岩石学报  2021, Vol. 37 Issue (1): 65-73, doi: 10.18654/1000-0569/2021.01.05   PDF    
太古宙富铁苦橄岩与太古宙早期深部地幔不均一性
王潮1, 宋述光2     
1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 造山带与地壳演化教育部重点实验室, 北京大学地球与空间科学学院, 北京 100871
摘要: 富铁苦橄岩是一类特殊的高镁地幔来源岩浆岩,具有高的FeOT含量(> 14%)和MgO含量(> 12%),并富集不相容元素和具有轻重稀土强烈分异的稀土元素配分模式。富铁苦橄岩通常与科马提岩产出于绿岩带中,或产出于大火成岩省中,因此富铁苦橄岩的形成与地幔柱活动有着密切的联系,与其他高镁地幔来源岩浆岩(科马提岩、苦橄岩)一道成为了探究地球深部地幔的最佳材料。根据太古宙科马提岩成分随时间的演化,以往的研究认为地球深部地幔中出现富集组分的时间约为2.7Ga。而最近在华北克拉通冀东地区发现的古太古代(3.45Ga)富铁苦橄岩表明地球深部地幔中铁和不相容元素的局部富集可能在3.45Ga前后便已出现。对太古宙富铁苦橄岩的进一步研究有助于我们理解地球早期各圈层相互作用的模式。
关键词: 富铁苦橄岩    地幔不均一性    太古宙    
Archean ferropicrites and Early Archean deep mantle heterogeneity
WANG Chao1, SONG ShuGuang2     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Abstract: Ferropicrites are a unique kind of magnesium-rich mantle-derived magmatic rocks, which are characterized by high contents of FeOT (> 14%) and MgO (> 12%), enrichment of incompatible elements and strongly fractionated rare earth element patterns. Ferropicrites commonly occur in greenstone belts together with komatiites, or in large igneous provinces, implying the close relationship between the generation of ferropicrites and mantle plume activities. Thus ferropicrites and other magnesium-rich mantle-derived magmatic rocks (komatiites and picrites) can probe the compositional features of their deep mantle source. Based on the compositional evolution of Archean komatiites through time, previous researches proposed that the emergence of enriched domains in Earth's deep mantle took place at around 2.7Ga. However, the recent discovery of Paleoarchean (3.45Ga) ferropicrites in eastern Hebei, the North China Craton indicates that partial enrichment of iron and incompatible elements was present in Earth's deep mantle as early as 3.45Ga. Further study of Archean ferropicrites can help us better understand the interaction between Earth's different layers during its early history.
Key words: Ferropicrites    Mantle heterogeneity    Archean    

近几十年来的地幔岩石学和地幔地球化学研究表明地幔具有显著的成分不均一性,体现在主微量元素及一系列同位素体系(Hart and Brooks, 1977; Zindler et al. , 1982; Jacobsen, 1988; Galer and Goldstein, 1991; Blichert-Toft and Albarède, 1994; Stracke et al. , 2005; Puchtel et al. , 2018; Wang et al. , 2018)。但地幔成分不均一性的成因及其在地幔中形成和存留的时间尺度一直没有得到全面的认识。受限于研究材料的稀少,太古宙时期地幔特别是深部地幔的成分特征尚未得到准确限定。在太古宙岩石记录中,地幔岩石相当匮乏,仅有一些太古宙克拉通中的金伯利岩和碱性玄武岩中的地幔捕掳体或地幔残片可作为太古宙地幔的直接采样(Boyd et al. , 1993, 1997; Lee and Rudnick, 1999; Bernstein et al. , 2006, 2007; Spengler, 2009; Spengler et al. , 2018)。但这些太古宙地幔岩石大多为经历了熔体抽取之后的熔融残余(Pearson and Wittig, 2008),或是经历了与熔体反应或交代作用(Simon et al. , 2007),因而用这些太古宙地幔岩石样品直接反演太古宙地幔的成分特征存在很多问题。此外,金刚石中的一些矿物包裹体也可以提供太古宙时期地幔的状态信息(Shirey et al. , 2008; Shirey and Richardson, 2011)。因此,长期以来我们对于太古宙时期地幔成分特征的认识主要来自对地幔来源的超镁铁-镁铁质岩浆岩的研究(Nisbet et al. , 1993; Barnes and Arndt, 2019);特别是对地球早期深部地幔成分特征的研究主要依赖于与地幔柱活动有关的科马提岩和科马提质玄武岩(Arndt et al. , 2008; Sossi et al. , 2016; Barnes and Arndt, 2019)。最近,笔者及合作者在华北克拉通冀东地区新发现了一例古太古代(3.45Ga)富铁苦橄岩(Ferropicrite; Wang et al. , 2019),是继南非Barberton和澳大利亚East Pilbara 3.5~3.46Ga科马提岩(Arndt et al. , 2008; Barnes and Arndt, 2019)之后全球第三例地球最古老地幔柱活动的记录;该古太古代富铁苦橄岩的发现为太古宙早期深部地幔的成分不均一性研究提供了新的实例。本文将从太古宙富铁苦橄岩的研究现状出发,探讨其对太古宙深部地幔成分不均一性的意义。

1 太古宙富铁苦橄岩研究现状

富铁苦橄岩是一类极为罕见的高镁地幔岩浆岩,其具有特殊的地球化学特点:FeOT含量大于14%,MgO含量大于12%,Al2O3含量较低(< 10%,通常 < 5%),具有较高的TiO2(1%~2%);且其较高的不相容元素含量和强烈分异的稀土元素配分模式(轻稀土元素含量明显高于重稀土元素)(Goldstein and Francis, 2008图 1)。富铁苦橄岩较高的MgO含量及微量元素特征类似于现今的洋岛玄武岩(OIB)(图 1),但以其较高的FeOT含量与OIB明显区别;与玻安岩相比,富铁苦橄岩具有较低的SiO2含量,更高的FeOT含量和明显不同的微量元素特征;而相较于FeOT含量通常小于14%且稀土元素配分模式通常为平坦或轻稀土元素略微亏损的科马提岩(Barnes and Arndt, 2019),富铁苦橄岩也具有明显不同的地球化学特征。富铁苦橄岩的特殊地球化学特征表明其成因极为特殊:源区成分、熔融压力和温度,以及熔融程度都明显区别于典型的高镁地幔来源岩浆岩。

图 1 富铁苦橄岩地球化学特征 (a) SiO2-MgO图解,科马提岩、苦橄岩、玄武岩和玻安岩的成分范围利用GEOROC数据库中相关数据绘制;(b) SiO2-FeOT图解,富铁苦橄岩/富铁科马提岩和冰岛/MORB的成分范围修改自Gibson (2002),苦橄岩/科马提岩和玻安岩的成分范围利用GEOROC数据库中相关数据绘制;(c)原始地幔标准化微量元素图解. 华北克拉通冀东古太古代(3.45Ga)富铁苦橄岩(Wang et al., 2019)也投于图中 Fig. 1 Geochemical characteristics of ferropicrites (a) SiO2 vs. MgO diagram. The fields of komatiites, picrites, basalts and boninites are constructed using the data from the GEOROC database; (b) SiO2 vs. FeOT diagram. The fields of ferropicrites/ferrokomatiites and Iceland/MORB are from Gibson (2002); the fields of picrites/komatiites and boninites are constructed using the data from the GEOROC database; (c) primitive mantle-normalized trace element diagram. Paleoarchean ferropicrites from eastern Hebei, the North China Craton (Wang et al., 2019) are also plotted

早在20世纪70年代末,研究者们就在一些太古宙克拉通中报道了具有富铁苦橄岩地球化学特征的火山岩,包括明尼苏达Vermilion Belt(Green and Schulz, 1977)、印度南部Kolar Schist Belt(Rajamani et al. , 1985, 1989)和加拿大Abitibi绿岩带(Stone et al. , 1987)。由于在这些地区通常有科马提岩同时产出,因此当时研究者把这些富铁苦橄岩划分为科马提岩的一类,称为富集型玄武质科马提岩(Enriched basaltic komatiite)或Al亏损型科马提岩(Schaefer and Morton, 1991; Wyman and Hollings, 1998; Tomlinson et al. , 1999; Sproule et al. , 2002)。直至20世纪80年代末,Hanski and Smolkin (1989)在Fennoscandian地盾Kola半岛的古元古代Pechenga火山岩带中首次识别并定义了富铁苦橄岩。富铁苦橄岩通常产出于其所在的火山岩层序的底部。目前已报道的富铁苦橄岩大部分产出于华北(Wang et al. , 2019)、北美(Stone et al. , 1995a, b, 2005; Francis et al. , 1999; Walker and Stone, 2001; Sandeman et al. , 2004; Crocket et al. , 2005; Goldstein and Francis, 2008; Kitayama and Francis, 2014; Milidragovic et al. , 2014; Milidragovic and Francis, 2014, 2016)、西澳(McCuaig et al. , 1994; Said and Kerrich, 2010)、南非(McIver et al. , 1982)、印度(Rajamani et al. , 1985, 1989)和芬兰(Papunen et al. , 2009)等地的太古宙克拉通表壳岩中(图 2)。目前已报道的最古老富铁苦橄岩为华北克拉通冀东古太古代(3.45Ga)富铁苦橄岩(Wang et al. , 2019);而大部分太古宙富铁苦橄岩集中出现于3.0~2.7Ga(Schaefer and Morton, 1991; Tomlinson et al. , 1999; Milidragovic et al. , 2014)。元古宙富铁苦橄岩仅产出于印度中部(Khanna et al. , 2017)、俄罗斯Kola半岛(Hanski and Smolkin, 1989, 1995; Walker et al. , 1997; Brügmann et al. , 2000; Skuf’in and Theart, 2005; Skuf’in and Bayanova, 2006; Fiorentini et al. , 2008; Smolkin et al. , 2018)和加拿大(Shirey et al. , 1994; Maurice and Francis, 2010)。少量的显生宙富铁苦橄岩产出于大火成岩省中,包括:峨眉山(Zhang et al. , 2006)、Siberia(Lightfoot et al. , 1990, 1993; Wooden et al. , 1993; Sobolev et al. , 2009)、Karoo(Riley et al. , 2005; Heinonen and Luttinen, 2008; Heinonen et al. , 2010, 2013; Luttinen et al. , 2015)、Paraná-Etendeka(Ewart et al. , 1998; Gibson et al. , 2000; Thompson et al. , 2001; Gibson, 2002; Owen-Smith et al. , 2017)、Madagascar(Storey et al. , 1997)、北大西洋(Fram and Lesher, 1997)和埃塞俄比亚(Desta et al. , 2014),或一些洋底高原残片中(Ichiyama et al. , 2006, 2007; Erdenesaihan et al. , 2013)。此外,在华北克拉通无棣地区也有更新世(0.73Ma)富铁苦橄岩的报道(Zhang et al. , 2017)。

图 2 全球富铁苦橄岩分布图(据Khanna et al. , 2017修改) Fig. 2 Global distribution of ferropicrites (modified after Khanna et al., 2017)

目前对于富铁苦橄岩的成因研究关注于富铁苦橄质岩浆中铁是通过何种机制富集的。研究者们提出了不同的观点。一类观点认为富铁苦橄质岩浆中铁是在演化过程中富集的,如:(1)富铁苦橄岩是拉斑玄武质岩浆在低氧逸度条件下结晶分异的产物(Brooks et al. , 1991),但自然界中普遍发育的是高氧逸度条件下形成的具有Bowen趋势的低铁富硅熔体,低氧逸度条件下形成的具有Fenner趋势的富铁贫硅熔体非常罕见(彭头平等, 2005);(2)在玄武质岩浆演化过程中由液态不混溶作用可形成富铁和富硅熔体,富铁熔体和苦橄质岩浆混合可以形成富铁苦橄岩(Jakobsen et al. , 2005; Veksler et al. , 2006),但Goldstein and Francis (2008)注意到富铁苦橄岩的MgO含量及结晶温度较高,与该模式不能吻合。另一类观点认为富铁苦橄质岩浆中铁的富集与源区成分或熔融条件有关,如:(1)在异常热的地幔柱条件下,二辉橄榄岩在高压下(> 14GPa)熔融可以形成富铁熔体(Xie et al. , 1993; Herzberg, 1995; Tomlinson et al. , 1999);(2)二辉橄榄岩高压下(~10GPa)部分熔融形成的科马提岩固结后在4GPa条件下重熔可以形成富铁熔体(Herzberg and Zhang, 1996);(3)热力学计算表明高的地幔潜能温度下硅不饱和的辉石岩源区部分熔融可以形成富铁苦橄质熔体(Jennings et al. , 2016);(4)由于石榴石中铁的相容性随着压力升高而降低,高压下含石榴石源区的熔融会释放大量铁,导致富铁苦橄质熔体的形成(Zhang et al. , 2017);(5)高氧逸度条件下的地幔熔融有利于富铁苦橄岩的形成(He et al. , 2020)。值得注意的是,pyrolite成分的地幔橄榄岩源区(FeOT=8±1%, Mg#=0.88~0.92; McDonough and Sun, 1995; Herzberg and O’Hara, 2002)的熔融不能形成富铁苦橄岩,富集的二辉橄榄岩在不同温压条件下部分熔融实验产生的熔体FeOT含量与地球上大部分超镁铁-镁铁质岩浆岩的FeOT含量类似(6%~14%; Milidragovic and Francis, 2016),因此目前普遍认为富铁苦橄岩需要一个富铁的地幔源区,但是地幔源区铁的富集机制仍存争议。

对于富铁苦橄岩地幔源区铁的富集机制,研究者进行了大量的工作。Yaxley and Green (1998)Yaxley (2000)利用榴辉岩和橄榄岩的混合物进行了一系列高温高压实验,他们发现榴辉岩部分熔融产生的熔体与橄榄岩中的橄榄石反应会形成斜方辉石和石榴石,而榴辉岩熔融残余继续熔融产生的熔体与橄榄岩中的橄榄石反应会形成单斜辉石和石榴石,因此榴辉岩的加入会使得橄榄岩部分转化为富铁的辉石岩;这种经过榴辉岩熔体改造过的橄榄岩(含辉石岩)相对富铁,其熔融会生成类似于富铁苦橄岩的熔体。因此,一些研究者认为富铁苦橄岩是上涌的含有辉石岩条带的地幔柱头部在较高温压下熔融形成的,辉石岩条带的形成与再循环的俯冲洋壳有关(Gibson et al. , 2000; Gibson, 2002);此模式与Paraná-Etendeka大火成岩省中富铁苦橄岩在高温高压实验中所得到的相关系一致(Tuff et al. , 2005; Tuff and Gibson, 2007);但Ichiyama et al. (2006)认为富铁苦橄岩源区的富铁是由于循环到地幔中的洋壳富铁钛玄武岩/辉长岩造成的。此外,一些研究者提出了富铁苦橄岩地幔源区富铁的其他机制:(1)地幔源区本身具有原始富铁和轻稀土元素的特征(Hanski and Smolkin, 1995; Francis et al. , 1999; Goldstein and Francis, 2008);(2)地幔源区由经历过熔体抽取的亏损橄榄岩和高压下地幔低程度部分熔融形成的富集熔体组成(Stone et al. , 1995a);(3)富铁球粒陨石物质加入到地幔(Milidragovic and Francis, 2016);(4)富铁苦橄岩的源区富铁是由上涌地幔柱低程度部分熔融形成的低硅碱性熔体交代地幔造成(Khanna et al. , 2017);(5)硅酸盐地幔与液态外核的相互作用可以在核-幔边界处形成富铁源区(Brandon et al. , 1998; Humayun et al. , 2004; Herzberg et al. , 2013);(6)循环到地幔深部的富铁地壳物质(如条带状铁建造,BIF)也可以在形成在地幔深部形成富铁源区(Dobson and Brodholt, 2005; Nebel et al. , 2010; Kato et al. , 2016)。

综上所述,富铁苦橄岩的成因机制特别是其标志性的铁富集特征是通过何种机制形成的仍存在争议,其源区化学成分、源区矿物组合、初始熔融的深度、地幔源区的潜能温度和源区熔融程度存在较大的争议。值得注意的是,尽管对富铁苦橄岩的具体熔融温压条件尚没有共识,但由于富铁苦橄岩大多与科马提岩共同产出或产出于大火成岩省中,对应了一个异常热且较深的地幔柱源区,例如Gibson (2002)认为富铁苦橄岩的源区地幔潜能温度高于1450℃,熔融压力高于4.5GPa。因此,富铁苦橄榄岩作为地幔柱岩浆活动中所形成的一类特殊岩石,可通过分析其成因探讨其地幔柱深部地幔源区的成分特征,并与科马提岩、苦橄岩等地幔柱岩浆活动产物进行对比,探讨地球深部地幔的成分演化特征。需要强调的是,在利用富铁苦橄岩、科马提岩、苦橄岩等地幔柱岩浆活动产物探讨地球深部地幔的成分特征时,需通过岩相学观察和相关的地球化学指标排除原始岩浆形成之后堆晶作用、分离结晶作用以及其他地壳过程对其成分的影响,并恢复其原始岩浆成分;只有深部地幔来源的原始岩浆成分才可用于探讨深部地幔的成分演化。

2 太古宙早期深部地幔不均一性

对太古宙玄武岩成分的统计表明,不同类型玄武岩的成分和比例在整个太古宙时期相对稳定(Barnes et al. , 2012; Barnes and Arndt, 2019)。与现今的玄武岩相比,太古宙玄武岩主要以富铁的拉斑系列和科马提质玄武岩为主,缺少碱性系列玄武岩。在微量元素上,太古宙玄武岩具有较大的变化范围,但以具有低不相容元素含量、平坦稀土模式和无Nb异常特征的玄武岩为主;也有一些具有不相容元素中等-强富集和Nb负异常特征的玄武岩,通常被认为遭受了大陆地壳物质的混染。总体来看,太古宙玄武岩的微量元素特征明显不同于现今的洋中脊玄武岩(MORB),但类似于现今的洋底高原玄武岩。由于太古宙较高的地幔潜能温度,太古宙玄武岩相对现今的洋底高原玄武岩具有较低的TiO2含量和较高的Cr、Ni含量。此外,太古宙玄武岩中几乎没有与显生宙典型OIB成分类似的岩石(Barnes and Arndt, 2019)。并且,2.7Ga以前的太古宙玄武岩的成分特征指示了与原始地幔类似或具有不同亏损程度的地幔源区,缺失富集地幔源区的贡献,而在2.7Ga之后的玄武岩成分的变化反映了富集地幔源区的出现(Pearce, 2008; Condie and Shearer, 2017)。此外,地幔柱活动中形成的高温原始熔体(科马提岩和苦橄岩)可以反映地幔柱深部源区的性质。目前已发现的最古老科马提岩(3.5~3.46Ga)仅产出于南非Kaapvaal克拉通和澳大利亚Pilbara克拉通中,被认为是地球已知最早的地幔柱活动的岩石记录;它们具有亏损或平坦的稀土配分模式,可能指示了一个亏损或原始的深部地幔柱源区(Campbell and Griffiths, 1992; Arndt et al. , 2008; Barnes and Arndt, 2019);而在2.7Ga之后地幔柱来源高温原始熔体(科马提岩和苦橄岩)的成分逐渐转变为富集的。此外,太古宙科马提岩Lu-Hf、Sm-Nd同位素随时间的演化也表明富集地幔组分逐渐加入其深部地幔源区(Blichert-Toft and Albarède, 1994; Blichert-Toft and Arndt, 1999; Blichert-Toft and Puchtel, 2010; Blichert-Toft et al. , 2015)。因此,20世纪90年代初研究者们便提出太古宙地幔柱深部地幔源区成分的转变和成分不均一性的形成发生于2.7Ga前后(图 3a; Campbell and Griffiths, 1992, 1993; Condie and Shearer, 2017)。对于在太古宙末期之后地幔来源岩浆成分开始向富集、碱性特征的转化,目前学界提出的机制主要有两方面(Barnes and Arndt, 2019):(1)地幔温度的降低导致地幔部分熔融程度降低,有利于富集、碱性岩浆的产生;(2)通过板块俯冲作用循环到地幔中的地壳物质导致地幔源区富集组分的形成和增加。

图 3 地球早期深部地幔中富集组分出现时间的不同观点 (a)根据太古宙科马提岩成分随时间的演化特征,以往的研究认为地球深部地幔出现富集组分的时间为2.7Ga前后(Campbell and Griffiths, 1992, 1993; Condie and Shearer, 2017);(b)华北克拉通冀东古太古代(3.45Ga)富铁苦橄岩的发现表明地球深部地幔中铁和不相容元素的局部富集可能早在3.45Ga便已出现(Wang et al., 2019) Fig. 3 Different views on the emergence timing of deep mantle heterogeneity in the early Earth (a) based on the compositional evolution of Archean komatiites through time, previous researches proposed that the emergence of enriched components in the deep mantle took place at around 2.7Ga (Campbell and Griffiths, 1992, 1993; Condie and Shearer, 2017); (b) the discovery of Paleoarchean (3.45Ga) ferropicrites in eastern Hebei, the North China craton indicates that partial enrichment of iron and incompatible elements was present in the deep mantle as early as 3.45Gyr ago

值得注意的是,2.7Ga前后太古宙地幔特别是深部地幔中富集组分形成和增加的推论是基于当时已经发现的地幔来源岩浆成分随时间变化的特征得到的,并不全面。太古宙更早期深部地幔来源岩浆岩中是否有来源于富集源区的,换言之,太古宙地幔中富集源区的出现是否早于2.7Ga,有赖于更为古老的富集地幔源区来源岩浆岩(如富铁苦橄岩)的发现。富铁苦橄岩特殊的地球化学特征如高的FeOT含量、高的不相容元素含量和强烈分异的稀土元素配分模式指示其深部地幔源区具有显著的成分不均一性(Francis et al. , 1999; Gibson, 2002)。在南非Barberton绿岩带~3.5Ga Onverwacht群底部的Sandspruit组(Jahn et al. , 1982)中有一些具有高FeOT含量的玄武质科马提岩,其主量元素成分类似于富铁苦橄岩,其中部分样品的微量元素特征介于OIB和E-MORB之间,暗示古太古代时地球深部地幔可能已经具有成分不均一性。而Wang et al. (2019)在华北克拉通冀东地区所发现的全球最古老的古太古代(3.45Ga)富铁苦橄岩进一步表明地球的深部地幔确实早在古太古代便存在了成分不均一性,出现了铁和不相容元素的局部富集(图 3b)。古太古代地球深部地幔成分不均一性的形成可能与地壳物质再循环到深部地幔有关。

3 总结与展望

富铁苦橄岩作为一类集中出现于太古宙的特殊富铁高镁岩浆岩,其地球化学特征和成因的研究能帮助我们更好地理解地球深部地幔在太古宙时期的成分演化。同时,冀东古太古代富铁苦橄岩所反映的古太古代地球深部地幔成分不均一性的成因对于探讨地球早期各圈层相互作用的模式也具有重要意义。

致谢      诚挚感谢刘树文教授、刘传周研究员、万渝生研究员和本刊编辑对本文的建设性意见。

谨以此文恭祝沈其韩先生百年华诞!

参考文献
Arndt NT, Lesher CM and Barnes SJ. 2008. Komatiite. Cambridge: Cambridge University Press
Barnes SJ, Van Kranendonk MJ and Sonntag I. 2012. Geochemistry and tectonic setting of basalts from the eastern Goldfields Superterrane. Australian Journal of Earth Sciences, 59(5): 707-735 DOI:10.1080/08120099.2012.687398
Barnes SJ and Arndt NT. 2019. Chapter 6-Distribution and geochemistry of komatiites and basalts through the Archean. In: Van Kranendonk MJ, Bennett VC and Hoffmann JE (eds.). Earth's Oldest Rocks. 2nd Edition. Amsterdam: Elsevier, 103-132
Bernstein S, Hanghøj K, Kelemen PB and Brooks CK. 2006. Ultra-depleted, shallow cratonic mantle beneath West Greenland: Dunitic xenoliths from Ubekendt Ejland. Contributions to Mineralogy and Petrology, 152(3): 335-347 DOI:10.1007/s00410-006-0109-0
Bernstein S, Kelemen PB and Hanghøj K. 2007. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology, 35(5): 459-462 DOI:10.1130/G23336A.1
Blichert-Toft J and Albarède F. 1994. Short-lived chemical heterogeneities in the archean mantle with implications for mantle convection. Science, 263(5153): 1593-1596 DOI:10.1126/science.263.5153.1593
Blichert-Toft J and Arndt NT. 1999. Hf isotope compositions of komatiites. Earth and Planetary Science Letters, 171(3): 439-451 DOI:10.1016/S0012-821X(99)00151-X
Blichert-Toft J and Puchtel IS. 2010. Depleted mantle sources through time: Evidence from Lu-Hf and Sm-Nd isotope systematics of Archean komatiites. Earth and Planetary Science Letters, 297(3-4): 598-606 DOI:10.1016/j.epsl.2010.07.012
Blichert-Toft J, Arndt NT, Wilson A and Coetzee G. 2015. Hf and Nd isotope systematics of Early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa. American Mineralogist, 100(11-12): 2396-2411 DOI:10.2138/am-2015-5325
Boyd F, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV and Finger LW. 1997. Composition of the Siberian cratonic mantle: Evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology, 128(2-3): 228-246 DOI:10.1007/s004100050305
Boyd FR, Pearson DG, Nixon PH and Mertzman SA. 1993. Low-calcium garnet harzburgites from southern Africa: Their relations to craton structure and diamond crystallization. Contributions to Mineralogy and Petrology, 113(3): 352-366 DOI:10.1007/BF00286927
Brandon AD, Walker RJ, Morgan JW, Norman MD and Prichard HM. 1998. Coupled 186Os and 187Os evidence for core-mantle interaction. Science, 280(5369): 1570-1573 DOI:10.1126/science.280.5369.1570
Brooks CK, Larsen LM and Nielsen TFD. 1991. Importance of iron-rich tholeiitic magmas at divergent plate margins: A reappraisal. Geology, 19(3): 269-272 DOI:10.1130/0091-7613(1991)019<0269:IOIRTM>2.3.CO;2
Brügmann GE, Hanski EJ, Naldrett AJ and Smolkin VF. 2000. Sulphide segregation in ferropicrites from the pechenga complex, Kola Peninsula, Russia. Journal of Petrology, 41(12): 1721-1742 DOI:10.1093/petrology/41.12.1721
Campbell IH and Griffiths RW. 1992. The changing nature of mantle hotspots through time: Implications for the chemical evolution of the mantle. The Journal of Geology, 100(5): 497-523 DOI:10.1086/629605
Campbell IH and Griffiths RW. 1993. The evolution of the mantle's chemical structure. Lithos, 30(3-4): 389-399 DOI:10.1016/0024-4937(93)90047-G
Condie KC and Shearer CK. 2017. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets. Geochimica et Cosmochimica Acta, 213: 47-62 DOI:10.1016/j.gca.2017.06.034
Crocket JH, Leng DM, Good DJ, Stone WE and Stone MS. 2005. The spinifex layer of the Boston Creek ferropicrite, Abitibi Belt, Ontario: Mineralogical and geochemical evidence for an unusual history of clinopyroxene growth and magma recharge. The Canadian Mineralogist, 43(5): 1759-1780 DOI:10.2113/gscanmin.43.5.1759
Desta MT, Ayalew D, Ishiwatari A, Arai S and Tamura A. 2014. Ferropicrite from the Lalibela area in the Ethiopian large igneous province. Journal of Mineralogical and Petrological Sciences, 109(4): 191-207 DOI:10.2465/jmps.131125b
Dobson DP and Brodholt JP. 2005. Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature, 434(7031): 371-374 DOI:10.1038/nature03430
Erdenesaihan G, Ishiwatari A, Orolmaa D, Arai S and Tamura A. 2013. Middle Paleozoic greenstones of the Hangay region, central Mongolia: Remnants of an accreted oceanic plateau and forearc magmatism. Journal of Mineralogical and Petrological Sciences, 108(6): 303-325 DOI:10.2465/jmps.130409
Ewart A, Milner SC, Armstrong RA and Dungan AR. 1998. Etendeka volcanism of the goboboseb mountains and messum igneous complex, namibia. Part Ⅰ: Geochemical evidence of early cretaceous tristan plume melts and the role of crustal contamination in the Paraná-Etendeka CFB. Journal of Petrology, 39(2): 191-225 DOI:10.1093/petroj/39.2.191
Fiorentini ML, Beresford SW, Deloule E, Hanski E, Stone WE and Pearson NJ. 2008. The role of mantle-derived volatiles in the petrogenesis of Palaeoproterozoic ferropicrites in the Pechenga Greenstone Belt, northwestern Russia: Insights from in-situ microbeam and nanobeam analysis of hydromagmatic amphibole. Earth and Planetary Science Letters, 268(1-2): 2-14 DOI:10.1016/j.epsl.2007.12.018
Fram MS and Lesher CE. 1997. Generation and polybaric differentiation of East Greenland early tertiary flood basalts. Journal of Petrology, 38(2): 231-275 DOI:10.1093/petroj/38.2.231
Francis D, Ludden J, Johnstone R and Davis W. 1999. Picrite evidence for more Fe in Archean mantle reservoirs. Earth and Planetary Science Letters, 167(3-4): 197-213 DOI:10.1016/S0012-821X(99)00032-1
Galer SJG and Goldstein SL. 1991. Early mantle differentiation and its thermal consequences. Geochimica et Cosmochimica Acta, 55(1): 227-239 DOI:10.1016/0016-7037(91)90413-Y
Gibson SA, Thompson RN and Dickin AP. 2000. Ferropicrites: Geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters, 174(3-4): 355-374 DOI:10.1016/S0012-821X(99)00274-5
Gibson SA. 2002. Major element heterogeneity in Archean to recent mantle plume starting-heads. Earth and Planetary Science Letters, 195(1-2): 59-74 DOI:10.1016/S0012-821X(01)00566-0
Goldstein SB and Francis D. 2008. The petrogenesis and mantle source of archaean ferropicrites from the western Superior Province, Ontario, Canada. Journal of Petrology, 49(10): 1729-1753 DOI:10.1093/petrology/egn044
Green JC and Schulz KJ. 1977. Iron-rich basaltic komatiites in the Early Precambrian Vermilion District, Minnesota. Canadian Journal of Earth Sciences, 14(10): 2181-2192 DOI:10.1139/e77-188
Hanski EJ and Smolkin VF. 1989. Pechenga ferropicrites and other Early Proterozoic picrites in the eastern part of the Baltic Shield. Precambrian Research, 45(1-3): 63-82 DOI:10.1016/0301-9268(89)90031-4
Hanski EJ and Smolkin VF. 1995. Iron- and LREE-enriched mantle source for Early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia. Lithos, 34(1-3): 107-125 DOI:10.1016/0024-4937(95)90015-2
Hart SR and Brooks C. 1977. The geochemistry and evolution of Early Precambrian mantle. Contributions to Mineralogy and Petrology, 61(2): 109-128 DOI:10.1007/BF00374362
He DT, Liu YS, Chen CF, Foley SF and Ducea MN. 2020. Oxidization of the mantle caused by sediment recycling may contribute to the formation of iron-rich mantle melts. Science Bulletin, 65(7): 519-521 DOI:10.1016/j.scib.2020.01.003
Heinonen JS and Luttinen AV. 2008. Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: Geochemical tracing of ferropicrite sources. Lithos, 105(3-4): 347-364 DOI:10.1016/j.lithos.2008.05.010
Heinonen JS, Carlson RW and Luttinen AV. 2010. Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: A key to the origins of the Jurassic Karoo large igneous province?. Chemical Geology, 277(3-4): 227-244 DOI:10.1016/j.chemgeo.2010.08.004
Heinonen JS, Luttinen AV, Riley TR and Michallik RM. 2013. Mixed pyroxenite-peridotite sources for mafic and ultramafic dikes from the Antarctic segment of the Karoo continental flood basalt province. Lithos, 177: 366-380 DOI:10.1016/j.lithos.2013.05.015
Herzberg C. 1995. Generation of plume magmas through time: An experimental perspective. Chemical Geology, 126(1): 1-16 DOI:10.1016/0009-2541(95)00099-4
Herzberg C and Zhang JZ. 1996. Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone. Journal of Geophysical Research: Solid Earth, 101(B4): 8271-8295 DOI:10.1029/96JB00170
Herzberg C and O'Hara MJ. 2002. Plume-associated ultramafic magmas of phanerozoic age. Journal of Petrology, 43(10): 1857-1883 DOI:10.1093/petrology/43.10.1857
Herzberg C, Asimow PD, Ionov DA, Vidito C, Jackson MG and Geist D. 2013. Nickel and helium evidence for melt above the core-mantle boundary. Nature, 493(7432): 393-397 DOI:10.1038/nature11771
Humayun M, Qin LP and Norman MD. 2004. Geochemical evidence for excess iron in the Mantle Beneath Hawaii. Science, 306(5693): 91-94 DOI:10.1126/science.1101050
Ichiyama Y, Ishiwatari A, Hirahara Y and Shuto K. 2006. Geochemical and isotopic constraints on the genesis of the Permian ferropicritic rocks from the Mino-Tamba belt, SW Japan. Lithos, 89(1-2): 47-65 DOI:10.1016/j.lithos.2005.09.006
Ichiyama Y, Ishiwatari A, Koizumi K, Ishida Y and Machi S. 2007. Olivine-spinifex basalt from the Tamba Belt, Southwest Japan: Evidence for Fe- and high field strength element-rich ultramafic volcanism in Permian Ocean. Island Arc, 16(3): 493-503 DOI:10.1111/j.1440-1738.2007.00590.x
Jacobsen SB. 1988. Isotopic and chemical constraints on mantle-crust evolution. Geochimica et Cosmochimica Acta, 52(6): 1341-1350 DOI:10.1016/0016-7037(88)90205-0
Jahn BM, Gruau G and Glikson AY. 1982. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contributions to Mineralogy and Petrology, 80: 25-40 DOI:10.1007/BF00376732
Jakobsen JK, Veksler IV, Tegner C and Brooks CK. 2005. Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33(11): 885-888 DOI:10.1130/G21724.1
Jennings ES, Holland TJB, Shorttle O, Maclennan J and Gibson SA. 2016. The composition of melts from a heterogeneous mantle and the origin of ferropicrite: Application of a thermodynamic model. Journal of Petrology, 57(11-12): 2289-2310
Kato C, Hirose K, Nomura R, Ballmer MD, Miyake A and Ohishi Y. 2016. Melting in the FeO-SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations. Earth and Planetary Science Letters, 440: 56-61 DOI:10.1016/j.epsl.2016.02.011
Khanna TC, Rao DVS, Bizimis M, Satyanarayanan M, Krishna A K and Sai VVS. 2017. ~2.1Ga intraoceanic magmatism in the Central India Tectonic Zone: Constraints from the petrogenesis of ferropicrites in the Mahakoshal supracrustal belt. Precambrian Research, 302: 1-17 DOI:10.1016/j.precamres.2017.09.012
Kitayama YC and Francis D. 2014. Iron-rich alkaline magmatism in the Archean Wawa greenstone belts (Ontario, Canada). Precambrian Research, 252: 53-70 DOI:10.1016/j.precamres.2014.06.026
Lee CT and Rudnick RL. 1999. Compositionally stratified cratonic lithosphere: Petrology and geochemistry of peridotite xenoliths from the Labait tuff cone, Tanzania. In: Proceedings of the 7th International Kimberlite Conference. National Book Printers: 503-521
Lightfoot PC, Naldrett AJ, Gorbachev NS, Doherty W and Fedorenko VA. 1990. Geochemistry of the Siberian Trap of the Noril'sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contributions to Mineralogy and Petrology, 104(6): 631-644 DOI:10.1007/BF01167284
Lightfoot PC, Hawkesworth CJ, Hergt J, Naldrett AJ, Gorbachev NS, Fedorenko VA and Doherty W. 1993. Remobilisation of the continental lithosphere by a mantle plume: Major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology, 114(2): 171-188 DOI:10.1007/BF00307754
Luttinen AV, Heinonen JS, Kurhila M, Jourdan F, Mänttäri I, Vuori S K and Huhma H. 2015. Depleted mantle-sourced CFB Magmatism in the Jurassic Africa-Antarctica Rift: Petrology and 40Ar/39Ar and U/Pb chronology of the vestfjella dyke swarm, Dronning Maud Land, Antarctica. Journal of Petrology, 56(5): 919-952 DOI:10.1093/petrology/egv022
Maurice C and Francis D. 2010. Enriched crustal and mantle components and the role of the lithosphere in generating Paleoproterozoic dyke swarms of the Ungava Peninsula, Canada. Lithos, 114(1-2): 95-108 DOI:10.1016/j.lithos.2009.08.002
McCuaig TC, Kerrich R and Xie QL. 1994. Phosphorus and high field strength element anomalies in Archean high-magnesian magmas as possible indicators of source mineralogy and depth. Earth and Planetary Science Letters, 124(1-4): 221-239 DOI:10.1016/0012-821X(94)00088-3
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
McIver JR, Cawthorn RG and Wyatt BA. 1982. The ventersdorp supergroup-the youngest komatiitic sequence in South Africa. In: Arndt NT and Nisbet EG (eds.). Komatiites. London: George Allen and Unwin, 81-90
Milidragovic D and Francis D. 2014. Ferropicrite-driven reworking of the Ungava craton and the genesis of Neoarchean pyroxene-granitoids. Earth and Planetary Science Letters, 386: 138-148 DOI:10.1016/j.epsl.2013.10.051
Milidragovic D, Francis D, Weis D and Constantin M. 2014. Neoarchean (c. 2.7Ga) plutons of the Ungava Craton, Québec, Canada: Parental magma compositions and implications for Fe-rich mantle source regions. Journal of Petrology, 55(12): 2481-2512 DOI:10.1093/petrology/egu064
Milidragovic D and Francis D. 2016. Ca. 2.7Ga ferropicritic magmatism: A record of Fe-rich heterogeneities during Neoarchean global mantle melting. Geochimica et Cosmochimica Acta, 185: 44-63 DOI:10.1016/j.gca.2015.09.023
Nebel O, Vroon PZ, Wiggers de Vries DF, Jenner FE and Mavrogenes JA. 2010. Tungsten isotopes as tracers of core-mantle interactions: The influence of subducted sediments. Geochimica et Cosmochimica Acta, 74(2): 751-762 DOI:10.1016/j.gca.2009.10.017
Nisbet EG, Cheadle MJ, Arndt NT and Bickle MJ. 1993. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites. Lithos, 30(3-4): 291-307 DOI:10.1016/0024-4937(93)90042-B
Owen-Smith TM, Ashwal LD, Sudo M and Trumbull RB. 2017. Age and petrogenesis of the doros complex, namibia, and implications for early plume-derived melts in the Paraná-Etendeka LIP. Journal of Petrology, 58(3): 423-442 DOI:10.1093/petrology/egx021
Papunen H, Halkoaho T and Luukkonen E. 2009. Archaean evolution of the Tipasjärvi-Kuhmo-Suomussalmi Greenstone Complex, Finland. Geological Survey of Finland Bulletin, 403: 68
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48 DOI:10.1016/j.lithos.2007.06.016
Pearson DG and Wittig N. 2008. Formation of Archaean continental lithosphere and its diamonds: The root of the problem. Journal of the Geological Society, 165(5): 895-914 DOI:10.1144/0016-76492008-003
Peng TP, Wang YJ and Peng BX. 2005. The summary on a kind of rare rock: Ferrobasalts/ferropicrites. Advances in Earth Science, 20(5): 525-532 (in Chinese with English abstract)
Puchtel IS, Blichert-Toft J, Touboul M and Walker RJ. 2018. 182W and HSE constraints from 2.7Ga komatiites on the heterogeneous nature of the Archean mantle. Geochimica et Cosmochimica Acta, 228: 1-26 DOI:10.1016/j.gca.2018.02.030
Rajamani V, Shivkumar K, Hanson GN and Shirey SB. 1985. Geochemistry and petrogenesis of amphibolites, Kolar Schist Belt, South India: Evidence for komatiitic magma derived by low percentages of melting of the mantle. Journal of Petrology, 26(1): 92-123 DOI:10.1093/petrology/26.1.92
Rajamani V, Shirey SB and Hanson GN. 1989. Fe-rich Archean tholeiites derived from melt-enriched mantle sources: Evidence from the Kolar Schist Belt, South India. The Journal of Geology, 97(4): 487-501 DOI:10.1086/629324
Riley TR, Leat PT, Curtis ML, Millar IL, Duncan RA and Fazel A. 2005. Early-Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): Identifying mantle sources in the Karoo Large Igneous Province. Journal of Petrology, 46(7): 1489-1524 DOI:10.1093/petrology/egi023
Said N and Kerrich R. 2010. Magnesian dyke suites of the 2.7Ga Kambalda Sequence, Western Australia: Evidence for coeval melting of plume asthenosphere and metasomatised lithospheric mantle. Precambrian Research, 180(3-4): 183-203 DOI:10.1016/j.precamres.2010.04.003
Sandeman HA, Hanmer S, Davis WJ, Ryan JJ and Peterson TD. 2004. Neoarchaean volcanic rocks, Central Hearne supracrustal belt, Western Churchill Province, Canada: Geochemical and isotopic evidence supporting intra-oceanic, supra-subduction zone extension. Precambrian Research, 134(1-2): 113-141 DOI:10.1016/j.precamres.2004.03.014
Schaefer SJ and Morton P. 1991. Two komatiitic pyroclastic units, Superior Province, northwestern Ontario: Their geology, petrography, and correlation. Canadian Journal of Earth Sciences, 28(9): 1455-1470 DOI:10.1139/e91-128
Shirey SB, Klewin KW, Berg JH and Carlson RW. 1994. Temporal changes in the sources of flood basalts: Isotopic and trace element evidence from the 1100Ma old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochimica et Cosmochimica Acta, 58(20): 4475-4490 DOI:10.1016/0016-7037(94)90349-2
Shirey SB, Kamber BS, Whitehouse MJ, Mueller PA and Basu AR. 2008. A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. In: Condie KC and Pease V (eds.). When Did Plate Tectonics Begin on Planet Earth?. Geological Society of America Special Paper, 440: 1-29
Shirey SB and Richardson SH. 2011. Start of the wilson cycle at 3Ga shown by diamonds from subcontinental mantle. Science, 333(6041): 434-436 DOI:10.1126/science.1206275
Simon NSC, Carlson RW, Pearson DG and Davies GR. 2007. The origin and evolution of the Kaapvaal Cratonic Lithospheric Mantle. Journal of Petrology, 48(3): 589-625 DOI:10.1093/petrology/egl074
Skuf'in PK and Theart HFJ. 2005. Geochemical and tectono-magmatic evolution of the volcano-sedimentary rocks of Pechenga and other greenstone fragments within the Kola Greenstone Belt, Russia. Precambrian Research, 141(1-2): 1-48 DOI:10.1016/j.precamres.2005.07.004
Skuf'in PK and Bayanova TB. 2006. Early Proterozoic central-type volcano in the Pechenga structure and its relation to the ore-bearing gabbro-wehrlite complex of the Kola Peninsula. Petrology, 14(6): 609-627 DOI:10.1134/S0869591106060063
Smolkin VF, Lokhov KI, Skublov SG, Sergeeva LY, Lokhov DK and Sergeev SA. 2018. Paleoproterozoic Keulik-Kenirim ore-bearing gabbro-peridotite complex, Kola Region: A new occurrence of ferropicritic magmatism. Geology of Ore Deposits, 60(2): 142-171 DOI:10.1134/S1075701518020058
Sobolev AV, Krivolutskaya NA and Kuzmin DV. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253-286 DOI:10.1134/S0869591109030047
Sossi PA, Eggins SM, Nesbitt RW, Nebel O, Hergt JM, Campbell IH, O'Neill HSC, Van Kranendonk M and Davies DR. 2016. Petrogenesis and geochemistry of Archean komatiites. Journal of Petrology, 57(1): 147-184 DOI:10.1093/petrology/egw004
Spengler D, Brueckner HK, van Roermund HLM, Drury MR and Mason PRD. 2009. Long-lived, cold burial of Baltica to 200km depth. Earth and Planetary Science Letters, 281(1-2): 27-35 DOI:10.1016/j.epsl.2009.02.001
Spengler D, van Roermund HLM and Drury MR. 2018. Deep komatiite signature in cratonic mantle pyroxenite. Journal of Metamorphic Geology, 36(5): 591-602 DOI:10.1111/jmg.12310
Sproule RA, Lesher CM, Ayer JA, Thurston PC and Herzberg CT. 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Research, 115(1-4): 153-186 DOI:10.1016/S0301-9268(02)00009-8
Stone WE, Jensen LS and Church WR. 1987. Petrography and geochemistry of an unusual Fe-rich basaltic komatiite from Boston Township, northeastern Ontario. Canadian Journal of Earth Sciences, 24(12): 2537-2550 DOI:10.1139/e87-237
Stone WE, Crocket JH, Dickin AP and Fleet ME. 1995a. Origin of Archean ferropicrites: Geochemical constraints from the Boston Creek Flow, Abitibi greenstone belt, Ontario, Canada. Chemical Geology, 121(1-4): 51-71 DOI:10.1016/0009-2541(94)00126-S
Stone WE, Crocket JH and Fleet ME. 1995b. Differentiation processes in an unusual iron-rich alumina-poor Archean ultramafic/mafic igneous body, Ontario. Contributions to Mineralogy and Petrology, 119(2): 287-300
Stone WE, Deloule E, Beresford SW and Fiorentini M. 2005. Anomalously high δD values in an Archean Ferropicritic Melt: Implications for magma degassing. The Canadian Mineralogist, 43(5): 1745-1758 DOI:10.2113/gscanmin.43.5.1745
Storey M, Mahoney JJ and Saunders AD. 1997. Cretaceous basalts in Madagascar and the transition between plume and continental lithosphere mantle sources. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Volume 100. Washington: American Geophysical Union, 95-122
Stracke A, Hofmann AW and Hart SR. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6(5): Q05007
Thompson RN, Gibson SA, Dickin AP and Smith PM. 2001. Early cretaceous basalt and picrite dykes of the southern Etendeka Region, NW Namibia: Windows into the role of the tristan mantle plume in Paraná-Etendeka Magmatism. Journal of Petrology, 42(11): 2049-2081 DOI:10.1093/petrology/42.11.2049
Tomlinson KY, Hughes DJ, Thurston PC and Hall RP. 1999. Plume magmatism and crustal growth at 2.9 to 3.0Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos, 46(1): 103-136 DOI:10.1016/S0024-4937(98)00057-7
Tuff J, Takahashi E and Gibson SA. 2005. Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 46(10): 2023-2058 DOI:10.1093/petrology/egi046
Tuff J and Gibson SA. 2007. Trace-element partitioning between garnet, clinopyroxene and Fe-rich picritic melts at 3 to 7GPa. Contributions to Mineralogy and Petrology, 153(4): 369-387 DOI:10.1007/s00410-006-0152-x
Veksler IV, Dorfman AM, Danyushevsky LV, Jakobsen JK and Dingwell DB. 2006. Immiscible silicate liquid partition coefficients: Implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology, 152(6): 685-702 DOI:10.1007/s00410-006-0127-y
Walker RJ, Morgan JW, Hanski EJ and Smolkin VF. 1997. Re-Os systematics of early proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes. Geochimica et Cosmochimica Acta, 61(15): 3145-3160 DOI:10.1016/S0016-7037(97)00088-4
Walker RJ and Stone WE. 2001. Os isotope constraints on the origin of the 2.7Ga Boston Creek Flow, Ontario, Canada. Chemical Geology, 175(3-4): 567-579 DOI:10.1016/S0009-2541(00)00358-2
Wang C, Song SG, Wei CJ, Su L, Allen MB, Niu YL, Li XH and Dong JL. 2019. Palaeoarchaean deep mantle heterogeneity recorded by enriched plume remnants. Nature Geoscience, 12(8): 672-678 DOI:10.1038/s41561-019-0410-y
Wang XJ, Chen LH, Hofmann AW, Hanyu T, Kawabata H, Zhong Y, Xie LW, Shi JH, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Q, Vaglarov BS and Kimura JI. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682-8687 DOI:10.1073/pnas.1719570115
Wooden JL, Czamanske GK, Fedorenko VA, Arndt NT, Chauvel C, Bouse RM, King BSW, Knight RJ and Siems DF. 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochimica et Cosmochimica Acta, 57(15): 3677-3704 DOI:10.1016/0016-7037(93)90149-Q
Wyman D and Hollings P. 1998. Long-lived mantle-plume influence on an Archean protocontinent: Geochemical evidence from the 3Ga Lumby Lake greenstone belt, Ontario, Canada. Geology, 26(8): 719-722 DOI:10.1130/0091-7613(1998)026<0719:LLMPIO>2.3.CO;2
Xie Q, Kerrich R and Fan J. 1993. HFSE/REE fractionations recorded in three komatiite-basalt sequences, Archean Abitibi greenstone belt: Implications for multiple plume sources and depths. Geochimica et Cosmochimica Acta, 57(16): 4111-4118 DOI:10.1016/0016-7037(93)90357-3
Yaxley GM and Green DH. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen, 78(2): 243-255
Yaxley GM. 2000. Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions to Mineralogy and Petrology, 139(3): 326-338 DOI:10.1007/s004100000134
Zhang JB, Liu YS, Ling WL and Gao S. 2017. Pressure-dependent compatibility of iron in garnet: Insights into the origin of ferropicritic melt. Geochimica et Cosmochimica Acta, 197: 356-377 DOI:10.1016/j.gca.2016.10.047
Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan Flood Basalt Province, China. Journal of Petrology, 47(10): 1997-2019 DOI:10.1093/petrology/egl034
Zindler A, Jagoutz E and Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Nature, 298(5874): 519-523 DOI:10.1038/298519a0
彭头平, 王岳军, 彭冰霞. 2005. 一种罕见的岩石——富铁玄武岩/富铁苦橄岩研究进展. 地球科学进展, 20(5): 525-532. DOI:10.3321/j.issn:1001-8166.2005.05.007