岩石学报  2021, Vol. 37 Issue (1): 185-210, doi: 10.18654/1000-0569/2021.01.12   PDF    
胶-辽-吉带构造属性与演化阶段新划分: 胶北变质辉长岩的启示
王惠初1,2, 康健丽1,2, 任云伟1,2, 肖志斌1,2, 相振群1,2, 王智3     
1. 中国地质调查局天津地质调查中心, 天津 300170;
2. 中国地质调查局前寒武纪地质研究中心, 天津 300170;
3. 中国地质调查局国际矿业研究中心, 北京 100037
摘要: 祥山和于埠变质辉长岩是胶北地块上古元古代变质镁铁质岩石的典型代表,辉长岩侵入古元古代荆山群野头组,产有"祥山式"岩浆熔离型铁矿,成矿的专属性指示辉长岩属于层状侵入体类型,形成于大陆伸展构造背景。在祥山变质辉长岩中获得了1851±9Ma的变质年龄,在于埠变质辉长岩中获得了2052±23Ma的锆石U-Pb成岩年龄和1834±5Ma的变质年龄。~2.05Ga的岩浆结晶锆石的εHft)值均为正值(+1.87~+3.64),一阶段Hf模式年龄(tDM)为2292~2381Ma(平均为2327Ma),指示于埠变质辉长岩源自古元古代中期的亏损地幔。于埠变质辉长岩的成岩年龄制约了荆山群野头组的沉积上限,荆山群中至少有一部分形成于2.2~2.05Ga之间,沉积于大陆裂谷-稳定大陆边缘的构造环境。祥山和于埠变质辉长岩中有少量斜长花岗岩与之伴生,这些斜长花岗岩具有类似于大洋斜长花岗岩的岩石特征,低K、Ti、Sr,高Na、Yb,形成于低压背景;从斜长花岗岩中获得了1848±8Ma和1873±5Ma的锆石U-Pb年龄,斜长花岗岩中的锆石Th/U比值较低(0.01~0.29),具有初始熔体中结晶锆石特征。结合斜长花岗岩的地球化学特征,推测它们是辉长岩部分熔融的产物,并指示~1.87Ga已由挤压构造体制转变为伸展构造体制。综合前人研究成果,胶北地块已识别出2.18~2.15Ga、~2.10Ga、~2.05Ga的三期双峰式岩浆岩构造组合,指示2.2~2.05Ga期间总体为伸展构造背景。因此建议胶-辽-吉活动带的形成演化过程划分为两个阶段,早期为大陆裂解-稳定陆缘演化阶段(2.2~2.0Ga),沉积了巨量的陆缘碎屑岩-碳酸盐岩建造;晚期为俯冲-碰撞造山阶段(2.0~1.85Ga),胶-辽-吉活动带褶皱造山。
关键词: 变质辉长岩    斜长花岗岩    古元古代    构造背景    胶北地块    华北克拉通    
Tectonic setting and new division of evolution stages of Jiao-Liao-Ji belt: Implications from metagabbros in Jiaobei terrane
WANG HuiChu1,2, KANG JianLi1,2, REN YunWei1,2, XIAO ZhiBin1,2, XIANG ZhenQun1,2, WANG Zhi3     
1. Tianjin Center, China Geological Survey, Tianjin 300170, China;
2. Precambrain Geological Research Centre, China Geological Survey, Tianjin 300170, China;
3. International Mining Research Center, China Geological Survey, Beijing 100037, China
Abstract: The Xiangshan and Yubu meta-gabbros are two typical representatives of the Paleoproterozoic metamorphic mafic rocks in the Jiaobei terrane. They intrude into the Yetou Formation of the Paleoproterozoic Jingshan Group and contain melted-separate type iron ore deposit ("Xiangshan type"). The specificity of mineralization indicates that the gabbros belong to the "layered intrusion type" formed in a continental extensional setting. Zircon U-Pb dating upon the collected samples yielded a magmatic age of 2052±23Ma and metamorphic ages of 1851±9Ma and 1834±5Ma for the gabbros, and metamorphic ages of 1848±8Ma and 1873±5Ma for small scale plagiogranites associated with the gabbros. The ~2.05Ga magmatic zircons in Yubu meta-gabbro have positive εHf(t) values ranging from +1.87 to +3.64 and one-stage tDM ages from 2292Ma to 2381Ma (averaged at 2327Ma), indicating that the Yubu meta-gabbro was derived from a depleted mantle source in the Middle Paleoproterozoic. The ~2.05Ga emplacement age of the Yubu meta-gabbro limits the youngest deposition time of the Yetou Formation of the Jingshan Group, and is consistent with the scenario that the Jingshan Group was deposited in continental rift or stable continental margin basin environmemt. The plagioclase granites are similar to oceanic plagioclase granites in their geochemical characteristics, with low K, Ti, Sr, and high Na and Yb, indicating that they were formed in low pressure conditions, probably as a result of partial melting of gabbro when tectonic regime changed from compression to extension at ~1.87Ga. Combined with previous work, three bimodal magmatic assemblages of 2.18~2.15Ga, ~2.10Ga, ~2.05Ga have been identified in the Jiaobei terrane, suggesting a continuous extensional process from 2.2Ga to 2.05Ga. Therefore, the formation and evolution process of the Jiao-Liao-Ji mobile belt can be divided into two stages: the early continental breakup and stable continental margin evolution stage (2.2~2.0Ga), during which a large amount of continental margin clastic rocks and carbonate rocks were deposited; and the late subduction-collision stage (2.0~1.85Ga), resulting in formation of the Jiao-Liao-Ji mobile belt orogeny.
Key words: Meta-gabbro    Plagiogranite    Paleoproterozoic    Tectonic Setting    Jiaobei teranne    North China    

镁铁质-超镁铁质岩既具有成矿作用的专属性,又具有产出构造背景的指向意义,长期为地学界所关注(吴利仁,1963; Naldrett and Cabri, 1976; Naldrett, 1981, 1999Naldrett and Gruenewaldt, 1989; 张旗, 1992, 2014董显扬等,1995张旗等,1997Dilek,2003汤中立,2004王玉往和王京彬,2006Dilek and Furnes, 2011; Hoernle et al. , 2020)。许多镁铁质-超镁铁质岩体中赋存有具重要经济价值的Cr、Fe、Ti、V、Ni、Cu和PGE等矿产资源。

吴利仁(1963)按镁铁比值(m/f)将基性-超基性岩划分为镁质超基性岩(m/f>6.5)、铁质超基性岩(m/f=2~6.5)、富铁质超基性岩(m/f=0.5~2)、铁质基性岩(m/f=0.5~2)和富铁质基性岩(m/f=0~0.5)。后进一步归纳为镁质、铁质和富铁质三类。富铁质基性-超基性岩体多出现于地台区, 或与碱性岩有成因联系,成矿作用往往与铜镍硫化物矿床或钒钛磁铁矿矿床相关,其中单一的富铁质基性岩体以偏碱性辉长岩-辉绿岩为代表。

Naldrett and Cabri (1976)依据镁铁质-超镁铁质岩体产出的构造背景、岩石组合及相关的矿产特征,提出了一个比较系统的分类方案,将镁铁质-超镁铁质岩体划分为产出在活动造山区和非造山稳定区两大类:造山区镁铁质-超镁铁质岩体包括;①与地槽火山岩同时侵位的橄榄岩和斜长岩,②阿尔卑斯型岩体,③阿拉斯加型杂岩体等三种亚型;非造山区镁铁质-超镁铁质岩体包括:①大型层状杂岩体,②与溢流玄武岩相关的岩席,③中小型侵入体,④碱性环状杂岩与金伯利岩等四种亚型。汤中立(2004)总结了中国镁铁、超镁铁岩浆矿床成矿系列,将该类矿床成矿地质背景归纳为两类, 即古大陆(克拉通)和造山带。其中,古大陆上的大部分重要岩浆矿床都发育于克拉通边缘, 与那里曾经发生过的裂谷作用或大规模溢流玄武岩有关, 少数重要矿床(如大庙式等)产于克拉通内部。

层状侵入体是地球上成矿作用最有利的镁铁质-超镁铁质岩体,通常含大型-超大型铁钛钒、铬、PGE及铜镍硫化物等矿床。如世界闻名的美国Stillwater岩体、南非Bushveld岩体、津巴布韦Great Dyke、格陵兰的Skaergaard岩体,以及加拿大的Muskox岩体等。我国的攀枝花、大庙、金川岩体等也属于这种类型。层状侵入体产于板内环境,是一类富铁质的镁铁-超镁铁岩,其规模差异甚大,大的如Bushveld等大火成岩省,小的如河北大庙、甘肃金川、新疆黄山、云南白马寨等,有的岩体长仅数十至数百米,以辉长岩或辉绿岩的形式产出(张旗,2014)。

华北克拉通上古元古代镁铁质侵入体发育,尤其是以胶-辽-吉带和孔兹岩带为代表的古元古代造山带中发育多期次的镁铁质侵入体,多以岩墙状或小侵入体的形式产出,遭受了麻粒岩相-角闪岩相的变质作用(Peng et al. , 2010董春艳等,2011; 刘平华等, 2011, 2013Guo et al. , 2012; Wan et al. , 2013; Peng, 2015; Wang et al. , 2016, 2017b; Xu et al. , 2018; 田京祥等,2018王智等,2020; 张家辉等,2020)。

胶北地块上古元古代变质镁铁质侵入体分布广泛,但规模均较小,形成时代多介于2.15~1.85Ga之间(董春艳等,2011; 刘平华等, 2011, 2013颉颃强等,2013田京祥等,2018)。一部分产于太古宙TTG片麻岩中,往往遭受了高压麻粒岩相变质作用;一部分则产在古元古代荆山群中,遭受了高角闪岩相-麻粒岩相变质作用;而粉子山群中则鲜有报道。烟台祥山变质辉长岩和平度于埠变质辉长岩是这些变质镁铁质侵入体的典型代表,以产有岩浆熔离型铁矿(于埠铁矿和祥山铁矿)而著称(曾广湘等,1998; 宋明春等,2015),通常称之为“祥山式”铁矿,并认为其性质可与四川攀枝花和河北大庙铁矿对比(曾广湘等,1998),属于层状侵入体类型,产于陆内伸展构造背景。这两个产有铁矿的辉长岩杂岩体均侵位于荆山群中,并卷入了古元古代晚期胶-辽-吉活动带的造山过程,遭受了强烈的变形变质作用改造。其形成时代、产出背景和改造过程不仅对荆山群的沉积时限和沉积环境有制约作用,也有助于进一步解剖胶-辽-吉古元古代造山带的结构和演化。

1 区域地质背景

胶-辽-吉活动带位于华北克拉通的东南缘,是华北克拉通变质基底的重要组成单元(Zhao, 2001; Zhai and Liu, 2003; Zhai et al. , 2005, 2010; Zhao et al. , 2005, 2012; Zhai and Santosh, 2011; Zhao and Zhai, 2013),胶-辽-吉带呈北北东向展布,从吉林南部,穿过辽东半岛,进入胶东半岛,延伸达1200km,宽度100~200km。胶-辽-吉带东北端延伸至朝鲜半岛,西南端则可能穿过郯庐断裂进入安徽省五河地区(Zhao et al. , 2012Liu et al. , 2019)。

胶东半岛在地质构造上由胶北地块和胶南造山带(苏鲁超高压变质带)组成。胶北地块是华北克拉通的重要组成部分,位于郯庐断裂和五莲-牟平断裂之间(图 1),是胶东地区早前寒武纪变质基底的简称。胶北地块主要由太古宙花岗质片麻岩和古元古代变质表壳岩组成,太古宙花岗质片麻岩中存在少量变质镁铁质-超镁铁质岩和变质表壳岩,局部产有BIF铁矿。古元古代地质体以中低级变质的粉子山群和高级变质的荆山群为主,伴有花岗岩类及变质基性岩产出。古元古代晚期变质基底形成后,断续沉积了中元古代芝罘群(王世进等,2011Liu et al. , 2013b)和新元古代蓬莱群(Li et al. , 2007初航等,2011),缺失古生代的沉积记录。在大别-苏鲁造山带造山过程中,芝罘群和蓬莱群因所处大地构造位置不同,分别遭受了绿片岩相-角闪岩相和低绿片岩相的变质作用。中生代华北克拉通破坏对胶北地块造成了重大影响,形成了世界闻名的胶东金矿田。

图 1 胶东地区地质简图 1-新生界;2-中生代地质体;3-新元古代蓬莱群;4-中元古代芝罘群;5-古元古代粉子山群;6-古元古代荆山群;7-太古宙地质体;8-中生代花岗岩类;9-新元古代花岗岩;10-古元古代花岗岩;11-早前寒武纪镁铁质岩;12-断层 Fig. 1 Sketch geological map of Jiaodong area 1-Cenozoic; 2-Mesozoic geological body; 3-Neoproterozoic Penglai Group; 4-Mesoproterozoic Zhifu Group; 5-Paleoproterozoic Fenzishan Group; 6-Paleoproterozoic Jingshan Group; 7-Archean complex; 8-Mesozoic granite; 9-Neoproterozoic granite; 10-Paleoproterozoic granite; 11-Early Precambrian mafic rock; 12-fault

最近几年,针对胶北地块内早前寒武纪地质体开展了大量的同位素年代学、岩石地球化学、Nd同位素及锆石Hf同位素特征的分析研究(Wan et al. , 2006, 2014, 2015, 2020; Tang et al. , 2007; Jahn et al. , 2008; Zhou et al. , 2008; Tam et al. , 2011; 刘建辉等, 2011, 2014, 2015; 刘平华等, 2011, 2013; Liu et al. , 2013a, 2014a, b; Wang et al. , 2014; Wu et al. , 2014a, b; 谢士稳等,2014; Shan et al. , 2015; 王惠初等;2015bJiang et al. , 2016; 肖志斌等;2017Zou et al. , 2019; Hoernle et al. , 2020; Lu et al. , 2020),厘定出胶北地块多期早前寒武纪构造-岩浆事件、晚太古代(~2.5Ga)及古元古代(~1.86Ga)的两期变质事件,以及太古宙地壳增生及再造过程,并可能存在古老(>3.55Ga)陆壳物质的再循环(刘建辉等, 2014; 肖志斌等, 2017)。

胶北地块上,太古宙花岗质片麻岩以TTG片麻岩为主,伴有少量钾质花岗岩,在栖霞附近呈穹窿状大面积出露(图 1),主要包括~2.9Ga、~2.7Ga及~2.5Ga三期岩浆事件,新太古代岩浆作用主要源自3.4~2.7Ga新生地壳的重熔或再造,并伴有少量古老地壳的加入(Wan et al. , 2006, 2014, 2015, 2020; Liu et al. , 2013a; Wang et al. , 2014; Wu et al. , 2014b; 谢士稳等, 2014; Shan et al. , 2015肖志斌等, 2017Lu et al. , 2020),经历了~1.86Ga和~2.5Ga两期变质热事件(Jahn et al. , 2008; Zhou et al. , 2008; 刘建辉等, 2011, 2015; Wan et al. , 2020)。这些片麻岩普遍遭受强烈剪切变形和深熔作用,常呈现条纹-条带状构造,内部柔流褶皱发育(刘建辉等,2011刘平华等, 2011, 2012)。在TTG片麻岩内部,存在少量斜长角闪岩、黑云母变粒岩、磁铁石英岩等变质表壳岩透镜体或残块,并有一些变质基性-超基性岩呈大小不等的透镜体或不规则脉状体产出。古元古代花岗岩类出露规模较小,呈零星分布,根据其侵位时间及变形作用,可划分为构造前花岗质片麻岩类及构造后末变形的花岗岩类,前者形成于2.18~2.0Ga之间,尤以2.15~2.1Ga为主(蓝廷广等,2012; Liu et al. , 2014bLan et al. , 2015王惠初等,2015b田瑞聪等,2017Cheng et al. , 2017),后者形成于~1.85Ga(Liu et al. , 2014bLi et al. , 2017),它们可与辽-吉地区的古元古代花岗岩类对比,源自板内陆壳物质的重熔(Liu et al. , 2014b)。

胶北地块上古元古代粉子山群和荆山群属于一套孔兹岩系(卢良兆等,1996),与太古宙花岗质片麻岩之间尚未观察到确切的不整合覆盖关系,均呈构造接触(王沛成,1995),其具有3.34~2.10Ga的碎屑锆石U-Pb年龄信息(Wan et al. , 2006谢士稳等,2014肖志斌等,2017);粉子山群遭受了绿片岩相-低角闪岩相变质作用,而荆山群则遭受了高角闪岩相-麻粒岩相变质作用,具有顺时针P-T演化路径(刘文军等, 1998; Zhou et al. , 2004; 刘平华等, 2010, 2015; 王舫等, 2010; Tam et al. , 2011, 2012a, b; Liu et al. , 2013c), 并伴随普遍的深熔作用(Liu et al. , 2014a)。变质锆石U-Pb年代学研究表明, 其变质作用的时间约为1.95~1.85Ga (Zhou et al. , 2008; Tam et al. , 2011, 2012a, b; Wan et al. , 2011刘福来等, 2012; Liu et al. , 2013c)。

祥山变质辉长岩(变质基性杂岩)出露于烟台莱山镇的东南部(图 2)。区内出露的主要地质体包括新太古代奥长花岗质片麻岩(~2.65Ga)、古元古代荆山群和燕山期二长花岗岩。荆山群自下而上分为禄格庄组、野头组和陡崖组(山东省地质矿产局,1991卢良兆等,1996)。禄格庄组以夕线黑云片岩、大理岩为主,夹斜长透辉石岩;野头组以大理岩、黑云片岩及透辉透闪岩、透辉变粒岩和透辉斜长角闪岩为主,夹角闪变粒岩、黑云片岩及透辉透闪岩等;陡崖组主要为黑云变粒岩、石墨透闪变粒岩、蓝晶石榴斜长片麻岩夹透辉石英岩、黑云片岩等;并含大理石、石墨等矿产。变质辉长岩侵入到古元古代荆山群野头组下部层位(祥山岩段)。区内野头组中存在较多基性侵入体,并有大量的燕山期花岗岩侵入。野外实地考察表明,燕山期岩体的侵入在围岩中出现了矽卡岩化,而基性侵入体因后期强烈的变形和变质作用,许多变成了斜长角闪岩、角闪斜长辉石岩、角闪辉石岩等具定向组构的岩石类型,与围岩产状协调,很难分辨哪些是变质地层(基性火山岩),哪些是变形变质的基性侵入体。野外调查初步断定野头组祥山岩段中的斜长辉石岩、斜长角闪岩、黑云斜长片麻岩大多数与基性侵入体相关,它们不属于地层而是变质基性杂岩的组成部分。这可能就是野头组祥山岩段区域对比差异较大的主要原因。该地曾经作为野头组(祥山岩段)的建组剖面,实际上并不理想。

图 2 烟台莱山地区地质图 1-第四系;2-下白垩统;3-荆山群陡崖组;4-荆山群野头组;5-荆山群禄格庄组;6-新太古代奥长花岗片麻岩;7-早白垩世二长花岗岩;8-晚侏罗世二长花岗岩;9-古元古代变质辉长岩及铁矿体;10-断层 Fig. 2 Geological map of Laishan area, Yantai, Shandong Province 1-Quaternary; 2-Lower Cretaceous; 3-Douya Formation of Jingshan Group; 4-Yetou Formation of Jingshan Group; 5-Lugezhuang Formation of Jingshan Group; 6-Neoarchean trondhjemitic gneiss; 7-Early Cretaceous monzogranite; 8-Late Jurassic monzogranite; 9-Paleoproterozoic metagabbro and iron ore body; 10-fault

于埠变质辉长岩出露于平度市新河镇东南部的于埠村东侧(图 3),区内出露岩石主要有新太古代小宋组含铁建造、古元古代荆山群和粉子山群、以及古元古代花岗岩,并有少量燕山期花岗岩产出。小宋组含铁建造原归属于粉子山群下部(于志臣,1996),现重新厘定为新太古代(王惠初等,2015b)。区内荆山群与粉子山群和新厘定的小宋组未见直接接触,荆山群仅出露野头组和陡崖组,陡崖组中产石墨矿。于埠变质辉长岩以宽大岩脉状产于野头组地层中,发育片麻理构造,整体与地层的片麻理产状一致,向北(北北东)方向低角度倾斜。铁矿体产于变质辉长岩(辉石角闪岩、斜长角闪岩)的底部层位。

图 3 平度新河-明村地区地质简图 1-新生界;2-古元古代粉子山群;3-荆山群陡崖组;4-荆山群野头组;5-古元古代花岗岩;6-新太古代小宋组;7-断层及推测断层;8-古元古代变质辉长岩及铁矿床;9-石墨矿层 Fig. 3 Sketch geological map of Xinhe-Mingcun area, Pingdu, Shandong Province 1-Cenozoic; 2-Paleoproterozoic Fenzishan Group; 3-Douya Formation of Jingshan Group; 4-Yetou Formation of Jingshan Group; 5-Paleoproterozoic granite; 6-Neoarchean Xiaosong Formation; 7-fault and inferred Fault; 8-Paleoproterozoic metagabbro and iron ore body; 9-graphite deposit
2 变质辉长岩的岩石组合及其地球化学特征 2.1 岩石特征

祥山岩体在地质图上依然保存了岩株状形态,其中的祥山铁矿2015年仍在开采,主要在西南侧进行硐采,北西侧的露天采坑目前已闭坑,残留的采坑深达百米(图 4a),其两侧揭露出良好的岩石露头(图 4b),基性杂岩体与围岩整体呈平行片麻理接触,见有脉状斜长角闪岩(变辉长岩)大致顺层产于围岩中,在岩体中也可见有大理岩残片,揭示原来的侵入接触关系。岩体边部片麻理较强,向中心过渡片麻理减弱。祥山铁矿含矿建造主要岩石类型有磁铁角闪辉石岩、辉石斜长角闪岩、角闪斜长辉石岩、斜长角闪岩、角闪黑云斜长片麻岩和含角闪斜长花岗岩等。斜长花岗岩所占比例较小,仅局部可见。斜长花岗岩与辉长岩之间呈渐变过渡或岩脉状贯入关系,野外露头上斜长花岗岩风化面呈灰红色,与变质辉长岩的色度反差并不大。祥山铁矿的矿体主要赋存在(透辉)斜长角闪岩中,呈似层状、透镜状产出。磁铁矿体产状与斜长角闪岩基本一致,底板为斜长角闪岩,顶板为含铁角闪岩,矿层中有含铁角闪岩夹层。

图 4 祥山和于埠变质辉长岩野外特征 (a)祥山铁矿采坑,采坑附近岩层产状向西南倾斜30°~35°;(b)祥山铁矿附近的变质辉长岩露头;(c)于埠铁矿采坑一壁,变质辉长岩呈似层状构造,下部黄褐色夹层为斜长花岗岩;(d)于埠铁矿附近的变质辉长岩,可见部分熔融的浅色体 Fig. 4 Field photos of the Xiangshan and Yubu meta-gabbros (a) Xiangshan iron mine pit, occurrence of rock strata: inclined 30°~35° to the southwest; (b) metamorphic gabbro in Xiangshan iron mine; (c) stratoid metagabbro in Yubu iron mine, the lower tawny layer is plagioclase granite; (d) metagabbro in Yubu iron mine with partial melting leucosome

于埠变质辉长岩  呈宽脉状产出,出露宽700~800m,长度大于2km,目前采坑已废弃。采坑北侧揭示出较好的露头剖面(图 4c),主体为似层状变质辉长岩,有少量角闪斜长花岗岩似层状与变质辉长岩协调产出;变质辉长岩中也可见部分熔融现象,浅色体呈不规则脉体弱定向分布(图 4d),变质辉长岩成分不均匀,采坑内可见角闪斜长辉石岩、辉石斜长角闪岩和斜长角闪岩等岩石类型。主要岩石特征如下:

角闪斜长辉石岩  岩石呈灰色,中粒-中粗粒似辉长结构,弱片麻状构造。岩石由斜长石(Pl)、角闪石(Hbl)、单斜辉石(Cpx)、少量钾长石和黑云母组成(图 5a)。斜长石呈半自形板状,粒间镶嵌状分布,含量40%~60%不等,粒度一般2.0~3.5mm,部分0.5~2.0mm;粒内可见波状消光、机械双晶等变形特征,An值在28左右。暗色矿物主要为单斜辉石(30%~40%)和角闪石(10%~20%),依变质改造程度单斜辉石和角闪石含量互为消长关系,单斜辉石和角闪石呈不规则柱、粒状,杂乱分布,粒度一般0.2~2.0mm,少部分2.0~3.5mm;角闪石阳起石化,部分交代单斜辉石;单斜辉石部分可见角闪石反应边,有时晶内嵌布斜长石。钾长石呈他形粒状,填隙状、零散状分布,粒度一般0.1~0.5mm;粒内可见格子双晶。黑云母呈鳞片状,零星状分布,量少。岩石中见少量半自形-他形金属矿物,不均匀分布,从手标本看主要为磁铁矿和黄铁矿,偶见黄铜矿;其中的金属硫化物矿物多沿裂隙分布,应是后期热液作用的结果。

图 5 变质辉长岩和斜长花岗岩镜下特征 (a)祥山变质辉长岩;(b)祥山斜长花岗岩;(c)于埠变质辉长岩;(d)于埠斜长花岗岩 Fig. 5 Microscope photographs of the meta-gabbro and plagiogranite (a) Xiangshan metagabbro; (b) Xiangshan plagiogranite; (c) Yubu metagabbro; (d) Yubu plagiogranite

辉石斜长角闪岩  岩石呈深灰色,弱片麻状构造,主要矿物成分为角闪石(Hbl)、单斜辉石(Cpx)、斜长石(Pl),副矿物为磁铁矿、锆石(图 5c),蚀变矿物为次闪石、绿帘石、方解石、绢云母等。角闪石:他形柱状,褐-绿色,闪石式解理,粒径1~5mm,含量约50%~60%。斜长石:他形粒状,粒径1~2mm,含量约25%~30%,发育聚片双晶,An=24~26,出现较强烈的绢云母化和绿帘石化。单斜辉石:他形柱状,粒径1~5mm,含量10%~15%,见辉石式解理,有不同程度的次闪石化和绿帘石化。副矿物:磁铁矿、锆石,少量。

角闪斜长花岗岩  岩石呈灰红色-褐灰色,块状构造,主要矿物成分为斜长石(Pl)、石英(Qtz)、角闪石(Hbl)及少量副矿物(图 5b, d)。斜长石:他形粒状,聚片双晶,An=25~28,粒径0.2~1mm,含量约60%~65%。石英:他形粒状,有定向拉长和波状消光,粒径0.1~1mm,含量~30%。角闪石:半自形粒状,粒径0.1~1mm,含量5%~8%。副矿物主要为磁铁矿,少量锆石、磷灰石等。

2.2 岩石地球化学特征

本次工作在祥山变质辉长岩中采集了6件样品,辉石斜长角闪岩、变质辉长岩(角闪斜长辉石岩)和斜长花岗岩各2件。在于埠变质辉长岩中采集样品4件,辉石斜长角闪岩和斜长花岗岩各2件。样品加工由廊坊市宇能岩石矿物分选技术服务有限公司承担,岩石化学分析在中国地质调查局天津地质调查中心实验室完成。主量元素采用X射线荧光光谱仪(XRF)测定,FeO采用氢氟酸、硫酸溶样、重铬酸钾滴定容量法,分析精度优于2%。稀土元素和微量元素采用电感耦合等离子体质谱仪(TJA-PQ-ExCell ICP-MS)测定,分析精度优于5%。

样品分析结果见表 1。化学分析结果与野外观察基本一致,辉石斜长角闪岩SiO2含量在43.50%~49.44%,相对富镁和钾,MgO和K2O分别为5.73%~10.59%和1.00%~1.58%;变质辉长岩(角闪斜长辉石岩)SiO2含量为~54%,相对富钠、低镁和钾,Na2O含量高为6.70%~7.10%,K2O含量0.37%~0.52%,MgO为2.26%~3.24%;TiO2含量也相对较高(1.70%~1.85%)。斜长花岗岩SiO2含量为69.66%~74.12%,富Na、贫K,Na2O含量为6.08%~7.14%,K2O为0.17%~0.49%,Al2O3含量为11.4%~12.24%,斜长花岗岩的化学成分与洋脊花岗岩相似,仅仅Al2O3含量偏低。在TAS分类图解上,变质辉长岩类样品属碱性系列岩石(图 6a),利用SiO2-AR(碱度率)投图,样品均落在碱性系列区(图 6b)。

表 1 变质辉长岩及相关斜长花岗岩样品的化学分析结果表(主量元素: wt%;稀土和微量元素: ×10-6) Table 1 Chemical analysis results of metagabbro and related plagiogranite samples (major elements: wt%; trace elements: ×10-6)

图 6 变质辉长岩和斜长花岗岩的TAS图解(a,据Wilson,1989)和SiO2-AR(碱度率)图解(b,据Wright,1969) Fig. 6 TAS (a, after Wilson, 1989) and SiO2 vs. AR (b, after Wright, 1989) diagrams of the meta-gabbros and plagiogranites

稀土元素分析显示,样品的稀土含量较高,均为轻稀土富集型图谱。稀土总量(∑REE)变质辉长岩为82.9×10-6~226.9×10-6,祥山辉长岩(117.9×10-6~226.9×10-6)总体较于埠辉长岩(82.9×10-6~92.6×10-6)稀土含量高。斜长花岗岩∑REE为171.1×10-6~428.6×10-6,稀土含量总体高于变质辉长岩。稀土分馏程度较强,变质辉长岩(La/Yb)N为3.1~11.81,祥山辉长岩轻重稀土分馏程度高于于埠辉长岩,分别为6.42~11.81和3.10~3.58。轻稀土分馏相对较强((La/Sm)N=1.99~5.27),重稀土分馏相对较弱((Gd/Yb)N=1.31~1.64);变质辉长岩铕异常不明显,δEu=0.73~1.0,显微弱Eu负异常或无异常(图 7a)。斜长花岗岩(La/Yb)N为2.95~9.33,分馏程度祥山略高于于埠,(La/Sm)N为2.05~3.53,(Gd/Yb)N为1.11~1.85,δEu为0.35~0.56,具明显的Eu负异常(图 7b)。稀土图谱未出现Eu正异常,表明基性岩浆未经过充分的分离结晶作用。

图 7 变质辉长岩和斜长花岗岩球粒陨石标准化稀土元素配分图(a、b, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(c、d, 标准化值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized REE pattern (a, b, normalization values after Boynton, 1984) and primitive-mantle normalized trace element spidergrams (c, d, normalization values after Sun and McDonough, 1989) of metagabbros and plagiogranites

变质辉长岩的微量元素含量变化较大,尤其是大离子亲石元素Rb、Ba、K、Sr、Pb。变质辉长岩和角闪斜长辉石岩多数样品出现Sr亏损,有一定程度的Ti亏损,预示辉长岩形成的源区残留相有斜长石。祥山变质辉长岩Pb明显正异常,说明遭受了地壳物质的混染;于埠辉长岩Pb含量低,受地壳物质混染轻微(图 7c)。

微量元素上斜长花岗岩出现Ba、Sr、P、Ti亏损,明显富集Th、U、Zr、Hf、Y、Yb,也表明源区残留相有斜长石,指示源区深度较浅。Pb有一定程度的富集,表明遭受了一定程度的地壳混染(图 7d)。按照张旗等(2008)的Sr-Yb分类,本区斜长花岗岩属于非常低Sr(26.6~60)高Yb(6.41~7.21)的洋脊型斜长花岗岩,形成于地壳减薄的低压背景,残留相为角闪岩或辉石岩,推测斜长花岗岩可能是在含水条件下由辉长岩部分熔融形成,区内的角闪辉石岩可能就是辉长岩部分熔融后的残留相(由斜长石+角闪石+辉石组成)。

3 同位素年代学及Hf同位素 3.1 锆石U-Pb测年

在祥山铁矿和于埠铁矿区各采集了1件变质辉长岩和1件斜长花岗岩同位素测年样品,样品号分别是12SD10、14SD3-1、17SD5-4和17SD5-1。样品的锆石分选由河北宇能公司完成。样品12SD10采用SHRIMP法测年,锆石制靶、阴极发光照相和年龄测试均在北京离子探针中心完成。测试方法与流程见文献(宋彪等,2002)。另外3个样品采用LA-ICPMS法测年,锆石制靶和阴极发光照相委托北京锆年领航科技有限公司完成。锆石U-Pb定年和Hf同位素分析测试分析均在天津地质调查中心同位素实验室完成。测试方法及流程参见文献(李怀坤等, 2010; 耿建珍等, 2011)。

从祥山变质辉长岩中分选出的锆石多呈浑圆状或椭球状,部分现尖角,粒径一般在100μm左右,最大可达150μm;阴极发光图像显示锆石大多数具有深色的残核和浅色的幔部结构,幔部呈较弱的环状分带;部分颗粒为具有扇形或冷杉状分带的变质锆石特征;少部分锆石具有浅色的生长棱角(图 8a)。

图 8 变质辉长岩和斜长花岗岩中锆石的阴极发光图像 (a)祥山变质辉长岩;(b)祥山斜长花岗岩;(c)于埠变质辉长岩中残余的岩浆结晶锆石;(d)于埠斜长花岗岩 Fig. 8 The CL images of zircons from the metagabbro and plagiogranite (a) Xiangshan metagabbro; (b) Xiangshan plagiogranite; (c) residual magmatic zircon in Yubu metamorphic gabbro; (d) Yubu plagiogranite

于埠变质辉长岩中的锆石以椭球状为主,部分形态不规则,粒径一般在70~100μm。阴极发光图像显示,多数锆石不同程度地保留有岩浆结晶锆石和捕获锆石的残核(图 8c),变质边宽窄不一,部分锆石呈现出高级变质作用形成锆石的冷杉状斑纹。

祥山斜长花岗岩中分选出的锆石较多,多数呈浑圆状,部分呈不规则状,粒径也在100μm左右。阴极发光图像上几乎均具有深色的核部和浅色的外环,总体上从核部到边部颜色变浅,环带模糊稀疏(图 8b);形态和阴极发光图像与典型的变质锆石有差异,推测是部分熔融作用期间形成的锆石,与深熔作用初期形成的深熔锆石相似。

于埠斜长花岗岩中的锆石特征与祥山斜长花岗岩中的锆石类似(图 8d)。多为浑圆状晶形,阴极发光图形显示颜色内深外浅,色深的核部似乎具变质锆石特征,色浅的幔部具有不清晰的震荡环带,具有深熔作用初期深熔锆石特点。

祥山变质辉长岩样品(12SD10)的锆石采用SHRIMP法测年,测年结果见表 2。共测试了27个数据点,其中两颗锆石对其核部和边部分别进行了测试。测试结果显示,锆石的Th/U比值相差甚大,变化范围在0.09~1.48之间(表 2图 9),并无变质锆石通常Th/U比值均较低的特点;但获得的207Pb/206Pb年龄值基本一致,变化范围在1784~1904Ma之间,大部分集中在1810~1860Ma。数据点谐和程度较高,均落在一致曲线上或其附近,显示没有发生明显的铅丢失(图 10a)。207Pb/206Pb年龄的加权平均值为1851±9Ma,应代表辉长岩发生变质作用的时代。两颗锆石的核部与增生边的测试数据在误差范围内一致,显示变质作用强烈,锆石变质改造较彻底。

表 2 祥山铁矿变质辉长岩(样品12SD10)中锆石的SHRIMP U-Pb测年结果 Table 2 SHRIMP U-Pb dating results of zircons from metagabbro (Sample 12SD10) in Xiangshan deposit

图 9 变质辉长岩和斜长花岗岩样品锆石的Th/U-207Pb/206Pb年龄图 Fig. 9 Th/U vs. 207Pb/206Pb age diagram of zircons from metagabbro and plagiogranite samples

图 10 变质辉长岩和斜长花岗岩锆石U-Pb年龄谐和图 (a)祥山变质辉长岩(SHRIMP);(b)祥山斜长花岗岩(LA-ICP-MS);(c)于埠变质辉长岩(LA-ICP-MS);(d)于埠斜长花岗岩(LA-ICP-MS) Fig. 10 Zircon U-Pb concordia diagrams of the meta-gabbro and plagiogranite samples (a) Xiangshan metagabbro(SHRIMP); (b) Xiangshan plagiogranite (LA-ICP-MS); (c) Yubu metagabbro (LA-ICP-MS); (d) Yubu plagiogranite (LA-ICP-MS)

祥山斜长花岗岩样品(14SD03-1)的锆石采用LA-ICP-MS法测年,测试结果列于表 3。该样品共测试了30个测点,年龄数据近于一致,均落在谐和线上(图 10c),大致构成的不一致线上交点年龄为1848±10Ma,207Pb/206Pb加权平均年龄为1848±8Ma(图 10c)。锆石的Th/U比值极小,除1个测点为0.228外,其它均小于0.1(0.018~0.074)(图 9),显示出深熔重结晶锆石的特点(Corfu et al. , 2003; Wan et al. , 2009; Dong et al. , 2014; 马铭株等,2015),具有“深熔作用初期形成的深熔锆石环带模糊稀疏,随着深熔作用加强,深熔锆石岩浆环带逐渐发育;深熔作用初期阶段形成的深熔锆石Th/U比值很低(< 0.1),随着深熔作用加强,深熔锆石Th/U比值增大,但通常小于0.3”的特点(万渝生,“锆石成因研究及地质应用”讲义,2016)。

表 3 祥山铁矿斜长花岗岩(样品14SD03-1)锆石的LA-ICP-MS U-Pb测年数据表 Table 3 LA-ICP-MS U-Pb dating data of zircons from the plagiogranite (Sample 14SD03-1) in Xiangshan deposit

祥山铁矿的变质辉长岩和斜长花岗岩样品的锆石U-Pb年龄近于一致,均在~1850Ma,代表含铁建造遭受变质作用改造的时代,其中斜长花岗岩的年龄也代表辉长岩部分熔融作用的时代。

对于埠辉长岩样品(17SD05-4)的锆石共测试了24个数据点(表 4)。年龄数据除7号点外,其它数据点均位于谐和曲线上或其附近(图 10b),给出了4组年龄值,分别是2571±24Ma(2个点)、2390±26Ma(2个点)、2052±23Ma(5个点)和1834±5Ma(13个点)。前三个年龄值均出自锆石残核,其中~2.05Ga的残核部分具有辉长岩结晶锆石特征,阴极发光图像呈现长条状晶型和板状晶纹(图 10c),Th/U比值为0.37~0.61,可以代表辉长岩的结晶年龄。而~1.83Ga的一组数据与祥山变质辉长岩的数据相似,Th/U比值变化大(Th/U=0.022~0.707)(图 9),但年龄数据非常一致,锆石的Th/U比值可能继承了岩浆结晶锆石或捕获锆石的一些特征。

表 4 于埠铁矿变质辉长岩和斜长花岗岩样品中锆石的LA-ICP-MS U-Pb测年数据 Table 4 LA-ICP-MS U-Pb dating results of zircons from the meta-gabbro and plagiogranite samples in Yubu deposit

于埠斜长花岗岩样品(17SD05-1)的锆石共测试了25个数据点(表 4),所有25个数据点均位于谐和线上,且数据集中,给出了1873±5Ma的谐和年龄(图 10d)。其中16.1和16.2两个数据点为同一颗锆石的残核和幔部,给出了几乎一致的年龄信息,表明深熔作用对先存锆石的改造较彻底。锆石的Th/U比值为0.08~0.29(图 9),多数>0.1,与典型变质锆石的Th/U比值有所不同,而具有深熔锆石特点。

3.2 锆石Hf同位素特征

对祥山变质辉长岩(12SD10)和斜长花岗岩(14SD03-1)以及于埠变质辉长岩(17SD5-4)样品进行了锆石原位Hf同位素测试。其中祥山变质辉长岩(12SD10)共测试了14个数据点,祥山斜长花岗岩(14SD03-1)测试了12个数据点;于埠变质辉长岩(17SD5-4)测试了21个数据点,其中9个数据为残余锆石测点,12个数据为变质锆石测点(表 5图 11)。

表 5 锆石Hf同位素测试结果表 Table 5 Results of measured Hf isotope compositions of zircons from the meta-gabbro and plagiogranite samples

图 11 锆石的εHf(t)-207Pb/206Pb年龄图 (a)祥山变质辉长岩和斜长花岗岩;(b)于埠变质辉长岩 Fig. 11 εHf(t) vs. 207Pb/206Pb age diagrams of zircon (a) Xiangshan meta-gabbro and plagiogranite; (b) Yubu meta-gabbro

从测试数据可以看出(表 5),锆石的176Lu/177Hf有非常低的比值,由Lu衰变形成的176Hf很少,因此锆石在形成后基本没有明显的放射性成因的积累,所测定样品中的176Hf/177Hf基本可以代表其形成时体系的Hf同位素组成。对于地幔来源的镁铁质岩石而言,如果εHf(t)值多为正值,且Hf模式年龄(tDM)与其形成年龄相近,则表明该镁铁质岩石来源于亏损地幔;如果Hf模式年龄大于其形成年龄,则表明其岩浆源区受到过地壳物质的混染或来自于富集型地幔(吴福元等,2007)。

根据测试结果,祥山变质辉长岩样品(12SD10)中锆石的εHf(t)值均为负值(-2.39~-0.27)(图 11a);一阶段Hf模式年龄(tDM)为2229~2318Ma(平均为2288Ma);二阶段Hf模式年龄(tDM(Hf)c)为2404~2621Ma,平均为2568Ma。如果变质锆石源自辉长岩的结晶锆石,则指示辉长岩形成于古元古代中期,并遭受了一定程度的地壳混染;如果变质锆石源自捕获锆石,则指示这些锆石来自新太古代晚期的新生地壳。斜长花岗岩样品(14SD03-1)中锆石的εHf(t)值除1个数据为正值(+3.39)外,其余均为负值(-4.33~-0.04)(图 11a);一阶段Hf模式年龄(tDM)为2140~2450Ma(平均为2350Ma),指示一定程度上继承了变质辉长岩的Hf同位素特点;二阶段模式年龄为2297~2780Ma,平均为2635Ma,也指向新太古代晚期新生地壳。

于埠变质辉长岩(17SD5-4)中变质锆石的εHf(t)值为-1.59~+3.15,平均为+0.35,一阶段Hf模式年龄(tDM)为2117~2303Ma(平均为2224Ma),二阶段Hf模式年龄(tDM2)为2293~2587Ma(平均为2466Ma),同样指示辉长岩可能形成于古元古代中期。~2.05Ga的岩浆结晶锆石的εHf(t)值均为正值(+1.87~+3.64)(图 11b),一阶段Hf模式年龄(tDM)为2292~2381Ma(平均为2327Ma),指示于埠变质辉长岩源自古元古代中期的亏损地幔;其它年龄较老的锆石εHf(t)值均为正值,二阶段模式年龄指示新太古代中期的新生地壳。

4 讨论 4.1 变质辉长岩的形成构造背景

辉长岩与玄武岩一样可以形成于陆内伸展、大陆裂谷、大洋洋脊、岛弧或弧后盆地等不同的构造背景,许多镁铁质岩石利用岩石地球化学数据进行构造环境判别往往会出现一些相互矛盾的信息。

本文研究的变质辉长岩样品,存在于古元古代造山带中。利用微量元素图解进行构造环境判别,在Zr/Y-Zr图解上(Pearce and Norry, 1979),样品基本落入板内玄武岩区(图 12a)。在Nb×2-Zr/4-Y图解上(Meschede, 1986),变质辉长岩样品主要投在板内拉斑玄武岩区(C区)及附近(图 12b)。在Th/Hf-Ta/Hf图解上(汪云亮等,2001),样品主要落在陆内裂谷或大陆边缘裂谷背景区(图 13a)。在La/Zr-Nb/Zr图解上(李永军等,2015),总体属于板内伸展构造背景(图 13b)。但是在Ti×100-Zr-Y×3(Pearce and Cann, 1973)和Th-Hf/3-Ta(Wood,1980)等图解上均落入了与钙碱性玄武岩相关区域(图略),在Ti-Zr图解(Pearce and Cann, 1973)上则一部分落在板内玄武岩区,一部分落在岛弧玄武岩区;微量元素蛛网图上也显示出一定程度的Nb、Ta负异常(图 7c),指示可能与岛弧构造背景相关。这些微量元素构造环境判别图解给出了相互矛盾的构造背景信息,其原因可能主要是受地壳物质混染、高级变质作用和深熔作用的影响。在此情况下,成矿作用专属性可以成为寄主岩石构造环境判别的重要标志,祥山变质辉长岩和于埠变质辉长岩中均产有岩浆熔离型磁铁矿矿床,成矿作用的专属性决定了这2个变质辉长岩体属于层状侵入体类型,形成于大陆拉张构造背景。

图 12 变质辉长岩的Zr/Y-Zr图解(a,据Pearce and Norry, 1979)和Nb-Zr-Y图解(b,据Meschede, 1986) A1-板内碱性玄武岩;A2-板内碱性玄武岩和板内拉斑玄武岩;B-富集型洋脊玄武岩;C-板内拉斑玄武岩;D-正常洋脊玄武岩和火山弧玄武岩 Fig. 12 Zr/Y vs. Zr diagram (a, after Pearce and Norry, 1979) and Nb-Zr-Y diagram (b, after Meschede, 1986) for the meta-gabbros A1-within-plate alkali basalt; A2-within-plate alkali basalt and within-plate tholeiites; B-E-type MORB; C-within-plate tholeiites and volcanic-arc basalt; D-N-type MORB and volcanic-arc basalt

图 13 变质辉长岩的Th/Hf-Ta/Hf图解(a, 据汪云亮等,2001)和La/Zr-Nb/Zr图解(b, 据李永军等,2015) Fig. 13 Th/Hf vs. Ta/Hf diagram (a, after Wang et al., 2001) and La/Zr vs. Nb/Zr diagram (b, after Li et al., 2015) of meta-gabbros
4.2 变质辉长岩中斜长花岗岩的成因探讨

斜长花岗岩以强烈的富钠贫钾(Na2O/K2O>10)为特征。许多斜长花岗岩与蛇绿岩共生,张旗等(2008)根据岩石中Sr-Yb关系,将斜长花岗岩划分为高Sr低Yb的西湾型、低Sr低Yb的月牙山型、低Sr高Yb的安达曼型和非常低Sr高Yb的洋脊型。祥山变质辉长岩和于埠变质辉长岩体中的斜长花岗岩与大洋斜长花岗岩的主要氧化物特征相似,高钠(Na2O=6.08%~7.14%)低钾(K2O=0.17%~0.49%),Na2O/K2O=13~42,非常低Sr(26.6×10-6~60.0×10-6)和高Yb(6.41×10-6~7.21×10-6)。

斜长花岗岩的成因前人做过许多研究工作,尤其是蛇绿岩中斜长花岗岩,Coleman and Peterman (1975)Coleman and Donato (1979)对其进行了系统总结, 认为它们主要是大洋玄武质岩浆结晶分异的产物。目前对斜长花岗岩的成因仍有不同认识,主要有如下几种观点:(1)初始MORB熔体晚期分异形成;(2)辉长岩部分熔融形成;(3)拉斑玄武质熔体不混溶形成;(4)早先蚀变的基性岩墙经部分熔融同化混染作用形成(张旗等,2008)。实验研究表明,因富水流体的触发而使深部洋壳发生部分熔融是斜长花岗岩最可能的形成机制(Koepke, 2004, 2007)。多数斜长花岗岩可能是含水条件下辉长岩部分熔融形成的(Pedersen and Malpas, 1984; Flagler and Spray, 1991; 张旗和周国庆,2001Koepke, 2004, 2007)。

Koepke et al. (2007)的研究表明,TiO2是区分基性岩石中产生富SiO2熔体不同过程的关键因素:低Ti是部分熔融的标志,TiO2在辉长岩深熔作用产生的熔体中具有相对较低的含量,这主要是受原岩中TiO2含量低的制约,洋壳中的典型堆晶辉长岩具有Ti亏损特征。而由MORB分离结晶或液态不混溶产生的熔体中TiO2相对较高。许多大洋斜长花岗岩中TiO2含量远低于通过单纯的MORB分离结晶或不混溶所产生的那些斜长花岗岩,因此低Ti的斜长花岗岩可视为深熔产物。祥山辉长岩和于埠辉长岩中的斜长花岗岩具有低的Ti含量(0.26%~0.76%),在TiO2-SiO2图解(Koepke et al. , 2007)中落在部分熔融区域,且随SiO2的升高Ti有降低的趋势(图 14)。

图 14 斜长花岗岩样品的TiO2-SiO2图解 Fig. 14 TiO2 vs. SiO2 diagram of plagiogranite samples

本次研究的斜长花岗岩呈脉状或似层状产于变质辉长岩中,与辉长岩为渐变或平行片麻理接触。斜长花岗岩中斜长石为更长石而非碱性长石,稀土曲线虽显示出Eu负异常,但异常较弱,且轻重稀土分馏明显,表明斜长花岗岩不属于“A”型花岗岩。

斜长花岗岩的形成年龄与辉长岩的变质年龄相当,而与辉长岩的形成年龄有较大差异,说明斜长花岗岩并非是辉长质岩浆分离结晶产物。斜长花岗岩中的锆石具有暗色的继承锆石残核和不甚发育震荡环带的幔部,锆石的Th/U比值< 0.3,大部分 < 0.1,具有深熔锆石特征(Corfu et al. , 2003; Wan et al. , 2009; Dong et al. , 2014; 马铭株等, 2015)。斜长花岗岩锆石的Hf同位素也继承了辉长岩锆石的Hf同位素特点。斜长花岗岩的Sr、Yb含量特征指示形成于压力较低的伸展背景。因此可以推断,变质辉长岩中的斜长花岗岩是辉长岩卷入古元古代造山过程,在造山峰期后的抬升过程中部分熔融的产物。

4.3 对古元古代胶-辽-吉带演化过程的制约

胶北地块上发育多期古元古代基性岩浆活动。董春艳等(2011)对莱阳-南墅一带侵入荆山群的变质基性岩(莱州基性-超基性岩组合)进行了锆石SHRIMP U-Pb测年,结果显示遭受低级变质的闪长岩(S0835)岩浆锆石年龄为1852±9Ma (MSWD=2.1),遭受中高级变质的辉长岩(S0816) 变质锆石年龄为1865±11Ma (MSWD=0.76)。刘平华等(2013)从莱阳西留变质辉长岩(麻粒岩)中获得岩浆结晶年龄为2102±3Ma;并对分布在胶东平度-莱阳-烟台一带太古宙TTG片麻岩中的超镁铁质岩进行了同位素年代学研究,认为这些超镁铁质岩遭受了高压麻粒岩相变质作用,高压变质时代为1857~1877Ma,峰期后的中低压角闪岩相-麻粒岩相退变质作用发生在1820~1840Ma之间(刘平华等,2011)。田京祥等(2018)获得莱州山孙家变质辉长岩成岩锆石SHRIMP U-Pb年龄为2145±8Ma (MSWD=3.2),变质年龄为1823±15Ma (MSWD=0.66);莱西前山珍超基性岩的变质年龄为1839±9Ma (MSWD=1.4),残余锆石获得了~2.1Ga的年龄信息;平度三埠李家一带的变质辉长岩也获得了2.14Ga的成岩年龄信息和1852~1899Ga的变质年龄。本文从于埠变质辉长岩中获得了2.05Ga岩浆结晶年龄。显示胶北地块上存在~2.15Ga、~2.1Ga、~2.05Ga和~1.85Ga的四期基性岩浆活动。

Liu et al. (2014b)在福山和莱西分别发现2181±12Ma和2095±12Ma的二长花岗片麻岩。王惠初等(2015b)在灰埠以南的花岗片麻岩中测得锆石U-Pb年龄为2.17Ga;Lan et al. (2015)测得东辛庄侵入粉子山群的钾长花岗岩和钠长花岗岩的锆石U-Pb年龄分别为2.19Ga和2.17Ga;肖志斌等(2017)测得昌邑博陆山钾长花岗片麻岩岩浆锆石年龄为2093±12Ma;田瑞聪等(2017)获得昌邑东辛庄片麻状二长花岗岩的年龄为2182±13Ma,三埠李家的二长花岗岩年龄为2080±9Ma,昌邑青山片麻状花岗岩的年龄为2045±8Ma;Li et al. (2017)在莱山附近确定了1.86Ga的淡色花岗岩(钾长花岗岩和钠长花岗岩);Cheng et al. (2017)在郭城地区的二长花岗岩中获得了2110±4Ma和2105±7Ma的锆石U-Pb年龄。由此可见花岗质岩石中也存在~2.18Ga、~2.10Ga、~2.05Ga和~1.86Ga的四期酸性岩浆活动,与基性岩浆事件构成四期双峰式岩浆岩组合。除~1.85Ga的闪长岩为形成于造山末期外,其它已识别出的三期双峰式岩浆事件指示了胶北地块在2.15~2.05Ga期间为连续或断续的伸展过程。可与辽-吉地区的古元古代岩浆活动相对比(Li and Zhao, 2007; Li et al. , 2012; 董春艳等, 2012; Li and Chen, 2014; Yuan et al. , 2015; 刘建辉等, 2015; 刘福来等, 2015王惠初等,2015aWang et al. , 2016, 2017b; Xu et al. , 2018),说明古元古代岩浆活动在胶-辽-吉带普遍存在,且与华北克拉通古元古代期间(2300~1950Ma) 的构造热事件(Zhai and Liu, 2003; 翟明国和彭澎,2007)相一致。与相邻的晋冀蒙地区比较,目前在胶-辽-吉带中尚未识别出晋冀蒙地区广泛发育的~1.92Ga的基性岩墙侵位和大面积分布的深熔“S”型花岗岩(钟长汀等, 2007Peng et al. , 2010Guo et al. , 2012; Wan et al. , 2013; Peng, 2015; Wang et al. , 2017a; 王智等,2020)。

前人研究将荆山群的形成时代限定在2.2~1.87Ga之间(Wan et al. , 2006; 董春艳等,2011谢士稳等,2014)。此外,大量变质作用年龄和斜长花岗岩~1.87Ga及闪长岩~1.85Ga的形成年龄,指示胶东地区从挤压体制转入伸展体制的时间在~1.87Ga。本次工作从于埠侵入荆山群野头组的变质辉长岩中获得了2052±23Ma,说明荆山群的大部分沉积在~2.05Ga之前。对于荆山群和粉子山群的沉积环境,早期多认为形成于裂谷环境,最近几年有学者提出了弧后盆地或活动大陆边缘的认识(李洪奎等,2013陆松年等,2017Xu et al. , 2018Hoernle et al. , 2020)。多期双峰式岩浆岩组合和变质辉长岩的成矿专属性,指示荆山群和粉子山群沉积构造背景为大陆裂谷或大陆裂解后的被动大陆边缘环境,古元古代的造山事件应发生在2.0Ga之后(碰撞造山最有可能发生在1.92~1.87Ga)。

胶北地块上高压基性麻粒岩主要分布在莱阳-栖霞一带的太古宙变质杂岩中(刘文军等,1998Zhou et al. , 2004, 2008; Tam et al. , 2011, 2012a刘平华等, 2012),多数是由侵入太古宙TTG片麻岩中的基性岩墙变质而成,即使原岩属于古元古代的高压变质泥岩(麻粒岩)也是作为卷入太古宙片麻岩中的残片存在,很可能是被太古宙大陆地壳裹挟俯冲到地壳深部的产物(Li et al. , 2012)。较大面积出露的荆山群主体未发生高压麻粒岩相变质作用(侵入荆山群的变质辉长岩中未发现石榴石),可以看成是被太古宙俯冲大陆边缘推挤到一起的变质沉积岩的堆叠体,相当俯冲大陆边缘前锋的增生杂岩,其本身已不具备成层、有序的地层特征,应称之为荆山岩群。而粉子山群则可能是覆盖或是逆冲在大陆地块上的浅变质地层,其沉积时限或是与荆山(岩)群同时,或是延续至更晚。

以板块构造观点从地球动力学上分析,大陆裂谷不可能逆转为碰撞造山带。因此,建议将胶-辽-吉古元古代活动带的形成演化划分为两个主要阶段:

早期大陆裂解-稳定陆缘发育阶段(约2.2~2.0Ga):该阶段在裂谷盆地和演化的稳定大陆边缘上接受了巨量的碎屑岩和碳酸盐岩沉积,碎屑物来源应包括裂解阶段早期的火山岩、不断抬升的“A”型花岗岩和来自太古宙大陆地壳的物质,沉积碎屑从成熟度低逐渐向成熟度高的方向演化;而另一侧的大陆块体裂解后漂移离去。目前许多研究者认可的辽-吉造山带另一侧的狼林地块并非是一个太古宙陆块,而是胶-辽-吉造山带的一部分(王惠初等,2015a吴福元等,2016)。

晚期俯冲-碰撞阶段(约2.0~1.85Ga):该阶段胶北地块与另一地块发生拼合造山作用,这一地块并非是原先裂解而去的另一侧大陆。板块重建研究显示与胶北地块拼合的陆块很可能是刚果-圣弗兰西斯科克拉通(Peng et al. , 2011; Peng, 2015; Cederberg et al. , 2016; Xu et al. , 2017de Andrade Caxito et al. , 2020)或是澳大利亚北部的一些小地块(Peng, 2010; Meert and Santosh, 2017; Zhang et al. , 2017; Li et al. , 2019)。胶北地块大陆边缘向下俯冲,两个陆块之间形成了巨大的增生杂岩,深熔作用和岛弧岩浆作用提供了大量的新生碎屑物源;胶北地块大陆边缘裹挟着部分古元古代沉积岩俯冲到地壳深部形成了高压泥质麻粒岩,太古宙片麻岩中的基性岩则形成了高压基性麻粒岩。碰撞造山后的折返或抬升过程中发生了较强烈的深熔作用,在辽东吉南一带形成了大量的“S”型石榴花岗岩(1.91~1.87Ga,路孝平等,2004Zhao et al. , 2006; Zhai et al. , 2007; 王惠初等,2015a),胶-辽-吉带中出现了广泛的部分熔融成因的淡色花岗岩(Liu et al. , 2014a, 2019),以及辉长岩中部分熔融的斜长花岗岩(~1.87Ga)。造山带的根部带剥露地表,有可能使曾经的岛弧岩浆岩剥蚀殆尽。

5 结论

(1) 祥山和于埠变质辉长岩侵入古元古代荆山群野头组,辉长岩中产有“祥山式”岩浆熔离型铁矿,成矿的专属性指示辉长岩体属于层状侵入体类型,形成于大陆伸展构造背景。在祥山变质辉长岩中获得了1851±9Ma的变质年龄,在于埠变质辉长岩中获得了2052±23Ma的锆石U-Pb成岩年龄和1834±5Ma的变质年龄。~2.05Ga的岩浆结晶锆石的εHf(t)值均为正值(+1.87~+3.64),一阶段Hf模式年龄(tDM)为2292~2381Ma(平均为2327Ma),指示于埠变质辉长岩源自古元古代中期的亏损地幔。侵入野头组的于埠变质辉长岩的成岩年龄对荆山群的沉积时限有一定制约作用,说明荆山群的大部分应形成于2.2~2.05Ga之间,沉积于大陆裂谷-稳定大陆边缘的构造环境。

(2) 祥山变质辉长岩和于埠变质辉长岩中有少量斜长花岗岩产出,斜长花岗岩具有类似于大洋斜长花岗岩的岩石特征,是辉长岩部分熔融的产物。斜长花岗岩中的锆石与辉长岩中的变质锆石略有不同,Th/U比值较为集中(0.01~0.29),且均 < 0.3,具有初始熔体中结晶锆石特征。从斜长花岗岩中获得了1848±8Ma和1873±5Ma的深熔锆石U-Pb年龄,指示~1.87Ga已由挤压构造体制转变为伸展构造体制。

(3) 结合前人研究成果,可以总结出胶北地块乃至整个胶-辽-吉带上,2.2~2.05Ga期间存在周期性的双峰式岩浆活动,目前已识别出2.18~2.15Ga、~2.10Ga、~2.05Ga的三期双峰式岩浆岩构造组合,指示胶-辽-吉带2.2~2.05Ga期间总体为伸展构造背景。因此建议将胶-辽-吉活动带的形成演化过程划分为两个阶段,早期为大陆裂解-稳定陆缘演化阶段(2.2~2.0Ga),沉积了巨量的陆缘碎屑岩-碳酸盐岩;晚期为俯冲-碰撞造山阶段(2.0~1.85Ga),胶-辽-吉带褶皱造山。胶北地块大陆边缘裹挟着部分荆山群沉积岩俯冲到地壳深部,形成了高压基性麻粒岩和高压泥质麻粒岩。荆山(岩)群作为俯冲前锋推挤的堆叠物,具有增生杂岩性质。

致谢      参加野外工作的还有孙义伟、曾乐、牛广华等同志。本文成文过程中得到了李三忠教授、万渝生研究员、刘超辉研究员和郭敬辉研究员的热情帮助,提供了许多中肯建议,在此深表谢意。感谢国家科技基础条件平台北京离子探针中心的颉颃强等同志在样品装载、仪器调试、仪器监控和数据处理方面所提供的帮助。

谨以此文祝贺沈其韩先生百岁华诞

参考文献
Boynton MV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63-114
Bureau of Geology and Mineral Resources of Shandong Province. 1991. Regional Geology of Shandong Province. Beijing: Geological Publishing House, 6-524 (in Chinese)
Cederberg J, Söderlund J, Oliveira EP, Ernst RE and Pisarevsky SA. 2016. U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco Craton (Brazil): Implications for tectonic correlation with the Siberian, Congo and North China cratons. GFF, 138(1): 219-240 DOI:10.1080/11035897.2015.1093543
Cheng SB, Liu ZJ, Wang QF, Feng B, Wei XL, Liu BZ, Qin LY, Zhao BJ, Shui P, Xu L and Wang JP. 2017. SHRIMP zircon U-Pb dating and Hf isotope analyses of the Muniushan monzogranite, Guocheng, Jiaobei Terrane, China: Implications for the tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 301: 36-48 DOI:10.1016/j.precamres.2017.09.002
Chu H, Lu SN, Wang HC, Xiang ZQ and Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation, Penglai Group in Changdao, Shandong Province. Acta Petrologica Sinica, 27(4): 1017-1028 (in Chinese with English abstract)
Coleman RG and Peterman ZE. 1975. Oceanic plagiogranite. Journal of Geophysical Research, 80(8): 1099-1108 DOI:10.1029/JB080i008p01099
Coleman RG and Donato MM. 1979. Oceanic plagiogranite revisited. Developments in Petrology, 6: 149-168
Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500 DOI:10.2113/0530469
de Andrade Caxito F, Hagemann S, Dias TG, Barrote V, Dantas EL, de Oliveira Chaves A, Campello MS and Campos FC. 2020. A magmatic barcode for the São Francisco Craton: Contextual in-situ SHRIMP U-Pb baddeleyite and zircon dating of the Lavras, Pará de Minas and Formiga dyke swarms and implications for Columbia and Rodinia reconstructions. Lithos, 374-375: 105708 DOI:10.1016/j.lithos.2020.105708
Dilek Y. 2003. Ophiolite concept and its evolution. In: Dilek Y and Newcomb S (eds. ). Ophiolite Concept and the Evolution of Geological Thought. Boulder, Colorado: Geological Society of America, 1-16
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. GSA Bulletin, 123(3-4): 387-411 DOI:10.1130/B30446.1
Dong CY, Wang SJ, Liu DY, Wang JG, Xie HQ, Wang W, Song ZY and Wan YS. 2011. Late Palaeoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group: Constraints from SHRIMP U-Pb zircon dating of meta-intermediate-basic intrusive rocks in eastern Shandong Province. Acta Petrologica Sinica, 27(6): 1699-1706 (in Chinese with English abstract)
Dong CY, Ma MZ, Liu SJ, Xie HQ, Liu DY, Li XM and Wan YS. 2012. Middle Paleoproterozoic crustal extensional regime in the North China Craton: New evidence from SHRIMP zircon U-Pb dating and whole-rock geochemistry of meta-gabbro in the Anshan-Gongchangling area. Acta Petrologica Sinica, 28(9): 2785-2792 (in Chinese with English abstract)
Dong CY, Wan YS, Wilde SA, Xu ZY, Ma MZ, Xie HQ and Liu DY. 2014. Earliest Paleoproterozoic supracrustal rocks in the North China Craton recognized from the Daqingshan area of the Khondalite Belt: Constraints on craton evolution. Gondwana Research, 25(4): 1535-1553 DOI:10.1016/j.gr.2013.05.021
Dong XY, Li H and Ye LH. 1995. Ultramafic Rocks in China. Beijing: Geological Publishing House, 1-329 (in Chinese)
Flagler PA and Spray JG. 1991. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 19(1): 70-73 DOI:10.1130/0091-7613(1991)019<0070:GOPBAA>2.3.CO;2
Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142
Hoernle K, Schaefer B, Li SZ, Hauff F, Li XY, Garbe-Schönberg D, Zhang RX and Liu YM. 2020. 2.8~1.7Ga history of the Jiao-Liao-Ji Belt of the North China Craton from the geochronology and geochemistry of mafic Liaohe meta-igneous rocks. Gondwana Research, 85: 55-75
Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232-269 DOI:10.2475/03.2008.03
Jiang N, Guo JH, Fan WB, Hu J, Zong KQ and Zhang SQ. 2016. Archean TTGs and sanukitoids from the Jiaobei terrain, North China Craton: Insights into crustal growth and mantle metasomatism. Precambrian Research, 281: 656-672 DOI:10.1016/j.precamres.2016.06.019
Koepke J, Feig ST, Snow J and Freise M. 2004. Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contributions to Mineralogy and Petrology, 146(4): 414-432 DOI:10.1007/s00410-003-0511-9
Koepke J, Berndt J, Feig ST and Holtz F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153(1): 67-84 DOI:10.1007/s00410-006-0135-y
Lan TG, Fan HR, Hu FF, Yang KF, Zheng XL and Zhang HD. 2012. Geological and geochemical characteristics of Paleoproterozoic Changyi banded iron formation deposit, Jiaodong Peninsula of eastern China. Acta Petrologica Sinica, 28(11): 3595-3611 (in Chinese with English abstract)
Lan TG, Fan HR, Yang KF, Cai YC, Wen BJ and Zhang W. 2015. Geochronology, mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt: Implications for Paleoproterozoic rifting of eastern North China Craton. Precambrian Research, 266: 86-107 DOI:10.1016/j.precamres.2015.04.021
Li HK, Zhu SX, Xiang ZQ, Su Wb, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)
Li HK, Li YF, Geng K, Zhuo CY, Zhang YB, Liang TT and Wang F. 2013. Palaeoproterozoic tectonic setting in the eastern Shandong Province. Geological Survey and Research, 36(2): 114-122, 130 (in Chinese with English abstract)
Li SZ and Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the eastern block of the North China Craton. Precambrian Research, 158(1-2): 1-16 DOI:10.1016/j.precamres.2007.04.001
Li SZ, Zhao GC, Santosh M, Liu X, Dai LM, Suo YH, Tam PY, Song MC and Wang PC. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200-203: 59-73 DOI:10.1016/j.precamres.2012.01.007
Li SZ, Li XY, Wang GZ, Liu YM, Wang ZC, Wang TS, Cao XZ, Guo XY, Somerville I, Li Y, Zhou J, Dai LM, Jiang SH, Zhao H, Wang Y, Wang G and Yu S. 2019. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: Constraints from three cratons in China. Earth-Science Reviews, 198: 102946 DOI:10.1016/j.earscirev.2019.102946
Li XH, Chen FK, Guo JH, Li QL, Xie LW and Siebel W. 2007. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochemical Journal, 41(1): 29-45 DOI:10.2343/geochemj.41.29
Li YJ, Li GY, Tong LL, Yang GX and Wang R. 2015. Discrimination of ratios of Ta, Hf, Th, La, Zr and Nb for tectonic settings in basalts. Journal of Earth Sciences and Environment, 37(3): 14-21 (in Chinese with English abstract)
Li YL, Zhang HF, Guo JH and Li CF. 2017. Petrogenesis of the Huili Paleoproterozoic leucogranite in the Jiaobei Terrane of the North China Craton: A highly fractionated albite granite forced by K-feldspar fractionation. Chemical Geology, 450: 165-182 DOI:10.1016/j.chemgeo.2016.12.029
Li Z and Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Research, 255: 653-667 DOI:10.1016/j.precamres.2014.07.003
Liu FL, Liu PH, Ding ZJ, Liu JH, Yang H and Hu WH. 2012. Genetic mechanism of granitic leucosome within high-pressure granulite from the Early Precambrian metamorphic basement of Shandong Peninsula, SE North China Craton. Acta Petrologica Sinica, 28(9): 2686-2696 (in Chinese with English abstract)
Liu FL, Liu PH, Wang F, Liu JH, Meng E, Cai J and Shi JR. 2014a. U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the timing and nature of partial melting. Precambrian Research, 245: 80-99 DOI:10.1016/j.precamres.2014.01.001
Liu FL, Liu PH, Wang F, Liu CH and Cai J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica, 31(10): 2816-2846 (in Chinese with English abstract)
Liu FL, Liu LS, Cai J, Liu PH, Wang F, Liu CH and Liu JL. 2019. A widespread Paleoproterozoic partial melting event within the Jiao-Liao-Ji Belt, North China Craton: Zircon U-Pb dating of granitic leucosomes within pelitic granulites and its tectonic implications. Precambrian Research, 326: 155-173 DOI:10.1016/j.precamres.2017.10.017
Liu JH, Liu FL, Liu PH, Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: Evidences from the Zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4): 943-960 (in Chinese with English abstract)
Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013a. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287-303 DOI:10.1016/j.precamres.2012.10.003
Liu JH, Liu FL, Ding ZJ, Yang H, Liu CH, Liu PH, Xiao LL, Zhao L and Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton: Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research, 235: 230-250 DOI:10.1016/j.precamres.2013.06.014
Liu JH, Liu FL, Ding ZJ, Liu PH, Guo CL and Wang F. 2014b. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255: 685-698 DOI:10.1016/j.precamres.2013.12.004
Liu JH, Liu FL, Ding ZJ, Liu PH and Wang F. 2014. U-Pb dating and Hf isotope study of Early Archean zircons from the Jiaobei Terrane, North China Craton: Evidence for growth and recycling of ancient continental crust. Acta Petrologica Sinica, 30(10): 2941-2950 (in Chinese with English abstract)
Liu JH, Liu FL, Ding ZJ, Liu PH and Wang F. 2015. Early Precambrian major magmatic events, and growth and evolution of continental crust in the Jiaobei terrane, North China Craton. Acta Petrologica Sinica, 31(10): 2942-2958 (in Chinese with English abstract)
Liu PH, Liu FL, Wang F and Liu JH. 2010. Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP) granulites from the Shandong Peninsula, China. Acta Petrologica Sinica, 26(7): 2039-2056 (in Chinese with English abstract)
Liu PH, Liu FL, Wang F and Liu JH. 2011. In-situ U-Pb dating of zircons from high-pressure granulites in Shandong Peninsula, eastern China and its geological significance. Earth Science Frontiers, 18(2): 33-54 (in Chinese with English abstract)
Liu PH, Liu FL, Wang F, Liu JH, Yang H and Shi JR. 2012. Geochemical characteristics and genesis of the high-pressure mafic granulite in the Jiaobei high-grade metamorphic basement. Acta Petrologica Sinica, 28(9): 2705-2720 (in Chinese with English abstract)
Liu PH, Liu FL, Wang F, Liu JH and Cai J. 2013. Petrological and geochronological preliminary study of the Xiliu ~2.1Ga meta-gabbro from the Jiaobei terrane, the southern segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29(7): 2371-2390 (in Chinese with English abstract)
Liu PH, Liu FL, Liu CH, Wang F, Liu JH, Yang H, Cai J and Shi JR. 2013c. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237-258 DOI:10.1016/j.precamres.2013.05.003
Liu PH, Liu FL, Wang F, Liu CH, Yang H, Liu JH, Cai J and Shi JR. 2015. P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Implication for formation and evolution of the JLJB. Acta Petrologica Sinica, 31(10): 2889-2941 (in Chinese with English abstract)
Liu WJ, Zhai MG and Li YG. 1998. Metamorphism of the high-pressure basic granulites in Laixi, eastern Shandong, China. Acta Petrologica Sinica, 14(4): 449-459 (in Chinese with English abstract)
Lu DG, Wang W, Liu SW, Cawood PA, Yao JC, Niu PB and Guo LS. 2020. Diversity of late Neoarchean K-rich granitoid rocks derived from subduction-related crust/mantle interactions in the Jiaobei terrane, North China Craton. Gondwana Research, 85: 84-102 DOI:10.1016/j.gr.2020.03.008
Lu LZ, Xu XC and Liu FL. 1996. Early Precambrian Khondalite Series in North China. Changchun: Changchun Publishing House, 219-230 (in Chinese)
Lu SN, Hao GJ, Wang HC, Niu GH, Wang MZ and Li HK. 2017. Geotectonics of Metamorphic Rocks in China. Beijing: Geological Publishing House, 1-338 (in Chinese)
Lu XP, Wu FY, Zhang YB, Zhao CB and Guo CL. 2004. Emplacement age and tectonic setting of the Paleoproterozoic Liaoji granites in Tonghua area, southern Jilin Province. Acta Petrologica Sinica, 20(3): 381-392 (in Chinese with English abstract)
Ma MZ, Dong CY, Xu ZY, Xie SW, Liu DY and Wan YS. 2015. Anatexis of Early Paleoproterozoic garnet-biotite gneisses (Daqingshan supracrustal rocks) in Daqingshan, Inner Mongolia: Geology, zircon geochronology and geochemistry. Acta Petrologica Sinica, 31(6): 1535-1548 (in Chinese with English abstract)
Meert JG and Santosh M. 2017. The Columbia supercontinent revisited. Gondwana Research, 50: 67-83 DOI:10.1016/j.gr.2017.04.011
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218 DOI:10.1016/0009-2541(86)90004-5
Naldrett AJ and Cabri LJ. 1976. Ultramafic and related mafic rocks: Their classification and genesis with special reference to the concentration of nickel sulfides and platinum-group elements. Economic Geology, 71(7): 1131-1158 DOI:10.2113/gsecongeo.71.7.1131
Naldrett AJ. 1981. Nickel sulfide deposits: Classification, composition and genesis. Economic Geology, 75: 628-685
Naldrett AJ and Gruenewaldt GV. 1989. The association of PGE with chromitite in layered intrusions and ophiolite complexes. Economic Geology, 84(1): 180-187 DOI:10.2113/gsecongeo.84.1.180
Naldrett AJ. 1999. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 34(3): 227-240 DOI:10.1007/s001260050200
Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300 DOI:10.1016/0012-821X(73)90129-5
Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47 DOI:10.1007/BF00375192
Pedersen RB and Malpas J. 1984. The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway. Contributions to Mineralogy and Petrology, 88(1-2): 36-52 DOI:10.1007/BF00371410
Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78Ga magmatism in the North China Craton. In: Kusky TM, Zhai MG and Xiao W (eds.). The Evolving Continents: Understanding Processes of Continental Growth. Geological Society, London, Special Publications, 338(1): 163-178
Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China Craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659 DOI:10.1016/j.precamres.2010.08.015
Peng P, Bleeker W, Ernst RE, Söderlund U and McNicoll V. 2011. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China Craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221 DOI:10.1016/j.lithos.2011.08.018
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Sciences), 58(5): 649-675 DOI:10.1007/s11430-014-5026-x
Shan HX, Zhai MG, Wang F, Zhou YY, Santosh M, Zhu XY, Zhang HF and Wang W. 2015. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton. Journal of Asian Earth Sciences, 98: 61-74 DOI:10.1016/j.jseaes.2014.10.023
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount mking and procedure of the SHRIMP dating. Geological Review, 48(Suppl..): 26-30 (in Chinese with English abstract)
Song MC, Ai XS, Yu XF, Tian JX, Li HK, Ni ZP, Jiao XM and Song YX. 2015. Types and temporal-spatial distribution of mineral resources in Shandong Province. Mineral Deposits, 34(6): 1237-1254 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M and Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19(1): 150-162 DOI:10.1016/j.gr.2010.05.007
Tam PY, Zhao GC, Sun M, Li SZ, Wu ML and Yin CQ. 2012a. Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94-109 DOI:10.1016/j.lithos.2012.08.018
Tam PY, Zhao GC, Zhou XW, Sun M, Guo JH, Li SZ, Yin CQ, Wu ML and He YH. 2012b. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 22(1): 104-117 DOI:10.1016/j.gr.2011.09.006
Tang J, Zheng YF, Wu YB, Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48-82 DOI:10.1016/j.precamres.2006.09.001
Tang ZL. 2004. The accumulation and evolution of metallogenic series of the mafic-ultramafic magmatic deposits in China. Earth Science Frontiers, 11(1): 113-119 (in Chinese with English abstract)
Tian JX, Hou JH, Guo RP, Wan YS, Yu XW, Wang LL, Zhu DC, Li XZ, Huang YB, Dong CY, Xie HQ, Xie SW and Song ZY. 2018. Determination of Hf isotope components and tectonic by using zircon U-Pb dating and magmatic significance of Paleoproterozoic mafic-ultramafic rocks in Jiaobei area. Shangdong Land and Resources, 34(5): 14-27 (in Chinese with English abstract)
Tian RC, Li DP, Hou JH, Zhu DC, Li JJ, Tian JP, Guo RP, Huang YB and Zhang PP. 2017. Zircon U-Pb dating, Hf isotope composition and tectono-magmatic evolutionary significance the Paleoproterozoic monzogranite in Changyi area, eastern Shandong. Acta Geologica Sinica, 91(12): 2710-2726 (in Chinese with English abstract)
Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271 DOI:10.1016/j.precamres.2006.06.006
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. In: Reddy SM, Mazumder R, Evans DAD and Collins AC (eds.). Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, Special Publications, 323(1): 73-97
Wan YS, Liu DY, Dong CY, Liu SJ, Wang SJ and Yang EX. 2011. U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geoscience Frontiers, 2(2): 137-146 DOI:10.1016/j.gsf.2011.02.004
Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Chu H. 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93
Wan YS, Xie SW, Yang CH, Kröner A, Ma MZ, Dong CY, Du LL, Xie HQ and Liu DY. 2014. Early Neoarchean (~2.7Ga) tectono-thermal events in the North China Craton: A synthesis. Precambrian Research, 247: 45-63
Wan YS, Liu DY, Dong CY, Xie HQ, Kr ner A, Ma MZ, Liu SJ, Xie SW and Ren P. 2015. Formation and evolution of Archean continental crust of the North China Craton. In: Zhai MG (ed. ). Precambrian Geology of China. Berlin, Heidelberg: Springer, 59-136
Wan YS, Liu SJ, Song ZY, Wilde SA, Wang LM, Dong CY, Xie HQ, Xie SW, Hou JH, Bai WQ and Liu DY. 2020. The complexities of Mesoarchean to Late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: Geology, geochemistry and SHRIMP U-Pb zircon dating. American Journal of Science, 320
Wang F, Liu FL, Liu PH and Liu JH. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sinica, 26(7): 2057-2072 (in Chinese with English abstract)
Wang HC, Ren YW, Lu SN, Kang JL, Chu H, Yu HB and Zhang CJ. 2015a. Stratigraphic units and tectonic setting of the Paleoproterozoic Liao-Ji orogen. Acta Geoscientica Sinica, 36(5): 583-598 (in Chinese with English abstract)
Wang HC, Kang JL, Ren YW, Chu H, Lu SN and Xiao ZB. 2015b. Identification of ~2.7Ga BIF in North China Craton: Evidence from geochronology of iron-bearing formation in Laizhou-Changyi area, Jiaobei terrane. Acta Petrologica Sinica, 31(10): 2991-3011 (in Chinese with English abstract)
Wang LJ, Guo JH, Yin CQ and Peng P. 2017a. Petrogenesis of ca.95Ga meta-leucogranites from the Jining complex in the Khondalite Belt, North China Craton: Water-fluxed melting of metasedimentary rocks. Precambrian Research, 303: 355-371
Wang PC. 1995. Relationships between the Jingshan Group and the Fenzishan Group in the Jiaobei area. Regional Geology of China, (1): 15-20 (in Chinese with English abstract)
Wang SJ, Wan YS, Song ZY, Yang EX, Dong CY and Wang W. 2011. Formation of Precambrian strata in Shandong Province: Isotopic dating evidences. Shandong Land and Resources, 27(11): 1-6 (in Chinese with English abstract)
Wang W, Zhai MG, Li TS, Santosh M, Zhao L and Wang HZ. 2014. Archean-Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei terrane. Precambrian Research, 241: 146-160 DOI:10.1016/j.precamres.2013.11.011
Wang XP, Peng P, Wang C and Yang SY. 2016. Petrogenesis of the 2115Ma Haicheng mafic sills from the eastern North China Craton: Implications for an intra-continental rifting. Gondwana Research, 39: 347-364 DOI:10.1016/j.gr.2016.01.009
Wang XP, Peng P, Wang C, Yang SY, Söderlund U and Su XD. 2017b. Nature of three episodes of Paleoproterozoic magmatism (2180Ma, 2115Ma and 1890Ma) in the Liaoji belt, North China with implications for tectonic evolution. Precambrian Research, 298: 252-267 DOI:10.1016/j.precamres.2017.06.003
Wang YL, Zhang CJ and Xiu SZ. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract)
Wang YW and Wang JB. 2006. Ore deposit types related to mafic-ultramafic rocks. Geology in China, 33(3): 656-665 (in Chinese with English abstract)
Wang Z, Wang HC, Shi JR, Chang QS, Zhang JH, Ren YW and Xiang ZQ. 2020. Tectonic setting and geological significance of Xuwujia metagabbro in Jining area, Inner Mongolia. Geological Survey and Research, 43(2): 97-113 (in Chinese with English abstract)
Wilson M. 1989. Igneous Petrogenesis. London: Chapman & Hall, 1-466
Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50(1): 11-30 DOI:10.1016/0012-821X(80)90116-8
Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370-384 DOI:10.1017/S0016756800058222
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu FY, Li QL, Yang JH, Kim JN and Han RH. 2016. Crustal growth and evolution of the Rangnim Massif, northern Korean Peninsula. Acta Petrologica Sinica, 32(10): 2933-2947 (in Chinese with English abstract)
Wu LR. 1963. On metallogenic specialization of basic and ultrabasic rocks in China. Scientia Geologica Sinica, 4(1): 29-41 (in Chinese)
Wu ML, Zhao GC, Sun M and Li SZ. 2014a. A synthesis of geochemistry and Sm-Nd isotopes of Archean granitoid gneisses in the Jiaodong Terrane: Constraints on petrogenesis and tectonic evolution of the Eastern Block, North China Craton. Precambrian Research, 255: 885-899 DOI:10.1016/j.precamres.2014.10.012
Wu ML, Zhao GC, Sun M, Li SZ, Bao ZA, Tam PY, Eizenhöefer PR and He YH. 2014b. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84 DOI:10.1016/j.lithos.2013.12.004
Xiao ZB, Wang HC, Kang JL, Bao ZA, Sun YW and Liu WG. 2017. U-Pb chronology, Hf isotope and geological implication of zircons from the Neoarchean quartzite in Changyi area, eastern Shandong. Acta Petrologica Sinica, 33(9): 2925-2938 (in Chinese with English abstract)
Xie HQ, Wan YS, Wang SJ, Liu DY, Xie SW, Liu SJ, Dong CY and Ma MZ. 2013. Geology and zircon dating of trondhjemitic gneiss and amphibolite in the Tangezhuang area, eastern Shandong. Acta Petrologica Sinica, 29(2): 619-629 (in Chinese with English abstract)
Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Liu DY and Wan YS. 2014. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in eastern Shandong, North China Craton. Acta Petrologica Sinica, 30(10): 2989-2998 (in Chinese with English abstract)
Xu HR, Yang ZY, Peng P, Ge KP, Jin ZM and Zhu RX. 2017. Magnetic fabrics and rock magnetism of the Xiong'er volcanic rocks and their implications for tectonic correlation of the North China Craton with other crustal blocks in the Nuna/Columbia supercontinent. Tectonophysics, 712-713: 415-425 DOI:10.1016/j.tecto.2017.06.015
Xu W, Liu FL, Tian ZH, Liu LS, Ji L and Dong YS. 2018. Source and petrogenesis of Paleoproterozoic meta-mafic rocks intruding into the North Liaohe Group: Implications for back-arc extension prior to the formation of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 307: 66-81 DOI:10.1016/j.precamres.2018.01.011
Yu ZC. 1996. New progress of research on the Fenzishan Group in the Pingdu-Laizhou area in the west of Jiaobei region. Geology of Shandong, 12(1): 24-34 (in Chinese with English abstract)
Yuan LL, Zhang XH, Xue FH, Han CM, Chen HH and Zhai MG. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning Province, North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 264: 119-139 DOI:10.1016/j.precamres.2015.04.017
Zeng GX, Lü C and Xu JF. 1998. Geology of Iron Ore Deposits in Shandong. Ji'nan: Shandong Science and Technology Press, 1-143 (in Chinese)
Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Research, 122(1-4): 183-199 DOI:10.1016/S0301-9268(02)00211-5
Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547-561 DOI:10.1016/j.jseaes.2004.01.018
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)
Zhai MG, Guo JH, Peng P and Hu B. 2007. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine, 144(3): 547-552 DOI:10.1017/S0016756807003287
Zhai MG, Li TS, Peng P, Hu B, Liu F and Zhang YB. 2010. Precambrian key tectonic events and evolution of the North China Craton. In: Kusky TM, Zhai MG and Xiao W (eds.). The Evolving Continents: Understanding Processes of Continental Growth. Geological Society, London, Special Publications, 338(1): 235-262
Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005
Zhang JH, Wang HC, Guo JH, Tian H, Ren YW, Chang QS, Shi JR and Xiang ZQ. 2020. Metamorphic mafic dykes from Tianzhen-Huai'an area: Transformation criteria of the Late Paleoproterozoic collision to extension in the North China Craton. Earth Science, 45(9): 3239-3257 (in Chinese with English abstract)
Zhang Q. 1990. Classification of ophiolites. Scientia Geologica Sinica, 25(1): 54-61 (in Chinese with English abstract)
Zhang Q. 1992. The mafic-ultramafic rocks and Wilson cycle. Acta Petrologica Sinica, 8(2): 168-176 (in Chinese with English abstract)
Zhang Q, Guo YS, Wang YM, Qian Q, Zhou DJ, Chen Y, Jia XQ and Han S. 1997. The diversity of mafic-ultramafic rocks in Qilian Mountains. Advances in Earth Sciences, 12(5): 324-330 (in Chinese with English abstract)
Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press, 1-182 (in Chinese)
Zhang Q, Wang Y, Xiong XL and Li CD. 2008. Adakite and Granite: Challenge and Opportunity. Beijing: China Land Press, 1-344 (in Chinese)
Zhang Q. 2014. Classifications of mafic-ultramafic rocks and their tectonic significance. Chinese Journal of Geology, 49(3): 982-1017 (in Chinese with English abstract)
Zhang SH, Zhao Y, Li XH, Ernst RE and Yang ZY. 2017. The 1.33~1.30Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth Planetary Science Letters, 465: 112-125
Zhao GC. 2001. Palaeoproterozoic assembly of the North China Craton. Geological Magazine, 138(1): 87-91 DOI:10.1017/S0016756801005040
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao GC, Cao L, Wilde SA, Sun M, Choe WJ and Li SZ. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251(3-4): 365-379 DOI:10.1016/j.epsl.2006.09.021
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76 DOI:10.1016/j.precamres.2012.09.016
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240 DOI:10.1016/j.gr.2012.08.016
Zhong CT, Deng JF, Wan YS, Mao DB and Li HM. 2007. Magma recording of Paleoproterozoic orogeny in central segment of northern margin of North China Craton: Geochemical characteristics and zircon SHRIMP dating of S-type granitoids. Geochimica, 36(6): 585-600 (in Chinese with English abstract)
Zhou XW, Wei CJ, Geng YS and Zhang LF. 2004. Discovery and implications of the high-pressure pelitic granulite from the Jiaobei massif. Chinese Science Bulletin, 49(18): 1942-1948 DOI:10.1007/BF03184286
Zhou XW, Zhao GC, Wei CJ, Geng YS and Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China craton. American Journal of Science, 308(3): 328-350 DOI:10.2475/03.2008.06
Zou Y, Zhai MG, Zhou LG, Zhao L, Lu JS, Wang YQ and Shan HX. 2019. Relics of a Paleoproterozoic orogen: New petrological, phase equilibria and geochronological studies on high-pressure pelitic granulites from the Pingdu-Laiyang areas, southwest of the Jiaobei terrane, North China Craton. Precambrian Research, 322: 136-159 DOI:10.1016/j.precamres.2018.12.011
初航, 陆松年, 王惠初, 相振群, 刘欢. 2011. 山东长岛地区蓬莱群辅子夼组碎屑锆石年龄谱研究. 岩石学报, 27(4): 1017-1028.
董春艳, 王世进, 刘敦一, 王金光, 颉颃强, 王伟, 宋志勇, 万渝生. 2011. 华北克拉通古元古代晚期地壳演化和荆山群形成时代制约——胶东地区变质中-基性侵入岩锆石SHRIMP U-Pb定年. 岩石学报, 27(6): 1699-1706.
董春艳, 马铭株, 刘守偈, 颉颃强, 刘敦一, 李雪梅, 万渝生. 2012. 华北克拉通古元古代中期伸展体制新证据: 鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学. 岩石学报, 28(9): 2785-2792.
董显扬, 李行, 叶良和. 1995. 中国超镁铁质岩. 北京: 地质出版社, 1-329.
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 34-39.
蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 郑小礼, 张华东. 2012. 鲁东昌邑古元古代BIF铁矿矿床地球化学特征及矿床成因讨论. 岩石学报, 28(11): 3595-3611.
李洪奎, 李逸凡, 耿科, 禚传源, 张玉波, 梁太涛, 王峰. 2013. 鲁东地区古元古界形成的大地构造环境探讨. 地质调查与研究, 36(2): 114-122, 130. DOI:10.3969/j.issn.1672-4135.2013.02.007
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140.
李永军, 李甘雨, 佟丽莉, 杨高学, 王冉. 2015. 玄武岩类形成的大地构造环境Ta、Hf、Th、La、Zr、Nb比值对比判别. 地球科学与环境学报, 37(3): 14-21. DOI:10.3969/j.issn.1672-6561.2015.03.004
刘福来, 刘平华, 丁正江, 刘建辉, 杨红, 胡伟华. 2012. 山东半岛高压麻粒岩中花岗质浅色脉体的成因. 岩石学报, 28(9): 2686-2696.
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816-2846.
刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件: 来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据. 岩石学报, 27(4): 943-960.
刘建辉, 刘福来, 丁正江, 刘平华, 王舫. 2014. 胶北太古宙早期锆石U-Pb定年及Hf同位素研究: 华北克拉通古老陆壳增生及再循环的证据. 岩石学报, 30(10): 2941-2950.
刘建辉, 刘福来, 丁正江, 刘平华, 王舫. 2015. 胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化. 岩石学报, 31(10): 2942-2958.
刘平华, 刘福来, 王舫, 刘建辉. 2010. 山东半岛基性高压麻粒岩的成因矿物学及变质演化. 岩石学报, 26(7): 2039-2056.
刘平华, 刘福来, 王舫, 刘建辉. 2011. 山东半岛高压麻粒岩中锆石的U-Pb定年及其地质意义. 地学前缘, 18(2): 33-54.
刘平华, 刘福来, 王舫, 刘建辉, 杨红, 施建荣. 2012. 胶北高级变质基底中高压基性麻粒岩的地球化学特征及其成因. 岩石学报, 28(9): 2705-2720.
刘平华, 刘福来, 王舫, 刘建辉, 蔡佳. 2013. 胶北西留古元古代~2.1Ga变辉长岩岩石学与年代学初步研究. 岩石学报, 29(7): 2371-2390.
刘平华, 刘福来, 王舫, 刘超辉, 杨红, 刘建辉, 蔡佳, 施建荣. 2015. 胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约. 岩石学报, 31(10): 2889-2941.
刘文军, 翟明国, 李永刚. 1998. 胶东莱西地区高压基性麻粒岩的变质作用. 岩石学报, 14(4): 449-459.
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社, 219-230.
陆松年, 郝国杰, 王惠初, 牛广华, 王明镇, 李怀坤. 2017. 中国变质岩大地构造. 北京: 地质出版社, 1-338.
路孝平, 吴福元, 张艳斌, 赵成弼, 郭春丽. 2004. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景. 岩石学报, 20(3): 381-392.
马铭株, 董春艳, 徐仲元, 谢士稳, 刘敦一, 万渝生. 2015. 内蒙古大青山地区古元古代早期榴云片麻岩(大青山表壳岩)深熔作用: 地质、锆石年代学和地球化学研究. 岩石学报, 31(6): 1535-1548.
山东省地质矿产局. 1991. 山东省区域地质志. 北京: 地质出版社, 6-524.
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增): 26-30.
宋明春, 艾宪森, 于学峰, 田京祥, 李洪奎, 倪振平, 焦秀美, 宋英昕. 2015. 山东省矿产资源类型和时空分布特点. 矿床地质, 34(6): 1237-1254.
汤中立. 2004. 中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化. 地学前缘, 11(1): 113-119. DOI:10.3321/j.issn:1005-2321.2004.01.008
田京祥, 侯建华, 郭瑞朋, 万渝, 于晓卫, 王立功, 祝德成, 李秀章, 黄永波, 董春艳, 颉颃强, 谢士稳, 宋志勇. 2018. 胶北地区古元古代基性-超基性岩锆石U-Pb定年Hf同位素组成及其构造岩浆演化意义. 山东国土资源, 34(5): 14-27. DOI:10.3969/j.issn.1672-6979.2018.05.002
田瑞聪, 李大鹏, 侯建华, 祝德成, 李俊建, 田杰鹏, 郭瑞朋, 黄永波, 张鹏鹏. 2017. 胶东昌邑地区古元古代二长花岗岩锆石U-Pb定年、Hf同位素组成及其构造岩浆演化意义. 地质学报, 91(12): 2710-2726. DOI:10.3969/j.issn.0001-5717.2017.12.009
王舫, 刘福来, 刘平华, 刘建辉. 2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报, 26(7): 2057-2072.
王惠初, 任云伟, 陆松年, 康健丽, 初航, 于宏斌, 张长捷. 2015a. 辽吉古元古代造山带的地层单元划分与构造属性. 地球学报, 36(5): 583-598.
王惠初, 康健丽, 任云伟, 初航, 陆松年, 肖志斌. 2015b. 华北克拉通~2.7Ga的BIF: 来自莱州-昌邑地区含铁建造的年代学证据. 岩石学报, 31(10): 2991-3011.
王沛成. 1995. 论胶北地区荆山群与粉子山群之关系. 中国区域地质, (1): 15-20.
王世进, 万渝生, 宋志勇, 杨恩秀, 董春艳, 王伟. 2011. 山东省前寒武纪地层形成时代——同位素地质测年的证据. 山东国土资源, 27(11): 1-6. DOI:10.3969/j.issn.1672-6979.2011.11.002
汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
王玉往, 王京彬. 2006. 与镁铁-超镁铁质岩石有关的矿床类型. 中国地质, 33(3): 656-665. DOI:10.3969/j.issn.1000-3657.2006.03.024
王智, 王惠初, 施建荣, 常青松, 张家辉, 任云伟, 相振群. 2020. 内蒙古集宁地区徐武家变质辉长岩的形成背景及其地质意义. 地质调查与研究, 43(2): 97-113. DOI:10.3969/j.issn.1672-4135.2020.02.005
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴福元, 李秋立, 杨正赫, 金正男, 韩龙渊. 2016. 朝鲜北部狼林地块构造归属与地壳形成时代. 岩石学报, 32(10): 2933-2947.
吴利仁. 1963. 论中国基性岩、超基性岩的成矿专属性. 地质科学, 4(1): 29-41.
肖志斌, 王惠初, 康健丽, 包志安, 孙义伟, 刘文刚. 2017. 胶东昌邑地区新太古代石英岩的锆石U-Pb年代学和Hf同位素特征及其地质意义. 岩石学报, 33(9): 2925-2938.
颉颃强, 万渝生, 王世进, 刘敦一, 谢士稳, 刘守偈, 董春艳, 马铭株. 2013. 胶东谭格庄地区奥长花岗质片麻岩和斜长角闪岩的野外地质和锆石SHRIMP定年. 岩石学报, 29(2): 619-629.
谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 刘敦一, 万渝生. 2014. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年. 岩石学报, 30(10): 2989-2998.
于志臣. 1996. 胶北西部平度、莱州一带粉子山群研究新进展. 山东地质, 12(1): 24-34.
曾广湘, 吕昶, 徐金芳. 1998. 山东铁矿地质. 济南: 山东科学技术出版社, 1-143.
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682. DOI:10.3969/j.issn.1000-0569.2007.11.001
张家辉, 王惠初, 郭敬辉, 田辉, 任云伟, 常青松, 施建荣, 相振群. 2020. 天镇-怀安地区变质基性岩墙群: 华北克拉通古元古代末期碰撞-伸展构造体制转换标志. 地球科学, 45(9): 3239-3257.
张旗. 1992. 镁铁-超镁铁岩与威尔逊旋回. 岩石学报, 8(2): 168-176. DOI:10.3321/j.issn:1000-0569.1992.02.007
张旗, 郭原生, 王岳明, 钱青, 周德进, 陈雨, 贾秀琴, 韩松. 1997. 祁连山地区镁铁-超镁铁岩的多样性. 地球科学进展, 12(5): 324-330.
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社, 1-182.
张旗, 王焰, 熊小林, 李承东. 2008. 埃达克岩和花岗岩: 挑战与机遇. 北京: 中国大地出版社, 1-344.
张旗. 2014. 镁铁-超镁铁岩的分类及其构造意义. 地质科学, 49(3): 982-1017. DOI:10.3969/j.issn.0563-5020.2014.03.022
钟长汀, 邓晋福, 万渝生, 毛德宝, 李惠民. 2007. 华北克拉通北缘中段古元古代造山作用的岩浆记录: S型花岗岩地球化学特征及锆石SHRIMP年龄. 地球化学, 36(6): 585-600. DOI:10.3321/j.issn:0379-1726.2007.06.007