岩石学报  2021, Vol. 37 Issue (1): 74-94, doi: 10.18654/1000-0569/2021.01.06   PDF    
青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源
张建新1, 路增龙1, 毛小红1, 滕霞1,2, 周桂生1, 武亚威1, 郭祺1,2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 北京大学地球与空间科学学院, 北京 100871
摘要: 在青藏高原东北缘的祁连-阿尔金-昆仑早古生代造山系中,夹杂有一些前寒武纪大陆块体,这些地块的组成、性质和演化既蕴含有超大陆聚散的重要信息,也对原特提斯体系的洋陆格局、造山类型和造山机制有重要启示意义。本文综合近年来这些前寒武纪微陆块的研究进展,结合我们所获得的新的研究资料,梳理了这些前寒武纪微陆块变质基底的岩石组成、构造热事件及年代格架,得出以下主要认识:(1)这些前寒武纪微陆块普遍遭受早古生代造山事件的改造并发生再活化。它们或者作为早古生代原特提斯洋的活动大陆边缘,被洋壳俯冲有关的弧岩浆和变质作用改造,以早古生代大陆弧的形式存在;或者被早古生代碰撞造山过程中的陆内变形、增厚地壳及相关的区域变质作用、深熔作用和碰撞型花岗岩所改造。(2)在这些前寒武纪微陆块中,仅仅欧龙布鲁克地块保存有早前寒武纪的变质基底,具有克拉通性质。中元古代以前,欧龙布鲁克地块的变质基底与华北克拉通(特别是阿拉善地块)和塔里木克拉通具有相似的岩石组成和年代格架;而晚中元古代到新元古代,所有的前寒武纪微陆块与华南陆块和塔里木陆块的亲缘性更强。(3)青藏高原北缘早古生代造山系中的大部分前寒武纪微陆块可能在罗迪尼亚超大陆解体时已从冈瓦纳大陆北部分离,而柴达木地块记录了泛非期造山作用的构造热事件,可能在泛非造山期(530Ma)以后才从冈瓦纳大陆分开;在青藏高原东北部,晚新元古代-早古生代并不存在统一的原特提斯洋,原特提斯洋的打开是穿时的。
关键词: 青藏高原东北缘    早古生代造山系    微陆块    原特提斯洋    
Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean
ZHANG JianXin1, LU ZengLong1, MAO XiaoHong1, TENG Xia1,2, ZHOU GuiSheng1, WU YaWei1, GUO Qi1,2     
1. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China;
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract: In the Early Paleozoic Qilian-Altun-Kunlun orogenic system of the northeastern Qinghai-Tibet Plateau, there are some Precambrian micro-continental blocks. The composition, nature and evolution of these blocks provide not only important information for breakup and assembly of supercontinent, and also have important insight into the ocean-continent configuration, orogenic type and orogenic mechanism of the Proto-Tethys tectonic system. In this contribution, based on the published data and our new data, the synthesis of the geological and chronological studies of these Precambrian micro-continent blocks has been carried out. We reinterpret their reworking, tectonic affinity and insight into the evolution of the Proto-Tethys Ocean as follows: (1) These Precambrian micro-continental blocks commonly underwent reworking and reactivation during Early Paleozoic orogeny. They are either reactivated as active continental margins of the Early Paleozoic Proto-Tethys Ocean by arc magma and metamorphism associated with oceanic crust subduction; or by intracontinental deformation, crust thickening and associated regional metamorphism, anatexis and collisional magmatism during the Early Paleozoic collision orogeny. (2) In these Precambrian micro-continental blocks, only the Oulongbuluke block has an Early Precambrian metamorphic basement and show a craton property. Before the Mesoproterozoic, the metamorphic basement of the Oulongbuluke block was similar to that of the North China craton (especially the Alxa block) and the Tarim craton, while from the Late Mesoproterozoic to the Neoproterozoic, all micro-continental blocks have more strongly affinitive relation to the South China block and the Tarim block. (3) Most of the micro-continental blocks may have separated by Proto-Tethys Ocean from Gondwana during berakup of the Rodinia. However, the Qaidam block records a Pan-African UHT metamorphism related to the final amalgamation of Gondwana and may split from Gondwana after the Pan-African orogeny (ca. 530Ma). In the northeastern Qinghai-Tibet Plateau, there is no a single Proto-Tethys ocean in the Late Neoproterozoic-Early Paleozoic, and the Proto-Tethys ocean might opean diachronically.
Key words: Northeastern Qinghai-Tibet Plateau    Early Paleozoic orogenic system    Micro-continental block    Proto-Tethys Ocean    

在显生宙的造山带中通常分布着一些古老大陆残块,这些块体大多有着复杂的地质演化历史,不仅记录有大陆裂解形成大洋之前克拉通形成演化过程,也记录大洋形成过程以及大洋闭合后卷入造山带的构造热事件。在青藏高原东北缘的祁连-阿尔金-昆仑早古生代造山系中,就包夹有一些前寒武纪大陆块体,这些大陆块体主要由前寒武纪变质基底和新元古代-古生代以来的沉积盖层组成,分布在早古生代缝合带之间,被称之为“微陆块”或“地块”(陆松年, 2002)。这些微陆块的组成、性质和演化既蕴含有超大陆聚散的重要信息,也对原特提斯体系的洋陆格局及造山类型和造山机制有重要启示意义(张建新等, 2015; 王超等, 2018; Zhang et al. , 2017, 2019b; Li et al. , 2018a及相关文献)。然而,这些大陆块体的归属及形成时代长期存在争议。早期主要认为这些由前寒武纪变质基底组成的地块是早古生代造山作用之前从华北板块或塔里木板块裂解出来(冯益民和何世平, 1996; 葛肖虹和刘俊来, 2000),与华北地块或塔里木地块具有亲缘性;近20余年来,一些学者认为这些块体与华南陆块具有一定的亲缘性(郭进京等, 1999; Wan et al. , 2001, 2006; 万渝生等, 2003; 张建新等, 2003; 陆松年, 2002; 陆松年等, 2006; Lu et al. , 2008; Tung et al. , 2007, 2012, 2013; Yu et al. , 2013; Peng et al. , 2019)。近年来,部分学者提出这些块体具有冈瓦纳大陆起源性质,并认为是在新元古代中期罗迪尼亚(Rodinia)超大陆裂解过程中,从超大陆的冈瓦纳北部分离出来,并形成原特提斯洋,在早古生代晚期随原特提斯洋闭合而拼贴在一起(Li et al. , 2018a; Zhao et al. , 2018及相关文献)。在一些新元古代晚期-早古生代古大陆重建模式中,这些微陆块被归为“东亚陆块群”(Cawood and Buchan, 2007),或是“匈奴地体群”(Hunic Terranes)的组成部分(von Raumer and Stampfli, 2008; Stampfli et al. , 2013),部分块体可能在早古生代才从冈瓦纳大陆分离,并游离于冈瓦纳大陆北部周围(peri-Gondwana),与冈瓦纳大陆主体以原特提斯洋或东瑞克洋(East Rheic)所分离(Stampfli and Borel, 2002; Stampfli et al. , 2013)。因此,近年来,虽然这些块体起源于冈瓦纳大陆已得到多数学者的共识,但何时从冈瓦纳大陆分离仍有很大争议,起源于冈瓦纳大陆哪一部位也难以确定。本文拟在梳理已有的研究资料的基础上,结合我们近年来在祁连地块、欧龙布鲁克地块、柴达木地块及中阿尔金地块等微陆块所获得的新的研究资料,重新讨论青藏高原东北缘早古生代造山系中前寒武纪微陆块的起源,并简要探讨其对原特提斯洋起源的新启示。

1 地质概况

青藏高原东北缘早古生代造山系被巨型的阿尔金断裂所穿切,其主要由早古生代俯冲-增生和碰撞造山所形成的物质所组成(张建新等, 2015及相关文献),其北侧为阿拉善-敦煌地块,南侧以昆中断裂带(缝合带)为界,与南昆仑印支造山带分隔(图 1)。考虑到断裂两侧的主要岩石构造单元可以对比,其主要包括北祁连-北阿尔金早古生代俯冲-增生杂岩带、柴北缘-南阿尔金早古生代俯冲-碰撞杂岩带、东昆仑北早古生代俯冲-碰撞杂岩带以及夹在其间的前寒武纪变质地块。此外,在南祁连的拉脊山、木里及党河南山等出露有早古生代基性-超基性岩、海相火山岩及相关碎屑岩,早期的工作认为其为裂谷或小洋盆性质(夏林圻等, 1996),近年来,一些学者认为其具有蛇绿混杂岩及弧相关的岩石组合特征(Fu et al. , 2018及相关文献),Song et al. (2017)称之为“秦-祁增生杂岩”,本文不做详细阐述,可参考相关文献。前寒武纪变质地块将在后面进行阐述,下面简要介绍与早古生代造山作用有关的俯冲、增生及碰撞有关的岩石构造单元。

图 1 青藏高原东北缘阿尔金-祁连-柴北缘早古生代造山系及前寒武纪变质基底分布简图(据张建新等, 2015修改) Fig. 1 Geological sketch map of the Altun-Qilian-North Qaidam orogenic system in the northeastern Qinghai-Tibet Plateau, showing the distribution of the Precambrian basement (modified after Zhang et al., 2015)
1.1 北祁连-北阿尔金俯冲增生杂岩带

北祁连-北阿尔金俯冲增生杂岩带分布在阿拉善-敦煌地块和祁连-阿尔金地块之间(图 1)。以发育早古生代蛇绿混杂带及高压/低温变质带为特征。其中北阿尔金俯冲增生杂岩带主要呈近EW向分布在红柳沟-拉配泉一带,主要由浅变质火山岩、火山碎屑岩及碎屑岩等组成,并夹有具有蛇绿岩特征的寒武纪-奥陶纪超基性岩(蛇纹岩)、基性岩墙群和枕状熔岩(杨经绥等, 2008)以及含蓝片岩和低温榴辉岩的HP/LT变质岩片分布在其中(Zhang et al. , 2005),片岩和榴辉岩中的白云母Ar-Ar定年获得491~520Ma的年龄(张建新等, 2007)。此外,与俯冲增生杂岩相伴生的还有晚寒武世-奥陶纪弧花岗岩(戚学祥等, 2005; 吴才来等, 2007)。

北祁连俯冲增生杂岩带中除具有典型的蛇绿岩和HP/LT变质岩外,还发育早古生代岛弧岩浆杂岩及弧后盆地岩石组合,构成完整的“弧-沟-盆”古板块构造体系(许志琴等, 1994; 张建新等, 1997, 1998; Xia et al. , 2003; Zhang et al. , 2012),其中最老的MOR型蛇绿岩发育在北祁连南缘的玉石沟一带,时代为533~568Ma(史仁灯等, 2004a; Song et al. , 2013),而大多数蛇绿岩则形成于岛弧或弧后环境,具有SSZ性质,时代为500Ma左右(孟繁聪等, 2010; Xia et al. , 2012)。北祁连HP/LT变质带的时代为463~489Ma(Zhang et al. , 2007b)。岛弧岩浆岩主要由基性、中性及酸性火山岩及深成侵入岩组成,时代为450~510Ma(张建新等, 1997; Wang et al. , 2005; Wu et al. , 2011; Chen et al. , 2014)。弧后盆地分布在北祁连北部,在肃南九个泉一带发育有较完整的蛇绿岩序列,可见完整的堆晶辉长岩和枕状熔岩组合(张旗等, 1997, 1998),构成北祁连北蛇绿岩带,时代为490Ma左右(Xia and Song, 2010)。不整合在这套蛇绿岩套之上为一套志留纪残余海盆地层,主要由具深海扇浊流沉积特征的复理石所组成,多不整合覆盖于弧后盆地的火山岩之上。

1.2 柴北缘-南阿尔金俯冲碰撞杂岩带

柴北缘-南阿尔金俯冲-碰撞杂岩带分布在祁连-阿尔金地块和柴达木地块之间,被阿尔金断裂分割为两部分。其中南阿尔金俯冲-碰撞杂岩带呈东西向分布于阿尔金山西南缘的江尕勒萨依-巴什瓦克一带,以经历超高压(UHP)变质作用的榴辉岩和石榴橄榄岩为特征(Zhang et al. , 2002, Liu et al. , 2002)。它们以透镜体分布在主体的片麻岩中,超高压变质带形成时代为485~500Ma(Zhang et al. , 2001; Liu et al. , 2012),并普遍经历了450Ma左右的巴罗式变质作用叠加(Zhang et al. , 2014),并有同时代(440~460Ma)的碰撞型花岗岩侵入(曹玉亭等, 2010; 康磊等, 2013)。柴北缘俯冲碰撞杂岩带西起塞什腾山,东至都兰北部沙柳河-阿尔茨托山。UHP榴辉岩分布在鱼卡-落凤坡、锡铁山和都兰沙柳河等地,石榴橄榄岩出露在绿梁山胜利口。UHP变质作用时代集中在460~423Ma(Zhang et al. , 2017; Song et al. , 2014及相关文献)。一些研究还表明,柴北缘超高压带中有许多与板块俯冲及碰撞有关的I型和S型花岗岩,其形成时代也为早古生代,在柴北缘西段,锆石SHRIMP U-Pb定年获得两种花岗岩的年龄分别为496Ma和446Ma(吴才来等, 2001, 2004)。在柴北缘东段的都兰地区识别出具有埃达克质的英云闪长岩和花岗岩两期不同性质的岩浆岩,其时代分别为415~436Ma和390Ma(Yu et al. , 2012; Wang et al. , 2014及相关文献)。

在柴北缘,还存在一套浅变质火山岩,与含榴辉岩和石榴橄榄岩单元成断层接触。通过对柴北缘地区滩涧山群火山岩的研究,认为其原岩具有岛弧环境特征,形成时代集中在460~515Ma(袁桂邦等, 2002; 史仁灯等, 2004b; 朱小辉等, 2014),说明在碰撞造山之前洋壳俯冲产生的火山岛弧形成时间可能是寒武纪-中奥陶世。

1.3 东昆仑北早古生代俯冲碰撞杂岩带

东昆仑造山带可根据昆中断裂带(缝合带)为界,划分为北昆仑和南昆仑构造带,其中北昆仑带以出露前寒武纪变质基底、大量早古生代岩浆岩及少量蛇绿岩为特征(姜春发等, 2000; Dong et al. , 2018及相关文献)。近年来,在原认为的前寒武纪变质基底中识别出变质年龄为早古生代晚期的榴辉岩(Meng et al. , 2013; 祁生胜等, 2014; 祁晓鹏等, 2016; Song et al. , 2018),因此,我们认为北昆仑带具有俯冲-碰撞杂岩带性质,包括原特提斯洋俯冲有关的蛇绿岩和弧岩浆岩,也具有少量与大陆深俯冲(?)及碰撞造山有关的榴辉岩及相关岩石。

2 祁连地块前寒武纪变质基底的组成及年代格架

祁连地块分布于北祁连俯冲增生杂岩带和拉脊山-木里-党河南山增生杂岩(?)之间,又称为中祁连地块,其前寒武纪变质基底主要分布在西段的野马南山-疏勒南山区、中段的湟源-大通地区、东段的马衔山地区,以中段大通-湟源地区的前寒武纪基底研究程度最高。根据岩石组合和变质程度的差异,祁连地块变质基底可以分为深变质基底和浅变质基底。其中深变质基底被称之为野马南山群,湟源群和马衔山群,以角闪岩相相变质的表壳岩、斜长角闪岩和花岗片麻岩为特征,局部达到麻粒岩相,其中花岗片麻岩和部分斜长角闪岩为正片麻岩;浅变质基底在祁连地块的西、中和东段分别称为党河群、湟中群和兴隆山群,岩石组合主要为砂板岩、千枚岩、片岩和变火山岩,变质程度以绿片岩-低绿片岩相为主,推测与深变质基底为角度不整合接触(图 2)。浅变质基底被未变质的白云岩和灰岩不整合覆盖,但后者的时代仍不明确。

图 2 祁连地块前寒武纪地层及花岗质侵入体对比(据董国安等, 2007修改) 资料来源:1: Gehrels et al., 2003a;2: Gehrels et al., 2003b;3: 董国安等, 2007;4: Wan et al., 2001;5: 本次研究;6: 雍拥等, 2008a;7郭进京等, 1999;8: Yu et al., 2013;9: Tung et al., 2013;10: Wu et al., 2017;11: Liu et al., 2019;12: Li et al., 2020a Fig. 2 Precambrian stratigraphic columns in the Qilian block, also shown are the ages of detrital zircons and granitoids (modified after Tung et al., 2007)

已有的工作主要集中于对祁连地块深变质基底的研究,特别是对其中的正片麻岩(包括花岗质片麻岩和少量变质基性侵入体)进行了大量同位素年代学研究,获得其原岩岩浆结晶年龄主要集中在新元古代中-早期,具有920Ma和760Ma两个年龄峰值,近年来也有一些综述性文章对此进行了较全面的总结(Tung et al. , 2013; Yu et al. , 2013; Peng et al. , 2019; Li et al. , 2020a及相关文献),本文在此不再赘述,感兴趣可参考相关文献。除了新元古代的岩浆时代,我们在祁连地块中段的北缘新获得一些中元古代晚期的岩浆年龄。2个含石榴斜长角闪岩采自祁连地块北缘的大坂山一带(图 3),这些斜长角闪岩呈透镜状分布在含夕线石(蓝晶石)的黑云片麻岩(湟源群副片麻岩)中。斜长角闪岩中的锆石具有核边结构,锆石核部具有典型岩浆锆石特征,推测其原岩为辉长岩,锆石LA-ICPMS U-Pb测定分别获得其核部年龄为1140±30Ma(MSWD=0.9)和1119±24Ma(MSWD=0.29),代表其原岩辉长岩的岩浆结晶年龄(毛小红等,未刊资料)。地球化学分析显示其原岩具有弧基性岩浆岩特征,可能代表了与格林威尔造山事件有关的弧岩浆活动(毛小红等,未刊资料);2个样品的锆石边部具有典型变质锆石特征,所获得的年龄分别为469±5Ma和478±4Ma,与祁连地块北缘早古生代的弧岩浆作用及变质作用年龄一致(Peng et al. , 2017; Zhang et al. , 2019b)。另1个不含石榴子石的斜长角闪岩样品(Q14-1-6.1)采自祁连地块北缘的东段甘禅口(图 1),锆石也具有核边结构,但核和边均具有变质锆石特征(图 4)。锆石SHRIMP测定结果给出8个核部的年龄变化在1000±28Ma~1151±63Ma(207Pb/206Pb)之间(表 1),其加权平均年龄为1068±43Ma(MSWD = 2.7),反映了与格林威尔造山事件有关变质事件;8个锆石边给出的谐合年龄(206Pb/238U)变化在480±9Ma~536±9Ma之间(表 1),其加权平均年龄为515±17Ma(MSWD=5.9),代表了早古生代变质基底的再活化,与古祁连洋向南俯冲在祁连地块北缘形成的大陆弧变质事件有关(Peng et al. , 2017; Zhang et al. , 2019b)。

图 3 祁连地块中段地质简图及样品位置 年龄数据资料来源:1: 雍拥等, 2008a; 2: 郭进京等, 1999; 3: Liu et al., 2019; 4: Yu et al., 2013 Fig. 3 Geological sketch map of the middle Qilian block, showing the sample locations and published dating data

图 4 斜长角闪岩(样品Q14-1-6.1)的锆石U-Pb定年结果 Fig. 4 Zircon U-Pb concordia plots of amphibolite (Sample Q14-1-6.1)

表 1 祁连地块北缘斜长角闪岩(样品Q14-1-6.1)锆石SHRIMP U-Pb定年数据表 Table 1 Zircon SHRIMP U-Pb dating data of amphibolite (Sample Q14-1-6.1) in the northern Qilian block

另外,祁连地块的变沉积岩(副片麻岩)的研究资料相对较少。董国安等(2007)获得在托勒牧场附近野马南山群副片麻岩的碎屑锆石年龄主要集中在1.4~1.8Ga之间,最小的碎屑锆石年龄为1016Ma。陆松年等(2009)获得中祁连中段湟源群中糜棱岩化云母石英片岩的碎屑锆石年龄主要变化于1157~2548Ma之间,并出现~1456Ma和~1703Ma两个高频区,并根据侵入到其中的片麻状花岗岩917Ma的年龄,将湟源群的形成时代限定在~1456Ma和917Ma之间。最近,Li et al. (2020b)通过对湟源群的云母片岩的碎屑锆石年代学测定,获得其年龄变化在928~2895Ma之间,并主要集中在1.4~1.8Ga之间,与野马南山群的碎屑锆石年龄相似;对其中1个含石榴子石的长英质片麻岩的锆石测定,获得的年龄主要集中在913~960Ma,作者解释其为碎屑锆石(Li et al. , 2020b),但根据作者提供的岩相学描述和锆石CL图像,不排除其原岩为正片麻岩的可能。

本文对大通黑泉水库附近的湟源群中1个副片麻岩样品的碎屑锆石进行了LA-ICPMS U-Pb定年,来进一步确定湟源群的时代(测定方法和数据见电子版附表 1)。副片麻岩样品QL11-17-8.1中的锆石大多具有次圆状和浑圆状外形,并存在许多细小不规则状的锆石颗粒,具碎屑锆石的典型特征。60个测点的207Pb/206Pb表面年龄变化在1176±19Ma~2492±11Ma之间,Th/U比值为0.08~2.25(附表 1)。绝大部分测点年龄集中在1473Ma,少量分布在1.6~1.8Ga,也见少量锆石给出~2.5Ga的207Pb/206Pb年龄(图 5)。结合前人研究资料,我们认为湟源群的形成应为中元古代。

附表 1 祁连地块湟源群副片麻岩(样品QL11-17-8.1)碎屑锆石U-Pb分析数据 Appendix Table 1 U-Pb zircon ages of paragneiss (Sample QL11-17-8.1) from Huangyuan Group in the Qilian block

附表 2 化隆群副片麻岩碎屑锆石U-Pb分析数据 Appendix Table 2 U-Pb zircon ages of paragneisses from Hualong Group

附表 3 中阿尔金地块副片麻岩碎屑锆石U-Pb分析数据 Appendix Table 3 U-Pb zircon ages of paragneisses from the Central Altun block

图 5 祁连地块湟源群副片麻岩(样品QL11-17-8.1)碎屑锆石U-Pb年龄 Fig. 5 Concordia diagram and histogram for the distribution of U-Pb zircon ages of paragneiss (Sample QL11-17-8.1) from Huangyuan Group in the Qilian block
3 化隆微地块前寒武纪变质基底的组成及年代格架

化隆微地块主要分布于拉脊山以南的贵德、尖扎、化隆和循化地区(图 6),早期认为其为祁连地块的组成部分,考虑到它与祁连地块以早古生代增生杂岩分隔,本文把它划分出来。化隆微地块的前寒武纪基底被称之为化隆群(或化隆杂岩),下组以混合片麻岩和混合岩为主,夹少量片麻岩和片岩;中组以片麻岩类和变粒岩类为主,夹少量角闪岩;上组由斜长角闪岩、绿帘斜长角闪岩、黑云斜长角闪岩、黑云斜长片麻岩和变粒岩等组成。早期由于缺乏高精度年代学资料,关于化隆岩群的形成时代一直存在较多争议,如一些观点认为化隆群可以与柴北缘达肯达坂群和邻区马衔山群对比,被认为形成于新太古代-古元古代(青海省地质矿产局, 1991; 徐学义等, 2008);郭进京等(1999)等通过对湟源群和化隆群岩石组合、构造变形和变质作用特征等方面的对比研究,认为化隆群是湟源群的下伏岩系, 形成时代应在古元古代;近十余年来,由于年代学方法的更新及数据的增加,对化隆群及相关深成侵入体的时代逐渐清晰。陆松年等(2009)通过对化隆岩群白云母石英岩进行了碎屑锆石SHRIMP和LA-ICP-MS U-Pb年龄研究,结果表明存在大量1800Ma的碎屑锆石,最年轻的碎屑锆石出现在1400~1250Ma之间,认为化隆岩群不可能是新太古代-古元古代的沉积,而最大可能是中元古代晚期的产物;徐旺春等(2007)通过对化隆群黑云母斜长片麻岩和侵入化隆群弱片麻状花岗岩锆石年代学研究认为,化隆群形成时代为新元古代早期(徐旺春等, 2007; 何世平等, 2011)。Yan et al. (2015)通过对化隆群(杂岩)的含石榴子石斜长角闪岩和石英岩中的碎屑锆石U-Pb定年,获得碎屑锆石具有1.47~1.78Ga的年龄峰值,最年龄的碎屑锆石年龄为967~964Ma,并被940~850Ma的花岗质正片麻岩所侵入(徐旺春等, 2007; Li et al. , 2018c)。最近,Fu et al. (2019)获得化隆群中斜长角闪岩的岩浆锆石年龄为1121±27Ma(MSWD=0.4),解释其代表了中元古代晚期的弧岩浆作用时代。我们对化隆群的2个副变质岩样品的碎屑锆石进行了LA-ICPMS U-Pb定年(测定方法和定年数据表见电子版附表 2)。其中二云母片麻岩(样品AQ12-8-4.2)采自化隆县城南约12km(图 6),52个碎屑锆石测点的207Pb/206Pb表面年龄变化在1128±43Ma~3113±17Ma之间(附表 2),大部分集中在1452和1834Ma(图 7),与前人的结果基本一致。另一样品(石榴云母石英片岩AQ12-11.2.1)采自青海李家峡水库附近(图 6),45碎屑锆石测点的207Pb/206Pb表面年龄变化在787±3Ma~2640±5Ma之间,大部分测点年龄集中在787Ma左右,少量分布在1830Ma和2582Ma。因此,部分化隆群的形成时代可能为新元古代。值得注意的是,与祁连地块北缘相似,锆石U-Pb年龄测定显示一些化隆群副片麻岩具有早古生代变质事件的记录(Yan et al. , 2015; 作者未发表数据)。

图 6 化隆微地块地质简图及采样位置 Fig. 6 Geological sketch map of the Hualong micro-block, showing the sample locations

图 7 化隆群副片麻岩的碎屑锆石LA-ICP MS U-Pb年龄谐和图 Fig. 7 Zircon U-Pb concordia plots of paragneisses from the Hualong Group
4 “欧龙布鲁克地块”的组成、年代格架及其解体

“欧龙布鲁克地块”(又称全吉地块)位于柴达木盆地以北,呈狭长带状展布在全吉山-德令哈-乌兰一带,原定的“欧龙布鲁克地块”南部以柴北缘高压-超高压变质带为界与柴达木地块相隔,北以宗务隆构造带与(南)祁连造山带相隔(图 1),其前寒武纪基底主要由德令哈杂岩、达肯大坂岩群及万洞沟岩群所组成,其上被南华系-震旦系全吉群以及早古生代以来的沉积岩系所不整合覆盖(陆松年, 2002; Lu et al. , 2008)。最近几年的资料显示,乌兰北部地区原认为是欧龙布鲁克地块的深变质岩石其原岩主要为中新元古代岩石,一些学者把它从欧龙布鲁克地块中解体出来,称之为“乌北地块”(Wang et al. , 2016)。考虑到这些深变质岩石普遍经历了早古生代的低压-高温变质作用,并伴随早古生代弧岩浆岩的侵位(李秀财等, 2015; Li et al. , 2018b; Lu et al. , 2018; Wang et al. , 2018),我们也称之为乌兰北早古生代弧变质-岩浆杂岩带(图 8)。

图 8 欧龙布鲁克地块东部及相邻地质单元简图 年龄数据来源:1: Yu et al., 2017; 2: Lu et al., 2018; 3: Gong et al., 2012; 4: Gong et al., 2019; 5: Sun et al., 2020; 6: Chen et al., 2013; 7: Chen et al., 2009; 8: 路增龙等, 2017; 9: Xiao et al., 2020; 10: Yu et al., 2019; 11: Wang et al., 2016; 12: Wang et al., 2018; 13: Li et al., 2019a; 14: 李秀财等, 2015; 15: Li et al., 2018b; 16: 康珍等, 2015; 17: 路增龙, 2018 Fig. 8 Geological sketch map of the Oulongbuluke block, showing the locations of published dating data

新厘定的欧龙布鲁克地块与乌北地块(早古生代弧变质-岩浆单元)以断层分隔(图 8)。其中的德令哈杂岩分布于全吉山、德令哈东及乌兰南部等地,主要由条带状二长花岗质和花岗闪长质片麻岩组成,具有条带状或眼球状构造,变质基性岩以不同规模和形态的残块赋存于其中,在全吉山、德令哈东和乌兰南部均发现有基性麻粒岩透镜体分布在花岗质片麻岩中(路增龙等, 2017; Yu et al. , 2017)。锆石年代学测定显示花岗质片麻岩的岩浆锆石年龄2.30~2.47Ga,并具有1.9~1.93Ga的变质增生边(Yu et al. , 2017; Lu et al. , 2018及相关文献)。达肯大坂岩群主要由副片麻岩夹石榴斜长角闪岩等组成,具有明显的混合岩化,形成时代可能晚于德令哈杂岩,但二者共同经历了1.96~1.82Ma的区域变质事件(Chen et al. , 2009, 2012, 2013; Gong et al. , 2012; Liao et al. , 2014; 路增龙等, 2017; Yu et al. , 2017; Lu et al. , 2018)。欧龙布鲁克地块的正片麻岩和副片麻岩被1.80~1.83Ga的基性岩脉所侵入(Chen et al. , 2013; Liao et al. , 2014)。在欧龙布鲁克地块西部还有1.78Ga的环斑花岗岩的侵位(Wang et al. , 2015)。万洞沟群主要出露于欧龙布鲁克地块的西部,主要有两类岩石组合:一为碳质绢云片岩、钙质片岩和碳质大理岩;一为斑点状千枚岩夹透镜状大理岩。于凤池等(1994)曾在万洞沟群中测得1022±64Ma(变质年龄)的Rb-Sr全岩等时线年龄和1150±280Ma的全岩Pb-Pb年龄,因此将其归属中元古代(于凤池等, 1994; 陆松年, 2002; 陆松年等, 2006)。全吉群主要分布在柴达木盆地北缘北带的全吉山-欧龙布鲁克山一带,角度不整合在古元古代德令哈杂岩和达肯大坂群之上,与上部含有腕足类化石的寒武系阿木尼克组呈平行不整合。全吉群主要为一套沉积岩夹少量火山岩组合,从下到上大体上为“砾岩-含砾砂岩-碳酸盐岩-杂砂岩-砾岩”。自下而上可划分为麻黄沟组、枯柏木组、石英梁组、红藻山组、黑土坡组、红铁沟组、皱节山组等7个岩石地层单元(青海省地质矿产局, 1991)。陆松年(2002)李怀坤等(2003)根据单颗粒锆石U-Pb同位素年龄推测全吉群所夹火山岩玄武安山岩的形成时代为738±28Ma,因此将时代其归为新元古代。近年来一些学者利用锆石LA-ICPMS方法测得全吉群红藻山组所夹凝灰岩和豆状凝灰岩的锆石U-Pb年龄为~1.64Ga,并得到1730Ma和1733Ma的最小碎屑锆石年龄,将全吉群下限限定在中元古代早期,并由此将“全吉运动”(全吉群与达肯达坂德令哈杂岩的不整合)由原先限定的740~700Ma提前至古元古代晚期-中元古代早期,认为其应该与华北克拉通的吕梁运动对应,而非之前所认为的扬子克拉通的晋宁运动(张海军等, 2016)。张海军等(2016)还根据红藻山组与上覆地层之间存在古风化壳及区域不整合,且全吉群上部发育埃迪卡拉纪化石及冰碛岩等特征,认为全吉群应该解体,红藻山组及以下地层为中元古界“长城系”,黑土坡组及以上地层才是“南华系-震旦系”。当然,这样的划分仍需进一步的工作的来验证或修正。

乌北地块(乌兰北早古生代弧变质-岩浆杂岩带)总体构造走向为北西向,北部以断层或韧性剪切带与宗务隆构造带的石炭-二叠系灰岩相隔,南部以呼德生-蓄集乡北西向断层与狭义的欧龙布鲁克地块古元古代变质基底相邻(图 8)。它主要由不同类型的深变质岩和侵入岩所组成。其中深变质岩包括:副片麻岩或片岩(石榴夕线黑云片麻岩、石榴黑云母片岩、堇青石直闪石片岩等)、大理岩、钙硅酸盐岩及变基性岩(斜长角闪岩和基性麻粒岩);侵入岩包括:花岗岩、花岗闪长岩、闪长岩、辉长岩和少量超基性岩等。已有的研究显示,其中的变质侵入体记录有~1.5Ga、~1.1Ga和~0.9Ga三期前寒武纪岩浆事件(Wang et al. , 2016; 路增龙, 2018; Yu et al. , 2019; Xiao et al. , 2020)。部分副片麻岩中还获得~1.1Ga的变质时代(路增龙, 2018; Yu et al. , 2019),并普遍受到了早古生代早期与弧相关的低压/高温变质作用叠加。锆石和独居石U-Pb定年显示,一些深变质岩(二辉麻粒岩、含堇青石泥质麻粒岩、大理岩和钙硅酸盐岩)仅仅记录早古生代的变质年龄,变化在457~505Ma之间(Wang et al. , 2018; Li et al. , 2019a; 作者未发表数据),其峰期变质条件为5.5~7kbar和800~900℃。具有典型低压-高温变质作用特征(Li et al. , 2019a);这些早古生代的高温变质岩与同时代的辉长岩、超基性岩和中基性侵入岩构成了早古生代大陆弧(或弧后)的深部物质组成,与柴北缘大陆深俯冲之前洋壳向北俯冲有关(图 9Lu et al. , 2018; Li et al. , 2019a)。

图 9 柴北缘东段岩石构造单元划分剖面图(剖面位置见图 8)(据Lu et al. , 2018修改) Fig. 9 The cross section showing the tectonic units of the eastern North Qadiam (modified after Lu et al., 2018)
5 柴达木地块的前寒武纪变质基底的组成及年代格架

虽然柴达木地块大部分被新生代盆地的沉积物所覆盖,但地球物理等资料显示柴达木盆地的基岩主要由变质基底所组成,与柴南缘(东昆仑北带)所出露的变质岩石类似。柴南缘的变质基底原命名为金水口群(青海省地质矿产局, 1991),后进一步解体为太古代-古元古代白沙河岩群和中元古代小岩庙群(王云山和陈基娘, 1987; 王国灿等, 2004及相关文献),主要分布在柴达木盆地南缘那棱格勒-格尔木-金水口一带,由角闪岩相-麻粒岩相的变质花岗质岩石和表壳岩石所组成,夹有变质基性岩(斜长角闪岩和基性麻粒岩)。一些学者认为白沙河群主体为太古宙TTG和少量表壳岩所组成,但缺乏可靠的年代学证据。近十余年,在昆仑造山带北部的变质基底中,识别出新元古代变质花岗质侵入体,形成时代主要集中在820~938Ma(陆松年等, 2006; 陈能松等, 2006; 孟繁聪等, 2013; 陈有炘等, 2015),少量在1.0Ga左右(He et al. , 2016)。一些研究显示原定为金水口群(白沙河群)的变质岩还经历了1.0Ga的变质作用和早古生代变质叠加(张建新等, 2003; 何凡和宋述光, 2020)。最近几年,在东昆仑北部的温泉地区、夏日哈木、郎木日上游等地的深变质岩中陆续发现有榴辉岩的出露(Meng et al. , 2013; 祁生胜等, 2014; 祁晓鹏等, 2016; Song et al. , 2018),其变质时代为410~430Ma(Meng et al. , 2013; 祁生胜等, 2014; Song et al. , 2018),原岩时代为新元古代(Meng et al. , 2013)。

值得注意的是,最近,我们在柴达木地块西端原定为金水口群的变质基底中,识别出晚埃迪卡拉-早寒武世的超高温变质岩石(Teng et al. , 2020)。超高温变质岩石以Mg-Al麻粒岩为特征,与变泥质岩、长英质正片麻岩、基性麻粒岩、钙硅酸盐岩和含橄榄石大理岩等组成高温-超高温变质单元(图 10)。超高温Mg-Al麻粒岩呈层状或透镜状夹于泥质片麻岩中,其矿物组合为石榴子石+斜方辉石+夕线石+石英,还含有数量不等的蓝晶石、铝直闪石、假蓝宝石、尖晶石、堇青石、金红石、黑云母等矿物。假蓝宝石见于富镁的石榴子石内,不与石英接触。石榴子石的镁铝榴石组分可达74mol%,Opx的Al2O3含量最高为8.32%。堇青石和尖晶石主要以冠状体结构分布在石榴子石或夕线石边部。相平衡模拟显示其峰期变质条件为P>9kbar、T > 915℃;锆石和独居石的U-Pb定年显示Mg-Al麻粒岩和基性麻粒岩经历了ca. 540~520Ma的麻粒岩相变质作用,而长英质正片麻岩的原岩年龄为ca. 1137~1122Ma,变质年龄为560~510Ma(Teng et al. , 2020)。

图 10 柴达木地块西端变质基底分布及年代学数据简图(据Teng et al. , 2020修改) Fig. 10 Geological sketch map of the western Qaidam block, showing distribution of metamorphic basement and locations of the dating data (modified after Teng et al., 2020)
6 中阿尔金地块的组成及年代格架

中阿尔金地块分布在早古生代北阿尔金俯冲-增生杂岩带和南阿尔金俯冲碰撞杂岩带之间(张建新等, 2011),主要由深变质的阿尔金岩群及浅变质的中新元古代巴士库尔干群、塔什大坂群(金雁山群)和索尔库里群组成(新疆维吾尔自治区地质矿产局, 1993; 刘永顺等, 2009)。巴士库尔干群、塔什大坂群和索尔库里群在空间不连续分布,主要由浅变质的碎屑岩、碳酸盐岩夹少量火山岩所组成,其原岩以滨浅海相的大陆边缘沉积为主,与北部的早古生代俯冲增生杂岩带和南部的阿尔金群均为近东西向的断层接触关系。其中碳酸盐岩中含有叠层石化石(新疆维吾尔自治区地质矿产局, 1993)。在中阿尔金地块北部不整合覆盖有早-中奥陶世生物碎屑灰岩、碎屑岩,区域范围内缺乏震旦纪-早寒武世地层。阿尔金岩群是以角闪岩相变质为主的变质杂岩,其形成时代一直存在争议,早期把阿尔金岩群的时代定为古元古代甚至太古代(新疆维吾尔自治区地质矿产局, 1993),近十余年来,在原定为阿尔金岩群中识别出一些新元古代花岗质岩石(花岗片麻岩),获得其岩浆结晶时代主要在900~950Ma,推测与副变质岩为侵入接触关系(Gehrel et al. , 2003a; Yu et al. , 2013)。我们对且末南的阿尔金群的2个副变质岩进行碎屑锆石定年(测定方法和年龄数据表见电子版附表 3),白云母石英片岩T08-5-6.1的碎屑锆石U-Pb定年获得43个测点的207Pb/206Pb表面年龄变化在1407±9Ma~2685±4Ma之间,具有1465和1831Ma两个年龄峰(图 11)。另1个二云母石英片岩AQ11-9-14.1的59个碎屑锆石测点的207Pb/206Pb表面年龄变化在1427±11Ma~2724±11Ma之间,两个年龄峰值为1441和1711Ma。结合其被新元古代早期的花岗岩所侵入的特点,推测阿尔金岩群主体的形成时代应为中元古代。

图 11 中阿尔金地块副变质岩碎屑锆石U-Pb定年结果 Fig. 11 Zircon U-Pb concordia plots of paragneisses from the Central Altun block
7 讨论 7.1 前寒武纪地块的早古生代再活化

显生宙造山带中普遍存在前寒武纪地块(微陆块),在造山带的演化过程,其必然遭受与俯冲及碰撞有关的构造热事件的改造,发生再活化,这种改造与活化主要通过两种方式:1)作为早古生代的活动大陆边缘,被洋壳俯冲有关的弧岩浆和变质作用改造,以大陆弧的形式存在。这种活化既有古老基底的再造(reworking),也有新生地壳物质的生长(rejuvenation)。2)另外一种活化方式发生在碰撞过程中,以陆内变形、增厚地壳的部分熔融和巴罗型区域变质作用及S型花岗岩为特征,这种再活化以古老基底的再造为特征,缺少新生地壳物质生长。在青藏高原北部早古生代造山系的前寒武纪变质地块中,这两种再活化的方式均存在。在祁连地块北缘和乌北地块(乌北早古生代弧岩浆-变质单元),早古生代早期(510~450Ma)均显示出大陆弧特征,其前寒武纪基底岩石均遭受了早古生代弧变质作用的叠加,并伴随同时的弧岩浆活动。但祁连地块北缘和乌北地块的早古生代再活化也存在差异,祁连地块北缘的早古生代变质作用以中压/高温变质作用为特征,形成温压条件为~10kbar和~800℃(Peng et al. , 2017; Zhang et al. , 2019b),最近,我们还发现了高压基性麻粒岩和高压泥质麻粒岩的出露(毛小红等,未发表数据),可能代表早古生代增厚的大陆弧根,表明祁连地块北缘具有挤压大陆弧的特征;而乌兰北的早古生代变质作用以低压/高温变质作用为特征,形成温压条件为5.5~7kbar和800~900℃,推测其具有伸展弧性质。两个大陆弧均伴随早古生代基性到酸性的弧岩浆活动,一些花岗质侵入体的锆石Hf同位素显示出明显的正值,显示出新生地壳物质生长(Huang et al. , 2015; Peng et al. , 2017; Li et al. , 2018b),而一些弧花岗质岩石的锆石Hf同位素为负值(Li et al. , 2018),反映了前寒武纪基底的再造。早古生代晚期(420~450Ma)碰撞造山阶段的再活化以祁连地块内部最典型,以同碰撞花岗岩的形成(雍拥等, 2008b; Huang et al. , 2015)、区域巴罗型变质作用(Li et al. , 2019b)以及陆内右行走滑变形为特征(戚学祥等, 2003)。

7.2 前寒武纪地块的亲缘性与塔里木、华南、阿拉善及华北陆块的对比

前寒武纪占据地球演化历史的绝大部时间,经历了几期全球性的构造热事件,主要有2.5~2.7Ga的地壳生长及凯诺兰(Kenorland)超大陆形成、1.8~2.1Ga的哥伦比亚(Columbia)及0.9~1.2Ga的罗迪尼亚(Rodinia)超大陆形成等(Brown, 2008),这些全球性构造热事件广泛记录在全球不同克拉通及前寒武纪造山带中,成为超大陆再造及前寒武纪克拉通和陆块亲缘性判定的重要标志。然而,也正是由于这些事件的全球性分布特征,单一从某一地质事件记录来判定前寒武纪地块的亲缘性可能会产生片面和不正确的结论。

在青藏高原北部早古生代造山系的前寒武纪地块中,除了欧龙布鲁克地块,普遍经历了新元古代两期岩浆(变质)事件。其中新元古代早期(~900Ma)的岩浆事件以花岗质岩浆作用为特征(Gehrels et al. , 2003a; 郭进京等, 1999; 陆松年, 2002; Lu et al. , 2008; 雍拥等, 2008a; 董国安等, 2007; Tung et al. , 2013; Wan et al. , 2001, 2006; 万渝生等, 2003; 徐旺春等, 2007; Song et al. , 2012; Yu et al. , 2013; Li et al. , 2018c; Peng et al. , 2019),也有少量基性岩浆活动(Tung et al. , 2012)。已有的地球化学资料显示,在An-Ab-Or分类图解中,这些新元古代早期花岗片麻岩样品主要落入花岗闪长岩和石英二长岩区域,也有少数样品为典型的花岗岩,显示出高K2O钙碱性花岗岩、I型和S型花岗岩的地球化学特征(Yu et al. , 2013Liu et al. , 2019及相关文献)。在稀土元素和微量元素标准化配分图解中,花岗片麻岩样品富集轻稀土元素和大离子亲石元素(如K, Rb和Th等),而重稀土和高场强元素(Ba、Nb、Ta)则相对亏损。考虑到这些花岗片麻岩普遍具有低的εNd(t)值(-5.9~-2.5)(Wan et al. , 2001; 雍拥等, 2008a)和锆石εHf(t)(-5.6~+3.9)(Yu et al. , 2013),地壳物质的部分熔融作用可能是形成这些花岗片麻岩的主要机制。结合少量具有弧岩浆特征的同时代的基性岩浆活动(Tung et al. , 2012),这些新元古代早期的岩浆活动可能形成于活动大陆边缘环境(Yu et al. , 2013; Peng et al. , 2019及相关文献)。新元古代中晚期(ca. 800~750Ma)岩浆活动同样包括花岗质岩浆岩和少量基性侵入体,被认为形成于大陆裂谷环境(Tung et al. , 2013及相关文献)。

中元古代末期-新元古代早期的岩浆事件普遍被认为是与全球罗迪尼亚超大陆形成有关的格林威尔造山事件的产物。然而,这些ca.900Ma的岩浆事件明显晚于典型的格林威尔造山事件1.3~1.0Ga(Boger et al. , 2000; Jayananda et al. , 2000),而是与华南、塔里木地块以及东印度和东南极的北查尔斯王子造山带(the Northern Prince Charles Orogenic belt)较为相似(Mezger and Cosca, 1999; Boger et al. , 2000; Fitzsimons, 2000; Kelly et al. , 2002; Li et al. , 2006, 2009)。

华南陆块被认为由扬子地块、华夏古陆沿江南造山带于新元古代拼贴而成,其演化与罗迪尼亚超大陆的聚合裂解密切相关(Li et al. , 2008; 耿元生等, 2020及相关文献)。在华南地块,新元古代早期岩浆事件主要记录在扬子地块的东南、西南和西北缘。青藏高原北部前寒武纪地块中的新元古代早期活动大陆边缘的岩浆活动可与扬子陆块同时代的岩浆活动相比较(Tung et al. , 2012)。塔里木地块同样记录了大量的新元古代岩浆事件,如塔里木中部发现的890~932Ma的花岗质岩浆作用,以及库鲁克塔格地区报道的1.0~0.9Ga的岩浆事件等(李曰俊等, 2005; Xu et al. , 2013)。也正是这次构造事件(塔里木运动或晋宁运动)造成了塔里木变质基底最终固结及克拉通的形成(Lu et al. , 2008; Xu et al. , 2013)。在华北陆块,新元古代早期则发育与拉伸裂解有关的基性岩床和岩墙,没有与罗迪尼亚超大陆汇聚事件有关的岩浆记录。因此,结合已有的超大陆复原图解和古地磁资料,在新元古代早期,青藏高原北部的前寒武纪地块与塔里木地块和华南陆块具有明显的亲缘性。需要指出的是,从超大陆再造的角度,在新元古代早期,青藏高原北部前寒武纪地块的岩浆活动可能并不代表罗迪尼亚超大陆形成的碰撞造山事件,而是与塔里木、华南可能同处于罗迪尼亚超大陆的活动大陆边缘(Zhao et al. , 2018及相关文献)。从新元古代中期(~0.8Ga)开始,塔里木和华南均开始出现与罗迪尼亚超大陆裂解有关的岩浆活动,但不同位置的初始裂解时间以及对800Ma左右岩浆活动的性质的解释仍存在较大争议,这方面已有大量文章讨论(耿元生等, 2020及相关文献),在此不再赘述。总体上,从已有的资料看,在新元古代中晚期,青藏高原北部前寒武纪地块的岩浆活动也可与华南及塔里木对比,可能均与罗迪尼亚超大陆的初始裂解有关,但这需要仍进一步详细的工作来加以明确。

正如前面提到的那样,在祁连地块、乌北地块、化隆微陆块及柴达木地块的前寒武纪基底中,均识别出中元古代晚期(~1.1Ga)的岩浆和变质事件。中元古代晚期是格林威尔造山作用(Grenvillian orogeny)的主造山期,在全球范围内,1.3~1.1Ga期间出现了大量的岩浆-变质事件记录。然而,这一时期的岩浆-变质事件在不同地区形成的构造背景存在明显差异,或存在不同的解释,既有与罗迪尼亚汇聚及超大陆形成的格林威尔造山作用有关的岩浆-变质事件,如:北美的Grenville造山带(Rivers, 2008, 2015; Johnson et al. , 2020),巴西东北部1.18~1.15Ga变质作用(Tohver et al. , 2005),北美西部1168~1064Ma的岩浆-变质作用(Milidragovic et al. , 2011),澳大利亚中部1.3~1.1Ga岩浆-变质作用(White et al. , 1999),南美洲西南部的1330~1030Ma变质事件(Rapela et al. , 2010),东南极1170~1060Ma岩浆-变质事件(Bauer et al. , 2003; Jacobs. et al. , 2003)等;也有与拉张环境的基性岩墙群、大火成岩省的形成有关岩浆事件,如:印度Eastern Dharwar craton的1124~1093Ma岩浆事件(Kumar et al. , 2007),华北的1.21Ga基性岩浆事件(Peng et al. , 2013),澳大利亚中-西部发育1078~1060Ma的Warakurna大火成岩省(Wingate et al. , 2004及相关参考文献),非洲南部的Kalahari克拉通发育1112~1106Ma的板内岩浆事件(Hanson et al. , 2006)等。结合岩浆岩地球化学及同时代的高温变质作用,青藏高原北部前寒武纪地块所记录的1.1Ga的岩浆-变质事件可能形成在大陆弧构造背景(Fu et al. , 2019; Yu et al. , 2019)。最近在南塔里木地块也识别出1.12Ga的花岗质岩石,虽然作者解释其具有A型花岗岩特征,但从地球化学数据看,其部分样品也投在弧岩浆岩区域(Zhang et al. , 2019a),考虑到地球化学的多解性,不排除其形成在弧构造环境。在南中国的扬子地块北缘和西北缘,也分别报道有1.1Ga的弧岩浆作用(Qiu et al. , 2011; 李怀坤等, 2013; Deng et al. , 2017)和高温变质作用(Xu et al. , 2004)。因此,从中元古代晚期构造热事件看,青藏高原北部大部分前寒武纪地块也与(南)塔里木和扬子地块可以对比。结合前面的讨论,从中元古代晚期到新元古代早-中期(1.1~0.9Ga),青藏高原北部的前寒武纪地块可能与扬子和塔里木地块长期分布在Rodinia超大陆的大陆边缘,作为环超大陆边缘大陆弧的组成部分,而不是如一些作者提出的那样,处在Rodinia超大陆的中心部位(Wen et al. , 2018)。

从目前的研究资料看,在青藏高原北部早古生代造山系的前寒武纪地块中,仅在欧龙布鲁克地块出露有明确的前中元古代岩石。欧龙布鲁克地块也是青藏高原北部前寒武纪地块唯一一个显示出典型克拉通性质的微陆块,由中-高级变质作用的古元古代变质基底与覆盖于其上未变质的沉积盖层组成。其中古元古代的花岗质侵入体的形成时代在2.3~2.47Ga,并与变质表壳岩一起经历了1.82~1.96Ma的麻粒岩-角闪岩相变质作用(Chen et al. , 2013; Yu et al. , 2017及相关文献)。尽管仍缺乏可靠的太古代岩石,但侵入体及表壳岩的锆石Hf同位素特征显示出新太古代的地壳形成时代,与普遍存在的新太古代继承性或碎屑锆石一致。这些特征与华北克拉通西部的阿拉善地块及塔里木克拉通基底非常相似(张建新和宫江华, 2018; Ge et al. , 2013)。当然,正如前面提到的那样,新太古代地壳生长和古元古代造山事件广泛记录在全球前寒武纪克拉通中,在华南陆块的华夏地块也有零星记录(翟明国, 2013及相关文献),不能简单作为块体亲缘性判定的标志。在欧龙布鲁克地块中,直接不整合在古元古代变质基底之上的全吉群原认为可与扬子克拉通的南华系-震旦系对比(陆松年, 2002; 李怀坤等, 2003)。然而,近年来,在全吉群下部红藻山组所夹凝灰岩中获得的锆石U-Pb年龄为~1.64Ga(张海军等, 2016),并认为与华北克拉通的中元古界“长城系”相当,而根据全吉群上部发育埃迪卡拉纪化石及冰碛岩等特征,才具有“南华系-震旦系”特征。因此,中元古代以前,欧龙布鲁克地块似乎与华北克拉通(特别是阿拉善地块)和塔里木克拉通具有亲缘性,而新元古代与华南陆块的亲缘性更强。然而,考虑到塔里木克拉通同样具有相似的南华系-震旦系地层,特别是欧龙布鲁克地块具有与塔里木克拉通相似的新元古代时期的冰川沉积(孙娇鹏等, 2016),综合考虑,欧龙布鲁克地块与塔里木克拉通更具亲缘性。

7.3 超大陆再造及对原特提斯洋开启的限定

尽管仍有争议,到目前为止,在大多数新元古代早-中期的罗迪尼亚超大陆的再造模式中,青藏高原北部早古生代造山系的前寒武纪地块以及相邻的塔里木地块、华南陆块和其他东亚陆块与西北澳大利亚、北印度或南极相连或靠近(Li et al. , 2008; 李三忠等, 2016; Zhao et al. , 2018及相关文献),即属于后来的东冈瓦纳大陆的组成部分。然而,这些块体何时从东冈瓦纳大陆分离出来?由于这些块体分布在原特提斯洋闭合产物的早古生代造山系中,这一问题必然涉及到原特提斯洋的起源(张建新等, 2015; Li et al. , 2018a; 吴福元等, 2020及相关文献)。目前,一个普遍的认识是这些早古生代造山系中的大陆块体在罗迪尼亚超大陆解体过程中从东冈瓦纳的位置开始分离,并形成原特提斯洋。其主要依据是:1)这些块体及造山系中保留有新元古代中晚期大陆裂解的地质记录(Lu et al. , 2008; Song et al. , 2010; 张建新等, 2011; Tung et al. , 2013; Xu et al. , 2016);2)早古生代造山系中最早的蛇绿岩形成时代在550Ma左右(史仁灯等, 2004a; Song et al. , 2013),显示原特提斯洋在新元古代晚期已经打开;3)先前的资料显示这些块体中缺乏冈瓦纳大陆拼贴有关的泛非造山事件(650~530Ma)的地质记录(Zhao et al. , 2018及相关文献)。泛非造山事件广泛记录在东南极、澳大利亚中西部、印度东南部、斯里兰卡、马达加斯加等东冈瓦纳大陆的块体中(Meert, 2003; Meert and Lieberman, 2008及相关文献),缺乏泛非造山事件的地质记录暗示青藏高原北部的前寒武纪块体可能在泛非期之前可能已从东冈瓦纳大陆分离。

然而,我们最近在柴达木地块西部新识别出的晚泛非期(晚埃迪卡拉-早寒武世)的超高温(UHT)变质岩石可能改变这一认识(Teng et al. , 2020)。泛非期UHT变质岩广泛分布在南印度、斯里兰卡、马达加斯加、东南极等泛非造山带中,被认为是冈瓦纳大陆最终拼合形成热造山带的显著标识,在冈瓦纳形成期可能存在一个类似现今青藏高原的造山高原(Clark et al. , 2015; Fitzsimons, 2016及相关文献),以地壳放射性元素衰变热为主要热源,使部分中下地壳缓慢达到超高温条件(Clark et al. , 2015; Horton et al. , 2016, 2018)。

柴达木地块西部UHT变质单元以Mg-Al麻粒岩为特征,在岩石组合、形成的温压条件、原岩及变质时代与冈瓦纳大陆最后拼合所形成的泛非造山带超高温变质单元非常相似(Teng et al. , 2020及相关文献)。因此,柴达木地块在泛非造山期可能仍为东冈瓦纳大陆的组成部分,这也暗示了其应在泛非造山事件之后才从冈瓦纳大陆分离。前面已提到,柴达木地块与塔里木地块,特别是南塔里木地块在前寒武纪变质基底有许多相似之处。一些研究者也提出南塔里木地块中新元古代地层和寒武纪地层之间的不整合为泛非造山作用的产物(郭群英等, 2015),暗示了南塔里木地块也卷入了泛非造山事件。考虑到阿尔金断裂的左行走滑,柴达木地块可能与南塔里木地块相连。在Li et al. (2008)的古大陆再造模式中,从罗迪尼亚超大陆形成到早古生代早期,塔里木地块一直与西北澳大利亚相连。假如如此,柴达木地块和与之相连的(南)塔里木地块可能在泛非造山事件之后才从东冈瓦纳大陆分离,这意味着塔里木-柴达木地块之南的古昆仑洋形成在泛非事件之后。到目前为止,古昆仑洋蛇绿岩的最老年龄为530Ma左右(Dong et al. , 2018及相关文献),这似乎与前面的讨论相矛盾。然而,目前所获得的UHT变质岩石的锆石U-Pb年龄可能并不代表其峰期变质时代,柴达木西部UHT峰期时代可能要早于530Ma(Teng et al. , 2020),UHT峰期变质作用本身也可能代表了碰撞造山后的伸展事件。因此,北昆仑洋的打开可能在泛非碰撞造山作用之后。当然,这需要更精确的UHT变质作用及蛇绿岩形成年龄的确定。综合以上分析,青藏高原北部一部分前寒武纪块体可能在罗迪尼亚解体时从冈瓦纳大陆分离,而一些块体泛非造山期以后(530Ma)才从冈瓦纳大陆分开,可能并不存在统一的原特提斯洋,原特提斯洋的打开是穿时的,并存在多个分支洋盆,但其闭合时代几乎一致,即发生在早古生代末期,并导致这些微陆块的最终拼贴,在青藏高原北部以广泛发育晚志留世-泥盆纪磨拉石为特征。

8 结论

(1) 青藏高原北部早古生代造山系中的前寒武纪地块普遍遭受早古生代造山事件的改造并发生再活化。它们或者作为原特提斯洋的活动大陆边缘,被洋壳俯冲有关的弧岩浆和变质作用改造,以大陆弧的形式存在;或者被早古生代碰撞造山过程中的陆内变形、增厚地壳及相关的区域变质作用、深熔作用和碰撞型花岗岩所改造。

(2) 在青藏高原东北部早古生代造山系所夹的前寒武纪地块中,仅仅欧龙布鲁克地块保存有早前寒武纪的变质基底,具有典型克拉通性质。中元古代以前,欧龙布鲁克地块似乎与华北克拉通(特别是阿拉善地块)和塔里木克拉通具有相似的基底物质组成和年代格架;而从晚中元古代到新元古代,所有的前寒武纪地块与华南陆块和塔里木陆块的亲缘性更强。

(3) 青藏高原北部早古生代造山系中的大部分前寒武纪块体可能在罗迪尼亚超大陆解体时已从冈瓦纳大陆北部分离,而一些块体(如柴达木地块)可能在泛非造山期(530Ma)以后才从冈瓦纳大陆分开,晚新元古代-早古生代并不存在统一的原特提斯洋,原特提斯洋的打开是穿时的。

致谢      任留东研究员和李怀坤研究员对文章提出了建设性的修改意见,在此表示感谢!

本文献给沈其韩院士百岁华诞,并向先生始终如一的严谨治学态度和在前寒武纪及变质地质学领域的卓越贡献致敬!

参考文献
Bauer W, Jacobs J, Fanning CM and Schmidt R. 2003. Late Mesoproterozoic arc and back-arc volcanism in the Heimefrontfjella (East Antarctica) and implications for the Palaeogeography at the southeastern margin of the Kaapvaal-Grunehogna Craton. Gondwana Research, 6(3): 449-465 DOI:10.1016/S1342-937X(05)70998-9
Boger SD, Carson CJ, Wilson CJL and Fanning CM. 2000. Neoproterozoic deformation in the Radok Lake region of the Northern Prince Charles Mountains, East Antarctica: Evidence for a single protracted orogenic event. Precambrian Research, 104(1-2): 1-24 DOI:10.1016/S0301-9268(00)00079-6
Brown M. 2008. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: When did Earth first adopt a plate tectonics mode of behavior? In: Condie K and Pease V (eds.). When Did Plate Tectonics Begin?. Geological Society of America Special Paper, 440: 97-128
Bureau of Geology and Mineral Resources Qinghai Province. 1991. Regional Geology of Qinghai Province. Beijing: Geological Publishing House, 1-662 (in Chinese with English abstract)
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House, 1-941 (in Chinese with English abstract)
Cao YT, Liu L, Wang C, Yang WQ and Zhu XH. 2010. Geochemical, zircon U-Pb dating and Hf isotope compositions studies for Tatelekebulake granite in South Altyn Tagh. Acta Petrologica Sinica, 26(11): 3259-3271 (in Chinese with English abstract)
Cawood PA and Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews, 82(3-4): 217-256 DOI:10.1016/j.earscirev.2007.03.003
Chen NS, Li XY, Wang XY, Chen Q, Wang QY and Wan YS. 2006. Zircon SHRIMP U-Pb age of Neoproterozoic metagranite in the North Kunlun unit on the southern margin of the Qaidam Block in China. Geological Bulletin of China, 25(11): 1311-1314 (in Chinese with English abstract)
Chen NS, Gong SL, Sun M, Li XY, Xia XP, Wang QY, Wu FY and Xu P. 2009. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions. Journal of Asian Earth Sciences, 35(3-4): 367-376 DOI:10.1016/j.jseaes.2008.10.004
Chen NS, Zhang L, Sun M, Wang QY and Kusky TM. 2012. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history. Journal of Asian Earth Sciences, 54-55: 110-130 DOI:10.1016/j.jseaes.2012.04.006
Chen NS, Liao FX, Wang L, Santosh M, Sun M, Wang QY and Mustafa HA. 2013. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent. Precambrian Research, 228: 102-116 DOI:10.1016/j.precamres.2013.01.013
Chen YX, Song SG, Niu YL and Wei CJ. 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta, 132: 311-336 DOI:10.1016/j.gca.2014.02.011
Chen YX, Pei XZ, Li ZC, Li RB, Liu CJ, Chen GC, Pei L and Wei B. 2015. Geochronology, geochemical features and geological significance of the granitic gneiss in Balong area, east section of East Kunlun. Acta Petrologica Sinica, 31(8): 2230-2244 (in Chinese with English abstract)
Clark C, Healy D, Johnson T, Collins AS, Taylor RJ, Santosh M and Timms NE. 2015. Hot orogens and supercontinent amalgamation: A Gondwanan example from southern India. Gondwana Research, 28(4): 1310-1328 DOI:10.1016/j.gr.2014.11.005
Deng H, Peng SB, Polat A, Kusky T, Jiang XF, Han QS, Wang L, Huang Y, Wang JP, Zeng W and Hu ZX. 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: Evidence for evolving tectonic setting. Precambrian Research, 289: 75-94 DOI:10.1016/j.precamres.2016.12.003
Dong YP, He DF, Sun SS, Liu XM, Zhou XH, Zhang FF, Yang Z, Cheng B, Zhao GC and Li JH. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China orogenic system. Earth-Science Reviews, 186: 231-261 DOI:10.1016/j.earscirev.2017.12.006
Feng YM and He SP. 1996. Geotectonics and Orogeny of the Qilian Mountains, China. Beijing: Geological Publishing House, 1-150 (in Chinese with English abstract)
Fitzsimons ICW. 2000. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology, 28(10): 879-882 DOI:10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2
Fitzsimons ICW. 2016. Pan-African granulites of Madagascar and southern India: Gondwana assembly and parallels with modern Tibet. Journal of Mineralogical and Petrological Sciences, 111(2): 73-88 DOI:10.2465/jmps.151117
Fu CL, Yan Z, Wang ZQ, Buckman S, Aitchison JC, Niu ML, Cao B, Guo XQ, Li XC, Li YS and Li JL. 2018. Lajishankou ophiolite complex: Implications for paleozoic multiple accretionary and collisional events in the South Qilian belt. Tectonics, 37(5): 1321-1346 DOI:10.1029/2017TC004740
Fu CL, Yan Z, Guo XQ, Niu ML, Cao B, Wu Q, Li XC and Wang ZQ. 2019. Assembly and dispersal history of continental blocks within the Altun-Qilian-North Qaidam mountain belt, NW China. International Geology Review, 61(4): 424-447 DOI:10.1080/00206814.2018.1428831
Ge RF, Zhu WB, Wu HL, He JW and Zheng BH. 2013. Zircon U-Pb ages and Lu-Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla Complex, NW China: Implications for metamorphic zircon formation and geological evolution of the Tarim craton. Precambrian Research, 231: 1-18 DOI:10.1016/j.precamres.2013.03.003
Ge XH and Liu JL. 2000. Broken "western China Craton". Acta Petrologica Sinica, 16(1): 59-66 (in Chinese with English abstract)
Gehrels GE, Yin A and Wang XF. 2003a. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B9): 2423
Gehrels GE, Yin A and Wang XF. 2003b. Detrital-zircon geochronology of the northeastern Tibetan Plateau. Geological Society of America Bulletin, 115(7): 881-896 DOI:10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2
Geng YS, Kuang HW, Du LL and Liu YQ. 2020. The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation. Acta Petrologica Sinica, 36(8): 2276-2312 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.08.02
Gong SL, Chen NS, Wang QY, Kusky TM, Wang L, Zhang L, Ba J and Liao FX. 2012. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance: LA-ICPMS U-Pb zircon geochronology and geochemistry. Gondwana Research, 21(1): 152-166 DOI:10.1016/j.gr.2011.07.011
Gong SL, He C, Wang XC, Chen NS and Kusky T. 2019. No plate tectonic shutdown in the early Paleoproterozoic: Constraints from the ca. 2.4Ga granitoids in the Quanji Massif, NW China. Journal of Asian Earth Sciences, 172: 221-242 DOI:10.1016/j.jseaes.2018.09.011
Guo JJ, Zhao FQ and Li HK. 1999. Jinningian collisional granite belt in the eastern sector of the Central Qilian Massif and its implication. Acta Geoscientia Sinica, 20(1): 10-15 (in Chinese with English abstract)
Guo QY, Wu GH, Feng XJ and He S. 2015. The tectonic cycle of Neoproterozoic in Tarim Basin and its hydrocarbon implications. Xinjiang Geology, 33(3): 335-339 (in Chinese with English abstract)
Hanson RE, Harmer RE, Blenkinsop TG, Bullen DS, Dalziel IWD, Gose WA, Hall RP, Kampunzu AB, Key RM, Mukwakwami J, Munyanyiwa H, Pancake JA, Seidel EK and Ward SE. 2006. Mesoproterozoic intraplate magmatism in the Kalahari Craton: A review. Journal of African Earth Sciences, 46(1-2): 141-167 DOI:10.1016/j.jafrearsci.2006.01.016
He DF, Dong YP, Zhang FF, Yang Z, Sun SS, Cheng B, Zhou B and Liu XM. 2016. The 1.0Ga S-type granite in the East Kunlun Orogen, Northern Tibetan Plateau: Implications for the Meso-to Neoproterozoic tectonic evolution. Journal of Asian Earth Sciences, 130: 46-59 DOI:10.1016/j.jseaes.2016.07.019
He F and Song SG. 2020. The Grenvillian-aged UHT granulite in Jinshuikou region, East Kunlun Orogenic belt. Acta Petrologica Sinica, 36(4): 1030-1040 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.04.04
He SP, Li RS, Wang C, Yu PS, Zhang HF, Gu PY and Shi C. 2011. The further age constraint of Hualong Rock Group in the eastern segment of South Qilian Mountains. Acta Petrologica et Mineralogica, 30(1): 34-44 (in Chinese with English abstract)
Holder RM, Hacker BR, Horton F and Rakotondrazafy AFM. 2018. Ultrahigh-temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long-lived high-T orogen. Journal of Metamorphic Geology, 36(7): 855-880 DOI:10.1111/jmg.12316
Horton F, Hacker B, Kylander-Clark A, Holder R and J ns N. 2016. Focused radiogenic heating of middle crust caused ultrahigh temperatures in southern Madagascar. Tectonics, 35(2): 293-314 DOI:10.1002/2015TC004040
Huang H, Niu YL, Nowell G, Zhao ZD, Yu XH and Mo XX. 2015. The nature and history of the Qilian Block in the context of the development of the Greater Tibetan Plateau. Gondwana Research, 28(1): 209-224 DOI:10.1016/j.gr.2014.02.010
Jacobs J, Fanning CM and Bauer W. 2003. Timing of Grenville-age vs. Pan-African medium-to high grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Research, 125(1-2): 1-20
Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B and Mahabaleswar B. 2000. Late Archaean (2550~2520Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99(3-4): 225-254 DOI:10.1016/S0301-9268(99)00063-7
Jiang CF, Wang ZQ and Li JY. 2000. Opening Closing Tectonics of the Central Orogenic Belt. Beijing: Geological Publishing House, 1-107 (in Chinese)
Johnson TA, Vervoort JD, Ramsey MJ, Southworth S and Mulcahy SR. 2020. Tectonic evolution of the Grenville Orogen in the central Appalachians. Precambrian Research, 346: 105740 DOI:10.1016/j.precamres.2020.105740
Kang L, Liu L, Cao YT, Wang C, Yang WQ and Liang S. 2013. Geochemistry, zircon U-Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the South Altyn Tagh. Acta Petrologica Sinica, 29(9): 3039-3048 (in Chinese with English abstract)
Kang Z, Jiang CY, Ling JL, Zhao YF, Song YF and Zhou W. 2015. Petrogenesis and ore genesis of the ilmenite-rich Kendelong mafic-ultramafic intrusion in Wulan, Qinghai. Acta Petrologica Sinica, 31(8): 2193-2210 (in Chinese with English abstract)
Kelly NM, Clarke GL and Fanning CM. 2002. A two-stage evolution of the Neoproterozoic Rayner structural episode: New U-Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian Research, 116(3-4): 307-330 DOI:10.1016/S0301-9268(02)00028-1
Kumar A, Heaman LM and Manikyamba C. 2007. Mesoproterozoic kimberlites in south India: A possible link to ~1.1Ga global magmatism. Precambrian Research, 154(3-4): 192-204 DOI:10.1016/j.precamres.2006.12.007
Li HK, Lu SN, Wang HC, Xiang ZQ and Zheng JK. 2003. Quanji Group: The geological record of the Rodinia Supercontinent break-up in the Early Neoproterozoic preserved in the northern Qaidam margin, Qinghai, Northwest China. Geological Survey and Research, 26(1): 27-37, 60 (in Chinese with English abstract)
Li HK, Zhang CL, Xiang ZQ, Lu SN, Zhang J, Geng JZ, Qu LS and Wang ZX. 2013. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance. Acta Petrologica Sinica, 29(2): 673-697 (in Chinese with English abstract)
Li SZ, Zhao SJ, Yu S, Cao HH, Li XY, Liu X, Guo XY, Xiao WJ, Lai SC, Yan Z, Li ZH, Yu SY, Zhang J and Lan HY. 2016. Proto-Tehtys Ocean in East Asia (Ⅱ): Affinity and assmbly of Early Paleozoic micro-continental blocks. Acta Petrologica Sinica, 32(9): 2628-2644 (in Chinese with English abstract)
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018a. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Li XC, Niu ML, Yan Z, Da LC, Han Y and Wang YS. 2015. LP/HT metamorphic rocks in Wulan County, Qinghai Province: An Early Paleozoic paired metamorphic belt on the northern Qaidam Basin. Chinese Science Bulletin, 60(35): 3501-3513 (in Chinese) DOI:10.1360/N972015-00558
Li XC, Niu ML, Yakymchuk C, Yan Z, Fu CL and Zhao QQ. 2018b. Anatexis of former arc magmatic rocks during oceanic subduction: A case study from the North Wulan gneiss complex. Gondwana Research, 61: 128-149 DOI:10.1016/j.gr.2018.04.016
Li XC, Niu ML, Yakymchuk C, Wu Q and Fu CL. 2019a. A paired metamorphic belt in a subduction-to-collision orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China. Journal of Metamorphic Geology, 37(4): 479-508 DOI:10.1111/jmg.12468
Li XH, Li ZX, Sinclair JA, Li WX and Carter G. 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 151(1-2): 14-30 DOI:10.1016/j.precamres.2006.07.009
Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF and Yang YH. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117-128 DOI:10.1016/j.precamres.2009.07.004
Li YJ, Song WJ, Wu GY, Wang YF, Li YP and Zheng DM. 2005. Jinning granodiorite and diorite deeply concealed in the central Tarim Basin. Science in China (Series D), 48(12): 2061-2068 DOI:10.1360/03yd0354
Li YL, Tong X, Zhu YH, Lin JW, Zheng JP and Brouwer FM. 2018c. Tectonic affinity and evolution of the Precambrian Qilian block: Insights from petrology, geochemistry and geochronology of the Hualong Group in the Qilian Orogen, NW China. Precambrian Research, 315: 179-200 DOI:10.1016/j.precamres.2018.07.025
Li YL, Xiao WJ, Li ZY, Wang K, Zheng JP and Brouwer FM. 2020a. Early Neoproterozoic magmatism in the Central Qilian block, NW China: Geochronological and petrogenetic constraints for Rodinia assembly. Geological Society of America Bulletin, 132(11-12): 2415-2431 DOI:10.1130/B35637.1
Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 60(1-2): 179-210
Li ZY, Li YL, Zhao LM, Zheng JP and Brouwer FM. 2019b. Petrology and metamorphic P-T paths of metamorphic zones in the Huangyuan Group, Central Qilian Block, NW China. Journal of Earth Science, 30(6): 1280-1292 DOI:10.1007/s12583-018-0879-0
Li ZY, Li YL, Xiao WJ, Zheng JP and Brouwer FM. 2020b. Geochemical and zircon U-Pb-Hf isotopic study of metasedimentary rocks from the Huangyuan Group of the Central Qilian block (NW China): Implications for paleogeographic reconstruction of Rodinia. Precambrian Research, 351: 105947 DOI:10.1016/j.precamres.2020.105947
Liao FX, Zhang L, Chen NS, Sun M, Santosh M, Wang QY and Mustafa HA. 2014. Geochronology and geochemistry of meta-mafic dykes in the Quanji Massif, NW China: Paleoproterozoic evolution of the Tarim Craton and implications for the assembly of the Columbia supercontinent. Precambrian Research, 249: 33-56 DOI:10.1016/j.precamres.2014.04.015
Liu L, Sun Y, Xiao PX, Che ZC, Luo JH, Chen DL, Wang Y, Zhang AD, Chen L and Wang YH. 2002. Discovery of ultrahighpressure magnesite-bearing garnet lherzolite (>3.8GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin, 47(11): 881-886 DOI:10.1360/02tb9197
Liu L, Wang C, Cao YT, Chen DL, Kang L, Yang WQ and Zhu XH. 2012. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10-26 DOI:10.1016/j.lithos.2011.09.014
Liu XT, Ren EF, Li BK, Du YS, Gao DL, Ren QH and Gao L. 2019. Geochronology and petrogenesis of Neoproterozoic S-type granites from the Qilian Block, north-west China, and their geological implications. Geological Journal, 54(4): 2364-2381 DOI:10.1002/gj.3301
Liu YS, Yu HF, Xin HT, Lu SN, Xiu QY and Li Q. 2009. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China. Geological Bulletin of China, 28(10): 1430-1438 (in Chinese with English abstract)
Lu SN. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Beijing: Geological Publishing House, 1-125 (in Chinese)
Lu SN, Yu HF, Li HK, Guo KY, Wang HC, Jin W, Zhang CL and Liu YS. 2006. Research on Precambrian Major Problems in Chinese. Beijing: Geological Publishing House, 1-197 (in Chinese)
Lu SN, Li HK, Zhang CL and Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160(1-2): 94-107 DOI:10.1016/j.precamres.2007.04.025
Lu SN, Li HK, Wang HC, Chen ZH, Zheng JK and Xiang ZQ. 2009. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrologica Sinica, 25(9): 2195-2208 (in Chinese with English abstract)
Lu ZL, Zhang JX, Mao XH, Zhou GS and Peng YB. 2017. Paleoproterozoic mafic granulite in the eastern Oulongbuluke block of the North Qaidam Mountains: Evidences from petrology, zircon U-Pb dating and Hf isotope. Acta Petrologica Sinica, 33(12): 3815-3828 (in Chinese with English abstract)
Lu ZL. 2018. Tectonic erosion related to continental subduction: Insights from the formation and reworking of the Precambrian basement in Eastern North Qaidam Mountains. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-162 (in Chinese with English summary)
Lu ZL, Zhang JX and Mattinson C. 2018. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China. Journal of Metamorphic Geology, 36(5): 653-666 DOI:10.1111/jmg.12305
Meert JG. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362(1-4): 1-40 DOI:10.1016/S0040-1951(02)00629-7
Meert JG and Lieberman BS. 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation. Gondwana Research, 14(1-2): 5-21 DOI:10.1016/j.gr.2007.06.007
Meng FC, Zhang JX, Ker CM and Li JP. 2010. Constraints on the evolution of the North Qilian ocean basin: MOR-type and SSZ-type ophiolites from Dachadaban. Acta Petrologica et Mineralogica, 29(5): 453-466 (in Chinese with English abstract)
Meng FC, Zhang JX and Cui MH. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance. Gondwana Research, 23(2): 825-836 DOI:10.1016/j.gr.2012.06.007
Meng FC, Cui MH, Wu XK, Wu JF and Wang JH. 2013. Magmatic and metamorphic events recorded in granitic gneisses from the Qimantag, East Kunlun Mountains, Northwest China. Acta Petrologica Sinica, 29(6): 2107-2122 (in Chinese with English abstract)
Mezger K and Cosca MA. 1999. The thermal history of the Eastern Ghats Belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals: Implications for the SWEAT correlation. Precambrian Research, 94(3-4): 251-271 DOI:10.1016/S0301-9268(98)00118-1
Milidragovic D, Thorkelson DJ, Davis WJ, Marshall DD and Gibson HD. 2011. Evidence for Late Mesoproterozoic tectonism in northern Yukon and the identification of a Grenville-age tectonothermal belt in western Laurentia. Terra Nova, 23(5): 307-313 DOI:10.1111/j.1365-3121.2011.01015.x
Peng TP, Wilde SA, Fan WM, Peng BX and Mao YS. 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 235: 190-207 DOI:10.1016/j.precamres.2013.06.013
Peng YB, Yu SY, Zhang JX, Li SZ, Tong LX and Sun DY. 2017. Early Paleozoic arc magmatism and metamorphism in the northern Qilian Block, western China: Petrological and geochronological constraints. Geological Journal, 52(Suppl.1): 339-364
Peng YB, Yu SY, Li SZ, Zhang JX, Liu YJ, Li YS and Santosh M. 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Science Reviews, 199: 102954 DOI:10.1016/j.earscirev.2019.102954
Qi SS, Song SG, Shi LC, Cai HJ and Hu JC. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu-Suhaitu area, western part of the East Kunlun. Acta Petrologica Sinica, 30(11): 3345-3356 (in Chinese with English abstract)
Qi XP, Fan XG, Yang J, Cui JT, Wang BY, Fan YZ, Yang GX, Li Z and Chao WD. 2016. The discovery of Early Paleozoic eclogite in the upper reaches of Langmuri in eastern East Kunlun Mountains and its significance. Geological Bulletin of China, 35(11): 1771-1783 (in Chinese with English abstract)
Qi XX, Li HB, Zhang JX and Tsai CL. 2003. Relationship between deformation-metamorphism and syntectonic melting in a ductile shear zone: A case study of the Baokuhe ductile shear zone in the central Qilian Mountains. Geological Review, 49(4): 413-421 (in Chinese with English abstract)
Qi XX, Wu CL and Li HB. 2005. SHRIMP U-Pb age of zircons from Kazisayi granite in the northern Alty Tagh mountains and its significations. Acta Petrologica Sinica, 21(3): 859-866 (in Chinese with English abstract)
Qiu XF, Ling WL, Liu XM, Kusky T, Berkana W, Zhang YH, Gao YJ, Lu SS, Kuang H and Liu CX. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research, 191(3-4): 101-119 DOI:10.1016/j.precamres.2011.09.011
Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Galindo C, Fanning CM and Dahlquist JM. 2010. The Western Sierras Pampeanas: Protracted Grenville-age history (1330~1030Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 29(1): 105-127 DOI:10.1016/j.jsames.2009.08.004
Rivers T. 2008. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province: Implications for the evolution of large hot long-duration orogens. Precambrian Research, 167(3-4): 237-259 DOI:10.1016/j.precamres.2008.08.005
Rivers T. 2015. Tectonic setting and evolution of the Grenville Orogen: An assessment of progress over the last 40 years. Geoscience Canada, 42(1): 77-124 DOI:10.12789/geocanj.2014.41.057
Shi RD, Yang JS, Wu CL and Wooden J. 2004a. First SHRIMP dating for the formation of the Late Sinian Yushigou ophiolite, North Qilian Mountains. Acta Geologica Sinica, 78(5): 649-657 (in Chinese with English abstract)
Shi RD, Yang JS, Wu CL, Iizuka T and Hirata T. 2004b. Island arc volcanic rocks in the North Qaidam UHP metamorphic Belt. Acta Geologica Sinica, 78(1): 52-64 (in Chinese with English abstract)
Song SG, Su L, Li XH, Zhang GB, Niu YL and Zhang LF. 2010. Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precambrian Research, 183(4): 805-816 DOI:10.1016/j.precamres.2010.09.008
Song SG, Su L, Li XH, Niu YL and Zhang LF. 2012. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Research, 220-221(1): 9-22
Song SG, Niu YL, Su L and Xia XH. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research, 23(4): 1378-1401 DOI:10.1016/j.gr.2012.02.004
Song SG, Niu YL, Su L, Zhang C and Zhang LF. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews, 129: 59-84 DOI:10.1016/j.earscirev.2013.11.010
Song SG, Yang LM, Zhang YQ, Niu YL, Wang C, Su L and Gao YL. 2017. Qi-Qin Accretionary belt in Central China Orogen: Accretion by trench jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 62(15): 1035-1038 DOI:10.1016/j.scib.2017.07.009
Song SG, Bi HZ, Qi SS, Yang LM, Allen MB, Niu YL, Su L and Li WF. 2018. HP-UHP metamorphic belt in the East Kunlun orogen: Final closure of the Proto-Tethys Ocean and formation of the Pan-North-China continent. Journal of Petrology, 59(11): 2043-2060 DOI:10.1093/petrology/egy089
Stampfli GM and Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17-33 DOI:10.1016/S0012-821X(01)00588-X
Stampfli GM, Hochard C, Vérard C, Wilhem C and von Raumer J. 2013. The formation of Pangea. Tectonophysics, 593: 1-19 DOI:10.1016/j.tecto.2013.02.037
Sun JP, Chen SY, Peng Y, Ma S, Shao PC and Liu J. 2016. Early Neoproterozoic glacier event in Oulongbuluke block: Evidence from CIA Index. Geological Review, 62(1): 29-36
Sun LQ, Wang KX, Liu XD, Liu WH, Yu CD and Liao HH. 2020. Two stages of granitoid intrusions and their implications on the Early Paleoproterozoic tectonic evolution of the Quanji Massif. Lithos, 362-363: 105479 DOI:10.1016/j.lithos.2020.105479
Teng X, Zhang JX, Mao XH, Lu ZL and Zhou GS. 2020. The earliest Cambrian UHT metamorphism in the Qaidam block, western China: A record of the final assembly of Greater Gondwana?. Gondwana Research, 87: 118-137 DOI:10.1016/j.gr.2020.06.009
Tohver E, van der Pluijm BA, Scandolara JE and Essene EJ. 2005. Late Mesoproterozoic deformation of SW Amazonia (Rondônia, Brazil): Geochronological and structural evidence for collision with southern Laurentia. Journal of Geology, 113(3): 309-323 DOI:10.1086/428807
Tung KA, Yang HJ, Yang HY, Liu DY, Zhang JX, Wan YS and Tseng CY. 2007. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chinese Science Bulletin, 52(19): 2687-2701 DOI:10.1007/s11434-007-0356-0
Tung KA, Yang HY, Liu DY, Zhang JX, Yang HJ, Shau YH and Tseng CY. 2012. The amphibolite-facies metamorphosed mafic rocks from the Maxianshan area, Qilian Block, NW China: A record of Early Neoproterozoic arc magmatism. Journal of Asian Earth Sciences, 46: 177-189 DOI:10.1016/j.jseaes.2011.12.006
Tung KA, Yang HY, Liu DY, Zhang JX, Yang HJ, Shau YH and Tseng CY. 2013. The Neoproterozoic granitoids from the Qilian Block, NW China: Evidence for a link between the Qilian and South China blocks. Precambrian Research, 235: 163-189 DOI:10.1016/j.precamres.2013.06.016
von Raumer JF and Stampfli GM. 2008. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461(1-4): 9-20 DOI:10.1016/j.tecto.2008.04.012
Wan YS, Xu ZQ, Yang JS and Zhang JX. 2001. Ages and compositions of the Precambrian high-grade basement of the Qilian terrane and its adjacent areas. Acta Geologica Sinica, 75(4): 375-384
Wan YS, Xu ZQ, Yang JS and Zhang JX. 2003. The Precambrian high-grade basement of the Qilian Terrane and neighboring areas: Its ages and compositions. Acta Geoscientia Sinica, 24(4): 319-324 (in Chinese with English abstract)
Wan YS, Zhang JX, Yang JS and Xu ZQ. 2006. Geochemistry of high-grade metamorphic rocks of the North Qaidam Mountains and their geological significance. Journal of Asian Earth Sciences, 28(2-3): 174-184 DOI:10.1016/j.jseaes.2005.09.018
Wang C, Liu L and Li RS. 2018. Precambrian geology of the northern margin of the Tibetan Plateau: Review and discussion. Chinese Journal of Geology, 53(3): 972-999 (in Chinese with English abstract)
Wang CY, Zhang Q, Qian Q and Zhou MF. 2005. Geochemistry of the Early Paleozoic Baiyin volcanic rocks (NW China): Implications for the tectonic evolution of the North Qilian orogenic belt. The Journal of Geology, 113(1): 83-94 DOI:10.1086/425970
Wang GC, Wang QH, Jian P and Zhu YH. 2004. Zircon SHRIMP ages of precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481-490 (in Chinese with English abstract)
Wang L, Wang H, He C, Chen NS, Santosh M, Sun M, Wang QY, Jin LL and Liao FX. 2016. Mesoproterozoic continental breakup in NW China: Evidence from gray gneisses from the North Wulan terrane. Precambrian Research, 281: 521-536 DOI:10.1016/j.precamres.2016.06.016
Wang MJ, Song SG, Niu YL and Su L. 2014. Post-collisional magmatism: Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China. Lithos, 210
Wang QY, Dong YJ, Pan YM, Liao FX and Guo XW. 2018. Early Paleozoic granulite-facies metamorphism and magmatism in the northern Wulan Terrane of the Quanji Massif: Implications for the evolution of the Proto-Tethys Ocean in northwestern China. Journal of Earth Science, 29(5): 1081-1101 DOI:10.1007/s12583-018-0881-6
Wang XX, Wang T, Castro A and Hu NG. 2015. Proterozoic rapakivi granites from the North Qaidam orogen, NW China: Implications for basement attribution. Gondwana Research, 28: 1516-1529 DOI:10.1016/j.gr.2014.09.018
Wang YS and Chen JN. 1987. Metamorphic Belts and Metamorphism in the Qinghai Province and Adjacent Regions. Beijing: Geological Publishing House, 1-270 (in Chinese)
Wen B, Evans DAD, Wang C, Li YX and Jing XQ. 2018. A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly. Geology, 46(8): 687-690 DOI:10.1130/G40254.1
White RW, Clarke GL and Nelson DR. 1999. SHRIMP U-Pb zircon dating of Grenville-age events in the western part of the Musgrave Block, central Australia. Journal of Metamorphic Geology, 17(5): 465-481 DOI:10.1046/j.1525-1314.1999.00211.x
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC Ⅲ and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35 DOI:10.1080/07474938808800138
Wingate MTD, Pirajno F and Morris PA. 2004. Warakurna large igneous province: A new Mesoproterozoic large igneous province in west-central Australia. Geology, 32(2): 105-108 DOI:10.1130/G20171.1
Wu C, Zuza AV, Yin A, Liu CF, Reith RC, Zhang JY, Liu WC and Zhou ZG. 2017. Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian Shan of northern Tibet: Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere, 9(4): 609-636
Wu CL, Ireland T, Wooden J, Yang JS, Li HB, Wan YS and Shi RD. 2001. Zircon SHRIMP ages of Aolaoshan granite from the south margin of Qilianshan and its geological significance. Acta Petrologica Sinica, 17(2): 215-221 (in Chinese with English abstract)
Wu CL, Yang JS, Xu ZQ, Wooden JL, Ireland T, Li HB, Shi RD, Meng FC, Chen SY, Persing H and Meibom A. 2004. Granitic magmatism on the Early Paleozoic UHP Belt of northern Qaidam, NW China. Acta Geologica Sinica, 78(5): 658-674 (in Chinese with English abstract)
Wu CL, Yao SZ, Zeng LS, Yang JS, Wooden JL, Chen SY and Mazadab FK. 2006. Bashikaogong-Shimierbulake granitic complex, North Altun, NW China: Geochemistry and zircon SHRIMP ages. Science in China (Series D), 49(12): 1233-1251 DOI:10.1007/s11430-006-2041-6
Wu CL, Gao YH, Frost BR, Robinson PT, Wooden JL, Wu SP, Chen QL and Lei M. 2011. An early Palaeozoic double-subduction model for the North Qilian oceanic plate: Evidence from zircon SHRIMP dating of granites. International Geology Review, 53(2): 157-181 DOI:10.1080/00206810902965346
Wu FY, Wan B, Zhao L, Xiao WJ and Zhu RX. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.01
Xia LQ, Xia ZC and Xu XY. 1996. The Petrogenesis of Marine Volcanic Rocks from the Northern Qilian Mountains. Beijing: Geological Publishing House, 1-153 (in Chinese)
Xia LQ, Xia ZC and Xu XY. 2003. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. GSA Bulletin, 115(12): 1510-1522 DOI:10.1130/B25269.1
Xia XH and Song SG. 2010. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China. Chinese Science Bulletin, 55(18): 1899-1907 DOI:10.1007/s11434-010-3207-3
Xia XH, Song SG and Niu YL. 2012. Tholeiite-boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back-arc basin development. Chemical Geology, 328: 259-277 DOI:10.1016/j.chemgeo.2011.12.001
Xiao ZX, Ma LC, Jiang W, Wang R, Yao YY, Cai J, Lin JY and Li L. 2020. Grenville-age orogenic event along the northeastern margin of the Quanji massif, NW China: Constraints from ~1.1Ga migmatite. Geosciences Journal, 24(3): 249-266 DOI:10.1007/s12303-019-0033-8
Xu SJ, Liu WZ, Wang RC, Yu HB, Li DM, Wan JL and Fang Z. 2004. The history of crustal uplift and metamorphic evolution of Panzhihua-Xichang micro-palaeoland, SW China: Constraints on Sm-Nd, 40Ar/39Ar and FT ages of granulites. Science in China (Series D), 47(8): 689-703 DOI:10.1360/02yd0431
Xu WC, Zhang HF and Liu XM. 2007. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications. Chinese Science Bulletin, 52(4): 531-538 DOI:10.1007/s11434-007-0082-7
Xu X, Song SG, Allen MB, Ernst RE, Niu YL and Su L. 2016. An 850~820Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China. Precambrian Research, 282: 52-73 DOI:10.1016/j.precamres.2016.07.007
Xu XY, He SP and Wang HL, et al. 2008. Geology of Northwest China. Beijing: Science Press, 1-347 (in Chinese)
Xu ZQ, Xu HF, Zhang JX, Li HB, Zhu ZZ, Qu JC, Chen DZ, Chen JL and Yang KC. 1994. The Zhoulangnanshan Caledonian subductive complex in the northern Qilian Mountains and its dynamics. Acta Geologica Sinica, 68(1): 1-15 (in Chinese with English abstract)
Xu ZQ, He BZ, Zhang CL, Zhang JX, Wang ZM and Cai ZH. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples. Precambrian Research, 235: 150-162 DOI:10.1016/j.precamres.2013.06.001
Yan Z, Aitchison J, Fu CL, Guo XQ, Niu ML, Xia WJ and Li JL. 2015. Hualong complex, South Qilian terrane: U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin. Precambrian Research, 266: 65-85 DOI:10.1016/j.precamres.2015.05.001
Yang JS, Shi RD, Wu CL, Su DC, Chen SY, Wang XB and Wooden JL. 2008. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, North Altun, at the northern margin of the Tibetan Plateau. Acta Petrologica Sinica, 24(7): 1567-1584 (in Chinese with English abstract)
Yong Y, Xiao WJ, Yuan C, Li JL, Yan Z and Mao QG. 2008a. LA-ICPMS zircon U-Pb ages of granitic plutons from the eastern sector of the central Qilian and their geologic implication. Xinjiang Geology, 26(1): 62-70 (in Chinese with English abstract)
Yong Y, Xiao WJ, Yuan C, Yan Z and Li JL. 2008b. Geochronology and geochemistry of Paleozoic granitic plutons from the eastern Central Qilian and their tectonic implications. Acta Petrologica Sinica, 24(4): 855-866 (in Chinese with English abstract)
Yu FC, Wei GF and Sun JD. 1994. The Pattern of Mineralization of Gold Deposit Syn-Tectonics in Dark Rock Series by Tanjianshan Gold Deposit. Xi'an: The Publishing House of Northwest University, 1-130 (in Chinese)
Yu SY, Zhang JX and Del Real PG. 2012. Geochemistry and zircon U-Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, North Tibet: Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny. Gondwana Research, 21(1): 167-179 DOI:10.1016/j.gr.2011.07.024
Yu SY, Zhang JX, Del Real PG, Zhao XL, Hou KJ, Gong JH and Li YS. 2013. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau: Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks. Journal of Asian Earth Sciences, 73: 372-395 DOI:10.1016/j.jseaes.2013.04.042
Yu SY, Zhang JX, Li SZ, Sun DY, Li YS, Liu X, Guo LL, Suo YH, Peng YB and Zhao XL. 2017. Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Respond to assembly of the Columbia supercontinent. Precambrian Research, 291: 42-62 DOI:10.1016/j.precamres.2017.01.016
Yu SY, Li SZ, Zhang JX, Liu YJ, Peng YB, Sun DY and Li YS. 2019. Grenvillian orogeny in the Oulongbuluke Block, NW China: Constraints from an? ~1.1Ga Andean-type arc magmatism and metamorphism. Precambrian Research, 320: 424-437 DOI:10.1016/j.precamres.2018.11.001
Yuan GB, Wang HC, Li HM, Hao GJ, Xin HT, Zhang BH, Wang QH and Tian Q. 2002. Zircon U-Pb age of the gabbros in Luliangshan area on the Northern margin of Qaidam basin and its geological implication. Progress in Precambrian Research, 25(1): 36-40 (in Chinese with English abstract)
Zhai MG. 2013. The main old lands in China and assembly of Chinese unified continent. Science China (Earth Sciences), 56(11): 1829-1852 DOI:10.1007/s11430-013-4665-7
Zhang CL, Ye XT, Ernst RE, Zhong Y, Zhang J, Li HK and Long XP. 2019a. Revisiting the Precambrian evolution of the southwestern Tarim terrane: Implications for its role in Precambrian supercontinents. Precambrian Research, 324: 18-31 DOI:10.1016/j.precamres.2019.01.018
Zhang HJ, Wang XL, Wang X and Zhou HR. 2016. U-Pb zircon ages of tuff beds from the Hongzaoshan Formation of the Quanji Group in the north margin of the Qaidam Basin, NW China, and their geological significances. Earth Science Frontiers, 23(6): 202-218 (in Chinese with English abstract)
Zhang JX, Xu ZQ, Chen W and Xu HF. 1997. A tentative discussion on the ages of the subduction-accretionary complex/volcanic arcs in the middle sector of North Qilian Mountain. Acta Petrologica et Mineralogica, 16(2): 112-119 (in Chinese with English abstract)
Zhang JX, Xu ZQ, Xu HF and Li HB. 1998. Framework of north Qilian caledonian subduction-accretionary wedge and its deformation dynamics. Scientia Geologica Sinica, 33(3): 290-299 (in Chinese with English abstract)
Zhang JX, Zhang ZM, Xu ZQ, Yang JS and Cui JW. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56(2-3): 187-206 DOI:10.1016/S0024-4937(00)00052-9
Zhang JX, Yang JS, Xu ZQ, Meng FC, Li HB and Shi RD. 2002. Evidence for UHP metamorphism of eclogites from the Altun Mountains. Chinese Science Bulletin, 47(9): 751-755 DOI:10.1360/02tb9170
Zhang JX, Wan YS, Meng FC, Yang JS and Xu ZQ. 2003. Geochemistry, Sm-Nd and U-Pb isotope study of gneisses (schists) enclosing eclogites in the North Qaidam Mountains: Deeply subducted Precambrian metamorphic basement?. Acta Petrologica Sinica, 19(3): 443-451 (in Chinese with English abstract)
Zhang JX, Meng FC and Yang JS. 2005. A new HP/LT metamorphic terrane in the northern Altyn Tagh, western China. International Geology Review, 47(4): 371-386 DOI:10.2747/0020-6814.47.4.371
Zhang JX, Meng FC and Wan YS. 2007. A cold Early Paleozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology, 25: 285-304 DOI:10.1111/j.1525-1314.2006.00689.x
Zhang JX, Meng FC, Yu SY, Chen W and Chen SY. 2007. 40Ar-39Ar geochronology of high-pressure/low-temperature blueschist and eclogite in the North Altyn Tagh and their tectonic implications. Geology in China, 34(4): 558-564 (in Chinese with English abstract)
Zhang JX, Li HK, Meng FC, Xiang ZQ, Yu SY and Li JP. 2011. Polyphase tectonothermal events recorded in 'metamorphic basement' from the Altyn Tagh, the southeastern margin of the Tarim basin, western China: Constraint from U-Pb zircon geochronology. Acta Petrologica Sinica, 27(1): 23-46 (in Chinese with English abstract)
Zhang JX, Li JP, Yu SY, Meng FC, Mattinson CG, Yang HJ and Ker CM. 2012. Provenance of eclogitic metasediments in the North Qilian HP/LT metamorphic terrane, western China: Geodynamic implications for Early Paleozoic subduction-erosion. Tectonophysics, 570-571: 78-101 DOI:10.1016/j.tecto.2012.08.018
Zhang JX, Mattinson CG, Yu SY and Li YS. 2014. Combined rutile-zircon thermometry and U-Pb geochronology: New constraints on Early Paleozoic HP/UHT granulite in the South Altyn Tagh, north Tibet, China. Lithos, 200-201: 41-257
Zhang JX, Yu SY, Li YS, Yu XX, Lin YH and Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554 (in Chinese with English abstract)
Zhang JX, Yu SY and Mattinson CG. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research, 41: 267-289 DOI:10.1016/j.gr.2015.11.009
Zhang JX and Gong JH. 2018. Revisiting the nature and affinity of the Alxa block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English abstract)
Zhang JX, Mattinson CG, Yu SY, Li YS, Yu XX, Mao XH, Lu ZL and Peng YB. 2019b. Two contrasting accretion vs. collision orogenies: Insights from Early Paleozoic polyphase metamorphism in the Altun-Qilian-North Qaidam orogenic system, NW China. Geological Society, London: Special Publications, 153-181
Zhang Q, Sun XM, Zhou DJ, Qian Q, Chen Y, Wang YM, Jia XQ and Han S. 1997. The characteristics of North Qilian ophiolites, forming settings and their tectonic significance. Advance in Earth Sciences, 12(4): 366-393 (in Chinese with English abstract)
Zhang Q, Chen Y, Zhou DJ, Qian Q, Jia XQ and Han S. 1998. Geochemical characteristics and genesis of Dachadaban ophiolite in North Qilian area. Science in China (Series D), 41(3): 277-281 DOI:10.1007/BF02973116
Zhao GC, Wang YJ, Huang BC, Dong YP, Li SZ, Zhang GW and Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262-286 DOI:10.1016/j.earscirev.2018.10.003
Zhu XH, Chen DL, Liu L, Zhao J and Zhang L. 2014. Geochronology, geochemistry and significance of the Early Paleozoic back-arc type ophiolite in Lüliangshan area, North Qaidam. Acta Petrologica Sinica, 30(3): 822-834 (in Chinese with English abstract)
曹玉亭, 刘良, 王超, 杨文强, 朱小辉. 2010. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成. 岩石学报, 26(11): 3259-3271.
陈能松, 李晓彦, 王新宇, 陈强, 王勤燕, 万渝生. 2006. 柴达木地块南缘昆北单元变质新元古代花岗岩锆石SHRIMP U-Pb年龄. 地质通报, 25(11): 1311-1314. DOI:10.3969/j.issn.1671-2552.2006.11.010
陈有炘, 裴先治, 李佐臣, 李瑞保, 刘成军, 陈国超, 裴磊, 魏博. 2015. 东昆仑东段巴隆花岗质片麻岩年代学、地球化学特征及地质意义. 岩石学报, 31(8): 2230-2244.
董国安, 杨怀仁, 杨宏仪, 刘敦一, 张建新, 万渝生, 曾建元. 2007. 祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义. 科学通报, 52(13): 1572-1585. DOI:10.3321/j.issn:0023-074X.2007.13.015
冯益民, 何世平. 1996. 祁连山大地构造与造山作用. 北京: 地质出版社, 1-150.
耿元生, 旷红伟, 杜利林, 柳永清. 2020. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义. 岩石学报, 36(8): 2276-2312.
葛肖虹, 刘俊来. 2000. 被肢解的"西域克拉通". 岩石学报, 16(1): 59-66.
郭进京, 赵凤清, 李怀坤. 1999. 中祁连东段晋宁期碰撞型花岗岩及其地质意义. 地球学报, 20(1): 10-15. DOI:10.3321/j.issn:1006-3021.1999.01.002
郭群英, 邬光辉, 冯晓军, 何曙. 2015. 塔里木盆地新元古代伸展-挤压构造旋回. 新疆地质, 33(3): 335-339. DOI:10.3969/j.issn.1000-8845.2015.03.009
何凡, 宋述光. 2020. 东昆仑金水口地区格林威尔期超高温麻粒岩. 岩石学报, 36(4): 1030-1040.
何世平, 李荣社, 王超, 于浦生, 张宏飞, 辜平阳, 时超. 2011. 南祁连东段化隆岩群形成时代的进一步限定. 岩石矿物学杂志, 30(1): 34-44. DOI:10.3969/j.issn.1000-6524.2011.01.004
姜春发, 王宗起, 李锦轶. 2000. 中央造山带开合构造. 北京: 地质出版社, 1-107.
康磊, 刘良, 曹玉亭, 王超, 杨文强, 梁莎. 2013. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义. 岩石学报, 29(9): 3039-3048.
康珍, 姜常义, 凌锦兰, 赵彦锋, 宋艳芳, 周伟. 2015. 青海省乌兰地区肯得隆富钛铁矿镁铁-超镁铁质岩体的岩石与矿石成因. 岩石学报, 31(8): 2193-2210.
李怀坤, 陆松年, 王惠初, 相振群, 郑建康. 2003. 青海柴北缘新元古代超大陆裂解的地质记录: 全吉群. 地质调查与研究, 26(1): 27-37, 60. DOI:10.3969/j.issn.1672-4135.2003.01.006
李怀坤, 张传林, 相振群, 陆松年, 张健, 耿建珍, 瞿乐生, 王志先. 2013. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义. 岩石学报, 29(2): 673-697.
李三忠, 赵淑娟, 余珊, 曹花花, 李玺瑶, 刘鑫, 郭晓玉, 肖文交, 赖绍聪, 闫臻, 李宗会, 于胜尧, 张剑, 兰浩圆. 2016. 东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合. 岩石学报, 32(9): 2628-2644.
李秀财, 牛漫兰, 闫臻, 笪梁超, 韩雨, 王玉松. 2015. 青海省乌兰县早古生代低压高温变质岩: 柴北缘存在双变质带?. 科学通报, 60(35): 3501-3513.
李曰俊, 宋文杰, 吴根耀, 王艺芬, 李宇平, 郑多明. 2005. 塔里木盆地中部隐伏的晋宁期花岗闪长岩和闪长岩. 中国科学(D辑), 35(2): 97-104.
刘永顺, 于海峰, 辛后田, 陆松年, 修群业, 李铨. 2009. 阿尔金山地区构造单元划分和前寒武纪重要地质事件. 地质通报, 28(10): 1430-1438. DOI:10.3969/j.issn.1671-2552.2009.10.009
陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社, 1-125.
陆松年, 于海峰, 李怀坤, 郭坤一, 王惠初, 金巍, 张传林, 刘永顺. 2006. 中国前寒武纪重大地质问题研究——中国西部前寒武纪重大地质事件群及其全球构造意义. 北京: 地质出版社, 1-197.
陆松年, 李怀坤, 王惠初, 陈志宏, 郑健康, 相振群. 2009. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究. 岩石学报, 25(9): 2195-2208.
路增龙, 张建新, 毛小红, 周桂生, 彭银彪. 2017. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩: 岩石学、锆石U-Pb年代学和Lu-Hf同位素证据. 岩石学报, 33(12): 3815-3828.
路增龙. 2018. 大陆俯冲带的构造剥蚀作用: 来自柴北缘东段前寒武纪变质基底形成和再造的启示. 博士学位论文. 北京: 中国地质科学院, 1-162
孟繁聪, 张建新, 郭春满, 李金平. 2010. 大岔大坂MOR型和SSZ型蛇绿岩对北祁连洋演化的制约. 岩石矿物学杂志, 29(5): 453-466. DOI:10.3969/j.issn.1000-6524.2010.05.001
孟繁聪, 崔美慧, 吴祥珂, 吴久芳, 王建华. 2013. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件. 岩石学报, 29(6): 2107-2122.
祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义. 岩石学报, 30(11): 3345-3356.
祁晓鹏, 范显刚, 杨杰, 崔建堂, 汪帮耀, 范亚洲, 杨高学, 李真, 晁文迪. 2016. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义. 地质通报, 35(11): 1771-1783. DOI:10.3969/j.issn.1671-2552.2016.11.002
戚学祥, 李海兵, 张建新, 蔡金郎. 2003. 韧性剪切带的变形变质与同构造熔融作用——以中祁连地块宝库河韧性走滑剪切带为例. 地质论评, 49(4): 413-421. DOI:10.3321/j.issn:0371-5736.2003.04.012
戚学祥, 吴才来, 李海兵. 2005. 北阿尔金喀孜萨依花岗岩锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 21(3): 859-866.
青海省地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社, 1-662
史仁灯, 杨经绥, 吴才来, Wooden J. 2004a. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据. 地质学报, 78(5): 649-657.
史仁灯, 杨经绥, 吴才来, Iizuka T, Hirata T. 2004b. 柴达木北缘超高压变质带中的岛弧火山岩. 地质学报, 78(1): 52-64.
孙娇鹏, 陈世悦, 彭渊, 马帅, 邵鹏程, 刘金. 2016. 欧龙布鲁克地块新元古代早期冰川事件: 来自CIA指数的证据. 地质论评, 62(1): 29-36.
万渝生, 许志琴, 杨经绥, 张建新. 2003. 祁连造山带及邻区前寒武纪深变质基底的时代和组成. 地球学报, 24(4): 319-324. DOI:10.3321/j.issn:1006-3021.2003.04.005
王超, 刘良, 李荣社. 2018. 青藏高原北缘前寒武纪地质演化: 进展与讨论. 地质科学, 53(3): 972-999.
王国灿, 王青海, 简平, 朱云海. 2004. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义. 地学前缘, 11(4): 481-490. DOI:10.3321/j.issn:1005-2321.2004.04.014
王云山, 陈基娘. 1987. 青海省及毗邻地区变质地带与变质作用. 北京: 地质出版社, 1-270.
吴才来, Ireland T, Wooden J, 杨经绥, 李海兵, 万渝生, 史仁灯. 2001. 祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义. 岩石学报, 17(2): 215-221.
吴才来, 杨经绥, 许志琴, Wooden JL, Ireland T, 李海兵, 史仁灯, 孟繁聪, 陈松永, Persing H, Meibom A. 2004. 柴达木盆地北缘古生代超高压带中花岗质岩浆作用. 地质学报, 78(5): 658-674. DOI:10.3321/j.issn:0001-5717.2004.05.010
吴才来, 姚尚志, 曾令森, 杨经绥, Wooden JL, 陈松永, Mazadab FK. 2007. 北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年. 中国科学(D辑), 37(1): 10-26.
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
夏林圻, 夏祖春, 徐学义. 1996. 北祁连山海相火山岩岩石成因. 北京: 地质出版社, 1-153.
新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社, 1-941.
徐旺春, 张宏飞, 柳小明. 2007. 锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义. 科学通报, 52(10): 1174-1180. DOI:10.3321/j.issn:0023-074X.2007.10.014
徐学义, 何世平, 王洪亮, 等. 2008. 中国西北部地质概论. 北京: 科学出版社, 1-347.
许志琴, 徐惠芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1-15.
杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, Wooden JL. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年. 岩石学报, 24(7): 1567-1584.
雍拥, 肖文交, 袁超, 李继亮, 闫臻, 毛启贵. 2008a. 中祁连东段花岗岩LA-ICPMS锆石U-Pb年龄及地质意义. 新疆地质, 26(1): 62-70.
雍拥, 肖文交, 袁超, 闫臻, 李继亮. 2008b. 中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义. 岩石学报, 24(4): 855-866.
于凤池, 魏刚锋, 孙继东. 1994. 黑色岩系同构造金矿床成矿模式: 以滩间山金矿床为例. 西安: 西北大学出版社, 1-130.
袁桂邦, 王惠初, 李惠民, 郝国杰, 辛后田, 张宝华, 王青海, 田琪. 2002. 柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义. 前寒武纪研究进展, 25(1): 36-40. DOI:10.3969/j.issn.1672-4135.2002.01.005
翟明国. 2013. 中国主要古陆与联合大陆的形成——综述与展望. 中国科学(地球科学), 43(10): 1583-1606.
张海军, 王训练, 王勋, 周洪瑞. 2016. 柴达木盆地北缘全吉群红藻山组凝灰岩锆石U-Pb年龄及其地质意义. 地学前缘, 23(6): 202-218.
张建新, 许志琴, 陈文, 徐惠芬. 1997. 北祁连中段俯冲-增生杂岩/火山弧的时代探讨. 岩石矿物学杂志, 16(2): 112-119.
张建新, 许志琴, 徐惠芬, 李海兵. 1998. 北祁连加里东期俯冲-增生楔结构及动力学. 地质科学, 33(3): 290-299.
张建新, 万渝生, 孟繁聪, 杨经绥, 许志琴. 2003. 柴北缘夹榴辉岩的片麻岩(片岩)地球化学、Sm-Nd和U-Pb同位素研究——深俯冲的前寒武纪变质基底?. 岩石学报, 19(3): 443-451.
张建新, 孟繁聪, 于胜尧, 陈文, 陈松永. 2007. 北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义. 中国地质, 34(4): 558-564. DOI:10.3969/j.issn.1000-3657.2007.04.002
张建新, 李怀坤, 孟繁聪, 相振群, 于胜尧, 李金平. 2011. 塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件: 锆石U-Pb年代学的制约. 岩石学报, 27(1): 23-46.
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554.
张建新, 宫江华. 2018. 阿拉善地块性质和归属的再认识. 岩石学报, 34(4): 940-962.
张旗, 孙晓猛, 周德进, 钱青, 陈雨, 王岳明, 贾秀琴, 韩松. 1997. 北祁连蛇绿岩的特征、形成环境及其构造意义. 地球科学进展, 12(4): 366-393. DOI:10.3321/j.issn:1001-8166.1997.04.007
张旗, Chen Y, 周德进, 钱青, 贾秀琴, 韩松. 1998. 北祁连大岔大坂蛇绿岩的地球化学特征及其成因. 中国科学(D辑), 28(1): 30-34.
朱小辉, 陈丹玲, 刘良, 赵姣, 张乐. 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义. 岩石学报, 30(3): 822-834.