承了这种稀土元素组成特征。此外,朱溪矿床高分异残余岩浆(流体)遭受灰岩混染时形成的含白钨矿钙长岩中含有大量高度还原条件下才能形成的富Mn钛铁矿(MnO含量:6.6%~8.3%; Song et al., 2018a),这种还原条件下显然不利于Cu元素的富集成矿。基于上述论述,似层状钨(铜)矿体中的钨、铜矿化虽然是由同一热液体系导致,但是钨来源于高分异的残余岩浆热液流体,而铜更可能是来自残余岩浆热液流体对朱溪矿区基底地层——双桥山群中铜元素的萃取活化。

5.2 磷灰石微区原位LA-MC-ICP-MS U-Pb定年对似层状钨(铜)矿体铜矿化作用的限定

不同于钼、锡矿化作用,可以直接选用矿石矿物来限定成矿时代(Mao et al., 1999; Yuan et al., 2008, 2011),岩浆热液作用形成的铜矿化通常选用与富铜矿物紧密共生、并且适合定年的辉钼矿或副矿物来间接地精确限定其成矿时代。值得注意的是,适合定年的副矿物需要满足以下条件(Romer and Öhlander, 1994):①直接与矿化作用紧密相关;②广泛出现在矿化过程中;③能采用U-Pb定年成功地限定矿物形成时代。对于还原型钨矿床(不含Mo),磷灰石是一种比较理想的定年矿物。首先,不含Mo的矽卡岩钨矿通常与过铝质的S型花岗岩相关,磷灰石在该类花岗质岩浆中的溶解度随铝饱和指数的增大而增大(Wolf and London, 1994),因此,还原型矽卡岩钨矿床的成矿相关岩体出溶的流体中必然含大量的P元素,从而在矿化过程中形成大量磷灰石;例如,除朱溪矿床外,俄罗斯还原型钨矿(不含Mo)——Skrytoe矿床的矿石中磷灰石含量高达5%~40%(Soloviev and Kryazhev, 2017)。其次,S型花岗岩的源区通常为经历过地表风化作用的变质沉积物,具有明显较高U含量(Bea and Montero, 1999),而U为不相容元素,必然在部分熔融作用过程中选择性地优先进入到熔体中(Cuney and Barbey, 2014),并且在岩浆形成后的演化过程中U会在残余岩浆中不断富集(Cuney, 2009; Linnen et al., 2014);而钨矿化作用通常与岩浆演化最晚阶段形成的高分异岩脉相关(Yuan et al., 2018);因而,还原型钨矿床成矿相关岩浆演化晚期必然出溶具有高U含量的岩浆热液流体。例如,朱溪矿床中残余岩浆(流体)遭受灰岩混染时形成的含白钨矿钙长岩中可见磷灰石与晶质铀矿紧密共生(Song et al., 2018a)。此外,磷灰石原位U-Pb定年方法已经十分成熟,广泛用于成岩、成矿时代的限定(Li et al., 2012; Zhang et al., 2021; 周红英等, 2012)。

图 5显示,黄铜矿不仅包裹着大量自形粒状的磷灰石(图 5b, c, e, f),而磷灰石中同样包裹着少量黄铜矿(图 5b, c),说明黄铜矿与磷灰石为同期形成。为此,通过磷灰石的原位U-Pb定年,可以间接地精确限定该类矿石中铜的矿化时代。该类矿石形成于古生代碳酸盐岩与新元古代浅变质岩不整合接触面附近,代表着朱溪矿床中最为重要的铜矿化作用。这些磷灰石在Tera-Wasserburg谐和图解上的下交点年龄(150.2±2.4Ma)与前人研究获得的朱溪矿床成岩、成矿时代(~150Ma)近于一致(Pan et al., 2017, 2018; Song et al., 2018b, 2019; Zhang et al., 2020),进一步说明朱溪矿床中钨、铜为同期矿化。朱溪矿区内出现的新元古代含铜花岗斑岩(万浩章等, 2015)和(或)地层中的基性火山岩夹层可能为朱溪矿区内在晚侏罗世发生的铜矿化作用提供成矿物质。例如,江南古陆钨矿带东延的浙江平水地区发育着新元古代的块状硫化物Cu-Zn矿床(Chen et al., 2015),说明区域新元古代地层中存在着富含硫化物的火山岩夹层。此外,Sun et al. (2018)对江南钨矿带与朱溪矿床近于同期形成的石门寺钨(铜)矿床成矿相关岩体的氧逸度,以及黄铜矿的微量元素、S-Pb-Nd同位素进行了研究,结果表明石门寺的成矿相关岩体为还原性的S型花岗岩,不利于大规模的Cu成矿作用,矿床形成过程中Cu元素很可能来自于双桥山群中局部富集Cu的岩层。因此,在晚侏罗世的岩浆活动过程中,朱溪矿区内新元古代的含铜花岗斑岩和(或)地层中的基性火山岩夹层中的铜元素可能会被萃取出来进入成矿热液流体,并伴随白钨矿的结晶而再次沉淀。朱溪矿床中这种可能的“钨铜共生”的成矿机制与我国华南个旧矿集区“锡铜共生”的成矿机制类似:尽管卡房矿区的Cu-Sn矿石的形成与同一岩浆热液系统密切相关,但是铜的来源可能是作为矿体围岩的三叠纪玄武岩,而锡则可能来源于白垩纪花岗质侵入体(Cheng et al., 2012)。值得注意的是朱溪矿床中0.11Mt的铜相对于3.44Mt的WO3资源量是微不足道的,相对于朱溪矿床中巨量的钨,岩浆热液流体对基底双桥山群地层中铜元素的萃取,便能导致朱溪矿床“钨铜共生”的特殊地质现象的形成。

6 结论

朱溪矿床深部似层状钨(铜)矿体中的白钨矿和黄铜矿是从同一热液流体结晶形成,该热液流体成因上与朱溪矿床成矿相关岩浆高程度结晶分异后形成的残余岩浆热液流体相关。

朱溪矿床深部似层状钨(铜)矿体中的铜矿化时代为150.2±2.4Ma,与朱溪矿床的钨矿化时代及成钨岩体的成岩时代近于一致。

致谢      野外考察及样品采集得到孔志岗博士、谢涛、康川、魏锦、许杰辉等工程师的热心帮助;电子探针测试得到中国地质科学院矿产资源研究所电子探针室的陈振宇研究员、陈小丹助理研究员的帮助;白钨矿阴极发光图像拍摄得到中国地质科学院地质研究所施彬老师的帮助;LA-ICP-MS微量元素测试得到中国地质大学(北京)苏犁教授、张红雨博士和中国地质科学院国家测试中心赵令浩博士、孙东阳老师的帮助;磷灰石LA-MC-ICP-MS U-Pb年龄测试得到中国地质调查局天津地质调查中心周红英高级工程师的帮助;两位审稿人对文章提出了诸多宝贵意见;在此一并表示衷心感谢!

参考文献
Barfod GH, Krogstad EJ, Frei R and Albarède F. 2005. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: A first look at Lu-Hf isotopic closure in metamorphic apatite. Geochimica et Cosmochimica Acta, 69(7-8): 1847-1859
Bea F and Montero P. 1999. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta, 63(7-8): 1133-1153 DOI:10.1016/S0016-7037(98)00292-0
Blevin PL and Chappell BW. 1992. The role of magma sources, oxidation states and fractionation in determing the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 305-316 DOI:10.1017/S0263593300007987
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63-114
Candela PA. 1992. Controls on ore metal ratios in granite-related ore systems: An experimental and computational approach. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 317-326 DOI:10.1017/S0263593300007999
Chen GH, Wan HZ, Shu LS, Zhang C and Kang C. 2012. An analysis on ore-controlling conditions and geological features of the Cu-W polymetallic ore deposit in the Zhuxi area of Jingdezhen, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3901-3914 (in Chinese with English abstract)
Chen GH, Shu LS, Shu LM, Zhang C and Ouyang YP. 2016. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. Science China (Earth Sciences), 59(4): 803-823 DOI:10.1007/s11430-015-5200-9
Chen H, Ni P, Wang RC, Wang GG, Zhao KD, Ding JY, Zhao C, Cai YT and Xu YF. 2015. A combined fluid inclusion and S-Pb isotope study of the Neoproterozoic Pingshui volcanogenic massive sulfide Cu-Zn deposit, Southeast China. Ore Geology Reviews, 66: 388-402 DOI:10.1016/j.oregeorev.2014.11.002
Chen XF, Wang YG, Sun WD and Yang XY. 2013. Zircon U-Pb chronology, geochemistry and genesis of the Zhuxiling granite in Ningguo, southern Anhui. Acta Geologica Sinica, 87(11): 1662-1678 (in Chinese with English abstract)
Cheng YB, Mao JW, Rusk B and Yang ZX. 2012. Geology and genesis of Kafang Cu-Sn deposit, Gejiu district, SW China. Ore Geology Reviews, 48: 180-196 DOI:10.1016/j.oregeorev.2012.03.004
Chew DM, Sylvester PJ and Tubrett MN. 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280(1-2): 200-216 DOI:10.1016/j.chemgeo.2010.11.010
Chiaradia M. 2014. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, 7(1): 43-46 DOI:10.1038/ngeo2028
Cuney M. 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44(1): 3-9 DOI:10.1007/s00126-008-0223-1
Cuney M and Barbey P. 2014. Uranium, rare metals, and granulite-facies metamorphism. Geoscience Frontiers, 5(5): 729-745 DOI:10.1016/j.gsf.2014.03.011
Dai P, Mao JW, Wu SH, Xie GQ and Luo XH. 2018. Multiple dating and tectonic setting of the Early Cretaceous Xianglushan W deposit, Jiangxi Province, South China. Ore Geology Reviews, 95: 1161-1178 DOI:10.1016/j.oregeorev.2017.11.017
Feenstra A and Peters T. 1996. Experimental determination of activities in FeTiO3-MnTiO3 ilmenite solid solution by redox reversals. Contributions to Mineralogy and Petrology, 126(1-2): 109-120 DOI:10.1007/s004100050238
Fonseca ROC, Mallmann G, Sprung P, Sommer JE, Heuser A, Speelmanns IM and Blanchard H. 2014. Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth and Planetary Science Letters, 404: 1-13 DOI:10.1016/j.epsl.2014.07.015
Griffin WL, Powell WJ, Pearson NJ and O'reilly SY. 2008. GLITTER: data reduction software for laser ablation ICP-MS. Laser ablation-ICP-MS in the earth sciences. Mineralogical association of Canada, 40: 204-207
He XL, Zhang D, Chen GH, Di YJ, Huo HL, Li N, Zhang ZH, Rao JF, Wei J and Ouyang YP. 2018. Genesis of Zhuxi copper- tungsten deposit in Jiangxi Province: Insights from mineralogy and chronology. Journal of Jilin University (Earth Science Edition), 48(4): 1050-1070 (in Chinese with English abstract)
Hou ZQ, Li QY, Gao YF, Lu Y, Yang ZM, Wang R and Shen ZC. 2015. Lower-crustal magmatic hornblendite in North China Craton: Insight into the genesis of porphyry Cu deposits. Economic Geology, 110(7): 1879-1904 DOI:10.2113/econgeo.110.7.1879
Hsu LC and Galli PE. 1973. Origin of the scheelite-powellite series of minerals. Economic Geology, 68(5): 681-696 DOI:10.2113/gsecongeo.68.5.681
Hu RZ and Zhou MF. 2012. Multiple Mesozoic mineralization events in South China: An introduction to the thematic issue. Mineralium Deposita, 47(6): 579-588 DOI:10.1007/s00126-012-0431-6
Hu RZ, Wei WF, Bi XW, Peng JT, Qi YQ, Wu LY and Cheng YW. 2012a. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos, 150: 111-118 DOI:10.1016/j.lithos.2012.05.015
Hu RZ, Bi XW, Jiang GH, Chen HW, Peng JT, Qi YQ and Wei WF. 2012b. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, southeastern China. Mineralium Deposita, 47(6): 623-632 DOI:10.1007/s00126-011-0396-x
Hu ZH, Lou FS, Li YM, Li JM, Wang XG, Chen JP, Zeng QQ, Wu SJ, Nie LM, Gong LX, Wen LX, Liu GF, Li Q and Yu X. 2018. Geochrology, geochemistry and petrogenesis of ore-related granite in the Dongping tungsten deposit in Wuning county, Jiangxi province. Earth Science, 43(Suppl.1): 243-263 (in Chinese with English abstract)
Huang LC and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203: 207-226 DOI:10.1016/j.lithos.2014.05.030
Ishihara S. 1981. The granitoid series and mineralization. Economic Geology Anniversary, 75: 458-484
Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL and Dan XH. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639-655 (in Chinese with English abstract)
Jugo PJ, Luth RW and Richards JP. 2005. An experimental study of the sulfur Content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300℃ and 1.0GPa. Journal of Petrology, 46(4): 783-798
Kong ZG, Liang T, Mao JW, Xu SF, Xu HB, Yan PP and Jin XY. 2018. Study on perogenesis of granodiorite, metallogenic epoch and petrogenetic-metallogenetic setting in the Zhuxiling tungsten polymetallic deposit, southern Anhui Province, China. Acta Petrologica Sinica, 34(9): 2632-2656 (in Chinese with English abstract)
Li QL, Li XH, Wu FY, Yin QZ, Ye HM, Liu Y, Tang GQ and Zhang CL. 2012. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Research, 21(4): 745-756 DOI:10.1016/j.gr.2011.07.008
Li XH, Li ZX, Ge Wc, Zhou Hw, Li WX, Liu Y and Wingate MTD. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma?. Precambrian Research, 122(1-4): 45-83 DOI:10.1016/S0301-9268(02)00207-3
Li Y, Pan XF, Zhao M, Chen GH, Zhang TF, Liu Q and Zhang C. 2014. LA-ICP-MS zircon U-Pb age, geochemical features and relations to the W-Cu mineralization of granitic porphyry in Zhuxi skarn deposit, Jingdezhen, Jiangxi. Geological Review, 60(3): 693-708 (in Chinese with English abstract)
Linnen RL, Samson IM, Williams-Jones AE and Chakhmouradian AR. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. Treatise on Geochemistry, 13: 543-568
Liu JW, Chen B, Chen JS, Li Z and Sun KK. 2017. Highly differentiated granite from the Zhuxi tungsten (copper) deposit in northeastern Jiangxi Province: Petrogenesis and their relationship with W-mineralization. Acta Petrologica Sinica, 33(10): 3161-3182 (in Chinese with English abstract)
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KR. 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-71
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818 DOI:10.1016/S0016-7037(99)00165-9
Mao JW, Luo MC, Xie GQ, Liu J and Wu SH. 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits. Acta Geologica Sinica, 88(12): 2153-2175 (in Chinese with English abstract)
Mao JW, Xiong BK, Liu J, Pirajno F, Cheng YB, Ye HS, Song SW and Dai P. 2017. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting. Lithos, 286-287: 35-52 DOI:10.1016/j.lithos.2017.05.023
Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB and Chen MH. 2019. Geology and metallogeny of tungsten and tin deposits in China. Society of Economic Geologists, Special Publications, 22: 411-482
Mao JW, Wu SH, Song SW, Dai P, Xie GQ, Su QW, Liu P, Wang XG, Yu ZZ, Chen XY and Tang WX. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model. Chinese Science Bulletin, 65(33): 3746-3762 (in Chinese) DOI:10.1360/TB-2020-0370
Mao JW, Zheng W, Xie GQ, Lehmann B and Goldfarb R. 2021. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the Southeast China coast: Geological characteristics and metallogenic implications. Geology DOI:10.1130/G48615.1
Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK and Luo XH. 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research, 28(2): 816-836 DOI:10.1016/j.gr.2014.07.005
Meinert LD. 1993. Igneous petrogenesis and skarn deposits. Geological Association of Canada Special Paper, 40: 569-583
Mungall JE. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918 DOI:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
Newberry RJ and Swanson SE. 1986. Scheelite skarn granitoids: An evaluation of the roles of magmatic source and process. Ore Geology Reviews, 1(1): 57-81 DOI:10.1016/0169-1368(86)90005-3
O'Neill HSC, Berry AJ and Eggins SM. 2008. The solubility and oxidation state of tungsten in silicate melts: Implications for the comparative chemistry of W and Mo in planetary differentiation processes. Chemical Geology, 255(3-4): 346-359 DOI:10.1016/j.chemgeo.2008.07.005
Ouyang Y, Wei J, Lu Y, Zhang W, Yao Z, Rao J, Chen G and Pan X. 2019. Muscovite 40Ar-39Ar age and its geological significance in Zhuxi W(Cu) deposit, northeastern Jiangxi. Journal of Central South University, 26(12): 3488-3501 DOI:10.1007/s11771-019-4268-3
Pan XF, Hou ZQ, Li Y, Chen GH, Zhao M, Zhang TF, Zhang C, Wei J and Kang C. 2017. Dating the giant Zhuxi W-Cu deposit (Taqian-Fuchun Ore Belt) in South China using molybdenite Re-Os and muscovite Ar-Ar system. Ore Geology Reviews, 86: 719-733 DOI:10.1016/j.oregeorev.2017.02.024
Pan XF, Hou ZQ, Zhao M, Chen GH, Rao JF, Li Y, Wei J and Ouyang YP. 2018. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization. Lithos, 304-307: 155-179 DOI:10.1016/j.lithos.2018.01.014
Poulin RS, McDonald AM, Kontak DJ and McClenaghan MB. 2016. On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments. The Canadian Mineralogist, 54(5): 1147-1173 DOI:10.3749/canmin.1500023
Qin Y, Wang DH, Wu LB, Wang KY and Mei YP. 2010. Zircon SHRIMP U-Pb dating of the mineralized porphyry in the Dongyuan W deposit in Anhui Province and its geological significance. Acta Geologica Sinica, 84(4): 479-484 (in Chinese with English abstract)
Richards JP. 2015. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27-45 DOI:10.1016/j.lithos.2014.12.011
Romer RL and Öhlander B. 1994. U-Pb age of the Yxsjöberg tungsten-skarn deposit, Sweden. Gff, 116(3): 161-166 DOI:10.1080/11035899409546179
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Soloviev SG and Kryazhev SG. 2017. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia. Mineralium Deposita, 52(6): 903-928 DOI:10.1007/s00126-016-0705-5
Song GX, Qin KZ, Li GM, Liu TB, Li JX, Li XH and Chang ZS. 2012. Geochronologic and isotope geochemical constraints on magmatism and associated W-Mo mineralization of the Jitoushan W-Mo deposit, Middle-Lower Yangtze Valley. International Geology Review, 54(13): 1532-1547 DOI:10.1080/00206814.2011.646806
Song H, Xu ZQ, Ni SJ, Zhang CJ, Liang J, Cheng FG and Tang CY. 2015. Response of the Motianling granitic pluton in North Guangxi to the tectonic evolution in the southwestern section of the Jiangnan Orogenic Belt: Constraints from Neoproterozoic zircon geochronology. Geotectonica et Metallogenia, 39(6): 1156-1175 (in Chinese with English abstract)
Song SW, Mao JW, Xie GQ, Yao ZY, Chen GH, Rao JF and Ouyang YP. 2018a. The formation of the world-class Zhuxi scheelite skarn deposit: Implications from the petrogenesis of scheelite-bearing anorthosite. Lithos, 312-313: 153-170 DOI:10.1016/j.lithos.2018.05.002
Song SW, Mao JW, Zhu YF, Yao ZY, Chen GH, Rao JF and Ouyang YP. 2018b. Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, south China: A case study at the giant Zhuxi W-Cu skarn deposit. Lithos, 304-307: 180-199 DOI:10.1016/j.lithos.2018.02.002
Song SW, Mao JW, Xie GQ, Chen L, Santosh M, Chen GH, Rao JF and Ouyang YP. 2019. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Mineralium Deposita, 54(4): 569-590 DOI:10.1007/s00126-018-0831-3
Song SW, Mao JW, Xie GQ, Jian W, Chen GH, Rao JF and Ouyang YP. 2021. Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit: A case study of the Zhuxi tungsten deposit. Economic Geology, 116(1): 91-121 DOI:10.5382/econgeo.4771
Su QW, Mao JW, Wu SH, Zhang ZC and Xu SF. 2018. Geochronology and geochemistry of the granitoids and ore-forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization. Lithos, 296-299: 265-381 DOI:10.1016/j.lithos.2017.11.005
Sun KK, Chen B, Deng J and Ma XH. 2018. Source of copper in the giant Shimensi W-Cu-Mo polymetallic deposit, South China: Constraints from chalcopyrite geochemistry and oxygen fugacity of ore-related granites. Ore Geology Reviews, 101: 919-935 DOI:10.1016/j.oregeorev.2018.08.029
Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE and Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97-131 DOI:10.1016/j.oregeorev.2014.09.004
Wan HZ, Liu ZQ, Liu SB, Chen YC, Wang CH, Chen GH, Liang LJ, Li SS, Zhang SD and Liu XL. 2015. LA-ICP-MS Zircon U-Pb dating of granodioritic porphyry located Zhuxi copper-tungsten mine in Northeast Jiangxi and its geological significance. Rock and Mineral Analysis, 34(4): 494-502 (in Chinese with English abstract)
Wang J and Li ZX. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122(1-4): 141-158 DOI:10.1016/S0301-9268(02)00209-7
Wang XG, Liu JG, Chen GH, Zeng XH, Rao JF, Qiu P, Luo LC, Xie T, Zhong SJ and Zhang C. 2014. On exploration progress of W-Cu deposit in Zhuxi of Jiangxi. Journal of Geology, 38(3): 483-491 (in Chinese with English abstract)
Wang XG, Liu ZQ, Liu SB, Wang CH, Liu JG, Wan HZ, Chen GH, Zhang SD and Liu XL. 2015. LA-ICP-MS Zircon U-Pb dating and petrologic geochemistry of fine-grained granite from Zhuxi Cu-W deposit, Jiangxi Province and its geological significance. Rock and Mineral Analysis, 34(5): 592-599 (in Chinese with English abstract)
Wang XL, Zhou JC, Griffin WL, Wang RC, Qiu JS, O'Reilly SY, Xu XS, Liu XM and Zhang GL. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Research, 159(1-2): 117-131 DOI:10.1016/j.precamres.2007.06.005
Wang XL, Shu XJ, Xu XS, Tang M and Gaschnig R. 2012. Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic andesites in the eastern Jiangnan orogen, southern China. Journal of Asian Earth Sciences, 61: 243-256 DOI:10.1016/j.jseaes.2012.10.017
Wang XL, Zhou JC, Griffin WL, Zhao GC, Yu JH, Qiu JS, Zhang YJ and Xing GF. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154-171 DOI:10.1016/j.precamres.2013.12.023
Wolf MB and London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58(19): 4127-4145 DOI:10.1016/0016-7037(94)90269-0
Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM and Wu FY. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212 DOI:10.1016/j.precamres.2006.01.012
Xiang XK, Wang P, Zhan GN, Sun DM, Zhong B, Qian ZY and Tan R. 2013. Geological characteristics of Shimensi tungsten polymetallic deposit in northern Jiangxi Province. Mineral Deposits, 32(6): 1171-1187 (in Chinese with English abstract)
Ye MF, Li XH, Li WX, Liu Y and Li ZX. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12(1-2): 144-156 DOI:10.1016/j.gr.2006.09.001
Yu Q, Chen GH and Kang C. 2018. Study of metallogenic chronology, mineralogy and ore-forming process of the superlarge tungsten deposits in Zhuxi, Jiangxi Province. Geological Journal of China Universities, 24(6): 872-895 (in Chinese with English abstract)
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286 DOI:10.1111/j.1755-6724.2007.tb00951.x
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382 DOI:10.1007/s00126-007-0166-y
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242 DOI:10.1016/j.oregeorev.2011.08.002
Yuan SD, Liu XF, Wang XD, Wu SH, Yuan YB, Li XK and Wang TZ. 2012a. Geological characteristics and 40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787-3797 (in Chinese with English abstract)
Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012b. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in Southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)
Yuan SD, Williams-Jones AE, Mao JW, Zhao PL, Yan C and Zhang DL. 2018. The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5): 1193-1208 DOI:10.5382/econgeo.2018.4587
Yuan SD, Williams-Jones AE, Romer RL, Zhao PL and Mao JW. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: Insights from the Nanling region, China. Economic Geology, 114(5): 1005-1012 DOI:10.5382/econgeo.4669
Zaw K and Singoyi B. 2000. Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95(6): 1215-1230 DOI:10.2113/gsecongeo.95.6.1215
Zhang W, Jiang SY, Gao TS, Ouyang YP and Zhang D. 2020. The effect of magma differentiation and degassing on ore metal enrichment during the formation of the world-class Zhuxi W-Cu skarn deposit: Evidence from U-Pb ages, Hf isotopes and trace elements of zircon, and whole-rock geochemistry. Ore Geology Reviews, 127: 103801 DOI:10.1016/j.oregeorev.2020.103801
Zhang W, Jiang SY, Ouyang YP and Zhang D. 2021. Geochronology and textural and compositional complexity of apatite from the mineralization-related granites in the world-class Zhuxi W-Cu skarn deposit: A record of magma evolution and W enrichment in the magmatic system. Ore Geology Reviews, 128: 103885 DOI:10.1016/j.oregeorev.2020.103885
Zhao GC and Cawood PA. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13-54 DOI:10.1016/j.precamres.2012.09.017
Zhao JH, Zhou MF, Yan DP, Zheng JP and Li JW. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299-302 DOI:10.1130/G31701.1
Zhao WW, Zhou MF, Li YHM, Zhao Z and Gao JF. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China. Journal of Asian Earth Sciences, 137: 109-140 DOI:10.1016/j.jseaes.2016.12.047
Zhou HY, Geng JZ, Cui YR, Li HK and Li HM. 2012. In situ U-Pb dating of apatite using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6): 857-864 (in Chinese with English abstract)
Zhu ZY, Jiang SY, Hu J, Gu LX and Li JW. 2014. Geochronology, geochemistry, and mineralization of the granodiorite porphyry hosting the Matou Cu-Mo (±W) deposit, Lower Yangtze River metallogenic belt, eastern China. Journal of Asian Earth Sciences, 79: 623-640 DOI:10.1016/j.jseaes.2013.07.033
陈国华, 万浩章, 舒良树, 张诚, 康川. 2012. 江西景德镇朱溪铜钨多金属矿床地质特征与控矿条件分析. 岩石学报, (12): 3901-3914.
陈雪霏, 汪应庚, 孙卫东, 杨晓勇. 2013. 皖南宁国竹溪岭地区花岗岩锆石U-Pb年代学及地球化学及其成因研究. 地质学报, 87(11): 1662-1678.
贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 2018. 江西朱溪铜钨矿床成因: 来自矿物学和年代学的启示. 吉林大学学报(地球科学版), 48(4): 1050-1070.
胡正华, 楼法生, 李永明, 李吉明, 王先广, 陈建平, 曾庆权, 吴师金, 聂龙敏, 龚良信, 文亮先, 刘高峰, 李倩, 余希. 2018. 江西武宁县东坪钨矿床中与成矿有关的岩浆岩年代学、地球化学及岩石成因. 地球科学, 43(增1): 243-263.
蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639-655.
孔志岗, 梁婷, 毛景文, 徐生发, 许红兵, 闫盼盼, 金修勇. 2018. 皖南竹溪岭钨多金属矿床花岗闪长岩成因、成矿时代及成岩成矿背景研究. 岩石学报, 34(9): 2632-2656.
李岩, 潘小菲, 赵苗, 陈国华, 张天福, 刘茜, 张诚. 2014. 景德镇朱溪钨(铜)矿床花岗斑岩的锆石U-Pb年龄、地球化学特征及其与成矿关系探讨. 地质论评, 60(3): 693-708.
刘经纬, 陈斌, 陈军胜, 李壮, 孙克克. 2017. 赣东北朱溪钨(铜)矿区高分异花岗岩的成因及与钨矿的关系. 岩石学报, 33(10): 3161-3182.
毛景文, 罗茂澄, 谢桂青, 刘军, 吴胜华. 2014. 斑岩铜矿床的基本特征和研究勘查新进展. 地质学报, 88(12): 2153-2175.
毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746-3762.
秦燕, 王登红, 吴礼彬, 王克友, 梅玉萍. 2010. 安徽东源钨矿含矿斑岩中的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 84(4): 479-484.
宋昊, 徐争启, 倪师军, 张成江, 梁军, 程发贵, 唐纯勇. 2015. 广西摩天岭岩体对江南造山带西南段构造演化的响应: 来自新元古代花岗岩锆石U-Pb年代学证据. 大地构造与成矿学, 39(6): 1156-1175.
万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 2015. 赣东北朱溪铜钨矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 岩矿测试, 34(4): 494-502.
王先广, 刘建光, 陈国华, 曾祥辉, 饶建锋, 邱萍, 罗禄川, 谢涛, 钟仕俊, 张诚. 2014. 江西朱溪钨铜矿找矿进展及建议. 地质学刊, 38(3): 483-491. DOI:10.3969/j.issn.1674-3636.2014.03.483
王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 2015. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 34(5): 592-599.
项新葵, 王朋, 詹国年, 孙德明, 钟波, 钱振义, 谭荣. 2013. 赣北石门寺超大型钨多金属矿床地质特征. 矿床地质, 32(6): 1171-1187. DOI:10.3969/j.issn.0258-7106.2013.06.006
于全, 陈国华, 康川. 2018. 江西朱溪超大型钨矿床成矿年代学、矿物学及成矿过程研究. 高校地质学报, 24(6): 872-895.
袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李雪凯, 王铁柱. 2012a. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究. 岩石学报, 28(12): 3787-3797.
袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012b. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27-38.
周红英, 耿建珍, 崔玉荣, 李怀坤, 李惠民. 2012. 磷灰石微区原位LA-MC-ICP-MSU-Pb同位素定年. 地球学报, 33(6): 857-864.