岩石学报  2021, Vol. 37 Issue (1): 143-161, doi: 10.18654/1000-0569/2021.01.10   PDF    
海南洋壳型高温榴辉岩: 基本特征及待解问题
刘晓春1,2, 胡娟1,2, 陈龙耀1,2, 陈意3, 王伟1,2, 夏蒙蒙1,2, 韩建恩1,2, 胡道功1     
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 自然资源部古地磁与古构造重建重点实验室, 北京 100081;
3. 中国科学院地质与地球物理研究所, 北京 100029
摘要: 榴辉岩常产于汇聚板块的边界,是鉴别古板块缝合带的重要标志之一。最近,这种特征的变质岩石在海南岛北部被第四系严重覆盖的木栏头地区被发现,其基本特征总结如下:(1)榴辉岩孤立地出露于潮滩鼻潮间-潮下带,主体露岩区域分布的总面积约1.8km2,由片麻理构成的优势构造走向为北东至近东西;(2)榴辉岩经历了顺时针变质演化,从绿帘角闪岩相(620~680℃、0.87~1.11GPa)、榴辉岩相/榴辉岩-高压麻粒岩过渡相(820~860℃、1.70~1.82GPa)、角闪岩相(700~730℃、0.71~0.85GPa)到绿片岩相;(3)榴辉岩的主体(占分析样品总数的65%)具有正常洋中脊玄武岩(N-MORB)属性,少数具有富集洋中脊玄武岩(E-MORB)和火山弧玄武岩(VAB)属性,初始Sr-Nd同位素成分表明他们来自于亏损的软流圈地幔;(4)榴辉岩原岩形成于355Ma之前,进变质和峰期-退变质的时代分别约为340~330Ma和310~300Ma,冷却至金红石U-Pb体系封闭温度的时代为292±6Ma。所以,海南榴辉岩主要是大洋(少数岛弧)玄武岩在石炭纪经高温高压变质作用的产物。由这种特殊的洋壳型高温榴辉岩自身及其引申出的科学问题包括:(1)海南榴辉岩是单体榴辉岩还是榴辉岩集合体?如果是单体,那将是国内出露规模最大的榴辉岩体;(2)海南榴辉岩到底是榴辉岩相岩石还是榴辉岩-高压麻粒岩过渡相岩石?榴辉岩相峰期变质的压力到底有多高?遍布的深熔作用是发生在温压峰期还是在减压过程中的温度峰期?(3)原岩形成于洋盆还是弧后盆地?其与同时代的金沙江-哀牢山-马江洋和邦溪-晨星弧后盆地具有怎样的联系?(4)榴辉岩起因于大洋热俯冲/增生还是大陆俯冲/碰撞环境?以其为代表的古板块缝合带(可称木栏头或潮滩鼻缝合带)向哪里延伸?(5)东、西古特提斯构造域的早期演化有无相似之处?海南陆块或其北部或西部地体是否在石炭纪就已与华南陆块碰撞对接在一起?显然,海南榴辉岩对重构全球古特提斯构造带的早期演化具有重要的科学意义,值得进一步深入研究。
关键词: 洋壳型榴辉岩    高温变质    部分熔融    石炭纪    东古特提斯    
Oceanic-type high-temperature eclogites from Hainan Island, South China: General characteristics and unsolved problems
LIU XiaoChun1,2, HU Juan1,2, CHEN LongYao1,2, CHEN Yi3, WANG Wei1,2, XIA MengMeng1,2, HAN JianEn1,2, HU DaoGong1     
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Natural Rescources, Beijing 100081, China;
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: Eclogites typically occur along the convergent plate boundaries and are generally thought to be markers of the suture zones. These diagnostic metamorphic rocks have recently been founded in the Mulantou area of northeastern Hainan Island, where is covered mostly by Quaternary deposits. The general characteristics of the eclogites are summarized as follows: (1) The eclogites isolatedly occur in the intertidal and subtidal zones at Chaotanbi. The principal part of the outcrops is distributed within an area of ~1.8km2. The dominant structural strikes defined by the gneissosities of the rocks are northeast-southwest to nearly east-west. (2) The eclogites underwent a clockwise metamorphic evolution from epidote amphibolite facie (620~680℃ and 0.87~1.11GPa) through eclogite or transitional eclogite-high-pressure (HP) granulite facies (820~860℃ and 1.70~1.82GPa) to amphibolite facies (700~730℃ and 0.71~0.85GPa) and greenschis facies. (3) Most of the eclogites (65% of total analyzed samples) have normal mid-ocean ridge basalt (N-MORB) affinities, and some are of enriched mid-ocean ridge basalt (E-MORB) and volcanic arc basalt (VAB) affinities. Relatively juvenile Sr-Nd isotopic compositions of the rocks suggest a derivation from the depleted asthenosphere mantle. (4) The protoliths of the eclogites were formed before 355Ma, and prograde and peak to retrograde metamorphism took place at ca. 340~330Ma and ca. 310~300Ma, respectively. The rocks cooling to the closure temperature of the rutile U-Pb system are dated at 292±6Ma. In brief, eclogites from Hainan Island are the products of oceanic basalts (including a few VAB) metamorphosed at high P-T conditions during the Carboniferous. The scientific problems derived from these exceptional oceanic-type high-temperature eclogites theirselves and their extensions include the following aspects: (1) Are the eclogites a single bigger body or a group of smaller bodies? If they are the former case, these eclogites would constitue the beggist eclogite body in China. (2) Are these eclogites belong to eclogite facies rocks or transitional eclogite-HP granulite facies rocks? How high will the pressures reach during the peak metamorphism of the eclogite facies? Whether widespread anatexis occurs at the peak P-T conditions or the peak temperatures during the decompression of the rocks? (3) Were the protoliths of the eclogites formed in an oceanic basin or a back-arc basin? How is it related to the simultaneous Jinshajiang-Ailaoshan-Song Ma Ocean and Bangxi-Chenxing back-arc basin? (4) Were the eclogites resulted from hot oceanic subduction/accretion or continental subduction/collision? Where is the paleosuture (called the Mulantou or Chaotanbi suture) indicated by the extention of eclogite outcrops? (5) Are there any similarities in the earlier evolution between the weasten and eastern Paleo-Tethyan tectonic domains? Whether or not the Hainan continental block, or its northern or western terrane, collided with the South China Block during the Carboniferous? It is obvious that eclogites from Hainan Island are of great significance for reconstructing the early evolution of the global Paleo-Tethyan tectonic belt, and therefore they deserve futher investigations.
Key words: Oceanic-type eclogites    High-temperature metamorphism    Partial melting    Carboniferous    Eastern Paleo-Tethys    

榴辉岩常产于汇聚板块的边界,是鉴别古板块缝合带的重要标志性岩石之一。由于榴辉岩形成于下地壳至上地幔的深度,并多保存有较完整的P-T演化记录,可对造山带的构造过程提供较好的制约,因而对其研究日益受到重视。特别是20世纪80年代超高压(以柯石英的出现为标志)榴辉岩及相关岩石被发现之后(Chopin, 1984; Smith, 1984),至今对高压/超高压变质作用和大洋/大陆板片深俯冲过程的研究方兴未艾。无论是在增生型还是碰撞型造山带,寻找榴辉岩这种特征岩石都是地质学家们的一个主要任务,并且在世界上绝大多数的汇聚板块边界造山带中都获得了成功。在我国,经地质工作者多年的努力,在几条重要的巨型造山带,如天山-北山造山带、阿尔金-昆仑-祁连-秦岭造山带、桐柏-大别-苏鲁造山带和青藏高原-喜马拉雅造山带等,都发现了丰富的榴辉岩(Zhang et al., 2007; Liou et al., 2009)。一般来讲,可以把榴辉岩划分为洋壳型和陆壳型两类,前者的原岩来源于洋壳,由大洋俯冲/增生形成,在我国的典型代表是西天山和北祁连榴辉岩;后者的原岩来自于陆壳,由大陆俯冲/碰撞形成,典型代表是大别山和苏鲁榴辉岩。洋壳型榴辉岩也可产于大陆碰撞带中,如欧洲华力西造山带中的某些榴辉岩(Bernard-Griffiths et al., 1985; Paquette et al., 1989; Medaris et al., 1995),并有榴辉岩记录了从大洋俯冲转化为大陆碰撞的演化过程,如柴北缘榴辉岩(Song et al., 2006)。我国学者已对不同造山带中的高压/超高压榴辉岩及相关岩石开展了大量的精细研究工作,这对中国造山带研究水平的提升起到了很大的促进作用。

2018年,我们在针对海南岛北部的活动构造开展区域地质调查时,在文昌北部主体被第四系覆盖的木栏头地区也发现了榴辉岩,初步的调查结果已由夏蒙蒙等(2019)报道,稍详细的变质岩石学研究由Liu et al. (2021)给出。我们知道,有关海南岛的大地构造单元划分、各单元的构造属性以及地质演化历史等一直存在很大的争议(杨树锋等, 1989; Hsü et al., 1990; Chen et al., 1992; Metcalfe et al., 1993; Li et al., 2002a),对海南岛与东古特提斯和古太平洋板块的构造演化关系也存在诸多不同的看法(Metcalfe, 1996, 2013; Li et al., 2006, 2012; Cai and Zhang, 2009; Zhang et al., 2011; Faure et al., 2016, 2017; He et al., 2018a, b; Shen et al., 2018),榴辉岩的发现可以为上述争议性问题的解释提供重要的借鉴。然而,从初步的研究结果看,海南榴辉岩存在多种特殊性,如露头的孤立性,大洋属性但高温变质,以及石炭纪变质等,这些特殊性为榴辉岩的构造解释带来很大的不确定性。特别是,石炭纪高压变质作用在东南亚古特提斯构造域尚未见报道,其与广布的三叠纪变质事件具有怎样的联系?又怎样制约了东古特提斯的构造演化?这些问题均值得去深入探究。本文首先对海南榴辉岩的基本地质特征进行了概要总结,而后对与榴辉岩自身和引申出来的、尚未解决的科学问题进行了详细的分析和讨论,以利于下一步深入研究工作的开展。

1 区域地质背景

海南岛地处南海西北部,以琼州海峡与华南大陆相隔。在大地构造位置上,它位于欧亚板块、印度板块和太平洋板块的交接部位(图 1a, b),受特提斯构造域和太平洋构造域两大地球动力学系统的控制,具有复杂的构造演化历史。海南岛的前寒武纪结晶基底主要由抱板群、石碌群和石灰顶组构成,其中抱板群的主要岩性是经历角闪岩相变质的约1.43Ga岩浆岩和沉积岩;石碌群是经历绿片岩相变质的约1.44~1.43Ga沉积岩和火山岩;石灰顶组由约1.2~1.0Ga的石英岩和石英片岩组成,角度不整合于石碌群之上(汪啸风等, 1991a; Li et al., 2002b, 2008; Yao et al., 2017; Zhang et al., 2019)。古生代地层主要由砂岩、粉砂岩、页岩和少量灰岩、火山岩夹层组成,一般经历了极低级变质作用;中生代地层主要是白垩纪红层,由湖相碎屑岩组成(汪啸风等, 1991b; 夏邦栋等, 1991a; Jiang et al., 2015a; 张立敏等, 2017)。花岗质岩石的出露面积约占全岛的40%,其中约60%为晚二叠世-三叠纪(约270~230Ma)花岗岩,其它为侏罗纪和白垩纪(约150~70Ma)花岗岩(汪啸风等, 1991c; Li et al., 2006; 陈新跃等, 2011; Wang et al., 2012; Jiang and Li, 2014; Yan et al., 2017; Shen et al., 2018; He et al., 2020)。海南岛的构造体系以东西向为主,由北向南依次发育王五-文教、昌江-琼江、尖峰-吊罗和九所-陵水断裂,由西向东则发育北东向的戈枕和白沙断裂(广东省地质矿产局, 1988; 汪啸风等, 1991a; Metcalfe et al., 1993; Metcalfe, 1996)。根据这些断裂的发育,不同学者对海南岛进行了构造单元划分,有以九所-陵水断裂为界的南北两分(杨树锋等, 1989)、以昌江-琼海断裂为界的南北两分(Hsü et al., 1990)和以白沙断裂为界的东西两分(Metcalfe et al., 1993; Metcalfe, 1996)等几种地体划分模式。

图 1 东南亚地质构造简图(a,据Sone and Metcalfe, 2008; Wang et al., 2018修改)及海南岛地质简图(b,据广东省地质矿产局, 1988; Shen et al., 2018修改) 路径①、②、③、④、⑤代表古特提斯缝合带向东延伸的可能方向,其中路径①据Cai and Zhang (2009),路径②据Li et al. (2002a),路径③据Faure et al. (2016),路径④和⑤据Metcalfe (1996) Fig. 1 Tectonic sketch map of Southeast Asia (a, modified after Sone and Metcalfe, 2008; Wang et al., 2018) and simplified geological map of Hainan Island (b, modified after BGMRG, 1988; Shen et al., 2018) Path ①, ②, ③, ④ and ⑤ represent the predicted eastward extensional directions of the Paleo-Tethyan suture zones. Path ① after Cai and Zhang (2009); Path ② after Li et al. (2002a); Path ③ after Faure et al. (2016); Paths ④ and ⑤ after Metcalfe (1996)

近20年来,海南岛地质研究的一个最大进展是在邦溪和晨星地区识别出石炭纪大洋玄武岩。实际上,这些岩石早已被发现,但以前多被认为是元古代或晚古生代陆内裂谷作用的产物(夏邦栋等, 1991b; Fang et al., 1992; 张业明等, 1998; 梁新权等, 2000; 许德如等, 2001)。新的研究一方面对这套浅变质玄武岩开展了不同方法的同位素定年,获得锆石U-Pb年龄为330±4Ma,全岩Sm-Nd等时线年龄为333±12Ma,角闪石Ar-Ar坪年龄为328±3Ma,从而确定其形成时代为石炭纪;另一方面开展了系统的地球化学研究,确定其为正常洋中脊玄武岩(N-MORB),并推测它们形成于一个狭窄的洋盆或弧后盆地环境(唐红峰, 1999; 李献华等, 2000; Li et al., 2002a; 许德如等, 2006; Xu et al., 2008; 何慧莹等, 2016; He et al., 2018a, b)。石炭纪N-MORB型玄武岩的确立使海南岛晚古生代以来的构造演化与古特提斯的演化更加紧密地联系起来。由于缺乏地质证据,过去对华南与印支陆块之间的金沙江-哀牢山-马江(Song Ma)古特提斯缝合带如何向东延伸的问题存在很大的争议(Metcalfe, 1996, 2002, 2013),现在则多赞同其可能与邦溪-晨星构造带相接(如Li et al., 2002a; Zhang et al., 2011; Faure et al., 2016, 2017; He et al., 2018a, b; Wang et al., 2018)(参见图 1a),尽管有关邦溪-晨星洋盆或弧后盆地的关闭时间尚不清楚。

榴辉岩的发现可能会进一步推动海南岛显生宙(特别是石炭纪)的地质研究工作。榴辉岩发现于文昌北部木栏头地区潮滩鼻的潮间-潮下带,由于这一地区的绝大部分都被第四纪沉积物所覆盖,基岩的出露非常有限,所以以前很少受到关注。为查明榴辉岩周边的区域地质概况,我们调查了木栏头地区的所有基岩露头,并检查了部分钻孔资料。结果表明,陆上的几个露头主要是古生代地层和花岗岩,沿海岸断续出露一些变质岩和花岗岩基岩或巨型转石,并见有辉绿岩脉侵入(图 2)。古生代地层主要是浅变质砂岩和粉砂岩,其碎屑锆石的最小U-Pb年龄峰值约为420Ma(研究团队,未刊资料),限定的最大沉积时代为晚志留世。变质岩石的主体是钙硅酸盐岩和正片麻岩,其次为斜长角闪岩、副片麻岩、石英岩、大理岩和少量超基性岩团块,并被很多花岗岩脉和伟晶岩脉所侵入。正片麻岩的原岩年龄主要集中在280~250Ma,个别为1.45Ga,副片麻岩中中-新元古代的碎屑锆石占有很大比重(研究团队,未刊资料)。在副片麻岩中可见石榴石、十字石和夕线石产出,表明变质作用达到中压角闪岩相,由锆石和独居石U-Pb定年获得的变质时代约为245~235Ma(研究团队,未刊资料)。这些变质岩石成层性较好,片麻理发育,且走向多变,但倾角一般较缓,多为10°~40°。岩石中也发育小型紧闭或开阔褶皱,但由于露头的不连续性,区域构造框架不易建立。花岗质岩石主要是黑云母二长花岗岩,少数为黑云母钾长花岗岩,由锆石U-Pb定年揭示出3期岩浆幕,其时代分别约为255~230Ma、150Ma和100Ma(研究团队,未刊资料)。辉绿岩脉的侵入年龄为238±1Ma(研究团队,未刊资料),这些岩脉也遭受到绿片岩相变质作用的改造,并被大量伟晶岩脉所侵入。

图 2 木栏头地区地质简图(据Liu et al., 2021修改) Fig. 2 Simplified geological map of the Mulantou area (modified after Liu et al., 2021)
2 榴辉岩的基本地质特征 2.1 分布范围和产出特征

如前所述,海南榴辉岩出露于木栏头地区的潮滩鼻潮间-潮下带,在其10km范围内的地表均被第四纪沉积物或海水覆盖。主要露岩区域东西长约1.5km,南北宽约1.2km,总面积约1.8km2(图 3)。退潮时可见数十个露头露出海面(图 4a, b),但大潮时几乎全部被海水淹没,岸边榴辉岩多以巨型岩块形式产出。据当地渔民介绍,以前出露于海面的基岩露头更多,但因修建渔港而被炸平。退大潮期间的无人机航拍和实地考察也表明,主要露头集中区的水下部分基本上是相连的。实际上,潮滩鼻面向海域凸出部的形成即与榴辉岩的产出有关。由此推测,潮滩鼻第四纪沉积物之下的基岩很可能也是榴辉岩。此外,露岩区再向东北约1km以外的深海区域还存在几个孤立的露头,由于尚未考察而无法证实其是否也是榴辉岩,但可能性较大,因为这一海域未见其它类型的岩石。

图 3 以无人机航拍图像为背景的潮滩鼻榴辉岩分布图 Fig. 3 Map showing the distribution of eclogites at Caotanbi on a UAV aerial image

图 4 海南榴辉岩的野外产状 (a)低潮期CTB09及其东北部榴辉岩露头远景;(b)CTB04露头榴辉岩近景;(c)CTB09露头榴辉岩中发育片麻状构造;(d)CTB06露头榴辉岩中发育斑点状斜长石;(e)CTB01露头榴辉岩中发育淡色深熔条带;(f)CTB07露头伟晶岩条带两侧的斜长角闪岩退变带 Fig. 4 Field occurrences of eclogites from Hainan Island (a) panoramic view of eclogites of CTB09 and its northeastern outcrops at low tide; (b) close-up view of eclogite of CTB04 outcrop; (c) gneissic structure developed in eclogite from CTB09 outcrop; (d) spotted plagioclase grains developed in eclogite from CTB06 outcrop; (e) leucocratic bands developed in eclogite from CTB01 outcrop; (f) retrograde zone of amphibolite on two sides of a pegmatite vien in eclogite from CTB07 outcrop

榴辉岩一般保存较好,多为新鲜榴辉岩,也含有少量退变成因的榴闪岩和斜长角闪岩。片麻理发育(图 4c),其优势走向为北东向,其次为近东西向,也有个别呈北西向,倾角以40°~50°居多,少数较陡,可达70°~80°。值得指出的是,由于大部分基岩长期被海水覆盖,牡蛎等海洋生物生长较多,所以岩石的组构要素不易观察和测量,并可能存在一定的误差。然而,榴辉岩作为一种变质岩石,其产状不稳定也不足为怪,推测其主体构造线的走向可能大致呈北东至东西向。野外可见某些榴辉岩中发育斑点状斜长石(图 4d),部分榴辉岩则发育平行于片麻理的淡色深熔条带(图 4e)。个别露头上可见伟晶岩脉或条带,一般宽2~15cm,多与片麻理平行,少数斜交。其中,在CTB07露头上观察到伟晶岩条带的外围形成总宽达25cm的斜长角闪岩退变带(图 4f),说明伟晶岩的侵位与角闪岩相退变质作用密切相关。此外,可见晚期辉绿岩脉侵入到榴辉岩中,宽度一般10~50cm,其侵位显然与高压变质事件无关。

2.2 岩石学及P-T演化

我们对潮间-潮下带25个较大的榴辉岩露头进行了登陆考察。早期已对在岸边3个露头(CTB01、CTB02和CTB03)采集的8件榴辉岩样品的岩相学特征进行了详细描述(Liu et al., 2021),本文根据新获得的样品进行了补充。所有样品均展示了相似或相近的矿物组成以及近于一致的演化过程,根据矿物共生和反应结构,可大致划分出四个变质演化阶段,即绿帘角闪岩相进变质阶段、榴辉岩相/榴辉岩-高压麻粒岩过渡相峰期变质阶段、角闪岩相退变质阶段和绿片岩相退变质阶段。

绿帘角闪岩相进变质阶段:主要体现在石榴石的成分环带及其内丰富的矿物包裹体上(图 5a)。多数榴辉岩样品中的石榴石都展示了化学成分环带,表现为从核到边Mg增高,Fe和Ca降低,指示了进变质演化,但Mn的“铃形”环带已不见保存(Liu et al., 2021);少数富镁榴辉岩中的石榴石环带缺失,说明其成分已在峰期变质过程中被均一化。石榴石中常见的矿物包裹体为绿辉石、普通角闪石、绿帘石/黝帘石、斜长石、石英、磷灰石、金红石、钛铁矿、榍石和黄铁矿(图 5b-d),少数样品中可见绿泥石、白云母、蓝晶石、钾长石、方解石和锆石(图 5e),有关这些包裹体的分布和成分特征已由Liu et al. (2021)详细介绍,其中最重要的特征是斜长石包裹体的普遍性,而绿辉石则集中出现在石榴石的幔-边部。通过进一步的观察,这里再补充以下几点:(1)石英包裹体内有时含有浑圆状或多边形绿辉石小颗粒(参见图 5b),虽然对这种结构的具体含义尚不知晓,但其硬玉分子(Jd)含量稍低于基质中的绿辉石,表明低Na绿辉石的形成略早;(2)部分绿泥石包裹体的形状比较规则(参见图 5e),并可与白云母连生,说明其是早期包裹体,而非晚期蚀变形成;(3)白云母的成分主要是多硅白云母(Si=3.38~3.41),但在样品CTB14-1中也检测出一颗低Si白云母(Si=3.14),不排除为晚期退变成因或经历了改造。此外,在裂隙发育的石榴石中,可见多晶包裹体中有晚期绿泥石、绿帘石和阳起石生长(图 5f),进一步证明了后期退变的影响。由于石榴石核部的成分已发生改变,所以我们无法使用这种矿物来估算早期变质阶段的P-T条件,根据角闪石-斜长石温压计和包含多硅白云母+蓝晶石+黝帘石+斜长石+石英的变质反应估算出的大致P-T区间为620~680℃、0.87~1.11GPa(Liu et al., 2021),这与早期的绿帘角闪岩相包体矿物组合相吻合。

图 5 海南榴辉岩石榴石中的矿物包裹体 (a)样品CTB02-4中石榴石核部包裹绿帘石、石英和磷灰石,背散射(BSE)图像揭示石榴石具明显的成分环带;(b)样品CTB03-1中石榴石包裹绿辉石、石英和金红石,石英中含有浑圆状绿辉石小颗粒;(c)样品CTB01-1中石榴石包裹斜长石、石英和金红石,斜长石可呈自形晶体;(d)样品CTB22-1中石榴石幔-边部包裹绿辉石、斜长石、金红石、钛铁矿和黄铁矿,金红石常与钛铁矿连生;(e)样品CTB04-4中石榴石包裹绿泥石、白云母、蓝晶石、钾长石、石英和金红石;(f)样品CTB14-1中石榴石包裹绿辉石、透辉石、普通角闪石、斜长石、钾长石、石英以及绿泥石、绿帘石和阳起石,后三种矿物明显具有晚期生长特征,绿辉石被透辉石取代. 矿物代号:Act-阳起石; Ap-磷灰石; Chl-绿泥石; Di-透辉石; Ep-绿帘石, Grt-石榴石; Hbl-普通角闪石; Ilm-钛铁矿; Kfs-钾长石; Ky-蓝晶石; Ms-白云母; Omp-绿辉石; Pl-斜长石; Py-黄铁矿; Qtz-石英; Rt-金红石 Fig. 5 Mineral inclusions in garnets from eclogites from Hainan Island (a) epidote, quartz and apatite inclusions in the core of garnet from sample CTB02-4. Backscattered electron (BSE) image shows compositional zoning in garnet; (b) omphacite, quartz and rutile inclusions in garnet from sample CTB03-1. Quartz contains tiny inclusions of rounded omphacite; (c) plagioclase, quartz and rutile inclusions in garnet from sample CTB01-1, among which some plagioclase inclusions occur as idiomorphic crystals; (d) omphacite, plagioclase, rutile, ilmenite and pyrite inclusions in the mantle and rim of garnet from sample CTB22-1, and rutile can be intergrown with ilmenite; (e) chlorite, muscovite, kyanite, K-feldspar, quartz and rutile inclusions in garnet from sample CTB04-4; (f) omphacite, hornblende, plagioclase, K-feldspar, quartz as well as chlorite, epidote and actinolite inclusions in garnet from sample CTB14-1, from whihc late growth of chlorite, epidote and actinolite is clearly indicated, and omphacite is replaced by diopside. Mineral abbreviations: Act-actinolite; Ap-apatite; Chl-chlorite; Di-diopside; Ep-epidote; Grt-garnet; Hbl-hornblende; Ilm-ilmenite; Kfs-K-feldspar; Ky-kyanite; Ms-muscovite; Omp-omphacite; Pl-plagioclase; Py-pyrite; Qtz-quartz; Rt-rutile

榴辉岩相/榴辉岩-高压麻粒岩过渡相峰期变质阶段:榴辉岩的峰期变质矿物组合是石榴石+绿辉石+普通角闪石+石英+金红石,含或不含黝帘石和(或)斜长石(图 6a, b)。不同的样品主要体现在矿物含量的多寡和有无,我们将不含斜长石的样品称为榴辉岩,少数含有斜长石的样品称为石榴绿辉麻粒岩(Liu et al., 2021)或高压麻粒岩(夏蒙蒙等, 2019)。绿辉石中Jd含量的变化范围在15%~32%之间,低于正常的高压/超高压榴辉岩,并含有一定数量的契尔马克分子(Ca-Ts=4%~10%),这也是海南榴辉岩的重要特征之一。在主体矿物中,石榴石、绿辉石和石英的共生关系毋庸置疑,但普通角闪石和斜长石的生长时间可能持续较长。原生的普通角闪石呈特征的褐色,并在结构上与其它榴辉岩相矿物平衡共生。然而,也有相当一部分普通角闪石结晶成较大的晶体,其边缘呈充填状(图 6c),显然形成稍晚。斜长石的情况更为复杂,少数斜长石颗粒可与石榴石和(或)绿辉石构成约120°交角的稳定共生结构(Liu et al., 2021),但也有个别具有低二面角的充填状颗粒(图 6d),且多数斜长石以斑点状或条带状的集合体形式产出,尽管其与其它基质矿物仍平直接触(图 6e)。实际上,野外观察到的淡色条带即主要由斜长石集合体构成,表明他们是由熔体结晶形成的。熔体的发育还表现为围绕石榴石、绿辉石、普通角闪石和黝帘石等矿物形成了斜长石薄膜(图 6f)以及具有低二面角的尖状斜长石小颗粒,表明榴辉岩高峰变质时经历了一定数量的部分熔融。由传统的石榴石-绿辉石-斜长石-石英温压计获得峰期变质条件为750~880℃、1.8~2.2GPa,而更精确的相平衡模拟限定含和不含斜长石样品的P-T条件均在820~860℃、1.70~1.82GPa范围内,进而推测海南榴辉岩是榴辉岩-高压麻粒岩过渡相变质作用的产物(Liu et al., 2021)。

图 6 海南榴辉岩峰期矿物组合及深熔结构 (a)样品CTB21-1中的峰期矿物组合石榴石+绿辉石+石英+金红石;(b)样品CTB03-8中的峰期矿物组合石榴石+绿辉石+普通角闪石+黝帘石;(c)样品CTB15-1中普通角闪石充填在石榴石和绿辉石粒间;(d)样品CTB22-1中具有低二面角的斜长石充填在石榴石和绿辉石粒间;(e)样品CTB14-1中与绿辉石伴生的条带状斜长石集合体;(f)样品CTB12-1中石榴石、黝帘石和石英周围的斜长石薄膜. 矿物代号:Zo-黝帘石 Fig. 6 Peak metamorphic mineral assemblages and anatectic textures of eclogites from Hainan Island (a) mineral assemblage of garnet+omphacite+quartz+rutile from sample CTB21-1; (b) mineral assemblage of garnet+omphacite+hornblende+zoisite from sample CTB03-8; (c) interstitial hornblende between garnet and omphacite from sample CTB15-1; (d) interstitial plagioclase with low dihedral angles between garnet and omphacite from sample CTB22-1; (e) a banded plagioclase aggregate associated with omphacite from sample CTB14-1; (f) plagioclase films around garnet, zoisite and quartz from sample CTB12-1. Mineral abbreviation: Zo-zoisite

角闪岩相和绿片岩相退变质阶段:榴辉岩展示了丰富的退变反应结构,主要以发育各种冠状体和后成合晶为特征。石榴石常被绿色普通角闪石取代或镶边(图 7a),并可形成双层后成合晶结构(图 7b),外层(Ⅰ阶段)主要由粗粒斑点状或蠕虫状普通角闪石+斜长石构成,内层(Ⅱ阶段)由细粒蠕虫状普通角闪石+斜长石±绿泥石±绿帘石构成,与后成合晶矿物相接触的石榴石边部常显示Mg的降低和Fe的升高。绿辉石也发育双层后成合晶结构(图 7c),外层(Ⅰ阶段)由粗粒低Na绿辉石/高Na透辉石+斜长石±普通角闪石构成,内层(Ⅱ阶段)由细粒透辉石+斜长石±阳起石构成,有时整个绿辉石颗粒已全部被蠕虫状透辉石+斜长石±普通角闪石后成合晶所取代,但仍能保持原始绿辉石的形状(图 7d)。普通角闪石的退变主要表现为边部(特别是与石榴石接触部位)由褐色转变成绿色(图 7e),黝帘石的边部被褐色高Fe黝帘石细粒集合体所取代(图 7f),金红石则被榍石镶边或取代。此外,榴辉岩中常发育一系列的水化细脉,其内多形成绿泥石+阳起石+绿帘石±钠长石等低温变质矿物。以上矿物反应结构关系表明,榴辉岩的退变是一个连续的演化过程,Ⅰ阶段后成合晶中低Na绿辉石的最大Jd含量可达25%,指示绿辉石的早期分解发生在>1.3~1.4GPa条件下(假设温度约700~800℃),相当于高压麻粒岩相。退变最彻底的榴辉岩已完全转变为由细粒普通角闪石+斜长石+榍石±石英构成的斜长角闪岩,其形成的P-T条件为700~730℃、0.71~0.85GPa(Liu et al., 2021)。Ⅱ阶段退变矿物组合中常含有绿泥石、阳起石和绿帘石,与水化细脉中的矿物组成相似,表明榴辉岩的最晚期退变只发生在绿片岩相条件下。

图 7 海南榴辉岩中发育的退变反应结构 (a)样品CTB12-1中石榴石被绿色普通角闪石环绕;(b)样品CTB03-7中石榴石边缘发育的双层后成合晶结构,外层由粗粒斑点状普通角闪石+斜长石构成,内层由细粒蠕虫状普通角闪石+斜长石±绿泥石构成;(c)样品CTB03-3中绿辉石边缘发育的双层后成合晶结构,外层由粗粒高Na透辉石+斜长石+普通角闪石构成,内层由细粒透辉石+斜长石±阳起石构成;(d)样品CTB19-1中由蠕虫状高Na透辉石+斜长石+普通角闪石构成的原生绿辉石假象;(e)样品CTB03-7中褐色普通角闪石的边缘被绿色普通角闪石取代;(f)样品CTB03-7中黝帘石的边缘被褐色高Fe黝帘石细粒集合体取代 Fig. 7 Retrograde reaction textures developed in eclogites from Hainan Island (a) green hornblende around garnet from sample CTB12-1; (b) garnet replaced by double-layered symplectites composed of patchy intergrowth of green hornblende+plagioclase in the outer layer and vermicular intergrowth of green hornblende+plagioclase±chlorite in the inner layer from sample CTB03-7; (c) omphacite replaced by double-layered symplectites consisting of relatively coarse-grained Na-rich diopside+plagioclase+hornblende in the outer layer and fine-grained diopside+plagioclase±actinolite in the inner layer from sample CTB03-3; (d) an omphacite pseudomorph composed of vermicular intergrowths of Na-rich diopside+plagioclase+hornblende from sample CTB19-1; (e) brown hornblende rim replaced by green hornblende from sample CTB03-7; (f) zoisite rim replaced by a fine-grained aggregate of brown Fe-rich zoisite from sample CTB03-7

由此可见,海南榴辉岩具有以下2个重要的岩石学特征。其一,榴辉岩形成的温度高,压力低,是一种比较特殊的榴辉岩类型。由峰期P-T条件计算出的地热梯度约为14℃/km,大致相当于60km的埋藏深度。其二,榴辉岩经历了顺时针演化的P-T轨迹(路径Ⅰ;图 8),进变质过程中未经历低温高压的蓝片岩相或榴辉岩相变质,退变质过程中也未穿过以斜方辉石的出现为标志的麻粒岩相的稳定区域,即没有经过近等温减压的热松弛过程。这种特殊性为榴辉岩的构造解释带来了困难(见下文)。

图 8 海南榴辉岩变质作用的P-T轨迹(据Liu et al., 2021修改) 可能的路径Ⅰ据Liu et al. (2021); P-T格子据O'Brien and Rötzler (2003). 黑色断线代表斜长石的稳定上限,样品CTB02-4中不含斜长石,样品CTB03-3中含有斜长石. 矿物代号:Ab-钠长石; Act-阳起石; And-红柱石; Chl-绿泥石; Di-透辉石; Ep-绿帘石; Hbl-普通角闪石; Jd-硬玉; Ky-蓝晶石; Omp-绿辉石; Pl-斜长石; Qtz-石英; Sil-夕线石 Fig. 8 P-T path deduced for eclogites from Hainan Island (modified after Liu et al., 2021) Possible Path I is after Liu et al. (2021); the P-T grid is after O'Brien and Rötzler (2003); the dashed lines represent the upper stability limits of plagioclase modeled for plagioclase-free sample CTB02-4 and plagioclase-bearing sample CTB03-3. Mineral abbreviations: Ab-albite; Act-actinolite; And-andalusite; Chl-chlorite; Di-diopside; Ep-epidote; Hbl-hornblende; Jd-jadeite; Ky-kyanite; Omp-omphacite; Pl-plagioclase; Qtz-quartz; Sil-sillimanite
2.3 原岩属性

从早期对岸边采集的8件样品(Liu et al., 2021)和后期在全区采集的32件样品(详细数据另文发表)的化学分析结果看,海南榴辉岩的原岩主要是拉斑玄武岩,其SiO2= 43.5%~52.7%,Al2O3=13.7%~18.5%,MgO=6.3%~12.6%,Na2O=1.5%~3.7%,K2O= 0.04%~0.53%,Mg#值为43~74。稀土和微量元素特征表明,约65%样品具有正常洋中脊玄武岩(N-MORB)的属性,约20%样品具有富集洋中脊玄武岩(E-MORB)的属性,另约15%样品具有火山弧玄武岩(VAB)的属性。以355Ma为基础计算的初始Sr和Nd同位素比值分别为0.7045~0.7073和-2.3~+7.5(只有2个样品为负值),表明其来源于亏损的软流圈地幔。

2.4 原岩和变质时代

为限定海南榴辉岩的原岩和变质作用时代,我们对在岸边采集的6件保存较好的样品进行了锆石分离和SHRIMP U-Pb定年。所有样品都含有丰富的锆石,但只有具E-MORB属性的样品CTB01-1中的少数锆石核部保留了不清晰的岩浆成因震荡环带,其最老年龄峰值约为355Ma,表明榴辉岩的原岩应形成于石炭纪初期或更早(Liu et al., 2021)。绝大多数的变质锆石都具有极低的U、Th含量,其中U多小于2×10-6,而对U < 0.5×10-6的样品CTB03-7和CTB03-8中的锆石,无论是使用SHRIMP还是LA-ICP-MS测试方法都无法给出准确的年龄数据。对另4件样品中的低U锆石,我们在SHRIMP定年时增加了Pb和U的扫描计数时间,获得的年龄数据虽然误差较大,但与个别高U锆石给出的年龄结果基本一致。变质锆石给出两组年龄数据,分别约为340~330Ma和约310~300Ma,结合锆石的内部结构和包裹体特征,我们将前者解释为进变质时代,后者为峰期及退变质时代(Liu et al., 2021)。此外,侵入于榴辉岩的伟晶岩脉中含有357±4Ma的继承锆石核部和295±1Ma的深熔成因锆石边部(Liu et al., 2021),并且后者中含有石榴石包裹体,所以推测其形成与退变质作用紧密相关。新的野外观察表明,伟晶岩脉的周围发育角闪岩相退变带(参见图 4f),进一步支持了上述推论。侵入于榴辉岩中的辉绿岩脉的年龄为245±1Ma(Liu et al., 2021),考虑到该岩脉也经历了绿片岩相变质作用,所以推测榴辉岩中最晚期的绿片岩相变质可能与木栏头地区的三叠纪变质事件有关。

为进一步约束榴辉岩的变质和冷却时代,我们对U、Th含量相对较高(也仅仅分别为0.11×10-6~0.16×10-6和0.26×10-6~0.28×10-6)的2件非N-MORB属性样品(CTB03-3和CTB01-1)开展了SIMS金红石定年(表 1)。样品CTB03-3中测试的金红石粒径为150~300μm,其U含量为0.85×10-6~6.82×10-6,普通铅206Pb一般小于5%(测点25除外,其206Pb=19.61%),所有30个测点给出的下交点年龄为292±6Ma(MSWD=1.03)(图 9a);样品CTB01-1中测试的金红石颗粒相对较小,粒径为70~110μm,其U含量仅为0.05×10-6~1.28×10-6,普通铅206Pb的变化范围为1.93%~55.36%,除误差较大的低U测点6外,其余29个测点给出的下交点年龄为277±12Ma(MSWD=1.5)(图 9b)。一般认为,在高级变质地体中,金红石的U-Pb年龄代表其冷却至U-Pb同位素体系封闭温度的时代,而封闭温度又取决于矿物颗粒的大小。金红石的Pb扩散实验表明,对于粒径为100μm的金红石颗粒,其封闭温度高达~600℃(Cherniak, 2000)。样品CTB03-3中的金红石具有粒大、高U和低206Pb的特征,获得的U-Pb年龄精度较高,且接近于伟晶岩脉的侵位年龄,因而对榴辉岩的退变质和冷却时间提供了较好的制约。与此相比,样品CTB01-1中的金红石粒小、低U和高206Pb,获得的U-Pb年龄相对年轻且误差较大,只可作为参考。

表 1 海南榴辉岩中金红石的SIMS U-Pb分析数据 Table 1 SIMS U-Pb analyses for rutile from eclogites from Hainan Island

图 9 海南榴辉岩中金红石的U-Pb谐和图 Fig. 9 U-Pb concordia diagrams for rutile from eclogites from Hainan Island
3 尚待解决的科学问题

从以上描述中我们已了解了海南榴辉岩的基本地质特征,其是大洋(少数岛弧)拉斑玄武岩在石炭纪经高温高压变质作用的产物。该巨型榴辉岩体既不同于正常大洋俯冲/增生所形成的低温高压榴辉岩,又与大陆俯冲/碰撞形成的高压/超高压榴辉岩有很大的差别,由此引发了一系列有关榴辉岩自身及其引申出的科学问题亟待解决。

3.1 单体榴辉岩还是榴辉岩集合体?

我们知道,榴辉岩是一种形成于高压条件下的高密度基性岩石,这种坚硬的岩石一般呈较小的扁豆状、透镜状、团块状或似层状产出于其它密度相对较低的高压变质杂岩中,但也有个别榴辉岩体规模较大。世界上单体出露面积最大的榴辉岩体是Hareidland榴辉岩,产于挪威西部片麻岩区,其东西向最长约达6km,宽度0.2~1.5km,总面积约4km2(Mysen and Heier, 1972)。但该榴辉岩体呈岩席状,厚度仅2~500m,且与其它片麻岩褶皱在一起。中国境内出露最大的榴辉岩体是碧溪岭榴辉岩,产于大别山超高压变质带中,以榴辉岩与石榴橄榄岩的共生为特征。该榴辉岩体呈不规则的椭圆状,南北向长约2.0km,东西向最宽达1.4km,出露总面积约1.5km2(Zhang et al., 1995; 刘若新等, 1995)。有趣的是,这两个最大的榴辉岩体都属于源于层状侵入体的陆壳型榴辉岩,与其它陆壳成因的岩石紧密伴生,并都经历了超高压变质作用,其形成均与陆陆碰撞过程中的陆壳深俯冲作用有关。

从外貌上看,海南榴辉岩更像是一个巨型单体榴辉岩,主要表现为:(1)低潮期露出水面的所有露头都是榴辉岩,而且其水下部分基本上是可以相连的;(2)所有的榴辉岩均具有单一的矿物组合,说明其岩性成分基本上是均一的;(3)在榴辉岩的分布区域未发现其它类型的伴生岩石。如果这一推测是正确的,那么即便以其最小面积约1.8km2来衡量,那也是国内出露规模最大的榴辉岩体,也许是世界上最大的单体洋壳型榴辉岩。然而,虽然海南榴辉岩原岩的主体是N-MORB型玄武岩,但少量E-MORB和VAB型玄武岩的存在可能不利于单体榴辉岩的解释。所以,还存在另一种可能性,即海南榴辉岩实际上是多个榴辉岩块体的集合体,其间的围岩(无论是正片麻岩还是副片麻岩)由于抗风化能力较弱,且长期被海水侵蚀,所以在地表很难保存,但这种可能性似乎很小。在潮滩鼻岸边或海中开展钻探验证工作,似乎可以解决这一不确定性问题。

3.2 榴辉岩相还是榴辉岩-高压麻粒岩过渡相岩石?

按照传统的定义,榴辉岩是一种含有石榴石和绿辉石的玄武质成分的变质岩,其在较宽的温度范围内稳定于高压至超高压的条件下,斜长石不是榴辉岩的稳定共生相(Green and Ringwood, 1967);高压麻粒岩是一种含有石榴石+单斜辉石+斜长石+石英矿物组合的变质基性岩,其典型特征是不含斜方辉石,而单斜辉石中的Ca-Ts含量较高,一般稳定的P-T条件为≥700℃、≥1.0GPa(O'Brien and Rötzler, 2003; Pattison, 2003)。榴辉岩和高压麻粒岩可以共存于造山带中的同一构造单元,但二者经常是相转变关系,即高压麻粒岩是由榴辉岩在抬升过程中转变而来,由O'Brien and Rötzler(2003)定义的II型高压麻粒岩即为范例。然而,有些高压麻粒岩形成的P-T条件可能会接近甚至超过榴辉岩相的稳定下限,这些高压麻粒岩一般与榴辉岩伴生,并含有富Ca-Ts绿辉石,故可称为榴辉岩-高压麻粒岩过渡相岩石,最典型的例子来自于欧洲华力西造山带的加厚根部(Štípská et al., 2004; Konopásek and Schulmann, 2005; Puelles et al., 2005; Ferrando et al., 2008)和新西兰Fiordland白垩纪岩浆弧的根部(Clarke et al., 2000, 2013; De Paoli et al., 2009, 2012; Chapman et al., 2015)。榴辉岩与高压麻粒岩不同的共生或伴生关系指示了不同的构造演化过程。

笔者基于早期在岸边获得的有限样品,曾论证海南榴辉岩也形成于榴辉岩-高压麻粒岩过渡相的条件(Liu et al., 2021),其主要证据包括:(1)在经过背散射(BSE)扫描的所有样品的石榴石中都发现了斜长石包裹体,并且石榴石的幔-边部可同时包裹与基质中同种矿物成分相似的斜长石和绿辉石,表明石榴石的生长一直处于斜长石的稳定区域;(2)与石榴石和绿辉石等榴辉岩相矿物粒径相近的斜长石与其它原生矿物平直接触,并可构成约120°的交角,斜长石颗粒本身也没有成分环带,证明其与榴辉岩相矿物平衡共生,而非石榴石或绿辉石的退变产物;(3)实验研究表明,斜长石的稳定上限主要受控于岩石的化学成分(Ringwood and Green, 1966),我们的相平衡模拟证明,相对高Al、低Mg的含斜长石样品中斜长石的稳定上限明显高于不含斜长石的样品,而二者给出的峰期变质条件几乎完全相同(参见图 8Liu et al., 2021)。所以,认为海南榴辉岩有可能是欧洲华力西造山带和新西兰白垩纪岩浆弧之外的又一例典型的榴辉岩-高压麻粒岩过渡相岩石。

然而,通过对更多榴辉岩露头的进一步野外观察和室内鉴定,我们觉得上述结论可能还需仔细斟酌。详细的岩相学观察表明,榴辉岩中基质中的斜长石除个别呈单颗粒产出外,大部分以集合体的形式出现,从而构成了野外所见的斑点状或条带状构造(参见图 4d, e)。由深熔熔体结晶所形成的斜长石薄膜常出现在其它榴辉岩相矿物周围,但未见其环绕斜长石颗粒发育;相反,可见斜长石颗粒的边缘呈低二面角的尖状充填在其它矿物之间(参见图 6d)。这说明,相对粗粒的斜长石集合体可能与斜长石薄膜一样,都是从深熔熔体中结晶出来的。此外,在富Mg榴辉岩样品中,石榴石常包裹少量典型的榴辉岩相矿物多硅白云母和蓝晶石,虽然也发现了与其伴生的高Ca斜长石包裹体(Liu et al., 2021),但多硅白云母的Si值达到3.38~3.41,常指示相当高的压力条件。石榴石多发育一个宽窄不一的无或少包体净边(参见图 5a-e),其外部边缘Mg升高的同时常伴有Ca的降低(Liu et al., 2021),可能暗示已开始减压,但不能排除在净边的早期仍经历一个短暂的压力高峰期,在这一时期基质中的斜长石可能已全部消失,即达到榴辉岩相。

如果以上分析是正确的,那么榴辉岩的峰期演化就可能伴随有从榴辉岩相到与熔体伴生的高压麻粒岩相的转变过程(路径Ⅱ;参见图 8)。从这一假设中引申出来的问题是:(1)榴辉岩相峰期变质的压力到底有多高?从石榴石幔部(包括靠近边部部位)绿辉石+斜长石共生到基质中绿辉石+斜长石共生经历的时间(即石榴石净边的生长时间)似乎不长,所以推测其形成压力不太可能高出斜长石的稳定区域很多。海南榴辉岩中绿辉石的最大Jd含量仅为32%,也指示了相对低压的条件。(2)在石榴石生长过程中有无深熔作用发生?在石榴石的幔-边部可见少量石英+钾长石±斜长石(钠长石)包裹体,这些可能属于深熔熔体结晶的多晶包裹体或者为早期包裹成因(参见图 5f,因裂隙发育而有退变反应发生),或者为后期捕获成因。如果石榴石中含有深熔包体(可能由多硅白云母的脱水熔融形成;Zeng et al., 2009; 高晓英等, 2013),说明深熔作用发生的时间较早,这不利于早期榴辉岩相的推测。(3)为什么基质中的熔体结晶产物几乎都是斜长石,而缺少石英或钾长石等其它长英质矿物?榴辉岩的部分熔融可以形成从中酸性到碱性等各种成分的岩浆,但纯斜长石堆晶(形成斜长岩)实属罕见。实际观察表明,最丰富的斜长石薄膜出现在黝帘石的周围(参见图 6f),其次是石榴石和角闪石的周围,这有可能说明黝帘石的分解可能在榴辉岩的部分熔融过程中起到了重要的作用(Cao et al., 2019)。黝帘石的分解也有利于相对富Ca斜长石的形成,但导致斜长石的堆晶的主要原因除发生在较高的温压条件下外,可能还需考虑熔体的丢失问题,其与石榴石的“平衡”共生也可能隐含石榴石(还可能包括充填状普通角闪石)边部的转熔成因问题(Stevenson, 2006)。显然,有关海南榴辉岩的变质和深熔作用的精细过程尚需进一步深入研究。

3.3 原岩形成于洋盆还是弧后盆地?

东特提斯构造域在晚古生代存在三个大洋,即康西瓦-阿尼玛卿-勉略洋、金沙江-哀牢山-马江(Song Ma)洋和龙木错-双湖-昌宁-孟连洋,三个大洋分隔了华北、华南、印支和滇缅泰马(Sibumasu)等四个陆块(吴福元等, 2020)。现已对产于后2条大洋中的蛇绿岩开展了广泛的同位素定年,其时代主要集中在约380~300Ma(Wang et al., 2000, 2018; Jian et al., 2008, 2009; Zi et al., 2012; Lai et al., 2014; Vựợng et al., 2013; Zhai et al., 2013, 2016; Zhang et al., 2014; Qian et al., 2016; Yang et al., 2016),说明晚泥盆世-石炭纪是东古特提斯洋盆的主要打开时期。目前对三个大洋的性质和形成机制还存在着不同的看法,基于龙木错-双湖-昌宁-孟连缝合带中早古时代蛇绿岩的存在(李才等, 2016)和临近缝合带约380~310Ma岛弧岩浆作用的发育(Jiang et al., 2015b; Qian et al., 2015; Nie et al., 2016; Wang et al., 2017; Zhai et al., 2018),吴福元等(2020)推测,龙木错-双湖-昌宁-孟连洋是一个长期演化的原-古特提斯洋盆,因这个大洋在约380Ma开始向北俯冲,导致康西瓦-阿尼玛卿-勉略洋重新打开,并因弧后扩张而形成金沙江-哀牢山-马江洋。从地理和地质位置上看,海南岛北部的大洋环境似乎可以与金沙江-哀牢山-马江洋相对应。然而,在金沙江和马江产出的榴辉岩均形成于约245~230Ma(Nakano et al., 2010; Zhang et al., 2013; Tang et al., 2020),表明该大洋的最终关闭时间是在早三叠世。所以,金沙江-哀牢山-马江洋能否直接延伸到海南岛北部,还存在很大的疑问。

虽然在海南榴辉岩中并未获得精确的原岩形成年龄,但由某些残留的锆石岩浆核推测其形成于355Ma之前,这一时代与金沙江-哀牢山-马江洋的存在时间是一致的。榴辉岩中绝大部分具有N-MORB的属性,但也有具E-MORB和VAB属性的样品(注:这里尚不能排除某些样品由于深熔作用的影响而导致高场强元素的改变,从而对构造属性的判别出现偏差,因为在同一露头上采集的样品有时显示出不同的属性),似乎类似于弧后盆地环境下形成的岩石组合。但考虑到海南岛的前寒武纪变质基底与华南和印支陆块均存在较大的差别,并不能排除海南陆块(包含南海中的基底部分)是一个独立陆块的可能性。如果金沙江-哀牢山-马江缝合带延伸到海南岛的南部(Metcalfe, 1996),那么这一陆块与华南陆块之间就有可能存在另一个晚古生代大洋盆地。另一方面,在海南岛昌江-琼海断裂以北的邦溪-晨星一带还产出一套时代约330Ma、具有N-MORB属性的浅变质玄武岩,地球化学示踪表明其也形成于弧后盆地环境(唐红峰, 1999; 李献华等, 2000; Li et al., 2002a; Xu et al., 2008; 何慧莹等, 2016; He et al., 2018a, b)。那么,相距超过100km,但原岩同属于石炭纪的榴辉岩与变质玄武岩具有怎样的联系?二者是形成于同一弧后盆地而经历不同类型变质作用的洋壳残片,还是邦溪-晨星仅代表北部大洋向南俯冲到海南陆块之下而形成的小型弧后盆地?由此可见,恢复和重建晚古生代海南岛北部的洋-陆构造格局对揭示东南亚古特提斯构造域的构造演化至关重要。

3.4 起因于大洋热俯冲还是弧陆/陆陆碰撞?

如前所述,海南榴辉岩是形成于压力相对较低的洋壳型高温榴辉岩,那么,哪一种构造环境才能使大洋玄武岩在相对较高的地热梯度条件下发生榴辉岩相(或榴辉岩-高压麻粒岩过渡相)变质?可用以解释的模型包括大洋俯冲/增生模型和大陆俯冲/碰撞模型,以下对两种模型进行了优劣分析。值得指出的是,由于海南榴辉岩露头的孤立性,仅从榴辉岩自身来解释其成因有一定的局限性,我们将主要借助于区域大地构造分析来提供佐证。

对于大洋俯冲/增生模型,对其最有利的区域地质事实是:晚古生代是东古特提斯构造域大洋打开的主要时期,并且从约380Ma开始发育岛弧岩浆作用,意味着大洋俯冲作用已在这一时期开始发生。所以,在石炭纪沿大洋俯冲带形成增生型高压变质杂岩并不为奇。这一假设的最大优势是不需改变东亚陆块均在三叠纪早期汇聚在一起的模式,也与许多学者推崇的马江缝合带向东延伸到海南岛中部的观点(Li et al., 2002a; Zhang et al., 2011; Faure et al., 2016, 2017; He et al., 2018a, b; Wang et al., 2018)不相矛盾。然而,虽然某些与大洋俯冲有关的石榴角闪岩或高压麻粒岩的形成条件可达约700~800℃、1.1~1.5GPa(Sorensen and Barton, 1987; García-Casco et al., 2008; Rossetti et al., 2010; Angiboust et al., 2017),但统计分析表明,在大洋俯冲带中榴辉岩的变质温度很难超过650℃(Erdman and Lee, 2014)。像海南榴辉岩这样形成于较高地热梯度下的高压岩石需要一个比正常的大洋俯冲更加温暖的环境,这种环境或者由年轻的热洋壳或洋脊俯冲产生,或者俯冲板片接近于岩浆弧的根部。遗憾的是,由洋壳热俯冲形成的高压岩石一般都经历了逆时针的P-T演化(陈意, 2019),这与海南榴辉岩的顺时针P-T轨迹不相一致。实际上,在全球尚未找到与海南榴辉岩的变质演化类似,但形成于大洋俯冲/增生环境下的榴辉岩实例。当然,海南榴辉岩也许就是一种特殊的岩石类型,它形成于特殊的大洋热俯冲环境或特殊的机制。

仅从海南榴辉岩的变质特征看,用大陆俯冲/碰撞模型来解释其成因比较合理,但这与榴辉岩原岩的大洋属性不相吻合。基于欧洲华力西造山带中与海南榴辉岩形成条件类似(即同为榴辉岩-高压麻粒岩过渡相)的早石炭世榴辉岩同时包含了洋壳和陆壳两种类型,我们提出海南榴辉岩的形成可能与伴随大洋俯冲而后发生的海南陆块(或其一部分)与华南陆块的碰撞有关(Liu et al., 2021)。这一模型既可以合理地解释海南榴辉岩的高P-T变质环境以及从约340~330Ma到310~300Ma的长时同位素年龄记录,也能同与大洋俯冲同时代(约330Ma)发育的邦溪-晨星弧后盆地和某些岛弧型火山岩(陈新跃等, 2013; Li et al., 2018)完美配套。然而,该模型的一个最大的问题是,迄今尚未发现与榴辉岩相伴生的陆壳成因的高压变质岩。此外,该假设似乎与海南岛石炭纪的沉积相和古地理环境也略有冲突。陈耀钦等(1991)的研究表明,海南岛与华南大陆在石炭纪属于两个独立地体,其沉积环境和古生物面貌有很大差异,并且海水从海南岛南部向北部逐渐加深,进而推测这一时期海南与华南陆块之间还存在一个开阔的大洋,而二者最终的碰撞可能发生在中生代。但同样基于古生物地理和地层学证据,Metcalfe(1988, 1996, 2002, 2013)却认为印支和华南(包括海南岛)陆块在晚泥盆-早石炭世即已汇聚在一起。所以,海南与华南陆块在石炭纪对接碰撞也并非是不可能的。

无论是大洋俯冲/增生模型还是大陆俯冲/碰撞模型,只要不是混杂岩底劈(mélange diapir)成因,那么海南榴辉岩都可能代表一条古板块缝合带(可称木栏头或潮滩鼻缝合带)。那接下来的问题是,这条古缝合带是如何延伸的?考虑到大陆裂解与古缝合带常具有继承关系(Murphy et al., 2006; Buiter and Torsvik, 2014),推测其位置最有可能与现今的琼州海峡深大断裂大致吻合。然而,我们在榴辉岩北部的三叠纪变质岩中发现了约1.46Ga的岩浆锆石记录(研究团队,未刊资料),有可能说明抱板群变质基底可能已延伸到木栏头地区,加之榴辉岩的优势构造走向是北东向,所以也不排除古缝合带是沿北东向的白沙断裂发育的。还有一种可能,如果榴辉岩和邦溪-晨星大洋玄武岩形成于同一个石炭纪弧后盆地,那么木栏头(或潮滩鼻)古缝合带就可以直接与邦溪-晨星构造带相连。当然,目前对邦溪-晨星弧后盆地的闭合时间尚未确定,这将是今后研究工作中的一项重要内容。

3.5 对东、西古特提斯演化的差异性有何启示?

一般认为,特提斯的演化经历了原特提斯(早古生代)、古特提斯(晚古生代)和新特提斯(中新生代)三个阶段(吴福元等, 2020),其中古特提斯演化的一个重要特征是古特提斯洋在东西方向关闭时间上的不一致。在西部,北方劳亚大陆和南方冈瓦纳大陆之间的瑞克(Rheic)洋在石炭纪(约360~330Ma)关闭,形成欧洲华力西造山带;而东部,华北、华南、印支和滇缅泰马陆块之间的三条古特提斯洋均在三叠纪(约250~230Ma)关闭,形成秦岭-桐柏-大别-苏鲁、金沙江-哀牢山-马江和龙木错-双湖-昌宁-孟连等三条古缝合带。大洋关闭和陆陆碰撞的重要标志之一是以榴辉岩为代表的高压/超高压变质岩石的广泛产出,所以,榴辉岩变质时代的确定对大洋关闭时间的限定起了重要作用。古特提斯构造域中陆块从西向东的穿时碰撞过程,显然是古特提斯构造演化研究中的重要科学问题,但国内对古特提斯东西对比研究的关注较少(吴福元等, 2020)。

仅从榴辉岩的视野看,石炭纪榴辉岩主要出露在西古特提斯构造域(即欧洲华力西造山带)(Faryad, 2011),但东古特提斯构造域也有这一时期榴辉岩产出的记录。在西亚,西部大高加索(Great Caucasus)Red Cliff榴辉岩的形成时代约为320~300Ma(Perchuk and Philippot, 1997; Philippot et al., 2001),而东部伊朗Shanderman和Rasht榴辉岩的变质年龄约为350~300Ma(Zanchetta et al., 2009; Rossetti et al., 2017)。这两处洋壳型榴辉岩的一个共同特点是均形成于中低温高压变质条件(分别为680℃、1.6GPa和470~510℃、2.1~2.3GPa),并与蓝片岩伴生,其形成与基梅里(Cimmerian continent)-欧亚大陆之间的大洋俯冲/增生有关,其中大高加索缝合带的闭合时间是在石炭纪,而伊朗Alborz缝合带的闭合延续到二叠-三叠纪。到东亚,石炭纪榴辉岩仅见于大别山的熊店(Sun et al., 2002; Cheng et al., 2009; Wu et al., 2009),也是中温高压(约620℃、2.0GPa)、与大洋俯冲/增生有关的洋壳型榴辉岩,并可与其北部同时代的角闪岩相武关-龟山杂岩构成双变质带(Liu et al., 2011, 2013; Chen et al., 2014, 2020),但华北-华南陆块之间大洋的最终关闭和陆陆碰撞的时间也是在三叠纪。

虽然东古特提斯洋的主要关闭时间是在三叠纪,但由于劳亚和冈瓦纳大陆之间存在多个小陆块,所以并不排除有些陆块在更早的时间即已汇聚在一起,Pontides在石炭纪沿大高加索缝合线增生到欧亚大陆边缘就是一个很好的例子。海南榴辉岩的成因虽然还存在大洋增生和大陆碰撞两种可能性,但我们认为后一种的可能性更大。至于华南、海南和印支陆块如何碰撞,我们提出了两种可能的模式(Liu et al., 2021):其一是假设华南、海南和印支陆块分别是古特提斯洋中的独立块体,在约340~330Ma华南-海南之间的大洋向南俯冲时,在海南岛北部形成邦溪-晨星弧后盆地,在约310~300Ma大洋和弧后盆地同时关闭,华南和海南碰撞形成一个统一的大陆,而后在250~230Ma这个大陆与印支陆块碰撞,形成金沙江-哀牢山-马江缝合带;其二是假设海南与印支属于同一陆块,其与华南之间的大洋在石炭纪的向南俯冲导致邦溪-晨星弧后盆地的形成,但当其北部地体与华南碰撞时,弧后盆地继续扩张,并直至三叠纪才最后关闭,该模式赞同金沙江-哀牢山-马江缝合带延伸到海南岛中部。无论哪种模式,在木栏头地区发育的三叠纪角闪岩相变质作用都可被视为这一最终碰撞造山事件的远程响应。显然,两种模式均需要进一步证实或证伪。

4 结语

海南榴辉岩是一种罕见的、形成于相对较高地热梯度环境下的洋壳型高温榴辉岩,因其刚刚被发现,且露头孤立,又形成于出人意料之外的石炭纪时期,所以与榴辉岩自身和引申出的很多科学问题尚不十分清楚。对海南榴辉岩的研究意义不仅体现在东古特提斯构造演化历史的重建上,由其确立的石炭纪古缝合带对新生代雷琼拗陷和琼州海峡的成因也将有重要的启示,同时对海南岛及邻区的活动构造研究与地壳稳定性评价也有现实意义。因此,详细调查和研究海南榴辉岩以及与其相关的石炭纪岩石,进而重建海南岛及邻区的早古生代地质演化历史势在必行。

致谢      致谢李秋立和凌潇潇协助完成了金红石的U-Pb同位素分析和相关数据处理,在此深表谢意。同时感谢翟庆国研究员和匿名评审者提出的批评和建设性意见,这使本文更加完善。

谨以此文敬贺沈其韩院士百岁华诞!

参考文献
Angiboust S, Hyppolito T, Glodny J, Cambeses A, Garcia-Casco A, Calderón M and Juliani C. 2017. Hot subduction in the Middle Jurassic and partial melting of oceanic crust in Chilean Patagonia. Gondwana Research, 42: 104-125 DOI:10.1016/j.gr.2016.10.007
Bernard-Griffiths J, Peucat JJ, Cornichet J, de Léon MIP and Ibarguchi JG. 1985. U-Pb, Nd isotope and REE geochemistry in eclogites from the Cabo Ortegal complex, Galicia, Spain: An example of REE immobility conserving MORB-like patterns during high-grade metamorphism. Chemical Geology: Isotope Geoscience Section, 52(2): 217-225 DOI:10.1016/0168-9622(85)90019-3
Buiter SJH and Torsvik TH. 2014. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?. Gondwana Research, 26(2): 627-653 DOI:10.1016/j.gr.2014.02.007
Bureau of Geology and Mineral Resources of Guangdong Province (BGMRG). 1988. Regional Geology of Guangdong Province. Beijing: Geological Publishing House, 1-602 (in Chinese)
Cai JX and Zhang KJ. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35-43 DOI:10.1016/j.tecto.2008.12.003
Cao WT, Gilotti JA, Massonne HJ, Ferrando S and Foster Jr CT. 2019. Partial melting due to breakdown of an epidote-group mineral during exhumation of ultrahigh-pressure eclogite: An example from the North-East Greenland Caledonides. Journal of Metamorphic Geology, 37(1): 15-39 DOI:10.1111/jmg.12447
Chapman T, Clarke GL, Daczko NR, Piazolo S and Rajkumar A. 2015. Orthopyroxene-omphacite- and garnet-omphacite-bearing magmatic assemblages, Breaksea orthogneiss, New Zealand: Oxidation state controlled by high-P oxide fractionation. Lithos, 216-217: 1-16 DOI:10.1016/j.lithos.2014.11.019
Chen HH, Sun S, Hsü KJ, Dobson J and Yu ZY. 1992. Tectonics of the Hainan orogenic belt: A preliminary study. Memoir of Lithospheric Tectonic Evolution Research, 1: 43-48
Chen LY, Liu XC, Qu W and Hu J. 2014. U-Pb zircon ages and geochemistry of the Wuguan complex in the Qinling orogen, central China: Implications for the Late Paleozoic tectonic evolution between the Sino-Korean and Yangtze cratons. Lithos, 192-195: 192-207 DOI:10.1016/j.lithos.2014.01.014
Chen LY, Liu XC, Qu W and Hu J. 2020. Metamorphic evolution and 40Ar/39Ar geochronology of the Wuguan Complex, eastern Qinling area, China: Implications for the Late Paleozoic tectonic evolution of the Qinling orogen. Lithos, 358-359: 105415 DOI:10.1016/j.lithos.2020.105415
Chen XY, Wang YJ, Fan WM, Zhang FF, Peng TP and Zhang YZ. 2011. Zircon LA-ICP-MS U-Pb dating of granitic gneisses from Wuzhishan area, Hainan, and geological significances. Geochimica, 40(5): 454-463 (in Chinese with English abstract)
Chen XY, Wang YJ, Zhang YZ, Zhang FF and Wen SN. 2013. Geochemical and geochronological characteristics and its tectonic significance of andesitic volcanic rocks in Chenxing area, Hainan. Geotectonica et Metallogenia, 37(1): 99-108 (in Chinese with English abstract)
Chen Y. 2019. Different metamorphic records between subduction initiation and mature subduction. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 490-498 (in Chinese with English abstract)
Chen YQ, Chen PQ and Huang YH. 1991. Sedimentary Facies Palaeogeography and Metallogenic Prognosis of the Stratabound Ore Deposits in Carboniferous, Guangdong and Hainan Provinces in China. Wuhan: China University of Geosciences Press, 1-115 (in Chinese with English abstract)
Cheng H, King RL, Nakamura E, Vervoort JD, Zheng YF, Ota T, Wu YB, Kobayashi K and Zhou ZY. 2009. Transitional time of oceanic to continental subduction in the Dabie orogen: Constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating. Lithos, 110(1-4): 327-342 DOI:10.1016/j.lithos.2009.01.013
Cherniak DJ. 2000. Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139(2): 198-207 DOI:10.1007/PL00007671
Chopin C. 1984. Coesite and pure pyrope in high grade pelitic blueschists of the Western Alps: A first record and some consequences. Contributions to Mineralogy and Petrology, 86: 107-188 DOI:10.1007/BF00381838
Clarke GL, Klepeis KA and Daczko NR. 2000. Cretaceous high-P granulites at Milford Sound, New Zealand: Metamorphic history and emplacement in a convergent margin setting. Journal of Metamorphic Geology, 18(2): 359-374
Clarke GL, Daczko NR and Miescher D. 2013. Identifying relic igneous garnet and clinopyroxene in eclogite and granulite, Breaksea Orthogneiss, New Zealand. Journal of Petrology, 54(9): 1921-1938 DOI:10.1093/petrology/egt036
De Paoli MC, Clarke GL, Klepeis KA, Allibone AH and Turnbull IM. 2009. The eclogite-granulite transition: mafic and intermediate assemblages at Breaksea Sound, New Zealand. Journal of Petrology, 50(12): 2307-2343 DOI:10.1093/petrology/egp078
De Paoli MC, Clarke GL and Daczko NR. 2012. Mineral Equilibria Modeling of the granulite-eclogite transition: Effects of whole-rock composition on metamorphic facies type-assemblages. Journal of Petrology, 53(5): 949-970 DOI:10.1093/petrology/egs004
Erdman ME and Lee CTA. 2014. Oceanic- and continental-type metamorphic terranes: Occurrence and exhumation mechanisms. Earth-Science Reviews, 139: 33-46 DOI:10.1016/j.earscirev.2014.08.012
Fang Z, Zhao JX and McCulloch MT. 1992. Geochemical and Nd isotopic study of Palaeozoic bimodal volcanics in Hainan Island, South China: Implications for rifting tectonics and mantle reservoirs. Lithos, 29: 127-139 DOI:10.1016/0024-4937(92)90037-Y
Faryad SW. 2011. Distribution and geological position of high-/ultrahigh-pressure units within the European Variscan belt: A review. In: Dobrzhinetskaya LF, Faryad SW, Wallis S and Cuthbert S (eds.). Ultrahigh Pressure Metamorphism: 25-Years after the Discovery of Coesite and Diamond. Amsterdam: Elsevier, 361-397
Faure M, Lin W, Chu Y and Lepvrier C. 2016. Triassic tectonics of the southern margin of the South China Block. Comptes Rendus Geoscience, 348(1): 5-14 DOI:10.1016/j.crte.2015.06.012
Faure M, Chen Y, Feng ZH, Shu LS and Xu ZQ. 2017. Tectonics and geodynamics of South China: An introductory note. Journal of Asian Earth Sciences, 141: 1-6 DOI:10.1016/j.jseaes.2016.11.031
Ferrando S, Lombardo B and Compagnoni R. 2008. Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). European Journal of Mineralogy, 20(5): 777-790 DOI:10.1127/0935-1221/2008/0020-1891
Gao XY, Zheng YF and Cen YX. 2013. Partial melting of deeply subducted continental crust: Evidence from multiphase solid inclusions in ultrahigh-pressure eclogite from the Dabie orogen. Chinese Science Bulletin, 58(22): 2203-2208 (in Chinese) DOI:10.1360/csb2013-58-22-2203
García-Casco A, Lázaro C, Rojas-Agramonte Y, Kröner A, Torres-Roldán RL, Núñez K, Neubauer F, Millán G and Blanco-Quintero I. 2008. Partial melting and counterclockwise P-T path of subducted oceanic crust (Sierra del Convento mélange, Cuba). Journal of Petrology, 49(1): 129-161
Green DH and Ringwood AE. 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica et Cosmochimica Acta, 31(5): 767-833 DOI:10.1016/S0016-7037(67)80031-0
He HY, Wang YJ, Zhang YZ, Chen XY and Zhou YZ. 2016. Extremely depleted Carboniferous N-MORB metabasite at the Chenxing area (Hainan) and its geological significance. Earth Science, 41(8): 1361-1375 (in Chinese with English abstract)
He HY, Wang YJ, Zhang YH, Qian X and Zhang YZ. 2018a. Fingerprints of the Paleotethyan back-arc basin in Central Hainan, South China: Geochronological and geochemical constraints on the Carboniferous metabasites. International Journal of Earth Sciences, 107(2): 553-570 DOI:10.1007/s00531-017-1508-3
He HY, Wang YJ, Qian X and Zhang YZ. 2018b. The Bangxi-Chenxing tectonic zone in Hainan Island (South China) as the eastern extension of the Song Ma-Ailaoshan zone: Evidence of Late Paleozoic and Triassic igneous rocks. Journal of Asian Earth Sciences, 164: 274-291 DOI:10.1016/j.jseaes.2018.06.032
He HY, Wang YJ, Cawood PA, Qian X, Zhang YZ and Zhao GF. 2020. Permo-Triassic granitoids, Hainan Island, link to Paleotethyan not Paleopacific tectonics. GSA Bulletin, 132(9-10): 2067-2083 DOI:10.1130/B35370.1
Hsü KJ, Li JL, Chen HH, Wang QC, Sun S and Şengör AMC. 1990. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics, 183(1-4): 9-39 DOI:10.1016/0040-1951(90)90186-C
Jian P, Liu DY and Sun XM. 2008. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China: Geochronological constraints for the evolution of Paleo-Tethys. Journal of Asian Earth Sciences, 32(5-6): 371-384 DOI:10.1016/j.jseaes.2007.11.006
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006
Jiang QY, Li C, Su L, Hu PY, Xie CM and Wu H. 2015b. Carboniferous arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 100: 132-144 DOI:10.1016/j.jseaes.2015.01.012
Jiang XY and Li XH. 2014. In situ zircon U-Pb and Hf-O isotopic results for ca. 73Ma granite in Hainan Island: Implications for the termination of an Andean-type active continental margin in southeast China. Journal of Asian Earth Sciences, 82: 32-46
Jiang XY, Li XH, Collins WJ and Huang HQ. 2015a. U-Pb age and Hf-O isotopes of detrital zircons from Hainan Island: Implications for Mesozoic subduction models. Lithos, 239: 60-70 DOI:10.1016/j.lithos.2015.10.006
Konopásek J and Schulmann K. 2005. Contrasting Early Carboniferous field geotherms: Evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). Journal of the Geological Society, London, 162(3): 463-470 DOI:10.1144/0016-764904-004
Lai CK, Meffre S, Crawford AJ, Zaw K, Halpin JA, Xue CD and Salam A. 2014. The Central Ailaoshan ophiolite and modern analogs. Gondwana Research, 26(1): 75-88 DOI:10.1016/j.gr.2013.03.004
Li C, Xie CM, Wang M, Wu YW, Hu PY, Zhang XZ, Xu F, Fan JJ, Wu H, Liu YM, Peng H, Jiang QY, Chen JW, Xu JX, Zhai QG, Dong YS, Zhang TY and Huang XP. 2016. Geology of the Qiangtang Region. Beijing: Geological Publishing House, 1-681 (in Chinese)
Li QL, Li SG, Zheng YF, Li HM, Massonne HJ and Wang QC. 2003. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history. Chemical Geology, 200(3-4): 255-265 DOI:10.1016/S0009-2541(03)00194-3
Li QL, Lin W, Su W, Li XH, Shi YH, Liu Y and Tang GQ. 2011. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, 122(1-2): 76-86 DOI:10.1016/j.lithos.2010.11.007
Li SB, He HY, Qian X, Wang YJ and Zhang AM. 2018. Carboniferous arc setting in central Hainan: Geochronological and geochemical evidences on the andesitic and dacitic rocks. Journal of Earth Science, 29(2): 265-279 DOI:10.1007/s12583-017-0936-0
Li XH, Zhou HW, Ding SJ, Li JY, Zhang RJ, Zhang YM and Ge WC. 2000. Sm-Nd isotopic constraints on the age of the Bangxi-Chenxing ophiolite in Hainan Island: Implications for the tectonic evolution of eastern Paleo-Tethys. Acta Petrologica Sinica, 16(3): 425-432 (in Chinese with English abstract)
Li XH, Zhou HW, Chung SL, Ding SJ, Liu Y, Lee CY, Ge WC, Zhang YM and Zhang RJ. 2002a. Geochemical and Sm-Nd isotopic characteristics of metabasites from Central Hainan Island, South China and their tectonic significance. The Island Arc, 11(3): 193-205 DOI:10.1046/j.1440-1738.2002.00365.x
Li XH, Li ZX, Li WX and Wang YJ. 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island. The Journal of Geology, 114(3): 341-353 DOI:10.1086/501222
Li XH, Li ZX, He B, Li WX, Li QL, Gao YY and Wang XC. 2012. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chemical Geology, 328: 195-207 DOI:10.1016/j.chemgeo.2011.10.027
Li ZX, Li XH, Zhou HW and Kinny PD. 2002b. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163-166 DOI:10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
Li ZX, Li XH, Li WX and Ding SJ. 2008. Was Cathaysia part of Proterozoic Laurentia? New data from Hainan Island, South China. Terra Nova, 20(2): 154-164 DOI:10.1111/j.1365-3121.2008.00802.x
Liang XQ, Fan WM and Xu DR. 2000. Sm-Nd age of Tunchang basaltic komatiites and its geological significance in Hainan Island. Scientia Geologica Sinica, 35(2): 240-244 (in Chinese with English abstract)
Liou JG, Ernst WG, Zhang RY, Tsujimori T and Jahn BM. 2009. Ultrahigh-pressure minerals and metamorphic terranes: The view from China. Journal of Asian Earth Sciences, 35(3-4): 199-231 DOI:10.1016/j.jseaes.2008.10.012
Liu RX, Fan QC, Li HM, Zhang Q, Zhao DS and Ma BL. 1995. The nature of protoliths of Bixiling garnetperidotite-eclogite massif in Dabie Mountains and the implication of its isotopic geochronology. Acta Petrologica Sinica, 11(3): 243-256 (in Chinese with English abstract)
Liu XC, Jahn BM, Hu J, Li SZ, Liu X and Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai orogen, central China: Implications for multiple accretion/collision processes prior to terminal continental collision. Journal of Metamorphic Geology, 29(9): 979-1002 DOI:10.1111/j.1525-1314.2011.00952.x
Liu XC, Jahn BM, Li SZ and Liu YS. 2013. U-Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China. Tectonophysics, 599: 67-88 DOI:10.1016/j.tecto.2013.04.003
Liu XC, Chen Y, Wang W, Xia MM, Hu J, Li YB, Hu DG and Song B. 2021. Carboniferous eclogite and garnet-omphacite granulite from northeastern Hainan Island, South China: Implications for the evolution of the eastern Palaeo-Tethys. Journal of Metamorphic Geology DOI:10.1111/jmg.12563
Medaris Jr LG, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelínek E and Mísař Z. 1995. Garnet pyroxenite and eclogite in the Bohemian Massif: Geochemical evidence for Variscan recycling of subducted lithosphere. Geologische Rundschau, 84(3): 489-505 DOI:10.1007/BF00284516
Metcalfe I. 1988. Origin and assembly of South-east Asian continental terranes. In: Audley-Charles MG and Hallam A (eds.). Gondwana and Tethys. Geological Society, London, Special Publication, 37: 101-118
Metcalfe I, Shergold IH and Li ZX. 1993. IGCP 321 Gondwana dispersion and Asian accretion: Fieldwork on Hainan Island. Episodes, 16(4): 443-447
Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605-623 DOI:10.1080/08120099608728282
Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551-566 DOI:10.1016/S1367-9120(02)00022-6
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33 DOI:10.1016/j.jseaes.2012.12.020
Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA and Dostal J. 2006. Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture?. Geology, 34(5): 325-328 DOI:10.1130/G22068.1
Mysen BO and Heier KS. 1972. Petrogenesis of eclogites in high grade metamorphic gneisses, exemplified by the Hareidland eclogite, Western Norway. Contributions to Mineralogy and Petrology, 36: 73-94 DOI:10.1007/BF00372836
Nakano N, Osanai Y, Sajeev K, Hayasaka Y, Miyamoto T, Minh NT, Owada M and Windley B. 2010. Triassic eclogite from northern Vietnam: Inferences and geological significance. Journal of Metamorphic Geology, 28(1): 59-76 DOI:10.1111/j.1525-1314.2009.00853.x
Nie XM, Feng QL, Metcalfe I, Baxter AT and Liu GC. 2016. Discovery of a Late Devonian magmatic arc in the southern Lancangjiang zone, western Yunnan: Geochemical and zircon U-Pb geochronological constraints on the evolution of Tethyan ocean basins in SW China. Journal of Asian Earth Sciences, 118: 32-50 DOI:10.1016/j.jseaes.2015.12.026
O'Brien PJ and Rötzler J. 2003. High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21(1): 3-20 DOI:10.1046/j.1525-1314.2003.00420.x
Paquette JL, Menot RP and Peucat JJ. 1989. REE, Sm-Nd and U-Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): Evidence for crustal contamination. Earth and Planetary Science Letters, 96(1-2): 181-198 DOI:10.1016/0012-821X(89)90131-3
Pattison DRM. 2003. Petrogenetic significance of orthopyroxene-free garnet+clinopyroxene+plagioclase ±quartz-bearing metabasites with respect to the amphibolite and granulite facies. Journal of Metamorphic Geology, 21(1): 21-34 DOI:10.1046/j.1525-1314.2003.00415.x
Perchuk A and Philippot P. 1997. Rapid cooling and exhumation of eclogitic rocks from the Great Caucasus, Russia. Journal of Metamorphic Geology, 15(3): 299-310 DOI:10.1111/j.1525-1314.1997.00022.x
Philippot P, Blichert-Toft J, Perchuk A, Costa S and Gerasimov V. 2001. Lu-Hf and Ar-Ar Chronometry supports extreme rate of subduction zone metamorphism deduced from geospeedometry. Tectonophysics, 342(1-2): 23-38 DOI:10.1016/S0040-1951(01)00155-X
Puelles P, ábalos B and Ibarguchi JIG. 2005. Metamorphic evolution and thermobaric structure of the subduction-related Bacariza high-pressure granulite formation (Cabo Ortegal Complex, NW Spain). Lithos, 84(1-2): 125-149 DOI:10.1016/j.lithos.2005.01.009
Qian X, Feng QL, Yang WQ, Wang YJ, Chonglakmani C and Monjai D. 2015. Arc-like volcanic rocks in NW Laos: Geochronological and geochemical constraints and their tectonic implications. Journal of Asian Earth Sciences, 98: 342-357 DOI:10.1016/j.jseaes.2014.11.035
Qian X, Feng QL, Wang YJ, Chonglakmani C and Monjai D. 2016. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: Carboniferous back-arc setting in Northwest Laos. Lithos, 245: 60-75 DOI:10.1016/j.lithos.2015.07.019
Ringwood AE and Green DH. 1966. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics, 3(5): 383-427 DOI:10.1016/0040-1951(66)90009-6
Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi MH and Vaziri HM. 2010. Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): Implications for the closure of the Mesozoic peri-Tethyan oceans in Central Iran. Terra Nova, 22(1): 26-34 DOI:10.1111/j.1365-3121.2009.00912.x
Rossetti F, Monié P, Nasrabady M, Theye T, Lucci F and Saadat M. 2017. Early Carboniferous subduction-zone metamorphism preserved within the Palaeo-Tethyan Rasht ophiolites (western Alborz, Iran). Journal of the Geological Society, 174(4): jgs2016-130
Shen LW, Yu JH, O'Reilly SY, Griffin WL and Zhou XY. 2018. Subduction-related Middle Permian to Early Triassic magmatism in central Hainan Island, South China. Lithos, 318-319: 158-175 DOI:10.1016/j.lithos.2018.08.009
Smith DC. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310(5979): 641-644 DOI:10.1038/310641a0
Sone M and Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340(2-3): 166-179 DOI:10.1016/j.crte.2007.09.008
Song SG, Zhang LF, Niu YL, Su L, Song B and Liu DY. 2006. Evolution from oceanic subduction to continental collision: A case study from the northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology, 47(3): 435-455 DOI:10.1093/petrology/egi080
Sorensen SS and Barton MD. 1987. Metasomatism and partial melting in a subduction complex: Catalina Schist, southern California. Geology, 15(2): 115-118 DOI:10.1130/0091-7613(1987)15<115:MAPMIA>2.0.CO;2
Stevenson JA. 2006. Partial melting of eclogite, Tromso, Norway. Ph. D. Dissertation. New Haven: Yale University, 1-323
Štípská P, Schulmann K and Kröner A. 2004. Vertical extrusion and middle crustal spreading of omphacite granulite: A model of syn-convergent exhumation (Bohemian Massif, Czech Republic). Journal of Metamorphic Geology, 22(3): 179-198 DOI:10.1111/j.1525-1314.2004.00508.x
Sun WD, Williams IS and Li SG. 2002. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: Evidence for protracted convergence of the North and South China blocks. Journal of Metamorphic Geology, 20(9): 873-886 DOI:10.1046/j.1525-1314.2002.00418.x
Tang HF. 1999. Geochemical characteristics of the basalt from Chenxing, Hainan Island, and their tectonic implication. Geotectonica et Metallogenia, 23(4): 323-327 (in Chinese with English abstract)
Tang Y, Qin YD, Gong XD, Duan YY, Chen G, Yao HY, Liao JX, Liao SY, Wang DB and Wang BD. 2020. Discovery of eclogites in Jinsha River suture zone, Gonjo County, eastern Tibet and its restriction on Paleo-Tethyan evolution. China Geology, 3(1): 83-103 DOI:10.31035/cg2020003
Vựợng NV, Hansen BT, Wemmer K, Lepvrier C, Tích VV and Thắng TT. 2013. U/Pb and Sm/Nd dating on ophiolitic rocks of the Song Ma suture zone (northern Vietnam): Evidence for Upper Paleozoic Paleotethyan lithospheric remnants. Journal of Geodynamics, 69: 140-147 DOI:10.1016/j.jog.2012.04.003
Wang BD, Wang LQ, Chen JL, Liu H, Yin FG and Li XB. 2017. Petrogenesis of Late Devonian-Early Carboniferous volcanic rocks in northern Tibet: New constraints on the Paleozoic tectonic evolution of the Tethyan Ocean. Gondwana Research, 41: 142-156 DOI:10.1016/j.gr.2015.09.007
Wang Q, Li XH, Jia XH, Wyman D, Tang GJ, Li ZX, Ma L, Yang YH, Jiang ZQ and Gou GN. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization. Chemical Geology, 328: 222-243 DOI:10.1016/j.chemgeo.2012.04.029
Wang XF, Ma DQ and Jiang DH. 1991a. Geology of Hainan Island (Ⅲ): Structural Geology and Tectonics. Beijing: Geological Publishing House, 1-140 (in Chinese)
Wang XF, Ma DQ and Jiang DH. 1991b. Geology of Hainan Island (Ⅰ): Stratigraphic Paleontology. Beijing: Geological Publishing House, 1-280 (in Chinese)
Wang XF, Ma DQ and Jiang DH. 1991c. Geology of Hainan Island (Ⅱ): Magmatic Rocks. Beijing: Geological Publishing House, 1-274 (in Chinese)
Wang XF, Metcalfe I, Jian P, He LQ and Wang CS. 2000. The Jinshajiang-Ailaoshan suture zone, China: Tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences, 18: 675-690 DOI:10.1016/S1367-9120(00)00039-0
Wang YJ, Qian X, Cawood PA, Liu HC, Feng QL, Zhao GC, Zhang YH, He HY and Zhang PZ. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 18(6): 195-230
Wu FY, Wan B, Zhao L, Xiao WJ and Zhu RX. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.01
Wu YB, Hanchar JM, Gao S, Sylvester PJ, Tubrett M, Qiu HN, Wijbrans JR, Brouwer FM, Yang SH, Yang QJ, Liu YS and Yuan HL. 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters, 277(3-4): 345-354 DOI:10.1016/j.epsl.2008.10.031
Xia BD, Yu JH, Fang Z, Wang CY and Shi GY. 1991a. The Carboniferous bimodal volcanic rocks in Hainan Island and their plate tectonic setting. Acta Petrologica Sinica, 7(1): 54-62 (in Chinese with English abstract)
Xia BD, Shi GY, Fang Z, Yu JH, Wang CY, Tao XC and Li HM. 1991b. The Late Palaeozoic rifting in Hainan Island, China. Acta Geologica Sinica, 65(2): 103-115 (in Chinese with English abstract)
Xia MM, Hu J, Hu DG and Liu XC. 2019. The discovery of eclogite-high-pressure granulite association from Hainan Island, South China. Geological Bulletin of China, 38(10): 1591-1594 (in Chinese with English abstract)
Xu D, Xia B, Bakun-Czubarow N, Bachlinski R, Li P, Chen G and Chen T. 2008. Geochemistry and Sr-Nd isotope systematics of metabasites in the Tunchang area, Hainan Island, South China: Implications for petrogenesis and tectonic setting. Mineralogy and Petrology, 92(3-4): 361-391 DOI:10.1007/s00710-007-0198-0
Xu DR, Lin G, Liang XQ, Chen GH and Tang HF. 2001. The records of the evolution of Precambrian lithosphere: The evidences of petrology and geochemistry of basic rocks on Hainan Island. Acta Petrologica Sinica, 17(4): 598-608 (in Chinese with English abstract)
Xu DR, Xia B, Bakun-Czubarow N, Ma C, Li PC, Bachlinskl R and Chen GH. 2006. Metamorphic characteristics of the Chenxing metabasite massif in Tunchang area, Hainan Island, South China and its tectonic implication. Acta Petrologica Sinica, 22(12): 2987-3006 (in Chinese with English abstract)
Yan QS, Metcalfe I and Shi XF. 2017. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on Late Paleozoic-Mesozoic tectonic evolution. Gondwana Research, 49: 333-349 DOI:10.1016/j.gr.2017.06.007
Yang SF, Yu ZY, Guo LZ and Shi YS. 1989. The division and palaeomagnetism of the Hainan Island and plate tectonic significance. Journal of Nanjing University (Earth Sciences Edition), 1(1-2): 38-46 (in Chinese)
Yang WQ, Qian X, Feng QL, Shen SY and Chonglakmani C. 2016. U-Pb geochronological evidence for the evolution of the Nan-Uttaradit suture in northern Thailand. Journal of Earth Science, 27(3): 378-390 DOI:10.1007/s12583-016-0670-z
Yao WH, Li ZX, Li WX and Li XH. 2017. Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results. Precambrian Research, 290: 86-100 DOI:10.1016/j.precamres.2017.01.001
Zanchetta S, Zanchi A, Villa I, Poli S and Muttoni G. 2009. The Shanderman eclogites: A Late Carboniferous high-pressure event in the NW Talesh Mountains (NW Iran). In: Brunet MF, Wilmsen M and Granath JW (eds.). South Caspian to Central Iran Basins. Geological Society, London, Special Publication, 312: 57-79
Zeng LS, Liang FH, Asimow P, Chen FY and Chen J. 2009. Partial melting of deeply subducted continental crust and the formation of quartzo-feldspathic polyphase inclusions in the Sulu UHP eclogites. Chinese Science Bulletin, 54(14): 2580-2594
Zhai QG, Jahn BM, Wang J, Su L, Mo XX, Wang KL, Tang SH and Lee HY. 2013. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168-169: 186-199 DOI:10.1016/j.lithos.2013.02.005
Zhai QG, Jahn BM, Wang J, Hu PY, Chung SL, Lee HY, Tang SH and Tang Y. 2016. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. GSA Bulletin, 128(3-4): 355-373 DOI:10.1130/B31296.1
Zhai QG, Wang J, Hu PY, Lee HY, Tang Y, Wang HT, Tang SH and Chung SL. 2018. Late Paleozoic granitoids from central Qiangtang, northern Tibetan Plateau: A record of Paleo-Tethys Ocean subduction. Journal of Asian Earth Sciences, 167: 139-151 DOI:10.1016/j.jseaes.2017.07.030
Zhang FF, Wang YJ, Chen XY, Fan WM, Zhang YH, Zhang GW and Zhang AM. 2011. Triassic high-strain shear zones in Hainan Island (South China) and their implications on the amalgamation of the Indochina and South China Blocks: Kinematic and 40Ar/39Ar geochronological constraints. Gondwana Research, 19(4): 910-925 DOI:10.1016/j.gr.2010.11.002
Zhang LM, Wang YJ, Zhang YZ, Liu HC and Zhang XC. 2017. Age of Paleozoic strata in northern Hainan Island: Constraints from the detrital zircon U-Pb geochronology. Journal of Jilin University (Earth Science Edition), 47(4): 1187-1206 (in Chinese with English abstract)
Zhang LM, Zhang YZ, Cui X, Cawood PA, Wang YJ and Zhang AM. 2019. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks. Precambrian Research, 325: 69-87 DOI:10.1016/j.precamres.2019.02.013
Zhang RY, Liou JG and Cong BL. 1995. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology, 36(4): 1011-1037 DOI:10.1093/petrology/36.4.1011
Zhang RY, Liou JG and Ernst WG. 2007. Ultrahigh-pressure metamorphic belts in China: Major progress in the past several years. International Geology Review, 49(6): 504-519 DOI:10.2747/0020-6814.49.6.504
Zhang RY, Lo CH, Chung SL, Grove M, Omori S, Iizuka Y, Liou JG and Tri TV. 2013. Origin and tectonic implication of ophiolite and eclogite in the Song Ma suture zone between the South China and Indochina blocks. Journal of Metamorphic Geology, 31(1): 49-62 DOI:10.1111/jmg.12012
Zhang RY, Lo CH, Li XH, Chung SL, Anh TT and Van Tri T. 2014. U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam. American Journal of Science, 314(2): 649-678 DOI:10.2475/02.2014.07
Zhang YM, Fu JM, Zhao ZJ, Xu AW, Wu GJ and Zeng BF. 1998. Petrographic characteristics and Sm-Nd isotopic dating of the metamorphic basic volcanic rocks in western part of Hainan Island. Journal of Mineralogy and Petrology, 18(1): 79-84 (in Chinese with English abstract)
Zi JW, Cawood PA, Fan WM, Wang YJ and Tohver E. 2012. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange, Southwest China, and implications for the Paleo-Tethys. Tectonics, 31(2): TC2012 DOI:10.1029/2011TC002937
陈新跃, 王岳军, 范蔚茗, 张菲菲, 彭头平, 张玉芝. 2011. 海南五指山地区花岗片麻岩锆石LA-ICP-MS U-Pb年代学特征及其地质意义. 地球化学, 40(5): 454-463.
陈新跃, 王岳军, 张玉芝, 张菲菲, 温淑女. 2013. 海南晨星安山质火山岩地球化学、年代学特征及其构造意义. 大地构造与成矿学, 37(1): 99-108. DOI:10.3969/j.issn.1001-1552.2013.01.011
陈意. 2019. 板块俯冲起始与成熟阶段的差异变质响应. 矿物岩石地球化学通报, 38(3): 490-498.
陈耀钦, 陈培权, 黄宇辉. 1991. 广东、海南石炭纪沉积相古地理及层控矿产预测. 武汉: 中国地质大学出版社, 1-115.
高晓英, 郑永飞, 陈伊翔. 2013. 深俯冲大陆地壳的部分熔融: 大别造山带超高压榴辉岩中多相固体包裹体证据. 科学通报, 58(22): 2203-2208.
广东省地质矿产局. 1988. 广东省区域地质志. 北京: 地质出版社, 1-602.
何慧莹, 王岳军, 张玉芝, 陈新跃, 周永智. 2016. 海南岛晨星早石炭世高度亏损N-MORB型玄武岩及其地质意义. 地球科学, 41(8): 1361-1375.
李才, 解超明, 王明, 吴彦旺, 胡培远, 张修政, 徐锋, 范建军, 吴浩, 刘一鸣, 彭虎, 江庆源, 陈景文, 徐建鑫, 翟庆国, 董永胜, 张天羽, 黄小鹏. 2016. 羌塘地质. 北京: 地质出版社, 1-681.
李献华, 周汉文, 丁式江, 李寄嵎, 张仁杰, 张业明, 葛文春. 2000. 海南岛"邦溪-晨星蛇绿岩片"的时代及其构造意义——Sm-Nd同位素制约. 岩石学报, 16(3): 425-432.
梁新权, 范蔚茗, 许德如. 2000. 海南岛屯昌玄武质科马提岩Sm-Nd同位素年龄及其地质意义. 地质科学, 35(2): 240-244. DOI:10.3321/j.issn:0563-5020.2000.02.014
刘若新, 樊祺诚, 李惠民, 张旗, 赵大升, 马宝林. 1995. 大别山碧溪岭石榴橄榄岩-榴辉岩体的原岩性质及同位素年代学的启示. 岩石学报, 11(3): 243-256. DOI:10.3321/j.issn:1000-0569.1995.03.001
唐红峰. 1999. 海南岛晨星玄武岩地球化学特征及其构造环境含义. 大地构造与成矿学, 23(4): 323-327. DOI:10.3969/j.issn.1001-1552.1999.04.005
汪啸风, 马大铨, 蒋大海. 1991a. 海南岛地质(三): 构造地质. 北京: 地质出版社, 1-140.
汪啸风, 马大铨, 蒋大海. 1991b. 海南岛地质(一): 地层古生物. 北京: 地质出版社, 1-280.
汪啸风, 马大铨, 蒋大海. 1991c. 海南岛地质(二): 岩浆岩. 北京: 地质出版社, 1-274.
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
夏邦栋, 于津海, 方中, 王赐银, 施光宇. 1991a. 海南岛石炭纪双峰式火山岩及其板块构造背景. 岩石学报, 7(1): 54-62.
夏邦栋, 施光宇, 方中, 于津海, 王赐银, 陶仙聪, 李惠民. 1991b. 海南岛晚古生代裂谷作用. 地质学报, 65(2): 103-115.
夏蒙蒙, 胡娟, 胡道功, 刘晓春. 2019. 海南岛发现榴辉岩-高压麻粒岩组合. 地质通报, 38(10): 1591-1594.
许德如, 林舸, 梁新权, 陈广浩, 唐红峰. 2001. 海南岛前寒武纪岩石圈演化的记录: 基性岩类岩石地球化学证据. 岩石学报, 17(4): 598-609.
许德如, 夏斌, Bakun-Czubarow N, 马驰, 李鹏春, Bachlinskl R, 陈广浩. 2006. 海南岛屯昌晨星地区变基性岩体变质特征及构造意义. 岩石学报, 22(12): 2987-3006.
杨树锋, 虞子冶, 郭令智, 施央申. 1989. 海南岛的地体划分、古地磁研究及其板块构造意义. 南京大学学报(地球科学版), 1(1-2): 38-46.
张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 2017. 海南岛北部古生界时代: 碎屑锆石U-Pb年代学约束. 吉林大学学报(地球科学版), 47(4): 1187-1206.
张业明, 付建明, 赵子杰, 徐安武, 吴桂捷, 曾波夫. 1998. 海南岛西部变基性火山岩的岩石特征及Sm-Nd同位素定年. 矿物岩石, 18(1): 79-84.