岩石学报  2021, Vol. 37 Issue (1): 231-252, doi: 10.18654/1000-0569/2021.01.14   PDF    
华北克拉通燕辽裂谷长城纪碱性岩锆石U-Pb年代厘定和Hf-O同位素特征
张健1,2,3, 李怀坤1,2,3, 田辉1,2,3, 刘欢1,2,3, 周红英1,2,3, 刘文刚1,2,3     
1. 中国地质调查局天津地质调查中心, 天津 300170;
2. 中国地质调查局前寒武纪地质研究中心, 天津 300170;
3. 中国地质调查局华北科技创新中心, 天津 300170
摘要: 基性的碱性岩通常形成于伸展环境,具有富碱和不相容元素富集等地球化学特征,它们来源于深部富集地幔,是探索地幔交代和深部地球动力学的"岩石探针"。华北克拉通北缘燕辽裂谷内发育团山子组和大红峪组钾质火山岩以及侵入串岭沟组的钠质岩脉,它们共同组成了长城纪碱性岩系列。本文利用SHRIMP锆石U-Pb同位素方法对平谷-蓟县地区钾质火山岩进行年代学测试,获得误差范围内一致的年龄:1613±11Ma、1634±18Ma(团山子组)和1605±19Ma、1630±10Ma(大红峪组),说明钾质火山岩喷发的持续时间短,且与侵入串岭沟组的钠质岩脉同期(~1625Ma)。钾质火山岩和钠质岩脉的锆石Hf-O同位素组成相似:εHft)=-2~+4(正态分布峰值+0.6),δ18O=4.5‰~7.7‰明显高于正常地幔锆石的值,钾质火山岩和钠质岩脉的母岩浆源自相同的富集地幔,源区受到高δ18O物质的交代作用而富含钾质矿物,如角闪石或金云母。华北克拉通中-新元古代岩浆事件是伸展环境的产物,其锆石Hf同位素组成在~1.32Ga发生突变,由富集到亏损,暗示岩石圈地幔经历强烈的交代改造作用,可能成为检验地幔柱或者板块深俯冲驱动超大陆裂解机制的窗口。
关键词: 锆石    U-Pb年代学    Hf-O同位素    碱性岩    燕辽裂谷    长城纪    
Zircon U-Pb dating and Hf-O isotope characteristics of Changchengian alkaline rocks from the Yanliao Rift in the North China Craton
ZHANG Jian1,2,3, LI HuaiKun1,2,3, TIAN Hui1,2,3, LIU Huan1,2,3, ZHOU HongYing1,2,3, LIU WenGang1,2,3     
1. Tianjin Centre, China Geological Survey, Tianjin 300170, China;
2. Precambrain Geological Research Centre, China Geological Survey, Tianjin 300170, China;
3. North China Center for Geoscience Innovation, China Geological Survey, Tianjin 300170, China
Abstract: Mafic alkaline rocks are geochemically enriched in alkali and incompatible elements and genetically related to extensional settings. They are derived from enriched mantle, and thus can decipher the mantle metasomatism and deep geodynamics. The Changchengian alkaline rocks, outcropped in the Yanliao Rift at northern margin of the North China Craton, include the potassium volcanic rocks of the Tuanshanzi and Dahongyu formations along with the sodium dike intruding into the Chuanlinggou Formation. SHRIMP zircon U-Pb isotope chronological dating of the volcanic rocks from Pinggu-Jixian area yield concordant ages of 1613±11Ma, 1634±18Ma (the Tuanshanzi Formation) and 1605±19Ma, 1630±10Ma (the Dahongyu Formation), respectively. All these consistent ages within analytical error indicate the potassic volcanics were short-lived eruption, broadly coeval with the ca. 1625Ma sodic dikes. The potassic volcanic rocks and sodic dikes display similar zircon Hf-O isotope compositions, i.e., εHf(t) ranging from -2 to +4 with a Gaussian distribution pattern peaking at +0.6, while δ18O ranges from 4.5‰ to 7.7‰ mostly higher than normal mantle zircon value. The potassic volcanic rocks and sodic dikes, composed of K-rich minerals such as hornblende or phlogopite, are originated from the common enrichment mantle which was previously metasomatized by elevated δ18O materials. The North China Craton underwent multi-rifting events during the Meso- and Neo-proterozoic, their zircon Hf isotopes abruptly shift from enrichment to depletion at ca. 1.32Ga, suggesting that the lithospheric mantle underwent strong metasomatism. The Mesoproterozoic mafic rocks in North China Craton can play a key role for testing the mechanism of supercontinental breakup driven by mantle plumes or/and deep plate subduction.
Key words: Zircon    U-Pb chronology    Hf-O isotope    Alkaline rock    Yanliao rift    Changchengian Period    

中-新元古代(1.8~0.75Ga)被称作“地球的中年期(Earth's middle age)”或“无聊的十亿年(boring billion)”(Roberts,2013Cawood and Hawkesworth, 2014Zhai et al., 2015),时间跨越两个超级大陆(Supercontinent)的演化阶段,即哥伦比亚(Columbia/Nuna)超大陆裂解和罗迪尼亚(Rodinia)超大陆聚合,是地质历史上承前启后的特殊时期。从“超大陆旋回”(Nance et al., 1988Li et al., 2008Hawkesworth et al., 2017)的角度观察,中-新元古代的全球构造环境相对稳定,并且得到一系列岩浆活动记录(如非造山的斜长岩、A型花岗岩涌现,Ashwal,2010Condie,2020)和地球化学指标(大气氧浓度,Holland et al., 2006;海水Sr同位素,Shields,2007;碎屑锆石εHf(t),Belousova et al., 2010)近无异常等的印证。

华北克拉通(North China Craton, NCC)充分参与到Columbia/Nuna超大陆的汇聚和裂解过程中(Condie,2002Rogers and Santosh, 20022003Wilde et al., 2002Zhao et al., 2002a, 2004aZhai and Liu, 2003Hou et al., 2008Ernst et al., 2008Zhai et al., 2015),具有基底和盖层组成的典型双层结构。华北克拉通在中-新元古代属于裂谷盆地和沉积盖层的发育阶段,构造环境相对稳定,与“地球中年期”的特点一致。古元古代晚期(~1.85Ga),经历吕梁运动(中条运动)的变质造山事件,将几个太古宙和古元古代花岗岩-绿岩带及高级区域变质带(2.0~1.85Ga)拼贴形成一个规模较大的基底陆块(图 1aZhao et al., 2001, 2005, 2011, 2012Guo et al., 2002Lu et al., 2002, 2008Zhai and Liu, 2003Kusky and Li, 2003Kröner et al., 2005Zhai et al., 2005Santosh,2010Zhai and Santosh, 2011Santosh et al., 2012)。~1.8Ga之后,华北克拉通构造机制由碰撞挤压向拉张伸展转换(Meng et al., 2011),东北缘的燕辽、西南缘的豫陕和西北缘的渣尔泰-白云鄂博三大裂谷系统逐渐形成。裂谷内部的盖层沉积厚度巨大、出露广泛,未经历明显的变质作用。

图 1 华北克拉通前寒武纪构造简图(a,据Zhao et al., 2005Santosh,2010)、华北克拉通北缘燕辽裂谷中-新元古界分布略图(b,据黄学光等,2000)和平谷-蓟县地区长城系火山岩分布图(c) Fig. 1 Precambrian tectonic sketch map of the North China Craton (a, after Zhao et al., 2005; Santosh, 2010), sketch map showing the distribution of the Meso-Neoproterozoic strata in the Yanliao Rift, northern North China Craton (b) and Changchengian volcanic rock distribution in Pinggu-Jixian area (c)

截止目前,围绕燕辽裂谷(图 1b,蓟县剖面)的研究工作最为深入,主要体现在早期生命起源和演化(Zhu and Chen, 1995Xiao et al., 1997Peng et al., 2009Zhu et al., 2016Ma et al., 2017Shi et al., 2017a, bYang et al., 2017Qu et al., 2018Miao et al., 2019)、古沉积环境(Li et al., 2003Chu et al., 2007Luo et al., 2014Guo et al., 2015Zhang et al., 2015, 2018aDing et al., 2017Tang et al., 2017; Canfield et al., 2018Shang et al., 2019)、古地磁与古大陆恢复重建(Pei et al., 2006Zhang et al., 2006, 2012a, 2018bChen et al., 2013aXu et al., 2014Cai et al., 2020Zhao et al., 2020)等方面。上述令人瞩目的进展得益于地层格架的搭建和时间序列的精确厘定。

大红峪组和团山子组的碱性火山岩位于燕辽裂谷长城系地层上部,可能是裂谷系统内唯一的火山熔岩单元,也是最早实现锆石U-Pb定年对地层时代精确约束的测年对象,获得TIMS单颗粒锆石U-Pb年龄1625.3±6.2Ma(蓟县大红峪组,陆松年和李惠民,1991)和1683±67Ma(平谷团山子组,李怀坤等,1995),由此奠定地层对比的基础。更为关键的是,侵入串岭沟组基性岩脉与火山岩同时期(张健等,2015),虽然二者均以碱性OIB为主要的地球化学特征,但是K2O和Na2O组成存在明显区别。基性岩脉为钠质,而火山岩高钾低钠,K2O的富集程度高达~15%(K2O/Na2O≈1400,Wang et al., 2015a),因此,钾质和钠质岩石成因的对比研究需要更细致的工作。

随着测试技术的进步和研究区域的扩大,火山岩和岩脉的锆石原位U-Pb定年结果被纷纷报道(Lu et al., 2008高林志等,2008张拴宏等,2013Wang et al., 2015a张健等,2015)。虽然年龄结果多集中在1.62~1.63Ga范围(详细内容见讨论部分),但是Wang et al.(2015a)测得团山子组粗面玄武岩和大红峪组粗面安山岩分别为1671±5Ma和1664±6Ma,大部分>1.65Ga的测年结果明显偏老,并与下覆地层串岭沟组凝灰岩年龄1621±6.9Ma和1634.8±6.9Ma(孙会一等,2013刘典波等,2019)以及依据综合资料推测的长城系底界年龄~1650Ma(李怀坤等,2011Li et al., 2013王泽九等,2014周红英等,2020)相矛盾。火山岩年龄不仅对地层锚点的标定至关重要,而且深刻影响着岩浆过程以及时空演化规律的解释。

基性的碱性岩通常形成于伸展环境,具有富碱和富不相容元素等地球化学特征,来源于深部富集地幔,是探索地幔交代和深部地球动力学的“岩石探针”。本文首先系统采集平谷-蓟县地区长城系团山子组和大红峪组火山熔岩样品,使其达到空间范围的全面覆盖;然后利用SHRIMP锆石U-Pb同位素方法进行系统年代学再研究,进一步廓清燕辽裂谷长城纪碱性岩的形成时代;再通过锆石Hf-O同位素特征,示踪火山岩和基性岩脉的岩石成因和源区类型;最后结合华北克拉通在中-新元古代岩浆事件Hf同位素的成果资料,探讨Columbia/Nuna超大陆裂解过程中岩石圈演化形式。

① 黄学光、朱士兴、贺玉贞等.2000.承德地区中、上元古界层序地层学研究(科研报告,未出版)

1 区域地质背景

研究区位于华北克拉通东北缘燕辽裂谷内平谷-蓟县一带(图 1c),盖层沉积不整合覆盖于新太古代迁西群(密云群)混合岩化的片麻岩、角闪岩、麻粒岩等高级变质杂岩之上。裂谷系统里的“蓟县中-上元古界剖面”驰名中外,厚度近万米,包括长城系、蓟县系和青白口系(自下而上,下同)。长城系由碎屑岩、泥质岩和碳酸盐岩构成完整的海侵沉积旋回,包括常州沟组、串岭沟组、团山子组和大红峪组。早期的地层划分方案将高于庄组划归长城系,李怀坤等(2010)田辉等(2015)在不同地区获得高于庄组中-上部凝灰岩夹层的锆石U-Pb年龄均显示其应归属于蓟县系,本文采用近年来被普遍接受的地层划分观点(全国地层委员会,2002李怀坤等, 2009, 2010, 2011, 2014Su et al., 2010王泽九等,2014田辉等,2015),将长城系和蓟县系的分界置于大红峪组和高于庄组之间。需要明确的是,国内外学者在中元古代起始的时间上存在1.8Ga和1.6Ga的分歧,本文沿用国内地质同行普遍认可的1.8Ga作为界限。

常州沟组 为一套以砂岩为主的碎屑岩组合。下部为砾岩、含砾粗砂岩、长石石英砂岩和石英砂岩;上部石英砂岩和砂质页岩。地层由下至上,粒度由粗变细,属于正向沉积旋回。常州沟组地层角度不整合覆盖于新太古代各类片麻岩和麻粒岩之上。

串岭沟组 为一套以粉砂质伊利石页岩为主,夹少量砂岩和碳酸盐岩的岩石组合。下部为滨海潮间带灰色粉砂岩和粉砂质页岩,含砂岩透镜体和条带;中部为潮下低能带灰绿色页岩,常含有碳质碎片和星散状黄铁矿;上部以潮间带黑色粉砂质页岩和粉砂岩为主,并夹砂岩凸镜体和条带。上下两部分受砂岩夹层影响,层理多呈波状起伏,中部层理平直,砂岩透镜体中有直线形斜层理,波痕和干裂等构造。串岭沟组与下伏常州沟组整合接触。

团山子组 以铁白云岩为主,夹少量泥质白云岩和含粉砂质白云岩。下部以泻湖相灰黑色含铁白云岩为主,夹板状泥岩和泥质白云岩,白云岩中常见星散状或结核状黄铁矿,风化面呈褐红色;上部以含硅质层黑色含铁白云岩为主,并夹薄厚不等的白云质砂岩,常见岩盐假晶、干裂和浅水波痕,为盐度较高的潮间-潮上带沉积。团山子组与下伏的串岭沟组为整合过渡关系。火山岩夹层位于团山子组上部,主要为富钾粗面安山岩,发育气孔构造和绳状构造,锆石U-Pb年龄为1637±15Ma(张拴宏等, 2013, 图 1c)。

大红峪组 根据岩石组合分为3段。下部以碎屑岩为主,厚层乳白色石英岩状砂岩夹紫红色粉砂岩、含浅绿色硅质条带的含砂白云岩或白云质石英砂岩以及翠绿色富钾页岩,具有韵律式沉积特征;中部以大量火山岩的出现为标志,包括富钾基性火山熔岩、火山角砾岩(集块岩),夹少量石英砂岩和凝灰岩;上部主要为碳酸盐岩层,发育叠层石和大的礁状体。在砂岩中常见波痕、交错层理和干裂等沉积构造。与下伏的团山子地层为整合接触关系。

大红峪组火山岩是一套超钾质,富铝、贫硅的粗面岩-碱玄岩-响岩组合。空间上东西向延伸,主要分布于北京平谷、天津蓟县、冀东遵化和滦县等地(图 1c),出露面积为600km2,在平谷和蓟县最大厚度分别为718m和490m(胡俊良等,2007)。岩石喷发类型复杂多样,既有强烈爆发产出的火山角砾岩(集块岩),也有熔岩和凝灰岩。西部(平谷地区大华山和熊儿寨)火山活动较为强烈,熔岩比例大,厚度近500m;东部(蓟县地区下营附近)以火山角砾岩为主;中部多为火山碎屑岩。根据大红峪组火山产物及其间赋存的石英砂岩划分出4期喷发旋回,分别被3层石英砂岩隔开:其中第4期熔岩最为发育,遍布全区。其它3期火山活动较弱,熔岩层较薄,并依次变厚,火山角砾岩、火山碎屑岩和凝灰岩等较发育,且不同地区厚度各异,显示大红峪期火山活动由弱变强伴有多次喷发间隙的特点。此外,以脉状穿插侵入的辉绿岩、煌斑岩和正长斑岩等在大红峪组和下伏地层发育。

2 样品采集和分析方法 2.1 样品采集

本次研究采集火山岩样品共7件(15ZJ01~15ZJ07),其中4件样品分选出锆石(15ZJ02大红峪组粗面玄武岩;15ZJ04团山子组粗面岩;15ZJ05大红峪组粗面安山岩;和15ZJ06团山子组粗面玄武岩)。

15ZJ02采自平谷大华山镇苏子峪东南(40°13′34.70″N、117°5′41.50″E),位于大红峪组火山岩的下部,发育气孔杏仁构造,呈褐红色,粗面玄武岩具有斑状结构,块状构造,主要由斜长石(~70%)、普通辉石(~15%)和少量的角闪石、黑云母及磁铁矿组成。斑晶为基性斜长石和辉石,斜长石半自形板状,粒径0.34~1.8mm,发育聚片双晶及卡钠复合双晶。岩石整体发生强烈碳酸盐化、粘土化。15ZJ04(40°14′44.30″N、117°7′10.90″E)和15ZJ06(40°14′52.85″N、117°26′56.70″E)分别采自平谷熊耳寨乡和蓟县黄崖关村附近,属于团山子组上部的火山岩夹层,为一套富钾粗面玄武岩、火山角砾岩及凝灰质砂岩等。火山岩露头表面呈褐黄色,新鲜面灰白色,气孔发育被白云石充填而形成杏仁状构造,未遭受明显的变质。岩浆水平流动导致岩层上部气孔明显被拉长,扁平面与上覆白云岩产状相一致。火山岩组成矿物主要由碱性长石、斜长石、辉石(部分绿泥石化)、角闪石、黑云母及磁铁矿组成。15ZJ05采自平谷黄松峪附近(40°12′28.27″N、117°13′59.99″E),为大红峪组粗面安山岩,新鲜面呈灰白色,风化后呈褐黄色、褐红色,气孔杏仁构造发育。板状结构,斑晶主要为钾长石和少量的斜长石,钾长石呈自形-半自形,长径1~3mm。基质由钾长石、斜长石和基性矿物及磁铁矿组成,基性矿物强烈的绿泥石化、黑云母化。

2.2 锆石U-Pb年代和Hf-O同位素

样品经破碎和淘洗, 在双目镜下挑出锆石,锆石分选工作由河北省区域地质矿产调查研究所实验室完成。将待测锆石样品颗粒和锆石标样浇铸在环氧树脂靶上,待环氧树脂固化以后将样品靶打磨、抛光至锆石的核部。通过透、反射光显微照相和阴极发光图像分析,对锆石内部结构进行研究。锆石U-Th-Pb和O同位素测定在北京离子探针中心的SHRIMP Ⅱ二次离子探针质谱仪上完成,U-Th-Pb测试原理和方法见Compston et al.(1984, 1992)和Williams(1998)。一次离子流(O2-)强度为2.0~2.5nA,束斑直径为25~30μm。标准样品和待测样品分析比例为1/4。采用标准锆石TEMORA(参考年龄为417Ma;Black et al., 2004)进行同位素分馏校正,M257(参考年龄561Ma;U含量840×10-6Nasdala et al., 2008)标定待测锆石的U含量,利用实测的204Pb进行普通铅校正。数据处理采用SQUID和Isoplot程序(Ludwig,2003)。单个数据的误差为1σ,加权平均年龄误差为95%置信度。O同位素测试原理和流程见文献Ickert et al.(2008)Wan et al.(2013)。将做过SHRIMP锆石U-Pb定年的样品靶再次进行抛光处理,以消除前期O2-源对锆石表面的污染。一次离子流(133Cs+)强度为15nA,加速电压为10kV。δ18O的计算方法即样品与维也纳标准海水18O/16O(V-SMOW)的千分差。仪器质量分馏(IMF)校正采用标准锆石TEMORA(δ18O=8.20‰;Black et al., 2004)。

锆石Lu-Hf同位素分析在中国地质调查局天津地质调查中心同位素实验室的193nm准分子激光剥蚀系统(New Wave)和多接收器电感耦合等离子体质谱仪(Thermo Fisher Neptune;MC-ICP-MS)完成。仪器运行条件、Lu-Hf同位素分析方法见吴福元等(2007)耿建珍等(2011)。静态信号采集模式,激光剥蚀时间30s,积分时间0.131s。激光束斑直径50μm,能量密度10~11J/cm2,频率为8Hz。采用GJ-1和Plesövice作为外标。176Lu衰变常数为λ=1.865×10-11/y(Scherer et al., 2001),球粒陨石的(176Hf/177Hf)CHUR和(176Lu/177Hf)CHUR比值分别为0.0332和0.282772(Blichert-Toft et al., 1997),现今亏损地幔的(176Hf/177Hf)DM和(176Lu/177Hf)DM比值分别0.28325和0.0384(Nowell et al., 1998),用于计算地壳模式年龄(tDM2)的大陆地壳平均值为0.015(176Lu/177HfccGriffin et al., 2000)。

3 分析结果 3.1 锆石U-Pb年代学

锆石颗粒大部分为无色或淡黄色透明-半透明晶体,多呈长柱状,自形-半自形,粒径50~150μm,长宽比2: 1~3: 1 (图 2a-d)。阴极发光图像(CL image)显示带状或者不规则分区,具有基性岩浆成因的特征。4个样品进行锆石U-Pb年代学测试结果见表 1。由于样品年龄>1.0Ga,锆石颗粒可能受到不同程度Pb丢失的影响,理论上锆石207Pb/206Pb表面年龄更接近其实际的结晶年龄(Gehrels,2014),因此本文全部用207Pb/206Pb加权平均年龄进行讨论。

图 2 北京平谷大华山-天津蓟县黄崖关地区长城纪碱性火山岩(团山子组15ZJ04和15ZJ06;大红峪组15ZJ02和15ZJ05)锆石SHRIMP U-Pb谐和图(a-d)、207Pb/206Pb年龄加权平均值(e-h)和锆石CL图像 Fig. 2 SHRIMP zircon U-Pb concordia diagrams (a-d), 207Pb/206Pb age weighted mean plots (e-h) and typical zircon CL images of the Changchengian alkaline volcanic rocks (the Tuanshanzi Formation, samples 15ZJ04 and 15ZJ06; the Dahongyu Formation, samples 15ZJ02 and 15ZJ05) from areas of Dahuashan of the Pinggu, Beijing to Huangyaguan of Jixian, Tianjin

表 1 北京平谷大华山-天津蓟县黄崖关地区长城纪碱性火山岩锆石SHRIMP U-Th-Pb同位素测试结果 Table 1 SHRIMP zircon U-Th-Pb isotope of the Changchengian alkaline volcanic rocks from areas of Dahuashan of Pinggu, Beijing to Huangyaguan of Jixian, Tianjin

样品15ZJ02分析7颗锆石,U和Th含量分别为49×10-6~391×10-6和28×10-6~404×10-6,Th/U比值0.5~1.0。其中点1.1谐和度低 < 80%,具有明显的Pb丢失现象(图 2a),晶格可能受到辐射损伤的影响(7颗锆石中U和Th含量最高),年龄统计时予以剔除;其余颗粒谐和度均>95%,207Pb/206Pb表面年龄变化范围1569~1620Ma,加权平均值为1605±19Ma(图 2e;MSWD=0.81;N=6)。样品15ZJ04分析20颗锆石,U和Th含量分别为31×10-6~159×10-6和11×10-6~136×10-6,Th/U比值0.4 ~ 0.9。绝大多数颗粒谐和度> 95%(点10.1除外,谐和度92%),207Pb/206Pb表面年龄变化范围1562~1641Ma(图 2b),加权平均值为1613±11Ma(图 2f;MSWD=0.93;N=19)。样品15ZJ05分析13颗锆石,U和Th含量分别为21×10-6~ 417×10-6和11×10-6~136×10-6,Th/U比值0.3~1.0。获得两组年龄数据:6颗锆石(点1.1、2.1、8.1、10.1、12.1和13.1)CL振荡生长环带代表中酸性岩浆来源,207Pb/206Pb表面年龄变化范围2477~2540Ma,加权平均值为2519±21Ma(图 2c;MSWD=4.0;N=6),与华北克拉通主要的基底岩系年龄一致,与常州组和串岭沟组碎屑锆石U-Pb年龄谱中新太古代晚期的峰值相对应(Wan et al., 2003),推测其为岩浆上升过程从围岩捕获的锆石;其余7颗锆石207Pb/206Pb表面年龄变化范围1544~1656Ma,剔除谐和程度低的点9.1(谐和度76%),加权平均值为1634±18Ma(图 2g;MSWD=1.18;N=6)。样品15ZJ06分析12颗锆石,U和Th含量分别为134×10-6~265×10-6和67×10-6~178×10-6,Th/U比值0.5~0.8,全部颗粒位于谐和线附近(图 2d),207Pb/206Pb表面年龄变化范围1602~1673Ma,加权平均值为1630±10Ma(图 2h;MSWD=1.02;N=12)。

3.2 锆石Hf-O同位素组成特征

对团山子组和大红峪组4件钾质火山岩锆石样品进行Hf-O同位素分析。与上述钾质火山岩形成对比,选取侵入串岭沟黑色页岩的钠质基性岩脉锆石(样品06JX01-1,U-Pb年龄和Lu-Hf同位素见张健等,2015)进行O同位素测试。

对碱性火山岩的41个锆石颗粒进行原位Lu-Hf同位素测定(表 2图 3),分析结果表明团山子组和大红峪组钾质火山岩的锆石有非常均匀且一致的Hf同位素组成:团山子组锆石(15ZJ04和15ZJ06)176Hf/177Hf初始值为0.281691~0.281840, 对应的εHf(t)=-2.0~3.3;大红峪组锆石(15ZJ02和15ZJ05)176Hf/177Hf初始值为0.281700~0.281849, 对应的εHf(t)=-2.2~3.7。绝大多数锆石样品176Lu/177Hf比值小于0.002,176Lu原位衰变造成的176Hf/177Hf比值随时间累积的变化非常小。因此,其结晶的锆石基本可以有效保留该岩浆的初始176Hf/177Hf比值(Patchett et al., 1982吴福元等,2007)。综合本文和前人资料(Wang et al., 2015a张健等,2015),团山子组和大红峪组钾质火山岩以及基性岩脉Lu-Hf同位素组成变化范围一致(图 3a),εHf(t)符合正态分布规律,峰值为+0.62(N=157,图 3b)。与同时期的亏损地幔值(~+10)比较,长城系碱性火山岩和岩脉显示偏富集特征。

表 2 北京平谷大华山-天津蓟县黄崖关地区长城纪碱性火山岩(团山子组15ZJ04和15ZJ06;大红峪组15ZJ02和15ZJ05)锆石Lu-Hf同位素 Table 2 Zircon Lu-Hf isotope of the Changchengian alkaline volcanic rocks (the Tuanshanzi Formation, samples 15ZJ04 and 15ZJ06; the Dahongyu Formation, samples 15ZJ02 and 15ZJ05) from areas of Dahuashan of Pinggu, Beijing to Huangyaguan of Jixian, Tianjin

图 3 北京平谷-天津蓟县长城纪碱性火山岩(06JX05-1B、15ZJ02、15ZJ04、15ZJ05和15ZJ06)和岩脉(06JX01-1)锆石Lu-Hf同位素特征 Fig. 3 Zircon Lu-Hf isotope characteristics of the Changchengian alkaline volcanic rocks (Sample 06JX05-1B, 15ZJ02, 15ZJ04, 15ZJ05 and 15ZJ06) and dike (Sample 06JX01-1) from areas of Pinggu of Beijing to Jixian of Tianjin

钠质基性岩脉和钾质火山岩的O同位素测试结果见表 3图 4。基性岩脉δ18O=4.6‰~ 7.7‰(N=22),概率统计的峰值为5.9‰和7.4‰;钾质火山岩δ18O=4.5‰~7.0‰(N=30),峰值为5.7‰和6.2‰。钾质火山岩和钠质基性岩脉的O同位素变化范围较大,多数测试点明显高于地幔锆石值(5.3±0.3‰,Valley et al., 1994)和洋岛拉斑玄武岩的平均值(5.4‰),总体位于大陆地区镁铁质熔岩δ18O的变化范围(4.9‰~8.0‰,郑永飞,1999)。

表 3 北京平谷-天津蓟县长城纪碱性火山岩(15ZJ02、15ZJ04、15ZJ05和15ZJ06)和岩脉(06JX01-1)锆石O同位素 Table 3 Zircon O isotope of the Changchengian alkaline volcanic rocks (samples 15ZJ02, 15ZJ04, 15ZJ05 and 15ZJ06) and dike (Sample 06JX01-1) from areas of Pinggu of Beijing to Jixian of Tianjin

图 4 北京平谷-天津蓟县长城纪碱性火山岩(15ZJ02、15ZJ04、15ZJ05和15ZJ06)和岩脉(06JX01-1)锆石氧同位素特征 Fig. 4 Zircon oxygen isotope characteristics of the Changchengian alkaline volcanic rocks (samples 15ZJ02, 15ZJ04, 15ZJ05 and 15ZJ06) and dike (Sample 06JX01-1) from areas of Pinggu of Beijing to Jixian of Tianjin
4 讨论 4.1 长城系碱性岩形成时代厘定

华北克拉通北缘燕辽裂谷长城系碱性岩浆岩主要有两种类型:分别是以团山子组和大红峪组为代表的钾质火山岩和以侵入串岭沟组为代表的钠质岩脉。通过不同测试方法已经积累大量的年龄数据。其中,侵入串岭沟的钠质岩脉的出露规模比较小,年龄结果比较一致,为1634±9Ma(LA-ICP-MS,张拴宏等,2013)和1620±9Ma(SHRIMP,张健等,2015)。但是钾质火山岩的形成时代还未形成统一的认识,包括TIMS:1625.3±6.2Ma(大红峪组,陆松年和李惠民,1991)和1683±67Ma(团山子组,李怀坤等,1995);LA-ICP-MS:1637±15Ma(团山子组,张拴宏等,2013)、1671±15Ma(Wang et al., 2015a)和1664~1645Ma(大红峪组,Wang et al., 2015a);SHRIMP:1622±32Ma和1624±9Ma(大红峪组,Lu et al., 2008张健等,2015)。综合上述资料,钾质火山岩的年龄范围较大1.68~1.62Ga,陆松年和李惠民(1991)张拴宏等(2013)Lu et al.(2008)张健等(2015)利用不同测年方法获得的年龄结果一致~1625Ma,而Wang et al.(2015a)的年龄普遍较大,最早起始时间为1671±15Ma。如果按照上述结果计算,喷发活动持续周期长达~50Myr理应形成巨厚的火山岩层。但是,从沉积响应的角度考虑,大红峪组火山岩的下部具有波痕、干裂等沉积构造的碎屑物质,上部被含叠层石的碳酸盐岩覆盖,火山活动发育于坳陷盆地的沉降阶段,基本排除因正地形遭受隆升剥蚀的可能性。另外,砂岩碎屑与火山物质的沉积速率相当可观,这显然与野外实际观察到有限的岩浆规模及地层厚度(~500m)不相符。更关键的是,串岭沟组凝灰岩年龄1621±6.9Ma和1634.8±6.9Ma(孙会一等,2013刘典波等,2019),其上覆的团山子组和大红峪组火山岩的年龄应更年轻。本文系统分析出露于平谷-蓟县地区钾质火山岩的形成时代,力求空间尺度和地层序列的全面覆盖,获得SHRIMP锆石U-Pb年龄1613±11Ma、1634±18Ma(团山子组)和1605±19Ma、1630±10Ma(大红峪组),且在误差范围内基本一致。锆石自形程度低、CL带状分区以及高Th/U比值表明其为高温基性岩浆结晶过程的产物。因此,锆石结晶年龄~1625Ma能够代表岩石的形成时代,整个长城系碱性火山岩是在较短的时限内以火山角砾岩(集块岩)、熔岩和凝灰岩等形式集中喷发。这一认识得到大红峪组上、下地层串岭沟组和高于庄组凝灰岩夹层年龄的支持(李怀坤等,2010孙会一等,2013田辉等,2015刘典波等,2019)。此外,侵入串岭沟组的钠质岩脉与火山岩同期发育。

4.2 长城系碱性岩的成因

侵入串岭沟的钠质岩脉和多数团山组和大红峪组的钾质火山岩为玄武质成分,普遍具有低SiO2(< 53%)、高碱含量(Na2O+K2O=5%~13%),少量为过碱性的碱玄质或响岩质火山岩(胡俊良等,2007;Wang et al., 2105a;张健等,2015),共同组成长城系碱性岩系列。钾质火山岩和钠质岩脉的主量元素除K2O和Na2O在各自端元富集外(K2O/Na2O变化范围0.1~130,个别样品高达~1400),前者的全碱和SiO2含量较高,而后者的MgO、CaO、FeOT和TiO2含量较高,Al2O3含量没有明显的区别。FeOT和TiO2含量与铁钛氧化物在岩浆结晶过程中氧逸度控制的饱和程度或重力分异有关。Hacker图解上,样品SiO2连续变化且与其它主量元素具有良好的线性关系,长城系碱性岩来自相同的母岩浆,可能经历分离结晶作用。同样,钾质火山岩和钠质岩脉微量元素组成与洋岛玄武岩OIB特征类似,富集大离子亲石元素(LILE,Rb、Ba和Th等)、高场强元素Nb-Ta显示弱的正异常。相容元素Cr、Co和Ni的含量偏低,岩浆经历橄榄石和(或)辉石的分离结晶。钾质火山岩的稀土元素总量(∑REE)比钠质岩脉高,结合其高SiO2和低MgO的特征,代表分离结晶的结果。轻稀土元素(LREE)富集,轻、重稀土分馏大说明岩浆的熔融程度低以及源区可能存在高压相石榴石的残留。Eu异常特征和斜长石的分离结晶不明显。

长城系碱性岩分布于华北克拉通燕辽裂谷的内部,其主体为碱性OIB型玄武岩,属于大陆裂解的产物。目前,对于板内碱性玄武岩成因的争议主要围绕:(1)来源于软流圈地幔还是岩石圈地幔(Pilet et al., 2004)或者是软流圈地幔-岩石圈地幔的相互作用(Tang et al., 2006);(2)源岩是地幔橄榄岩还是非地幔橄榄岩,比如角闪岩、辉石岩或榴辉岩(Hirschmann et al., 2003Niu,2008Yang et al., 2019a)以及橄榄岩与非橄榄岩的机械混合(Liu et al., 2008);(3)岩浆是单一来源的还是不同来源的岩浆混合(Niu,2008)。钾质火山岩和钠质岩脉的锆石Hf同位素变化范围一致(εHf(t)=-2~+4),暗示相同的地幔源区,εHf(t)峰值为+0.62明显比同期的亏损地幔(~+10)富集,属于软流圈地幔-岩石圈地幔相互作用的结果。识别其富集组分是源区的岩石圈物质添加还是岩浆上升过程的地壳混染尤为重要。以下事实可以排除地壳混染的可能性:(1)长城系碱性岩为OIB型,微量元素Nb-Ta富集,明显不同于壳源岩浆Nb-Ta亏损;(2)碱性岩主要是喷发形式,在地壳居留时间较短,二者相互作用的几率小;(3)Nb/La(>1)和Zr/Nb比值以及Nd-Hf同位素的变化范围不大。因此,岩浆的同位素富集继承源区本身的属性,华北长城系碱性岩源区受到岩石圈物质的交代作用。

锆石抗改造能力强,可以有效保存岩浆初始的成分信息并且避免后期围岩的干扰。幔源岩浆结晶出来的锆石有非常一致的δ18O值5.3‰±0.3‰,而且该比值受岩浆分异的影响很小, 由岩浆分异造成的全岩δ18O值增高会被锆石/熔体之间的δ18O分馏增加所补偿。因此, 锆石O同位素用来鉴别碱性岩源区中岩石圈物质(Zhu et al., 2017)。与裂谷环境低δ18O不同(Wang et al., 2011aWatts et al., 2011),长城系碱性岩比正常地幔值5.3‰±0.3‰明显偏大,岩浆锆石的高δ18O特征通常认为源区有沉积物质的加入。考虑到碱性火山岩富钾特点,其地幔源区可能受到高δ18O沉积岩的交代作用,经过深俯冲作用被带入地幔的沉积物质尤其是泥质岩石在不同深度的熔融,会释放出大量富K或者Na的熔/流体交代地幔橄榄岩。交代过程富K或者Na的熔/流体不断消耗源区的橄榄石,从而增加地幔橄榄岩中辉石的比例,其中一部分含角闪石或者金云母等钾质矿物。而且,这些矿物本身富含挥发份,显著降低地幔强度以及固相线的温度,促进减压或者升温条件下部分熔融形成原始岩浆。

4.3 华北克拉通中新元古代岩浆特点和动力学机制

自~1.8Ga,华北克拉通内部识别出熊耳、燕辽和渣尔泰-白云鄂博三个裂谷带(裂谷盆地),其中熊耳裂谷(1.8~1.75Ga)底部发育河湖相砂岩-泥岩沉积(大古石组,1.8~1.78Ga),是华北克拉通结晶基底形成后最早的盖层沉积,而燕辽裂谷的起始时间稍晚,最新的研究成果将其盆地发育的起始时间限定在~1.65Ga以后。华北克拉通内保存着大量岩浆事件的记录(相振群,2014翟明国等,2014耿元生等,2020)并与裂谷带(裂谷盆地)耦合发育,呈幕式演化特征,说明“无聊的十亿年”并不无聊:1)1.83~1.75Ga华北南缘熊耳火山岩群和碱性岩带以及太行山地区的基性岩墙群(Zhao et al., 2002b, 2004b, 2009a, 2018Wang et al., 2004, 2008, 2010, 2014a, 2016a, b2019耿元生等,2004陈斌等,2006Peng et al., 2007, 2008, 2015韩宝福等,2007徐勇航等,2007He et al., 2008, 2009, 2010Zhao and Zhou, 2009胡国辉等,2010崔敏利等,2010; Cui et al., 2011, 2013柳晓艳,2011Xia et al., 2013Zhang et al., 2013Yang et al., 2014a, 2019b, cDeng et al., 2016aLi et al., 2016, 2020师江朋等,2017Xue et al., 2018邓小芹等,2019Jia et al., 2020Xu et al., 2020);2)1.75~1.67Ga华北克拉通北缘燕辽裂谷带内非造山侵入的斜长岩(anorthosite)、纹长二长岩(mangerite)、紫苏花岗岩(charnockite)、花岗岩(granite)等(AMCG组合)(Rämö et al., 1995赵太平等,2004杨进辉等,2005Zhang et al., 2007高维等,2008Zhao et al., 2009bJiang et al., 2011Liu et al., 2011, 2016Peng et al., 2012王惠初等,2012Chen et al., 2013b, 2019Wang et al., 2013a, 2018Yang et al., 2014b相振群,2014Teng and Santosh, 2015Li et al., 2019康健丽等,2020),同期莱芜地区亦有基性岩的报道(Li et al., 2015);3)1.63~1.62Ga燕辽裂谷富钾碱性岩、华北南缘龙王幢碱性花岗岩和鲁西泰山基性岩墙(陆松年等,2003胡俊良等,2007包志伟等,2009相振群等,2012Wang et al., 2013b, 2015a, 2020a相振群,2014邓小芹等,2015张健等,2015Deng et al., 2020);4)1.33~1.30Ga以侵入到下马岭组与雾迷山组的基性岩墙(床)(Zhang et al., 2009, 2012b, 2017a李怀坤等,2009Wang et al., 2014bZhu et al., 2020a)以及白云鄂博碳酸岩和冀北地区酸性岩体(Yang et al., 2011Shi et al., 2012相振群,2014Zhang et al., 2017b);5)~1.23Ga华北克拉通东缘的通化辉绿岩墙、建平-青龙基性岩墙(裴福萍等,2013Wang et al., 2015b, 2016c, 2020b)、滦南第四系覆盖的隐伏基性岩体以及沂水地区的辉长岩(Peng et al., 2013相振群,2014);6)0.9~0.75Ga胶辽-徐淮、冀东以及朝鲜等地的基性岩墙以及0.85~0.82Ga大红口组和渣尔泰群的岩浆活动(Liu et al., 2006彭润民等,2010阎国翰等,2010Peng et al., 2011Wang et al., 2011b, 2012Hu et al., 2014Ling et al., 2015Zhang et al., 2016Su et al., 2018彭澎等,2018Zhu et al., 2019胡国辉等,2019)。除大规模岩浆事件群之外,盆地内出现多期以凝灰岩和斑脱岩为特征的火山活动:1.64~1.56Ga串岭沟组、洛峪口组、龙家园组和高于庄组(李怀坤等,2010苏文博等,2012孙会一等,2013田辉等,2015李承东等,2017刘典波等,2019张恒等,2019),1.48~1.44Ga雾迷山组和铁岭组(Su et al., 2010李怀坤等,2014)以及1.39~1.32Ga下马岭组和白术沟组(Gao et al., 2008Su et al., 2008Zhu et al., 2020b)。

华北克拉通1.8~0.75Ga岩浆事件群主要是基性岩墙、A型花岗岩以及少量的碳酸岩脉,具有双峰式的岩浆特点。酸性端元绝大多数为A型花岗岩形成于高温低压条件下,是伸展环境的标志,时间集中分布于1.84~1.50Ga(曾令君等,2013Deng et al., 2016b),空间局限在裂谷盆地发育的范围。绝大多数的锆石Hf同位素富集,位于2.5Ga的地壳演化线附近(tDMC≈2.5Ga,图 5),岩浆主要来自克拉通基底陆壳岩石的部分熔融。基性端元以碱性-亚碱性拉斑质的镁铁质岩墙或岩席为主,是幔源岩浆活动的产物,大规模岩墙群或岩席群的出现与陆内裂谷或者超大陆裂解有关,暗示强烈的深部地球动力学过程。岛弧型钙碱性岩石仅出现在熊耳期(Wang et al., 2004, 2008He et al., 2008, 2009, 2010Zhao et al., 2009a),赵太平等(2007)将其地球化学特征解释为继承于受俯冲组分改造的陆下岩石圈富集地幔源区,但仍属于裂谷构造背景,并得到沉积学的支持。

图 5 华北克拉通中-新元古代岩浆事件锆石/斜锆石Hf同位素特征 黑色点和彩色点分别代表酸性和基性-中性岩石.基性-中性岩石锆石/斜锆石Hf同位素数据来自:韩宝福等,2007Zhao et al., 2009bWang et al., 2011b, 2012, 2013a, 2014a, 2015a, b2016abZhang et al., 2012b相振群,2014Yang et al., 2014a, b2019c张健等,2015Teng and Santosh, 2015Liu et al., 2016Chen et al., 2019Li et al., 2019, 2020Zhu et al., 2019, 2020a;本文.酸性岩石锆石Hf同位素数据来自:杨进辉等,2005陈斌等,2006Zhang et al., 2007, 2012b包志伟等,2009Zhao and Zhou, 2009Wang et al., 2010, 2013b, 2018, 2019Jiang et al., 2011Shi et al., 2012Cui et al., 2013曾令君等,2013相振群,2014Yang et al., 2014b, 2019c邓小芹等, 2015, 2019Deng et al., 2016a, b师江朋等,2017Xue et al., 2018Zhao et al., 2018Jia et al., 2020Li et al., 2020康健丽等,2020Xu et al., 2020 Fig. 5 Zircon/baddeleyite Hf isotope characteristics of magma events during Meso-Neoproterozoic from the North China Craton

中-新元古代华北克拉通处于持续裂解阶段,翟明国等(2014)形象地称其为“一拉到底的构造环境”,不同期次的基性岩浆活动被习惯性解释为地幔柱驱动。但是,这种成因上的联系是通过推测而建立,并无真正意义上的因果关系。实际上,华北克拉通中-新元古代的基性镁铁质岩石Mg#普遍偏低,Si饱和,矿物组成多以单斜辉石和斜长石为主,说明岩浆经历不同程度的分离结晶过程,并不能代表地幔部分熔融所产生的原始岩浆。而且,橄榄石以斑晶形式零星的出现,高镁苦橄岩存在的可能性不大,但它却是约束地幔柱的有效手段。所以,地幔柱模型是否是形成基性岩浆的必要条件或者地幔柱在超大陆裂解过程中所起的作用是亟需回答的问题。目前,地球科学领域关于大陆裂解的动力学机制的争论愈发激烈,代表的观点有:(1)核幔边界或者软流圈地幔起源的地幔柱(自下而上bottom-up,Anderson,1994Li and Zhong, 2009);(2)大洋板块深俯冲驱动的板块构造(自上而下top-down,Niu,2020);以及(3)地幔柱和深俯冲二者兼而有之(Zhang et al., 2019Chen et al., 2020李献华,2021)。公认的现代板块构造以及冷俯冲作用起始于新元古代(~0.8Ga,Stern,2005),但是,根据华北克拉通中部带高压变质(Zhao et al., 2002a)、深源包裹体(Xu et al., 2018)以及地球物理探测(Wan et al., 2020)可以明确:华北克拉通在古元古代晚期已经存在板块的持续深俯冲范式,并得到地球化学数据的支持(Liu et al., 2019)。因此,在解释华北克拉通中-新元古代“一拉到底”的驱动力时,除了考虑地幔柱模型,板块构造模型也不能排除。根据目前现有的资料,尚不能给出明确的选择。但是,综合华北克拉通基性岩锆石Hf同位素发现在~1.32Ga发生突变(图 5):早期的多数岩浆Hf同位素富集(εHf(t) < 0),晚期岩浆亏损(εHf(t)>0),暗示该时期出现岩浆源区和构造体制的重大转折。同样,熊耳、燕辽和渣尔泰-白云鄂博三大裂谷盆地的沉积作用在~1.32Ga骤然停止,直至~1.0Ga又重新启动(Liu et al., 2020Zhu et al., 2020b李怀坤等,2020),普遍存在下马岭组-长龙山组(燕辽裂谷)和白术沟组-三川组之间(熊耳裂谷)长达~300Myr的沉积间断,说明整个华北克拉通在~1.32Ga发生整体的抬升。因此,~1.32Ga岩浆很有可能成为检验大陆裂解驱动模型的窗口。华北克拉通在未经中生代岩石圈减薄和破坏之前,显生宙的地幔包体Lu-Hf和Re-Os模式年龄集中指向~1.3Ga(Li et al., 2011Zheng et al., 2014),说明中元古代的岩石圈受到强烈的交代改造,从而降低克拉通的稳定性。如果从行星地球的尺度观察,~1.3Ga地球内部液态铁冷却导致的内核生长引起古地磁场强度的显著增加(Biggin et al., 2015),Condie(2020)推测地核降温受到俯冲板块到达核幔边界并聚集的影响。地球内部物理(化学?)条件的改变势必引起表层地壳的耦合响应,能否形成超大陆裂解需要更深入的工作。

5 结论

本文分析长城纪碱性岩锆石U-Pb年代学和Hf-O同位素并总结华北克拉通中-新元古代岩浆事件锆石Hf同位素,获得以下三点认识:

(1) 出露于平谷-蓟县地区钾质火山岩的形成年龄分别为1613±11Ma、1634±18Ma(团山子组)和1605±19Ma、1630±10Ma(大红峪组),说明它们在~1625Ma集中喷发,持续时间较短,与侵入串岭沟组的钠质岩脉同期。

(2) 钾质火山岩和钠质岩脉的锆石Hf-O同位素相似:碱性岩源自富集地幔(εHf(t) =-2~+4,正态分布峰值+0.6),源区受到高δ18O沉积物质的交代(δ18O=4.5‰~7.7‰,多数高于地幔锆石值)而富含钾质矿物,如角闪石或金云母。

(3) 华北克拉通中-新元古代发育多期与裂解作用有关的岩浆事件,在~1.32Ga发生锆石Hf同位素突变,由富集转向亏损的特征,暗示强烈的交代作用,可能是检验地幔柱或者板块俯冲驱动超大陆裂解机制的窗口。

致谢      感谢任纪舜院士、陆松年研究员和刘敦一研究员对我们研究工作的长期支持。

谨以此文祝贺沈其韩院士百岁华诞,向沈先生始终如一的严谨治学态度以及在前寒武纪地质和变质地质学领域所取得的卓越贡献致敬!

参考文献
Anderson DL. 1994. Superplumes or supercontinents?. Geology, 22(1): 39-42 DOI:10.1130/0091-7613(1994)022<0039:SOS>2.3.CO;2
Ashwal LD. 2010. The temporality of anorthosites. The Canadian Mineralogist, 48(4): 711-728 DOI:10.3749/canmin.48.4.711
Bao ZW, Wang Q, Zi F, Tang GJ, Du FJ and Bai GD. 2009. Geochemistry of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of North China Craton: Petrogenesis and tectonic implications. Geochimica, 38(6): 509-522 (in Chinese with English abstract)
Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O'Reilly SY and Pearson NJ. 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119(3-4): 457-466 DOI:10.1016/j.lithos.2010.07.024
Biggin AJ, Piispa EJ, Pesonen LJ, Holme R, Paterson GA, Veikkolainen T and Tauxe L. 2015. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature, 526(7572): 245-248 DOI:10.1038/nature15523
Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS and Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1-2): 115-140 DOI:10.1016/j.chemgeo.2004.01.003
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Cai YH, Pei JL, Zhang SH, Tong YB, Yang ZY and Zhao Y. 2020. New paleomagnetic results from the ca. 1.68~1.63Ga mafic dyke swarms in Western Shandong Province, eastern China: Implications for the reconstruction of the Columbia supercontinent. Precambrian Research, 337: 105531 DOI:10.1016/j.precamres.2019.105531
Canfield DE, Zhang SC, Wang HJ, Wang XM, Zhao WZ, Su J, Bjerrum CJ, Haxen ER and Hammarlund EU. 2018. A Mesoproterozoic iron formation. Proceedings of the National Academy of Sciences of the United States of America, 115(17): E3895-E3904 DOI:10.1073/pnas.1720529115
Cawood PA and Hawkesworth CJ. 2014. Earth's middle age. Geology, 42(6): 503-506 DOI:10.1130/G35402.1
Chen B, Liu SW, Geng YS and Liu CQ. 2006. Zircon U-Pb ages, Hf isotopes and significance of the Late Archean-Paleoproterozoic granitoids from the Wutai-Luliang terrain, North China. Acta Petrologica Sinica, 22(2): 296-304 (in Chinese with English abstract)
Chen HL, Song XY, Zhai MG, Yu SY and Du ZS. 2019. Lower crustal contribution to the magma formation of the Damiao massif-type anorthosite, North China Craton: Evidence from zircon Hf-O isotopes. Precambrian Research, 332: 105396 DOI:10.1016/j.precamres.2019.105396
Chen L, Wang X, Liang XF, Wan B and Liu LJ. 2020. Subduction tectonics vs. Plume tectonics: Discussion on driving forces for plate motion. Science China (Earth Sciences), 63(3): 315-328
Chen LW, Huang BC, Yi ZY, Zhao J and Yan YG. 2013a. Paleomagnetism of ca. 1.35Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent. Precambrian Research, 228: 36-47 DOI:10.1016/j.precamres.2013.01.011
Chen WT, Zhou MF and Zhao TP. 2013b. Differentiation of nelsonitic magmas in the formation of the~1.74Ga Damiao Fe-Ti-P ore deposit, North China. Contributions to Mineralogy and Petrology, 165(6): 1341-1362 DOI:10.1007/s00410-013-0861-x
China Commission on Stratigraphy. 2002. Explanation of China Regional Stratigraphic Chart. Beijing: Geological Publishing House, 1-72 (in Chinese)
Chu XL, Zhang TG, Zhang QR and Lyons TW. 2007. Sulfur and carbon isotope records from 1700 to 800Ma carbonates of the Jixian Section, northern China: Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692 DOI:10.1016/j.gca.2007.07.017
Compston W, Williams IS and Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89(S2): B525-B534
Compston W, Williams IS, Krischvink JL, Zhang ZC and Guogan MA. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 149(2): 171-184 DOI:10.1144/gsjgs.149.2.0171
Condie KC. 2002. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41-43 DOI:10.1016/S1342-937X(05)70886-8
Condie KC. 2020. Revisiting the Mesoproterozoic. Gondwana Research DOI:10.1016/j.gr.2020.08.001
Cui ML, Zhang BL, Peng P, Zhang LC, Shen XL, Guo ZH and Huang XF. 2010. Zircon/baddeleyite U-Pb dating for the Paleo-proterozoic intermediate-acid intrusive rocks in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er Volcanic Province. Acta Petrologica Sinica, 26(5): 1541-1549 (in Chinese with English abstract)
Cui ML, Zhang BL and Zhang LC. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er Group. Gondwana Research, 20(1): 184-193 DOI:10.1016/j.gr.2011.01.010
Cui ML, Zhang LC, Zhang BL and Zhu MT. 2013. Geochemistry of 1.78Ga A-type granites along the southern margin of the North China Craton: Implications for Xiong'er magmatism during the break-up of the supercontinent Columbia. International Geology Review, 55(4): 496-509 DOI:10.1080/00206814.2012.736709
Deng XQ, Zhao TP, Peng TP, Gao XY and Bao ZW. 2015. Petrogenesis of 1600Ma Maping A-type granite in the southern margin of the North China Craton and its tectonic implications. Acta Petrologica Sinica, 31(6): 1621-1635 (in Chinese with English abstract)
Deng XQ, Peng TP and Zhao TP. 2016a. Geochronology and geochemistry of the Late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 285: 127-146 DOI:10.1016/j.precamres.2016.09.013
Deng XQ, Zhao TP and Peng TP. 2016b. Age and geochemistry of the Early Mesoproterozoic A-type granites in the southern margin of the North China Craton: Constraints on their petrogenesis and tectonic implications. Precambrian Research, 283: 68-88 DOI:10.1016/j.precamres.2016.07.018
Deng XQ, Peng TP, Zhao TP and Qiu ZL. 2019. Petrogenesis of the Late Paleoproterozoic (~1.84Ga) Yuantou A-type granite in the southern margin of the North China Craton and its tectonic implications. Acta Petrologica Sinica, 35(8): 2455-2469 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.08.09
Deng XQ, Peng TP, Zhou YY, Zhao TP and Qiu ZL. 2020. Origin of the Late Paleoproterozoic low-δ18O A-type granites on the southern margin of the North China Craton and their geodynamic mechanism. Precambrian Research, 351: 105960 DOI:10.1016/j.precamres.2020.105960
Ding TP, Gao JF, Tian SH, Fan CF, Zhao Y, Wan DF and Zhou JX. 2017. The δ30Si peak value discovered in Middle Proterozoic chert and its implication for environmental variations in the ancient ocean. Scientific Reports, 7: 44000 DOI:10.1038/srep44000
Ernst RE, Wingate MTD, Buchan KL and Li ZX. 2008. Global record of 1600~700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160(1-2): 159-178 DOI:10.1016/j.precamres.2007.04.019
Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ and Liu YM. 2008. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chinese Science Bulletin, 53(17): 2665-2671
Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F and Song B. 2008. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract)
Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China, 27(6): 793-798 (in Chinese with English abstract)
Gehrels G. 2014. Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42(1): 127-149 DOI:10.1146/annurev-earth-050212-124012
Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)
Geng YS, Yang CH, Song B and Wan YS. 2004. Post-orogenic granites with an age of 1800Ma in Luliang Area, North China Craton: Constraints from isotopic geochronology and geochemistry. Geological Journal of China Universities, 10(4): 477-487 (in Chinese with English abstract)
Geng YS, Kuang HW, Du LL and Liu YQ. 2020. The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation. Acta Petrologica Sinica, 36(8): 2276-2312 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.08.02
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Guo H, Du YS, Kah LC, Hu CY, Huang JH, Huang H, Yu WC and Song HY. 2015. Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian Group, North China: Implications for the marine sulfur cycle. Precambrian Research, 266: 319-336 DOI:10.1016/j.precamres.2015.05.032
Guo JH, O'Brien PJ and Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China Craton: Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741-756 DOI:10.1046/j.1525-1314.2002.00401.x
Han BF, Zhang L, Wang YM and Song B. 2007. Enriched mantle source for Paleoproterozoic high Mg and low Ti-P mafic dykes in central part of the North China Craton: Constraints from zircon Hf isotopic compositions. Acta Petrologica Sinica, 23(2): 277-284 (in Chinese with English abstract)
Hawkesworth CJ, Cawood PA, Dhuime B and Kemp TIS. 2017. Earth's continental lithosphere through time. Annual Review of Earth and Planetary Sciences, 45: 169-198 DOI:10.1146/annurev-earth-063016-020525
He YH, Zhao GC, Sun M and Wilde SA. 2008. Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: An alternative interpretation for the evolution of the southern margin of the North China Craton. Lithos, 102(1-2): 158-178 DOI:10.1016/j.lithos.2007.09.004
He YH, Zhao GC, Sun M and Xia XP. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168(3-4): 213-222 DOI:10.1016/j.precamres.2008.09.011
He YH, Zhao GC, Sun M and Han YG. 2010. Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr-Nd isotopic composition. Lithos, 114(1-2): 186-199 DOI:10.1016/j.lithos.2009.08.008
Hirschmann MM, Kogiso T, Baker MB and Stolper EM. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6): 481-484 DOI:10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2
Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915 DOI:10.1098/rstb.2006.1838
Hou GT, Santosh M, Qian XL, Lister GS and Li JH. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395-409 DOI:10.1016/j.gr.2008.01.010
Hu GH, Hu JL, Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1.78Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563-1576 (in Chinese with English abstract)
Hu GH, Zhang SH, Zhang QQ and Wang SY. 2019. New geochronological constraints on the Dahongkou Formation of the Luanchuan Group and its implications on the Neoproterozoic tectonic evolution of the southern margin of the North China Craton. Acta Petrologica Sinica, 35(8): 2503-2517 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.08.12
Hu JL, Zhao TP, Xu YH and Chen W. 2007. Geochemistry and petrogenesis of the high-K volcanic rocks in the Dahongyu Formation, North China Craton. Journal of Mineralogy and Petrology, 27(4): 70-77 (in Chinese with English abstract)
Hu JM, Gong WB, Wu SJ, Liu Y and Liu CC. 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications. Precambrian Research, 255: 756-770 DOI:10.1016/j.precamres.2014.08.013
Ickert RB, Hiess J, Williams IS, Holdeb P, Ireland TR, Lanc P, Schram N, Foster JJ and Clement SW. 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1-2): 114-128 DOI:10.1016/j.chemgeo.2008.08.024
Jia XL, Zhai MG, Xiao WJ, Li L, Ratheesh-Kumar RT, Wu JL and Liu Y. 2020. Mesoarchean to Paleoproterozoic crustal evolution of the Taihua Complex in the southern North China Craton. Precambrian Research, 337: 105451 DOI:10.1016/j.precamres.2019.105451
Jiang N, Guo JH and Zhai MG. 2011. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China Craton. Journal of Asian Earth Sciences, 42(1-2): 76-82 DOI:10.1016/j.jseaes.2011.04.010
Kang JL, Wang HC, Ren YW, Xiao ZB, Xiang ZQ and Zeng L. 2020. The Baiyunchanghe A-type granites in Guyang area, Inner Mongolia: Age, geochemistry, Hf isotope and response to the breakup of Columbia supercontinent. Acta Petrologica Sinica, 36(8): 2431-2446 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.08.10
Kröner A, Wilde SA, Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595 DOI:10.1016/j.jseaes.2004.01.001
Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397 DOI:10.1016/S1367-9120(03)00071-3
Li C, Peng PA, Sheng GY, Fu JM and Yan YZ. 2003. A molecular and isotopic geochemical study of Meso-to Neoproterozoic (1.73~0.85Ga) sediments from the Jixian Section, Yanshan Basin, North China. Precambrian Research, 125(3-4): 337-356 DOI:10.1016/S0301-9268(03)00111-6
Li C, Li L, Li SR and Santosh M. 2020. Late Paleoproterozoic mafic-intermediate dykes from the southern margin of the North China Craton: Implication for magma source and Columbia reconstruction. Precambrian Research, 347: 105837 DOI:10.1016/j.precamres.2020.105837
Li CD, Zhao LG, Chang QS, Xu YW, Wang SY and Xu T. 2017. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion. Geology in China, 44(3): 511-525 (in Chinese with English abstract)
Li HK, Li HM and Lu SN. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications. Geochimica, 24(1): 43-48 (in Chinese with English abstract)
Li HK, Lu SN, Li HM, Sun LX, Xiang ZQ, Geng JZ and Zhou HY. 2009. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geological Bulletin of China, 28(10): 1396-1404 (in Chinese with English abstract)
Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)
Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract)
Li HK, Lu SN, Su WB, Xiang ZQ, Zhou HY and Zhang YQ. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227 DOI:10.1016/j.jseaes.2013.02.020
Li HK, Su WB, Zhou HY, Xiang ZQ, Tian H, Yang LG, Huff WD and Ettensohn FR. 2014. The first precise age constraints on the Jixian System of the Meso-to Neoproterozoic Standard Section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section, North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012 (in Chinese with English abstract)
Li HK, Zhang J, Tian H, Zhou HY, Xiang ZQ and Li H. 2020. Recent advances in the study of the Meso-to Neo-proterozoic chronostratigraphy of the Yanliao Aulacogen on the northern margin of the North China Craton. Geological Survey and Research, 43(2): 127-136 (in Chinese with English abstract)
Li LL, Shi YR, Anderson JL and Cui ML. 2016. Sensitive high-resolution ion microprobe U-Pb dating of baddeleyite and zircon from a monzonite porphyry in the Xiaoshan area, western Henan Province, China: Constraints on baddeleyite and zircon formation process. Geosphere, 12(4): 1362-1377 DOI:10.1130/GES01328.1
Li LX, Li HM, Zi JW, Rasmussen B, Sheppard S, Ma YB, Meng J and Song Z. 2019. The link between an anorthosite complex and underlying olivine-Ti-magnetite-rich layered intrusion in Damiao, China: Insights into magma chamber processes in the formation of Proterozoic massif-type anorthosites. Contributions to Mineralogy and Petrology, 174: 48 DOI:10.1007/s00410-019-1586-2
Li QL, Wu FY, Li XH, Qiu ZL, Liu Y, Yang YH and Tang GQ. 2011. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos, 126(1-2): 127-134 DOI:10.1016/j.lithos.2011.07.001
Li Y, Peng P, Wang XP and Wang HZ. 2015. Nature of 1800~1600Ma mafic dyke swarms in the North China Craton: Implications for the rejuvenation of the sub-continental lithospheric mantle. Precambrian Research, 257: 114-123 DOI:10.1016/j.precamres.2014.12.002
Li XH. 2020. The major driving force triggering breakup of supercontinent: Mantle plumes or deep subduction?. Acta Geologica Sinica, 95(1): 20-31 (in Chinese with English abstract)
Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179-210 DOI:10.1016/j.precamres.2007.04.021
Li ZX and Zhong SJ. 2009. Supercontinent-superplume coupling, true polar wander and plume mobility: Plate dominance in whole-mantle tectonics. Physics of the Earth and Planetary Interiors, 176(3-4): 143-156 DOI:10.1016/j.pepi.2009.05.004
Ling XX, Schmädicke E, Li QL, Gose J, Wu RH, Wang SQ, Liu Y, Tang GQ and Li XH. 2015. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos, 220-223: 289-299 DOI:10.1016/j.lithos.2015.02.019
Liu CH, Zhao GC, Liu FL, Shi JR and Ji L. 2020. Detrital zircon records of Late Paleoproterozoic to Early Neoproterozoic northern North China Craton drainage reorganization: Implications for supercontinent cycles. GSA Bulletin, 132(9-10): 2135-2153 DOI:10.1130/B35506.1
Liu DB, Wang XL, Zhang H and Shi CL. 2019. Zircon SHRIMP U-Pb age of the Chuanlinggou Formation of the Changcheng Group, North China and the stratigraphic implications. Earth Science Frontiers, 26(3): 183-189 (in Chinese with English abstract)
Liu H, Sun WD, Zartman R and Tang M. 2019. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago. Nature Communications, 10: 3408 DOI:10.1038/s41467-019-11329-z
Liu JF, Li JY, Qu JF, Hu ZC, Feng QW and Guo CL. 2016. Late Paleoproterozoic tectonic setting of the northern margin of the North China Craton: Constraints from the geochronology and geochemistry of the mangerites in the Longhua and Jianping areas. Precambrian Research, 272: 57-77 DOI:10.1016/j.precamres.2015.10.022
Liu SW, Santosh M, Wang W, Bai X and Yang PT. 2011. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research, 20(1): 48-63 DOI:10.1016/j.gr.2011.01.003
Liu XY. 2011. Chronological, petrological and geochemical characteristics of the Paleo-Mesoproterozoic alkali-rich intrusive rocks along the southern part of the North China Craton. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
Liu YQ, Gao LZ, Liu YX, Song B and Wang ZX. 2006. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block. Chinese Science Bulletin, 51(19): 2375-2382 DOI:10.1007/s11434-006-2114-0
Liu YS, Gao S, Kelemen PB and Xu WL. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349-2376 DOI:10.1016/j.gca.2008.02.018
Lu SN and Li HM. 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation, Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22: 137-146 (in Chinese with English abstract)
Lu SN, Yang CL, Li HK and Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131 DOI:10.1016/S1342-937X(05)70896-0
Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY and Chen ZH. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762-768 (in Chinese with English abstract)
Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77-93 DOI:10.1016/j.precamres.2007.04.017
Ludwig KR. 2003. User's Manual for Isoplot/Ex, Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1-70
Luo GM, Junium CK, Kump LR, Huang JH, Li C, Feng QL, Shi XY, Bai X and Xie SC. 2014. Shallow stratification prevailed for ~1700 to ~1300Ma ocean: Evidence from organic carbon isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219-232 DOI:10.1016/j.epsl.2014.05.020
Ma K, Hu SY, Wang TS, Zhang BM, Qin SF, Shi SY, Wang K and Huang QY. 2017. Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 475: 176-187 DOI:10.1016/j.palaeo.2017.02.038
Meng QR, Wei HH, Qu YQ and Ma SX. 2011. Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China Craton at the Paleo-to Meso-Proterozoic transition. Gondwana Research, 20(1): 205-218 DOI:10.1016/j.gr.2010.12.010
Miao LY, Moczydłowska M, Zhu SX and Zhu MY. 2019. New record of organic-walled, morphologically distinct microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198 DOI:10.1016/j.precamres.2018.11.019
Nance RD, Worsley TR and Moody JB. 1988. The supercontinent cycle. Scientific American, 259(1): 72-79 DOI:10.1038/scientificamerican0788-72
Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265 DOI:10.1111/j.1751-908X.2008.00914.x
Niu YL. 2008. The origin of alkaline lavas. Science, 320(5878): 883-884 DOI:10.1126/science.1158378
Niu YL. 2020. On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. Journal of Asian Earth Sciences, 191: 104367
Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ and Taylor RN. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chemical Geology, 149(3-4): 211-233 DOI:10.1016/S0009-2541(98)00036-9
Patchett PJ, Kouvo O, Hedge CE and Tatsumoto M. 1982. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297 DOI:10.1007/BF00398923
Pei FP, Ye YF, Wang F, Cao HH, Lu SM and Yang DB. 2013. Discovery of Mesoproterozoic diabase dyke in Tonghua region, Jilin Province and its tectonic implications. Journal of Jilin University (Earth Science Edition), 43(1): 110-118 (in Chinese with English abstract)
Pei JL, Yang ZY and Zhao Y. 2006. A Mesoproterozoic paleomagnetic pole from the Yangzhuang Formation, North China and its tectonics implications. Precambrian Research, 151(1-2): 1-13 DOI:10.1016/j.precamres.2006.06.001
Peng P, Zhai MG, Guo JH, Kusky T and Zhao TP. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78Ga mafic dykes in the central North China craton. Gondwana Research, 12(1-2): 29-46 DOI:10.1016/j.gr.2006.10.022
Peng P, Zhai MG, Ernst RE, Guo JH, Liu F and Hu B. 2008. A 1.78Ga large igneous province in the North China Craton: The Xiong'er volcanic province and the North China dyke swarm. Lithos, 101(3-4): 260-280 DOI:10.1016/j.lithos.2007.07.006
Peng P, Bleeker W, Ernst RE, Söderlund U and McNicoll V. 2011. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China Craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221 DOI:10.1016/j.lithos.2011.08.018
Peng P, Liu F, Zhai MG and Guo JH. 2012. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110 DOI:10.1007/s11434-011-4771-x
Peng P, Wang XP, Lai Y, Wang C and Windley BF. 2015. Large-scale liquid immiscibility and fractional crystallization in the 1780Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong'er volcanic province. Lithos, 136-137: 106-122
Peng P, Wang XP, Zhou XT, Wang C, Sun FB, Su XD, Chen L, Guo JH and Zhai MG. 2018. Identification of the ~810Ma Qianlishan mafic dyke swarm and its implication for geological evolution of the western North China Craton. Acta Petrologica Sinica, 34(4): 1191-1203 (in Chinese with English abstract)
Peng RM, Zhai YS, Wang JP, Chen XF, Liu Q, Lü XY, Shi YX, Wang G, Li SB, Wang LG, Ma YT and Zhang P. 2010. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611-2620 (in Chinese) DOI:10.1360/972010-266
Peng TP, Wilde SA, Fan WM, Peng BX and Mao YS. 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 235: 190-207 DOI:10.1016/j.precamres.2013.06.013
Peng YB, Bao HM and Yuan XL. 2009. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Research, 168(3-4): 223-232 DOI:10.1016/j.precamres.2008.10.005
Pilet S, Hernandez J, Bussy F and Sylvester PJ. 2004. Short-term metasomatic control of Nb/Th ratios in the mantle sources of intraplate basalts. Geology, 32(2): 113-116 DOI:10.1130/G19953.1
Qu YG, Zhu SX, Whitehouse M, Engdahl A and McLoughlin N. 2018. Carbonaceous biosignatures of the earliest putative macroscopic multicellular eukaryotes from 1630Ma Tuanshanzi Formation, North China. Precambrian Research, 304: 99-109 DOI:10.1016/j.precamres.2017.11.004
Räöm OT, Haapala I, Vaasjoki M, Yu JH and Fu HQ. 1995. 1700Ma Shachang complex, Northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9): 815-818 DOI:10.1130/0091-7613(1995)023<0815:MSCNCP>2.3.CO;2
Roberts NMW. 2013. The boring billion? Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 4(6): 681-691 DOI:10.1016/j.gsf.2013.05.004
Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22 DOI:10.1016/S1342-937X(05)70883-2
Rogers JJW and Santosh M. 2003. Supercontinents in Earth history. Gondwana Research, 6(3): 357-368 DOI:10.1016/S1342-937X(05)70993-X
Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149-167 DOI:10.1016/j.precamres.2010.02.003
Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106 DOI:10.1016/j.precamres.2011.05.003
Scherer E, Münker C and Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687 DOI:10.1126/science.1061372
Shang MH, Tang DJ, Shi XY, Zhou LM, Zhou XQ, Song HY and Jiang GQ. 2019. A pulse of oxygen increase in the Early Mesoproterozoic ocean at ca. 1.57~1.56Ga. Earth and Planetary Science Letters, 527: 115797 DOI:10.1016/j.epsl.2019.115797
Shi JP, Yang DB, Huo TF, Yang HT, Xu WL and Wang F. 2017. The geochronology and Nd-Hf isotope compositions of A-type granites on the southern margin of North China Craton: Constraints on the Late Paleoproterozoic extensional events. Acta Petrologica Sinica, 33(10): 3042-3056 (in Chinese with English abstract)
Shi M, Feng QL, Khan MZ, Awramik S and Zhu SX. 2017a. Silicified microbiota from the Paleoproterozoic Dahongyu Formation, Tianjin, China. Journal of Paleontology, 91(3): 369-392 DOI:10.1017/jpa.2016.163
Shi M, Feng QL, Khan MZ and Zhu SX. 2017b. An eukaryote-bearing microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance. Precambrian Research, 303: 709-726 DOI:10.1016/j.precamres.2017.09.013
Shi YR, Liu DY, Kröner A, Jian P, Miao LC and Zhang FQ. 2012. Ca. 1318Ma A-type granite on the northern margin of the North China Craton: Implications for intraplate extension of the Columbia supercontinent. Lithos, 148: 1-9 DOI:10.1016/j.lithos.2012.05.023
Shields GA. 2007. A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth, 2(2): 35-42 DOI:10.5194/ee-2-35-2007
Stern RJ. 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7): 557-560 DOI:10.1130/G21365.1
Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B and Santosh M. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543-553 DOI:10.1016/j.gr.2008.04.007
Su WB, Li HK, Huff WD, Ettensohn FR, Zhang SH, Zhou HY and Wan YS. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323 DOI:10.1007/s11434-010-4007-5
Su WB, Li HK, Xu L, Jia SH, Geng JZ, Zhou HY, Wang ZH and Pu HY. 2012. Luoyu and Ruyang groups at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System: Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China. Geological Survey and Research, 35(2): 96-108 (in Chinese with English abstract)
Su XD, Peng P, Wang C, Sun FB, Zhang ZY and Zhou XT. 2018. Petrogenesis of a ~900Ma mafic sill from Xuzhou, North China: Implications for the genesis of Fe-Ti-rich rocks. Lithos, 318-319: 357-375 DOI:10.1016/j.lithos.2018.08.023
Sun HY, Gao LZ, Bao C, Chen YL and Liu DY. 2013. SHRIMP zircon U-Pb of Mesoproterozoic Chuanlinggou Formation from Kuancheng County in Hebei Province and its geological implications. Acta Geologica Sinica, 87(4): 591-596 (in Chinese with English abstract)
Tang DJ, Shi XY, Jiang GQ, Zhou XQ and Shi Q. 2017. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332 DOI:10.2138/am-2017-6136
Tang YJ, Zhang HF and Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3-4): 309-327 DOI:10.1016/j.chemgeo.2006.03.013
Teng XM and Santosh M. 2015. A long-lived magma chamber in the Paleoproterozoic North China Craton: Evidence from the Damiao gabbro-anorthosite suite. Precambrian Research, 256: 79-101 DOI:10.1016/j.precamres.2014.10.018
Tian H, Zhang J, Li HK, Su WB, Zhou HY, Yang LG, Xiang ZQ, Geng JZ, Liu H, Zhu SX and Xu ZQ. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 36(5): 647-658 (in Chinese with English abstract)
Valley JW, Chiarenzelli JR and McLelland JM. 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126(4): 187-206 DOI:10.1016/0012-821X(94)90106-6
Wan B, Yang XS, Tian XB, Yuan HY, Kirscher U and Mitchell RN. 2020. Seismological evidence for the earliest global subduction network at 2Ga ago. Science Advances, 6(32): abc5491 DOI:10.1126/sciadv.abc5491
Wan YS, Zhang QD and Song TR. 2003. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chinese Science Bulletin, 48(22): 2500-2506
Wan YS, Zhang YH, Williams IS, Liu DY, Dong CY, Fan RL, Shi YR and Ma MZ. 2013. Extreme zircon O isotopic compositions from 3.8 to 2.5Ga magmatic rocks from the Anshan area, North China Craton. Chemical Geology, 352: 108-124 DOI:10.1016/j.chemgeo.2013.06.009
Wang C, Peng P, Li ZX, Pisarevsky S, Denyszyn S, Liu YB, El Dien HG and Su XD. 2020b. The 1.24~1.21Ga Licheng large igneous province in the North China Craton: Implications for paleogeographic reconstruction. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019005
Wang C, Peng P, Wang XP and Yang SY. 2016c. Nature of three Proterozoic (1680Ma, 1230Ma and 775Ma) mafic dyke swarms in North China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 285: 109-206 DOI:10.1016/j.precamres.2016.09.015
Wang CM, Lu YJ, He XY, Wang QH and Zhang J. 2016a. The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: Insight into rift-related magmatism. Precambrian Research, 277: 26-46 DOI:10.1016/j.precamres.2016.02.009
Wang CM, He XY, Carranza EJM and Cui CM. 2019. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent. Geoscience Frontiers, 10(4): 1543-1560 DOI:10.1016/j.gsf.2018.10.007
Wang HC, Xiang ZQ, Zhao FQ, Li HM, Yuan GB and Chu H. 2012. The alkaline plutons in eastern part of Guyang County, Inner Mongolia: Geochronology, petrogenesis and tectonic implications. Acta Petrologica Sinica, 28(9): 2843-2854 (in Chinese with English abstract)
Wang L, Wang GH, Lei SB, Wang W, Qing M, Jia LQ, Chang CJ, Kang JK and Hou WR. 2016b. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Paleoproterozoic mafic dykes from the Wulashan area, North China Craton: Petrogenesis and geodynamic implications. Precambrian Research, 286: 306-324 DOI:10.1016/j.precamres.2016.09.009
Wang QH, Yang DB and Xu WL. 2012. Neoproterozoic basic magmatism in the southeast margin of North China Craton: Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China (Earth Sciences), 55(9): 1461-1479 DOI:10.1007/s11430-011-4237-7
Wang QH, Yang H, Yang DB and Xu WL. 2014b. Mid-Mesoproterozoic (~1.32Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 254: 114-128 DOI:10.1016/j.precamres.2014.08.005
Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH and Guo RR. 2013a. Geochemistry and zircon U-Pb-Hf isotopes of the Late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos, 162-163: 175-194 DOI:10.1016/j.lithos.2013.01.005
Wang W, Liu SW, Santosh M, Deng ZB, Guo BR, Zhao Y, Zhang SH, Yang PT, Bai X and Guo RR. 2015a. Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27(1): 300-325 DOI:10.1016/j.gr.2013.10.004
Wang W, Liu SW, Santosh M, Zhang LF, Bai X, Zhao Y, Zhang SH and Guo RR. 2015b. 1.23Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research, 27(4): 1407-1418 DOI:10.1016/j.gr.2014.02.002
Wang X, Zhu WB, Luo M, Ren XM and Cui X. 2014a. Approximately 1.78Ga mafic dykes in the Lüliang Complex, North China Craton: Zircon ages and Lu-Hf isotopes, geochemistry, and implications. Geochemistry, Geophysics, Geosystems, 15(8): 3123-3144 DOI:10.1002/2014GC005378
Wang XC, L ZX, Li XH, Li QL, Tang GQ, Zhang QR and Liu Y. 2011a. Nonglacial origin for low-δ18O Neoproterozoic magmas in the South China Block: Evidence from new in-situ oxygen isotope analyses using SIMS. Geology, 39(8): 735-738 DOI:10.1130/G31991.1
Wang XL, Jiang SY and Dai BZ. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204-216 DOI:10.1016/j.precamres.2010.08.007
Wang XL, Jiang SY, Dai BZ, Griffin WL, Dai MN and Yang YH. 2011b. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35-47 DOI:10.1016/j.precamres.2011.08.004
Wang XL, Jiang SY, Dai BZ and Kern J. 2013b. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal, 48(5): 498-515 DOI:10.1002/gj.2464
Wang XX, Wang T, Castro A, Ke CH, Yang Y and Hu NG. 2018. Magmatic evolution and source of a Proterozoic rapakivi granite complex in the North China Craton: New evidence from zircon U-Pb ages, mineral compositions, and geochemistry. Journal of Asian Earth Sciences, 167: 165-180 DOI:10.1016/j.jseaes.2017.10.019
Wang Y, Yang YZ, Siebel W, Zhang H, Zhang YS and Chen FK. 2020a. Geochemistry and tectonic significance of Late Paleoproterozoic A-type granites along the southern margin of the North China Craton. Scientific Reports, 10: 86 DOI:10.1038/s41598-019-56820-1
Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF and Peng TP. 2004. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research, 135(1-2): 55-77 DOI:10.1016/j.precamres.2004.07.005
Wang YJ, Zhao GC, Cawood PA, Fan WM, Peng TP and Sun LH. 2008. Geochemistry of Paleoproterozoic (~1770Ma) mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Sciences, 33(1-2): 61-77 DOI:10.1016/j.jseaes.2007.10.018
Wang ZJ, Huang ZG, Yao JX and Ma XL. 2014. Characteristics and main progress of the stratigraphic chart of China and directions. Acta Geoscientica Sinica, 35(3): 271-276 (in Chinese with English abstract)
Watts KE, Bindeman IN and Schmitt AK. 2011. Large-volume rhyolite genesis in Caldera complexes of the Snake River Plain: Insights from the Kilgore tuff of the Heise volcanic field, Idaho, with comparison to Yellowstone and Bruneau-Jarbidge rhyolites. Journal of Petrology, 52(5): 857-890 DOI:10.1093/petrology/egr005
Wilde SA, Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85-94 DOI:10.1016/S1342-937X(05)70892-3
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA and Shanks WC (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Xia LQ, Xia ZC, Xu XY, Li XM and Ma ZP. 2013. Late Paleoproterozoic rift-related magmatic rocks in the North China Craton: Geological records of rifting in the Columbia supercontinent. Earth-Science Reviews, 125: 69-86 DOI:10.1016/j.earscirev.2013.06.004
Xiang ZQ, Li HK, Lu SN, Zhou HY, Li HM, Wang HC, Chen ZH and Niu J. 2012. Emplacement age of the gabbro-diabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China: Baddeleyite U-Pb precise dating. Acta Petrologica Sinica, 28(9): 2831-2842 (in Chinese with English abstract)
Xiang ZQ. 2014. Mesoproterozoic magmatic events and mineralization in the North China Craton. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-227(in Chinese with English summary)
Xiao SH, Knoll AH, Kaufman AJ, Yin LM and Zhang Y. 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Research, 84(3-4): 197-220 DOI:10.1016/S0301-9268(97)00029-6
Xu C, Kynicky J, Song WL, Tao RB, Lü Z, Li YX, Yang YH, Pohanka M, Galiova MV, Zhang LF and Fei YW. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nature Communications, 9: 2790 DOI:10.1038/s41467-018-05140-5
Xu CH, Sun FY, Fan XZ, Li L, Liu JL and Yu L. 2020. Late Paleoproterozoic crustal evolution in the Daqingshan area: Evidences from adakitic and A-type granitoids in the Guyang Changshengqu goldfield, Khondalite Belt, North China Craton. Precambrian Research, 345: 105761 DOI:10.1016/j.precamres.2020.105761
Xu HR, Yang ZY, Peng P, Meert JG and Zhu RX. 2014. Paleo-position of the North China Craton within the supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research, 255: 276-293 DOI:10.1016/j.precamres.2014.10.004
Xu YH, Zhao TP, Peng P, Zhai MG, Qi L and Luo Y. 2007. Geochemical characteristics and geological significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Lüliang area, Shanxi Province. Acta Petrologica Sinica, 23(5): 1123-1132 (in Chinese with English abstract)
Xue S, Xu Y, Ling MX, Kang QQ, Jiang XY, Sun SJ, Wu K, Zhang ZK, Luo ZB, Liu YL and Sun WD. 2018. Geochemical constraints on genesis of Paleoproterozoic A-type granite in the south margin of North China Craton. Lithos, 304-307: 489-500 DOI:10.1016/j.lithos.2018.02.022
Yan GH, Cai JH, Ren KX, Liu CX, Liu XY, Mu BL, Yang B, Li FT, Huang BL and Ma F. 2010. Zircon SHRIMP U-Pb age and implications of alkaline trachyte of Dahongkou Formation of Luanchuan Group in the southern margin of North China Craton. In: Collected Papers of National Petrology and Geodynamic Conference in 2010. Beijing: Peking University, 289-290(in Chinese)
Yang CS, Zhao LD, Zheng H and Wang DQ. 2019b. The multiple granitic magmatism in the giant Huayangchuan uranium polymetallic ore district: Implications for tectonic evolution of the southern margin of North China Craton in the Qinling Orogen. Ore Geology Reviews, 112: 103055 DOI:10.1016/j.oregeorev.2019.103055
Yang H, Chen ZQ and Fang YH. 2017. Microbially induced sedimentary structures from the 1.64Ga Chuanlinggou Formation, Jixian, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 7-25 DOI:10.1016/j.palaeo.2016.04.038
Yang JH, Wu FY, Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica, 21(6): 1633-1644 (in Chinese with English abstract)
Yang KF, Fan HR, Santosh M, Hu FF and Wang KY. 2011. Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton: Implications for the final breakup of Columbia supercontinent. Tectonophysics, 498(1-4): 1-10 DOI:10.1016/j.tecto.2010.11.015
Yang QY, Santosh M and Dong GC. 2014a. Late Palaeoproterozoic post-collisional magmatism in the North China Craton: Geochemistry, zircon U-Pb geochronology, and Hf isotope of the pyroxenite-gabbro-diorite suite from Xinghe, Inner Mongolia. International Geology Review, 56(8): 959-984 DOI:10.1080/00206814.2014.908421
Yang QY, Santosh M, Rajesh HM and Tsunogae T. 2014b. Late Paleoproterozoic charnockite suite within post-collisional setting from the North China Craton: Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes. Lithos, 208-209: 34-52 DOI:10.1016/j.lithos.2014.08.020
Yang SY, Peng P, Qin ZY, Wang XP, Wang C, Zhang J and Zhao TP. 2019c. Genetic relationship between 1780Ma dykes and coeval volcanics in the Lvliang area, North China. Precambrian Research, 329: 232-246 DOI:10.1016/j.precamres.2017.10.004
Yang ZF, Li J, Jiang QB, Xu F, Guo SY, Li Y and Zhang J. 2019a. Using major element logratios to recognize compositional patterns of basalt: Implications for source lithological and compositional heterogeneities. Journal of Geophysical Research: Solid Earth, 124(4): 3458-3490 DOI:10.1029/2018JB016145
Zeng LJ, Bao ZW, Zhao TP, Yao JM and Zhou D. 2013. Geochronology and geochemistry of the Mesoproterozoic Panhe syenites in the southern margin of North China Craton and its tectonic implications. Acta Petrologica Sinica, 29(7): 2425-2436 (in Chinese with English abstract)
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China Craton: A review. Precambrian Research, 122(1-4): 183-199 DOI:10.1016/S0301-9268(02)00211-5
Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547-561 DOI:10.1016/j.jseaes.2004.01.018
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhai MG, Hu B, Zhao TP, Peng P and Meng QR. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics, 662: 153-166 DOI:10.1016/j.tecto.2015.01.019
Zhang CL, Ye XT, Ernst RE, Zhong Y, Zhang J, Li HK and Long XP. 2019. Revisiting the Precambrian evolution of the southwestern Tarim Terrane: Implications for its role in Precambrian supercontinents. Precambrian Research, 324: 18-31 DOI:10.1016/j.precamres.2019.01.018
Zhang H, Gao LZ, Zhou HR, Song B, Ding XZ, Zhang CH, Liu HG and Gong CQ. 2019. Chronology progress of the Guandaokou and Luoyu groups in the southern margin of North China Craton: Constraints on zircon U-Pb dating of tuff by means of the SHRIMP. Acta Petrologica Sinica, 35(8): 2470-2486 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.08.10
Zhang J, Zhang HF and Lu XX. 2013. Zircon U-Pb age and Lu-Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton. Precambrian Research, 226: 1-20 DOI:10.1016/j.precamres.2012.11.015
Zhang J, Tian H, Li HK, Su WB, Zhou HY, Xiang ZQ, Geng JZ and Yang LG. 2015. Age, geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-Liao aulacogen along the northern margin of the North China Craton: New evidence for the breakup of the Columbia Supercontinent. Acta Petrologica Sinica, 31(10): 3129-3146 (in Chinese with English abstract)
Zhang K, Zhu XK, Wood RA, Shi Y, Gao ZF and Poulton SW. 2018a. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geoscience, 11(5): 345-350 DOI:10.1038/s41561-018-0111-y
Zhang SC, Wang XM, Hammarlund EU, Wang HJ, Costa MM, Bjerrum CJ, Connelly JN, Zhang BM, Bian LZ and Canfield DE. 2015. Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of Sciences of the United States of America, 112(12): E1406-E1413 DOI:10.1073/pnas.1502239112
Zhang SH, Li ZX and Wu HC. 2006. New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia. Precambrian Research, 144(3-4): 213-238 DOI:10.1016/j.precamres.2005.11.007
Zhang SH, Liu SW, Zhao Y, Yang JH, Song B and Liu XM. 2007. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3-4): 287-312 DOI:10.1016/j.precamres.2007.02.008
Zhang SH, Zhao Y, Yang ZY, He ZF and Wu H. 2009. The 1.35Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600 DOI:10.1016/j.epsl.2009.10.023
Zhang SH, Li ZX, Evans DAD, Wu HC, Li HY and Dong J. 2012a. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354: 145-155 DOI:10.1016/j.epsl.2012.07.034
Zhang SH, Zhao Y and Santosh M. 2012b. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339-367 DOI:10.1016/j.precamres.2011.06.003
Zhang SH, Zhao Y, Ye H, Hu JM and Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490 (in Chinese with English abstract)
Zhang SH, Zhao Y, Ye H and Hu GH. 2016. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Research, 272: 203-225 DOI:10.1016/j.precamres.2015.11.005
Zhang SH, Zhao Y, Li XH, Ernst RE and Yang ZY. 2017a. The 1.33~1.30Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125 DOI:10.1016/j.epsl.2017.02.034
Zhang SH, Zhao Y and Liu YS. 2017b. A precise zircon Th-Pb age of carbonatite sills from the world's largest bayan obo deposit: Implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202-219 DOI:10.1016/j.precamres.2017.01.024
Zhang SH, Ernst RE, Pei JL, Zhao YZ, Zhou MF and Hu GH. 2018b. A temporal and causal link between ca. 1380Ma large igneous provinces and black shales: Implications for the Mesoproterozoic time scale and paleoenvironment.. Geology, 46(11): 963-966 DOI:10.1130/G45210.1
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73 DOI:10.1016/S0301-9268(00)00154-6
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002a. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162 DOI:10.1016/S0012-8252(02)00073-9
Zhao GC, Sun M, Wilde SA and Li SZ. 2004a. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123 DOI:10.1016/j.earscirev.2004.02.003
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao GC, He YH and Sun M. 2009a. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181 DOI:10.1016/j.gr.2009.02.004
Zhao GC, Li SZ, Sun M and Wilde SA. 2011. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: Record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356 DOI:10.1080/00206814.2010.527631
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76 DOI:10.1016/j.precamres.2012.09.016
Zhao HQ, Zhang SH, Ding JK, Chang LX, Ren Q, Li HY, Yang TS and Wu HC. 2020. New geochronologic and paleomagnetic results from Early Neoproterozoic mafic sills and Late Mesoproterozoic to Early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia. GSA Bulletin, 132(3-4): 739-766 DOI:10.1130/B35198.1
Zhao J, Zhang CL, Guo XJ and Liu XY. 2018. The Late-Paleoproterozoic I- and A-type granites in Lüliang Complex, North China Craton: New evidence on post-collisional extension of Trans-North China Orogen. Precambrian Research, 318: 70-88 DOI:10.1016/j.precamres.2018.09.007
Zhao TP, Zhou MF, Zhai MG and Xia B. 2002b. Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China Craton: Implications for the breakup of Columbia. International Geology Review, 44(4): 336-351 DOI:10.2747/0020-6814.44.4.336
Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX and Wan YS. 2004b. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502 DOI:10.1007/BF03183721
Zhao TP, Chen FK, Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685-690 (in Chinese with English abstract)
Zhao TP, Xu YH and Zhai MG. 2007. Petrogenesis and tectonic setting of the Paleoproterozoic Xiong'er Group in the southern part of the North China Craton: A review. Geological Journal of China Universities, 13(2): 191-206 (in Chinese with English abstract)
Zhao TP and Zhou MF. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36(2-3): 183-195 DOI:10.1016/j.jseaes.2009.05.005
Zhao TP, Chen W and Zhou MF. 2009b. Geochemical and Nd-Hf isotopic constraints on the origin of the ~1.74Ga Damiao anorthosite complex, North China Craton. Lithos, 113(3-4): 673-690 DOI:10.1016/j.lithos.2009.07.002
Zheng JP, Tang HY, Xiong Q, Griffin WL, O'Reilly SY, Pearson N, Zhao JH, Wu YB, Zhang JF and Liu YS. 2014. Linking continental deep subduction with destruction of a cratonic margin: Strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt. Contributions to Mineralogy and Petrology, 168: 1028 DOI:10.1007/s00410-014-1028-0
Zheng YF. 1999. Chemical Geodynamics. Beijing: Science Press, 62-118 (in Chinese)
Zhou HY, Li HK, Zhang J, Cui YR and Li HM. 2020. U-Pb dating of apatite from the granulite xenoliths in the Neoarchaean granitic gneiss: Constraints on the base age of the Mesoproterozoic Changchengian Group in the Yanliao Aulacogen, northern North China Craton. Geological Survey and Research, 43(2): 81-88 (in Chinese with English abstract)
Zhu RZ, Ni P, Wang GG, Ding JY, Fan MS and Ma YG. 2019. Geochronology, geochemistry and petrogenesis of the Laozhaishan dolerite sills in the southeastern margin of the North China Craton and their geological implication. Gondwana Research, 67: 131-146 DOI:10.1016/j.gr.2018.10.016
Zhu SX and Chen HN. 1995. Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, North China. Science, 270(5236): 620-622 DOI:10.1126/science.270.5236.620
Zhu SX, Zhu MY, Knoll AH, Yin ZJ, Zhao FC, Sun SF, Qu YG, Shi M and Liu H. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500 DOI:10.1038/ncomms11500
Zhu XY, Wang SY, Su WB, Zhao TP, Pang LY and Zhai MG. 2020b. Zircon U-Pb geochronology of tuffite beds in the Baishugou Formation: Constraints on the revision of Ectasian System at the southern margin of the North China Craton. Science China (Earth Sciences), 63: 1817-1830 DOI:10.1007/s11430-020-9657-0
Zhu YS, Yang JH, Sun JF and Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45(5): 407-410 DOI:10.1130/G38872.1
Zhu YS, Yang JH, Wang H and Wu FY. 2020a. Mesoproterozoic (~1.32Ga) modification of lithospheric mantle beneath the North China Craton caused by break-up of the Columbia supercontinent. Precambrian Research, 342: 105674 DOI:10.1016/j.precamres.2020.105674
包志伟, 王强, 资锋, 唐功建, 杜凤军, 白国典. 2009. 龙王䃥A型花岗岩地球化学特征及其地球动力学意义. 地球化学, 38(6): 509-522. DOI:10.3321/j.issn:0379-1726.2009.06.001
陈斌, 刘树文, 耿元生, 刘超群. 2006. 吕梁-五台地区晚太古宙-古元古代花岗质岩石锆石U-Pb年代学和Hf同位素性质及其地质意义. 岩石学报, 22(2): 296-304.
崔敏利, 张宝林, 彭澎, 张连昌, 沈晓丽, 郭志华, 黄雪飞. 2010. 豫西崤山早元古代中酸性侵入岩锆石/斜锆石U-Pb测年及其对熊耳火山岩系时限的约束. 岩石学报, 26(5): 1541-1549.
邓小芹, 赵太平, 彭头平, 高昕宇, 包志伟. 2015. 华北克拉通南缘1600Ma麻坪A型花岗岩的成因及其地质意义. 岩石学报, 31(6): 1621-1635.
邓小芹, 彭头平, 赵太平, 丘志力. 2019. 华北克拉通南缘古元古代末(~1.84Ga)垣头A-型花岗岩成因及其构造意义. 岩石学报, 35(8): 2455-2469.
高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 唐烽, 宋彪. 2008. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376. DOI:10.3321/j.issn:1006-3021.2008.03.010
高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报, 27(6): 793-798. DOI:10.3969/j.issn.1671-2552.2008.06.007
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. DOI:10.3969/j.issn.1671-2552.2011.10.004
耿元生, 杨崇辉, 宋彪, 万渝生. 2004. 吕梁地区18亿年的后造山花岗岩: 同位素年代和地球化学制约. 高校地质学报, 10(4): 477-487. DOI:10.3969/j.issn.1006-7493.2004.04.001
耿元生, 旷红伟, 杜利林, 柳永清. 2020. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义. 岩石学报, 36(8): 2276-2312.
韩宝福, 张磊, 王亚妹, 宋彪. 2007. 华北克拉通中部古元古代高Mg低Ti-P镁铁质岩墙的富晶集地幔源区——锆石Hf同位素的制约. 岩石学报, 23(2): 277-284.
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563-1576.
胡国辉, 张拴宏, 张琪琪, 王世炎. 2019. 华北克拉通南缘栾川群大红口组形成时代及其对新元古代构造演化的制约. 岩石学报, 35(8): 2503-2517.
胡俊良, 赵太平, 徐勇航, 陈伟. 2007. 华北克拉通大红峪组高钾火山岩的地球化学特征及其岩石成因. 矿物岩石, 27(4): 70-77. DOI:10.3969/j.issn.1001-6872.2007.04.012
康健丽, 王惠初, 任云伟, 肖志斌, 相振群, 曾乐. 2020. 内蒙古固阳地区白云常合山A型花岗岩: 年代学、地球化学、Hf同位素研究及其对Columbia超大陆裂解的响应. 岩石学报, 36(8): 2431-2446.
李承东, 赵利刚, 常青松, 许雅雯, 王世炎, 许腾. 2017. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论. 中国地质, 44(3): 511-525.
李怀坤, 李惠民, 陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学, 24(1): 43-48. DOI:10.3321/j.issn:0379-1726.1995.01.004
李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约. 地质通报, 28(10): 1396-1404. DOI:10.3969/j.issn.1671-2552.2009.10.005
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140.
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma——来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108-120.
李怀坤, 苏文博, 周红英, 相振群, 田辉, 杨立公, Huff WD, Ettensohn FR. 2014. 中-新元古界标准剖面蓟县系首获高精度年龄制约——蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012.
李怀坤, 张健, 田辉, 周红英, 相振群. 2020. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展. 地质调查与研究, 43(2): 127-136. DOI:10.3969/j.issn.1672-4135.2020.02.007
李献华. 2020. 超大陆裂解的主要驱动力——地幔柱或深俯冲?. 地质学报, 95(1): 20-31.
刘典波, 王小琳, 张恒, 石成龙. 2019. 华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义. 地学前缘, 26(3): 183-189.
柳晓艳. 2011. 华北克拉通南缘古-中元古代碱性岩岩石地球化学与年代学研究及其地质意义. 硕士学位论文. 北京: 中国地质科学院
陆松年, 李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22: 137-146.
陆松年, 李怀坤, 李惠民, 宋彪, 王世英, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王䃥碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762-768. DOI:10.3969/j.issn.1671-2552.2003.10.003
裴福萍, 叶轶凡, 王枫, 曹花花, 路思明, 杨德彬. 2013. 吉林通化地区中元古代辉绿岩墙的发现及其地质意义. 吉林大学学报(地球科学版), 43(1): 110-118.
彭澎, 王欣平, 周小童, 王冲, 孙风波, 苏向东, 陈亮, 郭敬辉, 翟明国. 2018. 8.1亿年千里山基性岩墙群的厘定及其对华北克拉通西部地质演化的启示. 岩石学报, 34(4): 1191-1203.
彭润民, 翟裕生, 王建平, 陈喜峰, 刘强, 吕学阳, 石永兴, 王刚, 李慎斌, 王立功, 马玉涛, 张鹏. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义. 科学通报, 55(26): 2611-2620.
全国地层委员会. 2002. 中国区域年代地层(地质年代)表说明书. 北京: 地质出版社, 1-72.
师江朋, 杨德彬, 霍腾飞, 杨浩田, 许文良, 王枫. 2017. 华北克拉通南缘A型花岗岩的年代学和Nd-Hf同位素组成: 对古元古代晚期伸展事件的制约. 岩石学报, 33(10): 3042-3056.
苏文博, 李怀坤, 徐莉, 贾松海, 耿建珍, 周红英, 王志宏, 蒲含勇. 2012. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束. 地质调查与研究, 35(2): 96-108. DOI:10.3969/j.issn.1672-4135.2012.02.003
孙会一, 高林志, 包创, 陈岳龙, 刘敦一. 2013. 河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义. 地质学报, 87(4): 591-596.
田辉, 张健, 李怀坤, 苏文博, 周红英, 杨立公, 相振群, 耿建珍, 刘欢, 朱士兴, 许振清. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658.
王惠初, 相振群, 赵凤清, 李惠民, 袁桂邦, 初航. 2012. 内蒙古固阳东部碱性侵入岩: 年代学、成因与地质意义. 岩石学报, 28(9): 2843-2854.
王泽九, 黄枝高, 姚建新, 马秀兰. 2014. 中国地层表及说明书的特点与主要进展. 地球学报, 35(3): 271-276.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
相振群, 李怀坤, 陆松年, 周红英, 李惠民, 王惠初, 陈志宏, 牛健. 2012. 泰山地区古元古代末期基性岩墙形成时代厘定——斜锆石U-Pb精确定年. 岩石学报, 28(9): 2831-2842.
相振群. 2014. 华北克拉通中元古代岩浆事件群与成矿作用. 博士学位论文.北京: 中国地质大学(北京), 1-227
徐勇航, 赵太平, 彭澎, 翟明国, 漆亮, 罗彦. 2007. 山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义. 岩石学报, 23(5): 1123-1132.
阎国翰, 蔡剑辉, 任康旭, 刘楚雄, 柳晓艳, 牟保磊, 杨斌, 李凤棠, 黄宝玲, 马芳. 2010. 华北克拉通南缘栾川群大洪口组碱性粗面岩锆石SHRIMP U-Pb年龄及其意义. 见: 2010年全国岩石学与地球动力学研讨会论文集.北京: 北京大学, 289-290
杨进辉, 吴福元, 柳小明, 谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义. 岩石学报, 21(6): 1633-1644.
曾令君, 包志伟, 赵太平, 姚军明, 周栋. 2013. 华北克拉通南缘潘河~1.5Ga正长岩的厘定及其构造意义. 岩石学报, 29(7): 2425-2436.
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
张恒, 高林志, 周洪瑞, 宋彪, 丁孝忠, 张传恒, 刘昊岗, 龚成强. 2019. 华北克拉通南缘官道口群和洛峪群的年代学研究新进展——来自凝灰岩SHRIMP锆石U-Pb年龄的新证据. 岩石学报, 35(8): 2470-2486.
张健, 田辉, 李怀坤, 苏文博, 周红英, 相振群, 耿建珍, 杨立功. 2015. 华北克拉通北缘Columbia超大陆裂解事件: 来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据. 岩石学报, 31(10): 3129-3146.
张拴宏, 赵越, 叶浩, 胡健民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490.
赵太平, 陈福坤, 翟明国, 夏斌. 2004. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义. 岩石学报, 20(3): 685-690.
赵太平, 徐勇航, 翟明国. 2007. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境: 事实与争议. 高校地质学报, 13(2): 191-206. DOI:10.3969/j.issn.1006-7493.2007.02.005
郑永飞. 1999. 化学地球动力学. 北京: 科学出版社, 62-118.
周红英, 李怀坤, 张健, 崔玉荣, 李惠民. 2020. 新太古代花岗片麻岩中麻粒岩包体磷灰石U-Pb定年对燕辽裂陷槽中元古代长城群底界年龄的制约. 地质调查与研究, 43(2): 81-88. DOI:10.3969/j.issn.1672-4135.2020.02.002