岩石学报  2020, Vol. 36 Issue (12): 3853-3870, doi: 10.18654/1000-0569/2020.12.17   PDF    
早期地球的热管构造:来自木卫一的启示
章清文1, 刘耘1,2     
1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081;
2. 中国科学院比较行星学卓越创新中心, 合肥 230026
摘要: 构造体制极大地制约着地球和其他太阳系类地天体(类地行星、岩石质卫星和小行星等)的地表散热、内部温度和物质演化。现有的少量地质记录表明,地球在板块构造启动之前就存在非常活跃的"前板块构造"运动并可能对其早期壳幔分异产生了重要的影响,在这些构造体制下,物质和能量循环的规模和速率可能是后续的板块运动无法比拟的。但受限于早期地质记录的稀缺以及研究手段不成熟等因素,对前板块构造运动的研究一直被学界所忽视,人们对其的认识主要局限于停滞盖层(stagnant-lid tectonics)等。长期以来的空间探测和地基观测表明,木星系统的木卫一存在大规模的火山活动,随之形成了极高的地表热流和地表更新速率以及活跃的造山作用。这些观测事实不同寻常,颠覆了人们对类地天体构造演化模式的一些固有认识,需要新的构造模式——"热管构造"(heat-pipe tectonics)予以解释,其涵义为:类似木卫一上的大规模火山作用可使类地天体的软流圈-岩石圈-地表之间发生快速的物质和能量循环,该循环以岩浆的形成-上升-喷发-冷却和沉降-折返为主要形式,可将天体内部的热散快速散发到外太空。上述过程涉及类地天体内、外部之间物质的大规模、快速迁移和相变,其导热原理与热管相同,因而被称为"热管构造",其散热效率远高于现今大多数类地天体单纯依赖岩石圈进行内外热传导的停滞盖层构造,以及地球上以板块的形成和俯冲过程主导内部散热的板块构造体制。尽管早期地球与木卫一在内生热机制等方面存在显著差异,但二者的内部温度和内生热率较高,导致其岩浆作用总体均较为活跃,这些关键动力学特征的相似性暗示其构造体制可能类似。因此,研究木卫一的热管构造体制对揭示地球的前板块构造的性质和演化有重要的启示意义。本文综述了近40年来人类对木卫一的主要探测成果,论述了热管构造提出的必要性和依据,总结了该构造体制的特征和发生条件,讨论了早期地球发生热管构造的可能性。早期地球可能经历了热管构造阶段,期间地球通过大规模火山作用散发了内部热量、促进了壳幔分异,并在地球内生热作用减弱、热管构造不能继续维持时被板块构造等取代。由于热管构造的垂向物质循环较为强烈,不利于保留TTG等低密度的壳幔分异产物,我们依据TTG大规模形成的时间上限推测:地球发生热管构造时间可能限于冥古宙-始太古代时期(约38亿年以前)。由于前板块构造时期地球自身的地质记录十分有限,对其热管构造体制的性质和确切的形成条件等很大程度上需要从木卫一获得答案。
关键词: 热管效应    热管构造    停滞盖层构造    前板块构造    早期地球    早期地球动力学    木卫一    
Possible heat-pipe tectonics of the early Earth: Insights from Jupiter's moon Io
ZHANG QingWen1, LIU Yun1,2     
1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
Abstract: The tectonic regimes of the Earth and other terrestrial bodies (e.g., terrestrial planets, rocky moons and asteroids) dominates their rate of surface cooling, internal and compositional evolution. The sporadic geological records of the Earth show clues of the presence of very active "pre-plate tectonics" before the onset of plate tectonics, which resulted in rapid early crust-mantle differentiation. However, our understanding of the pre-plate tectonics confines to the conventional models, such as stagnant-lid regime, due to scarcity of geological records and incomplete means of researches when it comes to this "dark age" of the Earth. From a view of comparative planetology, however, results of over 40 years' space explorations challenge our understanding of how terrestrial bodies evolves, e.g., by discoveries of large-scale volcanism, high surface heat flow and resurfacing rate on Jupiter's moon Io. These exotic observations requires a new tectonic model, heat-pipe tectonics, to provide better explanations. The heat-pipe tectonics features rapid, vertical migration of energy and materials between the interior and the surface of a terrestrial body via large-scale volcanism, specifically through swift advection and phase changes of materials during generation, ascent and eruption of the mantle-derived magma/melts, as well as their subsequent return to the deep mantle after cooling, stacking and subsidence at the surface. As a result, the volcanism-dominated heat-pipe tectonics is capable of achieving much higher efficiency of heat transfer between the interior and the surface of Io than the conduction-dominating stagnant-lid tectonics or the plate tectonics cooling Earth's interior via formation and subduction of plates. Despite the significant differences in term of internal heating mechanism between the early Earth and Io, they share much in common in the activeness of volcanic activities, intense internal heating and high internal temperature. Therefore, Io is of great reference value for understanding the pre-plate tectonic dynamics of the early Earth. In this paper, we reviewed the key discoveries of Io in the past 40 years, as well as the birth of the concept of heat-pipe tectonics on the basis of these observations. The possibility of heat-pipe tectonics on the early Earth was discussed. The distinctive vertical recycle of crust-mantle materials during operation of the heat-pipe tectonics tends to impede the formation and accumulation of the mantle-derived felsic components. Therefore, the upper limit age of large scale occurrence of TTG confines the possible heat-pipe tectonics to the Hadean-Eoarchean Earth (before ~3.8Gyr ago) and was replaced by other tectonic regimes in response to the decrease of its internal heating rate. To some extent, our further understanding of Earth's possible heat-pipe tectonics depends on the knowledge of the Io's on-going heat-pipe tectonics that is more liable to be acquired, due primarily to the scarcity of geological observations of early Earth itself.
Key words: Heat-pipe effect    Heat-pipe tectonics    Stagnant-lid tectonics    Pre-plate tectonics    Early Earth    Early geodynamics    Io    

地球及类地天体(包括类地行星、岩石质卫星和小行星等)的构造体制涉及其岩石圈的性质和运动方式,决定了它们向外散热的方式和快慢。在地球和类地天体演化早期,剧烈的内、外地质作用(如吸积、核幔分异、放射性元素衰变等)使其内部快速积累热量并维持较高的温度,相应的生热量易于估算(如根据衰变定律推算衰变热),但对其当时的构造体制及其散热方式和效率知之甚少。因此,类地天体演化的一个关键科学问题在于其早期的构造体制及其演变规律是什么。长期以来,人们对此的认识主要限于停滞盖层(如水星、金星、火星和月球等) (Baratoux et al., 2011; Stern et al., 2018; O'Neill and Zhang, 2019)和地球的板块构造两类主要的构造体制。在停滞盖层体制下,类地天体的岩石圈是一个独立于地幔对流的刚性整体,内部热量依赖岩石圈的热传导向外传递。板块构造体制下的地球则以分裂为板块的岩石圈参与地幔对流(主要通过板块的形成、俯冲过程)引发的热对流和热传导进行散热(据估计约占当前地球总散热量的2/3) (Davies, 2011; Korenaga, 2013)。不过,二者不能简单套用于所有类地天体的所有演化阶段:根据现有停滞盖层理论模型,当类地天体处于内部温度较高的演化早期,由于地幔物质的黏度具有较强的温度依赖性,高温会导致地幔对流较快,使其形成厚度较小、地温梯度较高的岩石圈并造成整体性的快速降温(Korenaga, 2016),这与地球岩石学记录反映的地幔温度演化趋势不符(Davies, 1980; Herzberg et al., 2010; Korenaga, 2013)。此外,早期地球和其他类地天体较高的内部温度也不利于形成能够大规模持续俯冲的大洋岩石圈,从而缺乏产生板块构造的条件(van Hunen and Van Den Berg, 2008; van Hunen and Moyen, 2012; Johnson et al., 2014; 李三忠等, 2015)。因此,需要重新认识类地天体的早期构造体制。

对类地天体演化的突破性认识来自太阳系太空探索和相关比较行星学研究成果的启示。自20世纪50年代美国和前苏联两国间展开太空竞赛以来,人类不遗余力地开展太空探测,包括美国对木星体系开展的多次探测。其中,“旅行者号”和“伽利略号”探测项目大获成功,先后证实并长期观测了木卫一的火山活动,它们与后续的“卡西尼号”、“新视野号”和“朱诺号”等探测器一起获取了大量极具科学价值的数据,相关研究成果刷新了人类对太阳系类地天体演化的众多固有认识(Morabito et al., 1979; Johnson et al., 1988; Veeder et al., 1994; Spencer et al., 2000b; Kargel et al., 2003; Bland and McKinnon, 2016)。木卫一(Io)是木星的第三大卫星和太阳系内第四大卫星(图 1)。探测资料表明其表面存在十分活跃的火山活动,甚至存在超基性岩浆活动的迹象(McEwen et al., 1998; Williams et al., 2000),其地幔因强烈的潮汐加热而发生了大规模熔融并可能形成了全球性的浅部“岩浆洋”(Khurana et al., 2011)。从太阳系内各类地天体各自现有的地质记录来看,木卫一与冥古宙-太古宙时期的地球以及同期的水星、月球和灶神星等类地天体存在一定相似性(Huppert et al., 1984; McEwen et al., 1998; Williams et al., 2000; Moresi, 2013)。地球上的超基性火山作用仅限于25亿年以前,是其内部高地温环境的特有产物(Ernst, 2009; Gill, 2010; Herzberg et al., 2010; 张旗和翟明国, 2012),表明早期地球在地温环境方面可能与现今木卫一相似(McEwen et al., 1998; Williams et al., 2000)。此外,一般认为类地天体只有在与其他星子、星胚间发生的剧烈撞击以及内部发生核幔分异和放射性元素衰变生热等剧烈的内、外地质作用条件下才会发生大规模熔融并形成岩浆洋(Stevenson, 2008; Elkins-Tanton, 2012),尽管该过程仅限于吸积阶段,却控制了类地天体内部圈层结构的形成,其重要性不言而喻,但由于早期地质记录的缺失使相关研究难以有效推进。木卫一为人们展示了在强烈内生热作用下,其地幔可发生大规模熔融并导致极其活跃的火山作用和由此引发的剧烈构造运动。由于木卫一内部的动力学状态应与冥古宙-太古宙地球类似,是探究早期地球乃至所有太阳系类地天体的早期动力学异常难得的样本。

图 1 木卫一的地表影像图 (a)真彩影像图,由“伽利略号”拍摄;(b)南极附近地表的影像图,由“旅行者一号”拍摄,地貌描述据Davies (2007c).图像来源:https://photojournal.jpl.nasa.gov (编号PIA00328和PIA00327) Fig. 1 Images of Io's surface (a) a true-colour image taken by the Galileo spacecraft; (b) a image of the region near Io's South Pole photographed by the Voyager 1 spacecraft, with descriptions after Davies (2007c). Source of the images: https://photojournal.jpl.nasa.gov (No. PIA00328 and PIA00327)

来自木卫一的众多观察事实如按停滞盖层、板块构造等现有的“常规”构造体制来解释往往自相矛盾、难以共存(Johnson et al., 1979; McEwen et al., 1997; Carr et al., 1998; Schenk et al., 2001; Keszthelyi et al., 2004)。大规模火山的存在和地表高热流特征反映了木卫一处于一种新构造体制——热管构造(heat-pipe tectonics)下(O'Reilly and Davies, 1981; Turcotte, 1989; Moore and Webb, 2013; Kankanamge and Moore, 2016)。这一构造体制很好地解释了木卫一较高的地表热流、活跃的造山作用的成因。本文总结了40多年以来人类对木卫一的火山作用、构造体制和动力学演化的主要发现和认识,探讨了木卫一热管构造的性质、发生条件,讨论了地球和其他类地天体早期产生热管构造的可能性。

1 木卫一的主要观测结果 1.1 火山作用

木卫一和地球是太阳系内仅有的两个迄今存在火山活动的类地天体(土卫二、木卫二、海卫一等的冰火山除外),前者的火山喷发规模为太阳系之最。木卫一火山活动的最早迹象来自地基望远镜的光谱和辐射测量结果的异常(Morrison and Cruikshank, 1973; Witteborn et al., 1979)。随后,“旅行者一号”和“旅行者二号”探测器于1979年首次近距离拍摄到了木卫一表面火山喷发形成的巨型流束,证实其火山活动存在且规模巨大(Morabito et al., 1979; Strom et al., 1979)。由于木卫一的独特性,后续对其开展了长期的观测和研究,手段包括空间探测(Strom et al., 1979; McEwen and Soderblom, 1983; Carr et al., 1998; Spencer et al., 2000b; Keszthelyi et al., 2001; Geissler et al., 2004; Spencer et al., 2007)和天基/地基望远镜观测(Veeder et al., 1994; Marchis et al., 2005; de Pater et al., 2014a; de Kleer and De Pater, 2016)。

结果表明,木卫一表面存在400多个火山成因的热异常点(包括160多座活火山)且几乎没有陨石坑(图 1图 2),反映其火山活动广泛而剧烈,喷发物正快速覆盖并更新地表(Johnson et al., 1979; Blaney et al., 1995; Williams et al., 2011)。大规模的火山喷发可大致分三类(Williams and Howell, 2007):(1)火山口内型(intra-paterae type):这类火山作用表现为岩浆在众多大型火山口(平均直径42km、深1~2km)内聚集和喷发(图 1b图 2c, f, g, j)(Radebaugh et al., 2001; Howell et al., 2014; Ahern et al., 2017), 是木卫一主要的火山喷发形式和对外散热途径(Radebaugh et al., 2001; Lopes and Spencer, 2007; Veeder et al., 2012);(2)溢流型(flow-donimated type):以相对贫挥发分的熔岩持续(每次持续数年)而稳定溢出并大范围覆盖地表为特征,典型的火山为Prometheus火山(图 2d, e, h)和Amirani火山(图 2i),其熔岩流覆盖面积可超过6700km2,流动距离可超达300km;(3)爆发型(explosion-dominated type):以Pillan、Pele、Tvashtar和Surt等火山为代表(图 2d, e),其喷发时岩浆从火山口或裂隙中快速、短暂(仅持续数天至数周)而猛烈地喷发,因受木卫一重力场较弱、大气层极其稀薄等因素影响,这类喷发往往形成高达500km,喷射速度达0.4~1km/s,由S、SO2气体和尘埃组成的大型流束和巨型晕状沉积物(图 2b, g)(Strom et al., 1981; McEwen and Soderblom, 1983; Spencer et al., 2000b; Kargel et al., 2003; Jessup et al., 2007; Spencer et al., 2007; de Pater et al., 2014b; de Kleer and De Pater, 2016),可快速改变木卫一表面形态(图 2d-g) (Geissler et al., 1999; Keszthelyi et al., 2001; Kargel et al., 2003; Geissler et al., 2004),是太阳系已知最为壮观的火山活动。长期监测表明木卫一的火山喷发活动是动态变化的。例如,Tvashtar火山口在不同时期内可由火山口内型、溢流型或爆发型喷发主导(Spencer et al., 2007),而Prometheus熔岩流的火山口在其周围沉积了前期爆发式喷发形成的晕状喷发物沉积(图 2i)。

图 2 木卫一活跃火山作用的观测结果 (a)木卫一表面的火山和热点的分布及其热辐射功率,数据来自Davies et al. (2015),A、B点分别为远极和近极;(b) Pele和Loki火山大规模喷发形成的、由高速喷逸的气体和尘埃组成的巨大流束,高度分别约为300km和380km,直径>1100km,喷发速度为0.4~0.7km/s,由“旅行者号”于1979年首次拍摄并据此证实木卫一存在火山作用(Morabito et al., 1979; Strom et al., 1979);(c)木卫一最大的火山口——直径达200km的Loki火山口及其周围的火山沉积物晕环,熔岩湖中央位置存在一个熔岩冷却形成的“岛”,整个熔岩湖散发了的热量占整个木卫一表面总热量的10%~20% (Veeder et al., 2012);(d、e) Pele火山的巨型沉积环和附近Pillan火山喷发导致的形态变化,前者的红色晕圈直径达~1200km;(f、g)正在喷发的Tvashtar火山的火山口和周围地貌特征及其变化,(g)中插图为2007年“新视野号”观测到的Tvashtar火山喷发形成的大型富S、SO2流束,高度达320~360km (Wilson and Head 2001; Spencer et al., 2007);(h) Prometheus火山的火山口、正在喷发的火山通道和形成的熔岩流(Keszthelyi et al., 2001);(i) “伽利略号”获取的木卫一4.7μm波长红外热成像结果;(j) Tupau火山口熔岩湖的形态和红外热成像结果(据Lopes et al., 2004修改).图像b-i来源:https://photojournal.jpl.nasa.gov (编号PIA00379、PIA00320、PIA00744、PIA02545、PIA02550、PIA02565、PIA03534、PIA02599) Fig. 2 Observed active volcanism on Io (a) distribution of volcanic hotspots and its thermal emission on Io, points A and B indicate the near pole and the far pole of Io, respectively, data from Davies et al. (2015); (b) plume of Pele and Loki during its massive eruption of gas and dust of S and SO2, with heigh of 300km and 380km, respectively, and widths of >1100km and spouting speed of 0.4~0.7km/s, photographed by the Vayager 1 in 1979 and is well known for its verification of volcanism on Io (Morabito et al., 1979; Strom et al., 1979); (c) the 200-km-wide Loki patera with its volcanic deposit ring and a cooled island, emissing 10%~20% of Io's total heat into space (Veeder et al., 2012); (d, e) ring of Pele's red deposit (~1200km in size) and rapid morphological changes of its surrounding regions after eruption of Pillan; (f, g) changes of geomorphy of the active Tvashtar patera, inserted is the image of the Tvashtar plume capture by the New Horizons in 2007 (Wilson and Head, 2001; Spencer et al., 2007); (h) lava flow from fissures of the Prometheus volcano (Keszthelyi et al., 2001); (i) global-scale 4.7μm infrared image of Io by the Gelileo; (j) images of visible light and infrared, as well as estimated temperature of the Tupau patera (modified after Lopes et al., 2004). Source of the images b-i: https://photojournal.jpl.nasa.gov (No. PIA00379, PIA00320, PIA00744, PIA02545, PIA02550, PIA02565, PIA03534 and PIA02599)

在火山喷发物成分方面,首先发现木卫一表面不同寻常地覆盖有鲜艳的黄、白、红-棕和黑-灰色物质(图 1图 2),它们分别覆盖了39%、26%、31%和1%的表面积(Geissler et al., 1999)。根据对光谱数据的解译,这些物质是硫(S8)、SO2霜、亚稳态硫(S2、S3和S4,由S8蒸发/升华、冷凝/凝华而来)和硅酸盐物质,没有水存在的迹象(Johnson et al., 1988; McEwen et al., 1997, 1998; Williams et al., 2000; Geissler et al., 2004; Keszthelyi et al., 2006)。虽然木卫一表层几乎被硫和硫化物覆盖,但红外测温表明其地表新喷发熔岩的温度整体较高(1200~1400K),与玄武质熔岩一致(McEwen et al., 1997; Spencer et al., 2007)。因此,目前认为木卫一的地表火山喷发物乃至地壳整体上以镁铁质硅酸盐成分为主,而表层的浅色硫/硫化物火山沉积则是硅酸盐岩浆火山活动的次级产物(Lunine and Stevenson, 1985; Battaglia et al., 2014)。

值得注意的是,“伽利略号”探测器于1997年观测到了木卫一Pillan火山的大规模喷发(图 2d, e),红外测温结果表明熔岩温度高达1870K (~1600℃),且具有富镁斜方辉石的光谱特征(Geissler et al., 1999),推测喷发物可能为科马提质(McEwen et al., 1997, 1998; Williams et al., 2000; Davies et al., 2001)。不过,目前无法进一步证实木卫一普遍存在超镁铁质岩浆(Keszthelyi et al., 2007)。

1.2 高热流和火山活动活跃程度估算

木卫一热辐射特征表明其地表平均热流极高。依据对地基望远镜获取的木卫一整体热辐射数据进行的估算,其地表平均热流可达2±1W/m2 (Matson et al., 1981)至2.5W/m2 (Veeder et al., 1994),“伽利略号”的后续红外探测结果与之接近(2~2.6W/m2)(Spencer et al., 2000a; Rathbun et al., 2004)。如此高的热流远超所有已知其他类地天体,后者的地表平均热流限于0.01~0.1W/m2 (Nimmo and McKenzie, 1998; Furlong and Chapman, 2013; Siegler and Smrekar, 2014)。现已明确,木卫一极高的热流主要来自其密集火山活动喷发物产生的热辐射(图 2i, j)(Veeder et al., 1994; Blaney et al., 1995),包括活跃的火山口、熔岩流等高温区产生的短波长红外辐射(其出露面积仅占总面积的1.2%,但散发了木卫一一半以上的热量,Veeder et al., 2012, 2015),以及远离喷发中心的广阔低温区产生的长波远红外辐射(Spencer et al., 2000a; Rathbun et al., 2004; Veeder et al., 2015)。

根据上述热流值可估算出木卫一火山喷发物整体向外辐射的热功率高达1×1014W (100TW,取木卫一2.5W/m2的地表平均热流值乘以其表面积得出),火山活动如此高的散热量是现今月球(通过其停滞盖层体制下岩石圈的热传导)总热量的210~303倍、地球(主要通过板块形成和俯冲过程中岩石圈、软流圈的热对流和热传导等散热)总热量的2.2倍;根据实测热流推算,现今月球和地球的总散热功率分别为0.34~0.49×1012W(取地表 9~13mW/m2的平均热流值)和46.7×1012W(取地表平均热流91.6mW/m2)(Davies and Davies, 2010; Siegler and Smrekar, 2014)。此外,还可以进一步估算其当前木卫一火山作用的整体活跃程度:若以玄武质岩浆为介质,火山喷发物在整个地表的平均覆盖速率需达到1.4cm/yr(远超“抹平”地表陨石坑所需的0.1cm/y),对应的火山喷发速率需达到500km3/yr以上才能维持木卫一表面2.5W/m2的热流(Johnson et al., 1979; Blaney et al., 1995)。作为对比,据估计现今地球总的岩浆喷发速率仅约为4.1km3/yr,而侵入速率仅约为29.5km3/yr (Davies, 2007a)。

1.3 木卫一的浅部“岩浆洋”

木卫一的全球性大规模火山作用和地表高热流要求其内部发生显著的部分熔融,以维持其岩浆/熔体的大规模形成和喷发,以至于其上地幔可能存在全球性的浅部“岩浆洋”(Peale et al., 1979; Keszthelyi et al., 1999)。依据如下:(1)根据对“伽利略号”获取的木卫一磁感应数据的反演,木卫一可能有一个厚度约为50~100km、部分熔融程度(熔体体积百分比)>20%的软流圈(Khurana et al., 2011);(2)木卫一可能发育超基性岩浆(McEwen et al., 1997, 1998; Williams et al., 2000; McEwen, 2002; Kargel et al., 2003),其形成需要木卫一上地幔处于高温(地幔潜能温度>1600℃)和高程度部分熔融(>50%)状态(Keszthelyi et al., 2004; Gill, 2010)。也有观点认为McEwen et al. (1998)高估了1997年Pillan火山熔岩的温度,火山喷发物应以玄武质为主,地幔熔融程度应为20%~30% (Keszthelyi et al., 2007)或更低(Moore, 2001)。因此,目前认为木卫一的最上层地幔(软流圈)发生大范围熔融的可能性较大,但由于缺乏关于火山喷发产物的直接实测成分,对其是否存在“岩浆洋”并未达成共识。

1.4 造山作用和岩石圈性质

木卫一独特的地貌特征为研究其地壳/岩石圈的地温特征、流变学性质和构造运动模式提供了关键线索。除广泛分布有火山沉积平原、高原和火山口外,木卫一的地表还存在约135座构造成因的山峰或山脉(图 1),它们随机分布于全球范围,呈不规则带状分布或单独高耸于平原(图 3a-c),平均高度为6km(相对于平原)。其中,Boösaule山脉高达17.5±1.5km (Carr et al., 1998; Turtle et al., 2001, 2007),不仅绝对高程较大,且相对木卫一的半径而言也较为“突出”。这些山脉与平原多以正断层为界,是岩石圈在挤压应力下发生局部破裂、剪切和抬升造成的(Ahern et al., 2017)(图 3d)。

图 3 木卫一的造山作用 (a)-(c)地表山脉的形态,描述据Turtle et al. (2001);(d)山脉成因示意图,据Ahern et al. (2017)Turtle et al. (2007)Bland and McKinnon (2016)的描述绘制.图像a和c来源:https://photojournal.jpl.nasa.gov (编号PIA03886和PIA02540), 图b据https://www.lpi.usra.edu/science/schenk/RESEARCH/eub-x.jpg修改 Fig. 3 Mountain-building on Io (a)-(c) mountains on Io, descriptions after Turtle et al. (2001); (d) schematic diagram of mountain building on Io, inspired by Ahern et al. (2017), Turtle et al. (2007) and Bland and McKinnon (2016). Source of the images (a) and (c): https://photojournal.jpl.nasa.gov (No. PIA03886 and PIA02540), (b) is modified after https://www.lpi.usra.edu/science/schenk/RESEARCH/eub-x.jpg

木卫一的上述高地形与其软流圈较高程度的熔融是相互矛盾的。一般认为,木卫一大小的天体其重力场足够强,应能克服自身局部重力不均衡并维持表面流体静力平衡,因而其地表的起伏程度是有限的(Melosh, 2011a),尤其是当其下伏软流圈可能因部分熔融导致黏度降低时。根据重力均衡原理,如果造山作用形成局部异常厚的岩石圈,且岩石圈直接上覆于较“软”的软流圈之上,那么重力均衡调整会使原本高耸的山脉降低高度(Turcotte and Schubert, 2014)。因此,目前认为,木卫一的岩石圈必须具备足够的厚度和强度,才能允许局部重力不均衡和异常高地形的存在(O'Reilly and Davies, 1981; McEwen et al., 2004; Davies, 2007b; Moore et al., 2007)。一个形象的比喻是:人虽然不能“站立”在水面上,但可站立在水面顶部的冰层上。木卫一山脉的成因具有独特性,需要结合其全球构造体制来解释(详见后文)。

1.5 内部生热机制

木卫一的内部生热机制十分独特。一般而言,类地天体内部热量主要来自行星增生阶段星子/星胚的动能和核幔分异过程中重力势能转化而来的内能以及放射性元素的衰变热,这些过程大多仅限于其形成的早期(Stevenson, 2008; Breuer and Moore, 2015)。鉴于木卫一的增生和核幔分异等早期生热机制早已结束,且内部衰变生热可能已较为微弱,维持其活跃火山活动和深部潜在的大规模熔融需要大量额外热量,这一热量供给一旦大幅减弱或停止,整个木卫一上活跃的地质活动可能随之停止(参照大小、密度与之接近的月球)。目前认为,维持木卫一较高的内部温度和大规模的火山作用所需的热量主要来自木星及其卫星对木卫一施加的强烈潮汐作用(Peale et al., 1979; Segatz et al., 1988; Fischer and Spohn, 1990; Tackley, 2001)。其依据是:根据长期观测,木卫一的火山活动周期与绕木轨道偏心率演变周期吻合,且火山活动的高峰期对应木卫一绕木轨道偏心率的峰值(de Kleer et al., 2019)。潮汐生热的具体过程为:由于木卫一的绕木轨道为椭圆形且处于潮汐锁定状态(即一个半球永远朝向木星),造成强烈的潮汐作用并使其在每个绕木公转周期(约1.77天)都会沿自身椭球体长轴方向频繁发生隆起和回落(起伏达100m)(图 4a),此时其深部(如软流圈)物质随之发生周期性的扭曲和内摩擦作用,最终产生大量热量。潮汐生热过程会使木卫一的绕木轨道逐渐变为圆形并使潮汐作用减弱,但由于木卫一、木卫二、木卫三在绕木过程中处于1:2:4(轨道周期比值)的拉普拉斯共振状态,木卫二、木卫三定期施加的额外引力会使木卫一的绕木轨道保持椭圆形(图 4b)。拉普拉斯轨道共振对木卫一轨道偏心率的影响类似于荡秋千时,在适合的时机定期地推一把秋千能使其长时间保持大幅度的摆动。

图 4 木卫一的潮汐生热机制 (a)木星和木卫一之间的潮汐作用示意图(据Segatz et al., 1988修改);(b)木卫一、木卫二和木卫三之间的拉普拉斯轨道共振示意图;(c)木卫一潮汐热的理论估算(据Hamilton et al., 2013) Fig. 4 Tidal heating in Io's interior (a) schematic diagram of tidal interaction between Jupiter and its moon Io (modified after Segatz et al., 1988); (b) schematic diagram of Laplace orbital resonances between Io, Europa and Ganymede; (c) theoretical estimation of Io's internal tidal heating (after Hamilton et al., 2013)

木卫一内部潮汐作用的生热量十分可观。假如木卫一地表散发的热量全部来自软流圈的潮汐热,且软流圈厚度以50~100km计(Khurana et al., 2011),则软流圈内的生热率高达84.2~20.6μW/m3,换算为全地幔平均值则为4.3μW/m3,后者是地球地幔相应值(0.031μW/m3)的152倍,同时也远高于地球富集放射性生热元素的上地壳的相应值(1~3μW/m3)(Stüwe, 2007; Furlong and Chapman, 2013)。尽管潮汐生热总量可以估计,但潮汐加热过程对地幔物质的自身温度、黏度、应变率以及木星-木卫一距离、绕木轨道偏心率等外界因素十分敏感,是一个流变-热-轨道动力学耦合的复杂过程。最早认为潮汐热来自岩石圈的变形(Peale et al., 1979),但这与地表高山的大量分布矛盾(见前文)。后续改进的理论模型提出了潮汐热形成位置的两个端员模型:软流圈和地幔深部(Ross and Schubert, 1985; Tackley et al., 2001)。前者形成的热量集中形成于近木点和远木点两侧,而后者则集中于两极地区(图 4c)。根据木卫一的火山分布和热流分布可检验上述潮汐生热端员模型,目前认为软流圈加热和地幔深部加热均有贡献(Hamilton et al., 2013; Veeder et al., 2015)。不过,地幔对流倾向于消除潮汐热源分布不均造成的热流空间分布异常(Tackley et al., 2001; Tackley, 2001)。目前对木卫一潮汐生热作用的确切位置(相当于地幔熔融和熔体/岩浆形成的位置)、生热总量和及其动态演变还缺乏更多观测数据的制约(Van Hoolst et al., 2020)。

2 热管构造体制

木卫一的活跃火山作用、高热流、高地表更新速率、高地貌特征和深部地幔高程度熔融等不同寻常的现象,迫切需要不同于停滞盖层构造和板块构造的其他构造体制予以解释。木卫一在大规模火山作用主导下,其散热方式和垂向物质循环方式体现了一种全新的构造体制——热管构造(O'Reilly and Davies, 1981)。

2.1 热管效应和热管构造

为便于阐述木卫一的构造体制,在此先简要介绍“热管”和“热管效应”的概念。热管是制冷、建筑和航天等领域广泛使用的一种借助封闭腔体内工作介质(如水、氨和甲烷等)的快速、持续的汽化(吸热)-冷凝(放热)和往返循环进行高效导热的元件(图 5b)。以常见的以水为工作介质的热管为例(图 5a),其有效热导率达到100KW/m·K量级,远高于铜、铁等金属的热导率(300K时分别为400W/m·K和80W/m·K, Lee, 2010);若以“热阻”衡量,热管的等效热阻值为仅为同等尺寸铜棒热阻值的1/1500,由于热阻极小,热管的优良导热性质又被称为“热超导性”(陶文铨,2019)。在此将热管这种依赖内部工质的相变和循环实现快速导热的现象称为“热管效应”。

图 5 计算机散热用热管实物(a)和热管快速导热原理示意图(b)(据Lee,2010绘制) Fig. 5 Photograph of typical heat pipes used on a computer heat sink (a) and schematic diagram of rapid heat transfer of a heat pipe (b) (modified after Lee, 2010)

从热量传递和物质循环的角度看,类地天体的火山作用存在显著的热管效应,木卫一尤其如此。木卫一的地表高热流和大规模火山喷发必然要求其软流圈-岩石圈-地表之间发生快速的垂向热量传递和物质循环(图 6a)。具体地质过程包括:(1)岩浆的形成、向上迁移和喷发:软流圈地幔物质吸收内部热量后温度升高并发生部分熔融形成熔体,后者与源区分离后经岩浆通道向上迁移并喷发至地表,最终在大气层内(或直接暴露在太空中)充分冷却,这一过程本质上是以岩浆为载体将热量从深部带到地表;(2)喷发物的堆积、沉降和折返:冷却后的火山喷发物快速覆盖于木卫一的整个表面并大量堆积,最终在重力作用下发生沉降并折返至深部,以弥补大量熔体/岩浆析出后在深部岩浆源区留下的空白(O'Reilly and Davies, 1981; Turcotte, 1989; Blaney et al., 1995; Kankanamge and Moore, 2019)。上述过程中,前者的岩浆迁移过程主要发生在地壳/岩石圈内部各岩浆通道内(其在地表实际出露的总面积仅占木卫一表面积极小的比例),后者则发生在木卫一除岩浆通道外的整个地表,二者的物质迁移方向相反且总量相等以满足物质守恒定律。整个过程涉及气(挥发分)-液(熔体)-固(岩石)快速相变(硅酸盐的部分熔融-结晶、硫/硫化物的熔融-蒸发/升华-冷凝/凝华)和迁移(通过全球范围内大规模的岩浆上升、喷发和折返),其总散热速率与火山喷发的总体速率成正比。木卫一正是借助数量众多、但出露面积仅占总地表面积极少比例(远低于1%)的岩浆通道迁移、喷发了大量岩浆,将内部形成的大部分热量(≥56%)带到地表并散发到外太空(Blaney et al., 1995; Williams et al., 2011; Veeder et al., 2012)。

图 6 木卫一的热管构造示意图(a, 据Davies, 2007e; O'Reilly and Davies, 1981绘制)及木卫一上地幔的地温示意图(b, 据O'Reilly and Davies, 1981; Leone et al., 2011修改) Fig. 6 Schematic model of Io's heat-pipe tectonics (a, adapted from Davies, 2007e; O'Reilly and Davies, 1981) and schematic geothermal profiles in Io's upper mantle (b, modified after O'Reilly and Davies, 1981; Leone et al., 2011)

在软流圈-岩石圈尺度内,木卫一这种依赖火山作用进行大规模的物质循环并向外高效传递内部热量的构造体制有别于太阳系其他类地天体的现有模式。由于与热管的高效传热原理相同,这一构造体制被称为“热管构造”(heat-pipe tectonics)(O'Reilly and Davies, 1981; Turcotte, 1989; Moore and Webb, 2013; Moore et al., 2017)。

热管构造具有以下显著特征:(1)在软流圈-岩石圈范围内引发较快物质-能量循环:在木卫一的软流圈-岩石圈尺度内(100~200km),岩浆的迁移和喷发过程的传热效率远高于热传导,前者的发生时间可能仅为千年尺度(Davies et al., 2010; Williams et al., 2011),而后者所需时间则在100Myr以上(Stüwe, 2007)。木卫一仅依赖火山作用便可完成软流圈-岩石圈-地表之间的内外传热和物质交换,其效率远高于单纯依赖岩石圈热传导的停滞盖层构造,也高于依赖岩石圈参与地幔对流(也包括岩石圈热传导)的板块构造体制。(2)热管构造形成较冷的岩石圈,使软流圈-岩石圈内形成“冰火两重天”的地温特征(图 6b):火山沉积物的快速堆积和地表快速沉降抑制了软流圈对岩石圈的加热,使之难以达到稳态传导地温,从而形成冷的岩石圈,而软流圈及更深处地幔的地温则较高,以此维持自身大规模部分熔融并提供大规模火山作用所需的岩浆(Moore et al., 2007; Leone et al., 2011)。(3)在岩石圈内部形成挤压为主的应力特征,结合岩石圈的低地温、高流变强度特性,往往形成局部造山并维持较高的地形(图 3)。(4)热管构造下岩石圈等同于地壳:木卫一的大规模物质循环以垂向为主,决定了软流圈以上的整个圈层不停处于垂向更新的状态中,使地壳与软流圈直接接触(图 6a),二者之间难以形成岩石圈地幔(Keszthelyi et al., 2004; Moore et al., 2007),而后者是最上层地幔经充分冷却、“硬化”形成的(Ghail, 2015; Karato and Barbot, 2018; Stern et al., 2018)。

需要说明的是,“热管构造”容易与“地幔柱”的概念相混淆,二者在存在的空间范围和热传递机制发生上存在本质的区别(图 7):地幔柱总体上是固态地幔在整个地幔内部的对流(虽然地幔柱上涌造成的地幔熔融本身也部分以地表火山作用的形式表体现并因此存在热管效应),但热管构造主要的物质和能量循环主要限于软流圈-岩石圈之间;热管构造的热传递依赖木卫一壳幔物质的相变和对流,而地幔柱的热传导主要则通过固态地幔物质的对流将地球深部内部的热量带到浅部,其作用范围涉及整个地幔。

图 7 热管构造与地幔柱的对比及二者可能的共存方式示意图 为便于比较二者在促进类地天体冷却过程中导热方式的异同,这里将二者置于一起并假设地幔熔融和火山作用由地幔柱加热引发 Fig. 7 Schematic diagram showing the difference between the heat-pipe tectonics and the mantle plume and a possible scenario of how they coexists when occur The mechanism of the mantle melting to feed the volcanism is assumed to be induced by mantle plumes for easy comparison
2.2 热管构造体制下造山运动与火山作用之间的成因联系

现有研究表明,火山作用主导的热管构造强化了木卫一地表的高地貌特征。根据前文的分析,在热管体制下,木卫一的新老地壳发生快速更替会引发岩石圈尺度的大规模垂直物质循环。在此过程中,地表火山喷发物的堆积引起地壳整体沉降(图 3d图 8),为维持物质守恒,上述过程促使刚性岩石圈向内收缩并在其底部产生0.3~0.5GPa的横向挤压应力(即“沉降应力”),相比之下,据推测木卫一现有岩石圈的厚度为20~30km (Carr et al., 1998; Jaeger et al., 2003),岩石圈底部静岩压力仅为~0.15GPa (Schenk and Bulmer, 1998; Jaeger, 2003)。因此,大规模火山作用在岩石圈内引发了“拱券效应”(Arch effect,图 3d)。受此影响,岩石圈局部发生破裂和抬升并形成山脉(Turtle et al., 2001 2007; Jaeger, 2003; Kirchoff and McKinnon, 2009; Ahern et al., 2017)。此外,在热管构造体制下,岩石圈的低温特征增加了岩石圈的机械强度(Schenk and Bulmer, 1998; Kirchoff and McKinnon, 2009; Kirchoff et al., 2020),使构造挤压和抬升引发的岩石圈-软流圈局部重力不均衡现象更加突出。进一步的数值模拟研究表明,木卫一的岩石圈造山作用还会造成山脉附近地壳的张裂和岩浆通道的形成(Bland and McKinnon, 2016),解释了木卫一山脉多与火山口和熔岩湖共存的原因(Carr et al., 1998; Bunte et al., 2010; Kirchoff et al., 2011)。总之,在热管构造体制下,木卫一表面大规模火山作用造成的垂向物质循环是其造山作用强烈、山脉广布的根本原因。

图 8 木卫一的内部结构和岩石圈垂向物质循环示意图(据Davies,2007bAnderson et al., 2001Moore et al., 2007绘制) Fig. 8 Cartoon depicting the structure of Io's interior, also shown is the circulation of materials in the upper mantle in response to its heat pipe tectonics (modified after Davies, 2007b; Anderson et al., 2001; Moore et al., 2007)
2.3 热管构造体制下木卫一的物质分异

根据重力、密度和磁场数据反演以及地表成分测温,目前推测木卫一的内部具有显著的核-幔-壳结构(图 8)。木卫一的核可能由Fe-FeS组成并处于全熔状态,由于没有探测到磁场(Kivelson et al., 2004),其内部磁流体发电机可能受高温地幔的抑制(Nimmo, 2002; Kivelson et al., 2004; O'Rourke, 2020);地幔成分主要为硅酸盐(Keszthelyi and McEwen, 1997; Keszthelyi et al., 2004, 2007);地壳主要以基性硅酸盐为主(见前文),但也可能含有高分异长英质(Keszthelyi and McEwen, 1997; Keszthelyi et al., 2007)。上述结构如何形成?作为分异的起点,木卫一可能由类似L/LL型球粒陨石(根据其与木卫一总体密度的相似性推测)(Kuskov and Kronrod, 2001)或CII/CM型球粒陨石(依据其与木卫一类似的总体成分和贫挥发分特征)(Consolmagno, 1981; Lewis, 1982)等原始物质吸积而成。在早期吸积过程中,木卫一的核幔分异会在其可能存在的岩浆洋时期快速完成,使Fe和亲Fe元素形成地核,其余元素进入地幔(McKinnon, 2007; Stevenson, 2008)。在相对缓慢的后续壳幔分异过程中,木卫一大规模的地幔部分熔融和岩浆结晶分异必然会使其原始地幔物质会进一步发生分异,使地幔中的不相容元素(Na、K和Si等)分离并进入地壳,而难熔的富Al、Mg、Ca、Fe成分(类似CAI)则残留在地幔内,上述壳幔分异过程倾向于形成成分和密度差别巨大的壳和幔。据估算,假如以CII/CM型球粒陨石成分作为木卫一的初始成分,且46亿年以来其一直存在现有规模的火山活动,其热管效应散失的热量足以使整个木卫一全熔40次或部分熔融以400次(以10%的熔融程度计);如果类似的火山活动仅持续木卫一1%的地质历史(即数十个百万年),理论上也会使其分异出约50km厚、以碱性硅酸盐(如长石和霞石)等低密度低熔长英质地壳,以及总体成分为纯橄岩的地幔(可进一步分异出富Fe和Ca的下地幔)(Keszthelyi and McEwen, 1997)。

如果按照上述的“常规”分异路径演化,正在发生剧烈岩浆作用的木卫一应该经历了极端的壳幔分异,其地壳总体密度应较低。然而,这样的高分异地壳的存在与木卫一现存的火山活动的规模,以及木卫一的地壳/岩石圈主要为基性成分这一观测事实相悖。这是因为现今规模的火山活动不仅需要岩浆大量形成,也依赖岩浆的大规模向上迁移,后者的主要驱动力为岩浆-地壳围岩之间密度差导致的正浮力,而地幔熔融形成的主要是比高分异长英质密度更高的镁铁质-超镁铁质成分,前者难以穿越长英质地壳并维持全球性的大规模喷发(Wieczorek et al., 2001; Wilson, 2009; Michaut and Pinel, 2018)。不过,这一难题可从热管构造自身的垂向物质循环特征予以克服:在热管构造体制下,木卫一的地壳物质可能因底部接触高温软流圈而受热熔融,其熔融产物容易与软流圈熔体/岩浆混合并返回地幔,从而使地壳内将无法积累高分异成分(Carr et al., 1998; Keszthelyi et al., 1999; McEwen, 2002; Keszthelyi et al., 2007),符合木卫一地壳/岩石圈为基性成分这一观测结果(尚存争议)。

因此,目前的证据表明,木卫一可能已分异出核-幔-壳结构;尽管岩浆作用十分活跃,木卫一可能未经历充分的壳幔分异,未能形成(或保留)类似地球上存在的长英质地壳,这是热管构造体制下木卫一剧烈而彻底的垂向物质循环模式造成的。上述推测还有待更多证据支持,尤其是需要对木卫一的地壳/岩石圈和地幔物质成分进行精确测定。此外,探讨木卫一大规模岩浆活动背后的熔体/岩浆形成、迁移过程及其对内部物质分异的影响涉及对内部温度、组分、流变学特征等因素之间的协同演化,后者是一系列强烈的非线性过程,现有研究已开始尝试对其进行量化(Spencer et al., 2020),后续还需进一步加强。

2.4 热管构造的发生条件

木卫一的热管构造的发生依赖其岩石圈-软流圈内大规模的岩浆形成-迁移-喷发-冷却和折返,上述每一个步骤的减弱或停止,都会使热管构造暂停或停止并转变为其他构造体制。因此,只有大规模岩浆作用持续发生,才能维持热管构造,具体为:首先,作为首要条件,不论生热机制是什么,充足的热量是木卫一所有地质构造活动的原始驱动力,要使其内部(至少在岩浆源区)保持较高温度并大规模熔融形成熔体/岩浆需要足够高的生热率来维持(Jaupart and Mareschal, 2011)。如果没有强烈的潮汐加热,木卫一的内部熔融和岩浆过程将会停止,并最终可能演变为与月球、水星类似的死寂天体(Moore et al., 2017)。其次,深部形成的熔体/岩浆要能穿过地壳/岩石圈大规模向上迁移并喷发于地表。这取决于岩石圈的热状态、流变性和内部的应力状况以及岩浆上升的驱动力强弱,后者来自熔体/岩浆相对围岩存在密度差和浮力。类地天体(如月球、水星和地球)表面岩浆活动具有普遍性(Keszthelyi et al., 2006; Wilson, 2009; Melosh, 2011b; Wilson and Keil, 2012),以现有观测来看,只要深部存在岩浆持续形成的条件,后续的岩浆过程往往是不可阻挡,而岩石圈局部拉张形成构造薄弱带等因素则会进一步促进岩浆通道的形成(Huppert et al., 1984; Keszthelyi, 1995; Keszthelyi and Self, 1998; Battaglia et al., 2014; Bland and McKinnon, 2016)。此外,火山喷发物大范围覆盖地表并能快速冷却(以大气圈、水圈等为媒介或直接向太空辐射热量),其时间尺度约数小时至数月,远小于岩浆迁移过程的千年尺度(Davies, 2007d; Davies et al., 2010; Williams et al., 2011),因而这是热管构造发生的所需条件中最容易达到的,尤其是当大气层稀薄、高温喷发物直接面向太空时(Davies, 2007d; Keszthelyi et al., 2007)。

从本质上讲,热管构造体制的发生主要取决于类地天体地幔岩浆源区能否保持较高温度,以及是否存在较强的内生热作用以维持上述高温。后续还需要进一步明确具体的内生热率和地温阈值。

3 讨论 3.1 对类地天体构造演化的启示

除地球、木卫一外,太阳系中绝大多数类地天体的地质活动多已停止,但大多保留了较为丰富的构造-岩浆活动记录,为还原其早期热-构造演化提供了线索。水星保留了41~35.5亿年前的镁铁质-超镁铁质熔岩大规模溢流式喷发的充填平原(Wilson and Head 2008; Head et al., 2011; Marchi et al., 2013),也保留了同时期伴随其整体冷却收缩和地壳/岩石圈挤压形成的、遍布全球的挤压构造(如叶状陡崖和皱脊等)(Head et al., 2009; Watters et al., 2009; Byrne et al., 2014),表明早期水星强烈的岩浆活动造成了显著的岩石圈挤压作用(Watters et al., 1998; Wilson and Head, 2008; Head et al., 2009; Multhaup, 2009; Charlier et al., 2013)。无独有偶,月球也保留了与之类似古老的岩浆-构造记录(Head and Wilson, 1992; Hiesinger et al., 2003; Terada et al., 2007)。而灶神星等小行星也保留了早期演化的地质记录,现有研究指出,它们的内部在形成初期强烈的放射生热作用(如通过26Al衰变)下往往发生过熔融,形成的熔体受浮力或应力挤压后与源区残余物质分离,然后上升形成岩浆喷发至地表,并很快分异出镁铁质地壳(Wilson and Keil, 2012; Clenet et al., 2014; McSween et al., 2019)。上述类地天体的早期地质记录现有记录反映了以下事实:类地天体的壳幔分异可能普遍发生较早并形成广泛覆盖地表的镁铁质火山岩,火山作用往往伴随活跃且以收缩挤压为主的构造运动。这些特征体现了岩浆活动对其早期构造演化重要作用,可通过热管构造来解释这些岩浆-构造演化特征的成因相关性(Turcotte, 1989; Moore et al., 2017)。

Moore et al. (2017)进一步认为,在类地天体演化过程中,热管构造的发生有一定的必然性。类地天体演化进程是其散失内部热量的过程,作为制约地表散热的关键因素,其构造体制可以自我调整以适应当时的地温和内部生热条件(图 9)。当内部地温和内生热率较高时,类地天体需要其演变出比板块构造或停滞盖层构造等更为高效的散热机制(Moore and Webb, 2013; Kankanamge and Moore, 2016)。木卫一生动地展示了一个类地天体能够以火山作用主导其地表散热过程,对应的热管构造可能是其强内生热条件下众多可能的构造体制中的“最优解”。对大多数类地天体而言,热管构造可能多限于类地天体在岩浆洋固化后相对短暂的演化阶段(Moore et al., 2017),这一阶段可提供其发生所需的高地温、高生热率等相对苛刻的条件。由于这样的高内能状态不能长期维持,热管构造如果发生其持续时间相对于其他构造体制而言可能较为短暂。

图 9 太阳系类地天体现存的几种主要构造体制及其演化示意图(据Stern et al., 2018修改) Fig. 9 Carton showing the evolution of tectonic regimes of terrestrial bodies in the Solar System (modified after Stern et al., 2018)
3.2 早期地球发生热管构造的可能性

在众多类地天体中,只有地球长期存在板块构造,但一般认为其演化早期缺乏发生板块构造的条件(van Hunen and Van Den Berg, 2008; van Hunen and Moyen, 2012; Korenaga, 2013; Karato and Barbot, 2018)。根据最古老的锆石记录,地球可能早在43~44亿年前就存在壳幔分异形成的长英质地壳(以TTG为主)(Ernst, 2009; Harrison, 2009; Kemp et al., 2010; 第五春荣等, 2010),这些早期长英质地壳物质未能保留,其大量出现要在距今35亿年以后才开始(Hawkesworth et al., 2016; 万渝生等, 2017)。从这些有限信息中很难还原出前板块构造体制的轮廓,需要另寻思路。由于木卫一与冥古宙-太古宙早期的地球在高地温、高内生热、发育超基性浆岩和岩浆作用活跃等方面存在相似性,前者的热管构造可能适用于这一时期的地球(Moore and Webb, 2013; Moresi, 2013; Beall et al., 2018; Stern et al., 2018)。这仅是基于比较行星学的推测,对于能否直接套用于地球还有争议,目前认为上述可能性是存在的。

根据木卫一的热管构造特征和数值模拟结果,Moore and Webb (2013)认为地球在其前三分之一历史内处于热管构造体制下,并在32亿年前被板块构造取代。理由如下:首先,太古宙地层中普遍存在短期内快速堆积火山沉积,如在西澳大利亚Pilbara克拉通和南非Barberton克拉通的太古宙绿岩带中存在快速沉积形成的基性-超基性火山沉积地层(其火山地层沉积速率至少为0.03~0.12mm/yr,考虑到火山地层间存在角度不整合且经历后期伸展减薄过程,实际的火山沉积速率应远超上述值),其喷发年龄限于32亿年前,且二者均缺乏同期伸展构造,符合形成热管构造所需的高地表更新速率以及热管构造倾向于在地壳/岩石圈内形成挤压应力的特征。再如,西澳大利亚Yilgarn克拉通杰克山(Jack Hills)地区的变沉积岩内残存的古老碎屑锆石的O、Hf和Nd等的同位素特征表明,早在约44~43亿年前,其锆石母岩TTG就可能由在早期水圈中经历风化的镁铁质原始地壳重熔形成(Mojzsis et al., 2001; Wilde et al., 2001; Bédard, 2006; Blichert-Toft and Albarède, 2008; Harrison et al., 2008; Harrison, 2009; Valley et al., 2014; Wang and Wilde, 2018),这些锆石中还发现金刚石-石墨包裹体,其C同位素特征也反映其C元素可能的地表来源(Menneken et al., 2007; Nemchin et al., 2008)。上述信息反映了早期地球可能存在强烈的壳幔分异和地壳形成过程中原始地壳的再造(reworking)。这需要冥古宙地球借助热管构造这样的构造体制以垂向“传送带”式的构造运动将早期地表物质(包括原始地壳岩石、水和碳等)带入深部(如>100km的金刚石稳定域),并促进其地幔的熔融和分异并形成早期长英质(Menneken et al., 2007)。此外,Moore and Webb (2013)认为,32亿年后的地球由于内生热的减弱(因放射性元素衰变)不能维持热管构造,并在这一时间切换为板块构造:在高地幔生热条件下,如果热管构造主导地表散热倾向于形成冷、厚且底部平滑的岩石圈(因横向上只能维持较小温差),地幔对流对岩石圈产生的拖拽应力不足等因素使岩石圈难以破裂、俯冲,从而抑制板块构造;随着地球内生热、地幔熔融程度和火山作用的减弱,地幔对流的拖拽加强以及岩石圈局部变薄处应力集中,热管构造难以维持并会被板块构造取代(Moore and Webb, 2013; Kankanamge and Moore, 2016; Beall et al., 2018)。

需要说明的是,目前地球最早的地质记录中也反映了当时地球在构造运动、壳幔分异方面与热管构造相悖的三个关键信息:(1)长英质TTG为主大量形成于距今38~36亿年以后,期间地壳以高地温为特征(Ernst, 2009; 张旗和翟明国, 2012; 翟明国, 2019),这与热管构造倾向于形成较冷岩石圈的预期不符(图 6b);(2) 38~25亿年之间地幔大量分异出长英质TTG并在地壳中保留至今,而热管构造使岩石圈-软流圈间的物质循环较为彻底,不利于保留这些长英质,前者倾向于把它们全部带回地幔;(3)如果地壳在早期即已演化出大量长英质,地幔熔融形成的高密度镁铁质-超镁铁质岩浆难以大规模喷发于地表(类似木卫一的大规模喷发至少要求地壳/岩石圈的成分和岩浆相同或类似),从而抑制热管构造。基于上述分析,由于热管构造物质循环方式使其不利于长英质地壳的大规模形成,因此至少不应发生于地球大量形成TTG的地史时期。相反,当时的构造体制应以允许岩浆作用以侵入为主而非喷发作用主导(Rozel et al., 2017; Lourenco et al., 2018)。

因此,38~36亿年以后的动力学环境不宜用热管构造解释,因此,热管构造的持续时间可能短于Moore and Webb (2013)推测的时间范围。根据现有地质观察,热管构造可能适用于较早期的冥古宙-早太古宙地球,即岩浆洋(尚存争议)固化后、TTG尚未大量形成或保留的演化阶段(图 9)。理由如下:首先,长英质组分是地球特有的壳幔高度分异产物,热管构造的垂向循环虽然不利于保留地球最早壳幔分异的产物(如TTG等),但是可以解释长英质成分在冥古宙就已经形成但无法保留的观察事实。其次,长英质组分是超镁铁质地幔橄榄岩-镁铁质岩-中性岩-长英质岩分异路径的末端产物(Bédard, 2006),相对其他构造体制而言,热管构造引发的垂直物质循环造成的快速分异倾向于大规模形成镁铁质,不仅有利于在地球演化早期快速、大规模地积累镁铁质地壳,并在地壳深部为后续的中酸性岩提供“原材料”,也能促进地表挥发分进入其源区深部促进原岩的熔融和分异,因为挥发分是长英质成分得以形成的关键因素(Moore and Webb, 2013)。第三,早期地球在岩浆洋固化后的地球内部温度较高(包括残留的吸积热等),总体生热率较高(放射性衰变热是当前值的4~5倍),需要热管构造等“更合适”的构造体制进行高效的散热,同时,由于地幔较容易发生熔融且早期地壳以镁铁质成分为主,岩浆作用活跃且倾向于以喷发为主,符合热管构造的特征。

综上所述,可以推测:冥古宙-始太古代时期(约38亿年以前)的地球可能处于热管构造体制下,后续演化阶段不再具备维持该体制的条件。不过,即使地球存在过热管构造,其引发的强烈垂向物质循环(地壳/岩石圈主要由较易折返回地幔的超镁铁质-镁铁质成分组成),外加同期强烈的外动力地质作用(如太阳系“后期陨石密集轰击事件”,Ryder, 2002)和其他后续地质作用的长期改造,可能使热管构造的地质记录被“抹掉”,为相关研究带来困难。早期地球是否存在热管构造取决于后续对其性质、发生条件及其对类地天体热演化和物质分异的潜在影响等关键问题的研究能否取得突破。

4 结论和展望

现今的木卫一存在强烈的火山作用、极高的地表热流、快速更新的地表、活跃的造山作用和内部强烈的潮汐加热作用,并且可能发育超镁铁质岩浆并存在“岩浆洋”,体现了其在太阳系内独一无二的动力学特征。相对于其他构造体制,热管构造可以很好地解释上述特征。木卫一展示了类地天体能以火山作用主导其全球构造运动和地表散热过程,其热管构造体制与其当前较高的地温和较强的内生热条件相适应。在类地天体演化的早期,尽管内部生热机制与木卫一可能存在显著差异,但岩浆作用活跃、内部温度高、内生热作用强烈是其共性,它们在演化的早期可能都经历了类似的热管构造阶段。

对地球而言,现有证据不排除其演化早期经历过热管构造阶段的可能性,后者相对其他构造体制而言更有利于早期地球散发内部积累的热量,也有利于其地幔快速分异出早期地壳。同时,由于地球在38亿年后才大量形成TTG,而热管构造并不利于保留这些壳幔分异产物,依据TTG形成的时间上限推测,热管构造的发生可能仅限于约38亿年以前的冥古宙-始太古代时期。由于地球没有保留相应的早期构造活动的证据,木卫一是揭开地球早期演化的关键“钥匙”。对此,亟待以木卫一为研究对象,对热管构造的性质、发生条件等关键问题进一步开展定量研究。

致谢      感谢中国科学院地球化学研究所朱丹研究员和张明明对本文第一作者在木卫一演化研究方面的帮助;两位审稿人对本文的初稿提出了宝贵的修改意见和建议,在此深表感谢。

参考文献
Ahern AA, Radebaugh J, Christiansen EH, Harris RA and Tass ES. 2017. Lineations and structural mapping of Io's paterae and mountains:Implications for internal stresses. Icarus, 297: 14-32
Anderson JD, Jacobson RA, Lau EL, Moore WB and Schubert G. 2001. Io's gravity field and interior structure. Journal of Geophysical Research:Planets, 106(E12): 32963-32969
Baratoux D, Toplis MJ, Monnereau M and Gasnault O. 2011. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 472(7343): 338-341
Battaglia SM, Stewart MA and Kieffer SW. 2014. Io's theothermal (sulfur):Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply. Icarus, 235: 123-129
Beall AP, Moresi L and Cooper CM. 2018. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology, 46(6): 487-490
Bédard JH. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214
Bland MT and McKinnon WB. 2016. Mountain building on Io driven by deep faulting. Nature Geoscience, 9(6): 429-432
Blaney DL, Johnson TV, Matson DL and Veeder GJ. 1995. Volcanic eruptions on Io:Heat flow, resurfacing, and lava composition. Icarus, 113(1): 220-225
Blichert-Toft J and Albarède F. 2008. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters, 265(3-4): 686-702
Breuer D and Moore WB. 2015. Dynamics and thermal history of the terrestrial planets, the Moon, and Io. In:Romanowicz B and Dziewonski AM (eds.). Treatise on Geophysics. 2nd Edition. Oxford:Elsevier, 10: 255-305
Bunte MK, Williams DA, Greeley R and Jaeger WL. 2010. Geologic mapping of the Hi'iaka and Shamshu regions of Io. Icarus, 207(2): 868-886
Byrne PK, Klimczak C, Çengör AMC, Solomon SC, Watters TR and Hauck SA II. 2014. Mercury's global contraction much greater than earlier estimates. Nature Geoscience, 7(4): 301-307
Carr MH, McEwen AS, Howard KA, Chuang FC, Thomas P, Schuster P, Oberst J, Neukum G, Schubert G and Galileo Imaging Team. 1998. Mountains and calderas on Io:Possible implications for lithosphere structure and magma generation. Icarus, 135(1): 146-165
Charlier B, Grove TL and Zuber MT. 2013. Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth and Planetary Science Letters, 363: 50-60
Clenet H, Jutzi M, Barrat JA, Asphaug EI, Benz W and Gillet P. 2014. A deep crust-mantle boundary in the asteroid 4 Vesta. Nature, 511(7509): 303-306
Consolmagno GJ. 1981. Io:Thermal models and chemical evolution. Icarus, 47(1): 36-45
Davies AG, Keszthelyi LP, Williams DA, Phillips CB, McEwen AS, Lopes RMC, Smythe WD, Kamp LW, Soderblom LA and Carlson RW. 2001. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. Journal of Geophysical Research:Planets, 106(E12): 33079-33103
Davies AG. 2007a. Hot spots. In: Davies AG (ed.). Volcanism on Io: A Comparison with Earth. New York: Cambridge University Press, 269-286
Davies AG. 2007b. Io and Earth: Formation, evolution, and interior structure. In: Davies AG (ed.). Volcanism on Io: A Comparison with Earth. New York: Cambridge University Press, 53-72
Davies AG. 2007c. Io, 1610-1979. In: Davies AG (ed.). Volcanism on Io: A Comparison with Earth. New York: Cambridge University Press, 7-26
Davies AG. 2007d. Models of effusive eruption processes. In: Davies AG (ed.). Volcanism on Io: A Comparison with Earth. New York: Cambridge University Press, 108-141
Davies AG. 2007e. Volcanism on Io: A post-Galileo view. In: Davies AG (ed.). Volcanism on Io: A Comparison with Earth. New York: Cambridge University Press, 287-293
Davies AG, Keszthelyi LP and Harris AJL. 2010. The thermal signature of volcanic eruptions on Io and Earth. Journal of Volcanology and Geothermal Research, 194(4): 75-99
Davies AG, Veeder GJ, Matson DL and Johnson TV. 2015. Map of Io's volcanic heat flow. Icarus, 262: 67-78
Davies GF. 1980. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. Journal of Geophysical Research, 85(B5): 2517-2530
Davies GF. 2011. The plate mode of convection. In: Mantle Convection for Geologists. New York: Cambridge University Press, 56-72
Davies JH and Davies DR. 2010. Earth's surface heat flux. Solid Earth, 1(1): 5-24
de Kleer K and De Pater I. 2016. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015. Icarus, 280: 378-404
de Kleer K, de Pater I, Molter EM, Banks E, Davies AG, Alvarez C, Campbell R, Aycock J, Pelletier J, Stickel T, Kacprzak GG, Nielsen NM, Stern D and Tollefson J. 2019. Io's volcanic activity from time domain adaptive optics observations:2013-2018. The Astronomical Journal, 158(1): 29
de Pater I, Davies AG, McGregor A, Trujillo C, ádámkovics M, Veeder GJ, Matson DL, Leone G and the Gemini Io Team. 2014a. Global near-IR maps from Gemini-N and Keck in 2010, with a special focus on Janus Patera and Kanehekili Fluctus. Icarus, 242: 379-395
de Pater I, Davies AG, ádámkovics M and Ciardi DR. 2014b. Two new, rare, high-effusion outburst eruptions at Rarog and Heno Paterae on Io. Icarus, 242: 365-378
Diwu CR, Sun Y, Dong ZC, Wang HL, Chen DL, Chen L and Zhang H. 2010. In situ U-Pb geochronology of Hadean zircon xenocryst (4.1~3.9Ga) from the western of the Northern Qinling Orogenic Belt. Acta Petrologica Sinica, 26(4): 1171-1174 (in Chinese with English abstract)
Elkins-Tanton LT. 2012. Magma oceans in the inner solar system. Annual Review of Earth and Planetary Sciences, 40(1): 113-139
Ernst WG. 2009. Archean plate tectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Research, 15(3-4): 243-253
Fischer HJ and Spohn T. 1990. Thermal-orbital histories of viscoelastic models of Io (J1). Icarus, 83(1): 39-65
Furlong KP and Chapman DS. 2013. Heat flow, heat generation, and the thermal state of the lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385-410
Geissler P, McEwen A, Phillips C, Keszthelyi L and Spencer J. 2004. Surface changes on Io during the Galileo mission. Icarus, 169(1): 29-64
Geissler PE, McEwen AS, Keszthelyi L, Lopes-Gautier R, Granahan J and Simonelli DP. 1999. Global color variations on Io. Icarus, 140(2): 265-282
Ghail R. 2015. Rheological and petrological implications for a stagnant lid regime on Venus. Planetary and Space Science, 113-114: 2-9
Gill R. 2010. Ultramafic and ultrabasic rocks. In: Igneous Rocks and Processes: A Practical Guide. Chichester: Wiley-Blackwell, 131-160
Hamilton CW, Beggan CD, Still S, Beuthe M, Lopes RMC, Williams DA, Radebaugh J and Wright W. 2013. Spatial distribution of volcanoes on Io:Implications for tidal heating and magma ascent. Earth and Planetary Science Letters, 361: 272-286
Harrison TM, Schmitt AK, McCulloch MT and Lovera OM. 2008. Early (≥ 4.5Ga) formation of terrestrial crust:Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268(3-4): 476-486
Harrison TM. 2009. The Hadean crust:Evidence from >4Ga zircons. Annual Review of Earth and Planetary Sciences, 37: 479-505
Hawkesworth CJ, Cawood PA and Dhuime B. 2016. Tectonics and crustal evolution. GSA Today, 26(9): 4-11
Head JW and Wilson L. 1992. Lunar mare volcanism:Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochimica et Cosmochimica Acta, 56(6): 2155-2175
Head JW, Murchie SL, Prockter LM, Solomon SC, Chapman CR, Strom RG, Watters TR, Blewett DT, Gillis-Davis JJ, Fassett CI, Dickson JL, Morgan GA and Kerber L. 2009. Volcanism on Mercury:Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth and Planetary Science Letters, 285(3-4): 227-242
Head JW, Chapman CR, Strom RG, Fassett CI, Denevi BW, Blewett DT, Ernst CM, Watters TR, Solomon SC, Murchie SL, Prockter LM, Chabot NL, Gillis-Davis JJ, Whitten JL, Goudge TA, Baker DMH, Hurwitz DM, Ostrach LR, Xiao ZY, Merline WJ, Kerber L, Dickson JL, Oberst J, Byrne PK, Klimczak C and Nittler LR. 2011. Flood volcanism in the northern high latitudes of mercury revealed by MESSENGER. Science, 333(6051): 1853-1856
Herzberg C, Condie K and Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292(1-2): 79-88
Hiesinger H, Head JW III, Wolf U, Jaumann R and Neukum G. 2003. Ages and stratigraphy of Mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. Journal of Geophysical Research:Planets, 108(E7): 5065
Howell RR, Landis CE and Lopes RMC. 2014. Composition and location of volatiles at Loki Patera, Io. Icarus, 229: 328-339
Huppert HE, Sparks RSJ, Turner JS and Arndt NT. 1984. Emplacement and cooling of komatiite lavas. Nature, 309(5963): 19-22 DOI:10.1038/309019a0
Jaeger WL, Turtle EP, Keszthelyi LP, Radebaugh J, McEwen AS and Pappalardo RT. 2003. Orogenic tectonism on Io. Journal of Geophysical Research:Planets, 108(E8): 2093
Jaupart C and Mareschal JC. 2011. Thermal evolution of the Earth. In: Heat Generation and Transport in the Earth. Cambridge: Cambridge University Press, 300-316
Jessup KL, Spencer J and Yelle R. 2007. Sulfur volcanism on Io. Icarus, 192(1): 24-40
Johnson TE, Brown M, Kaus BJP and VanTongeren JA. 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nature Geoscience, 7(1): 47-52
Johnson TV, Cook AF II, Sagan C and Soderblom LA. 1979. Volcanic resurfacing rates and implications for volatiles on Io. Nature, 280(5725): 746-750
Johnson TV, Veeder GJ, Matson DL, Brown RH, Nelson RM and Morrison D. 1988. Io:Evidence for silicate volcanism in 1986. Science, 242(4883): 1280-1283
Kankanamge DGJ and Moore WB. 2016. Heat transport in the Hadean mantle:From heat pipes to plates. Geophysical Research Letters, 43(7): 3208-3214
Kankanamge DGJ and Moore WB. 2019. A parameterization for volcanic heat flux in heat pipe planets. Journal of Geophysical Research:Planets, 124(1): 114-127
Karato SI and Barbot S. 2018. Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus. Scientific Reports, 8: 11884
Kargel J, Carlson R, Davies A, Fegley B Jr, Gillespie A, Greeley R, Howell R, Jessup KL, Kamp L, Keszthelyi L, Lopes R, Macintyre T, Marchis F, McEwen A, Milazzo M, Perry J, Radebaugh J, Schaefer L, Schmerr N, Smythe W, Spencer J, Williams D, Zhang J and Zolotov M. 2003. Extreme volcanism on Io:Latest insights at the end of Galileo era. Eos, Transactions American Geophysical Union, 84(33): 313-318
Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD and DuFrane SA. 2010. Hadean crustal evolution revisited:New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters, 296(1-2): 45-56
Keszthelyi L. 1995. A preliminary thermal budget for lava tubes on the Earth and planets. Journal of Geophysical Research:Solid Earth, 100(B10): 20411-20420
Keszthelyi L and McEwen A. 1997. Magmatic differentiation of Io. Icarus, 130(2): 437-448
Keszthelyi L and Self S. 1998. Some physical requirements for the emplacement of long basaltic lava flows. Journal of Geophysical Research:Solid Earth, 103(B11): 27447-27464
Keszthelyi L, McEwen AS and Taylor GJ. 1999. Revisiting the hypothesis of a mushy global magma ocean in Io. Icarus, 141(2): 415-419
Keszthelyi L, McEwen AS, Phillips CB, Milazzo M, Geissler P, Turtle EP, Radebaugh J, Williams DA, Simonelli DP, Breneman HH, Klaasen KP, Levanas G and Denk T. 2001. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. Journal of Geophysical Research:Planets, 106(E12): 33025-33052
Keszthelyi L, Jaeger WL, Turtle EP, Milazzo M and Radebaugh J. 2004. A post-Galileo view of Io's interior. Icarus, 169(1): 271-286
Keszthelyi L, Self S and Thordarson T. 2006. Flood lavas on Earth, Io and Mars. Journal of the Geological Society, 163(2): 253-264
Keszthelyi L, Jaeger W, Milazzo M, Radebaugh J, Davies AG and Mitchell KL. 2007. New estimates for Io eruption temperatures:Implications for the interior. Icarus, 192(2): 491-502
Khurana KK, Jia XZ, Kivelson MG, Nimmo F, Schubert G and Russell CT. 2011. Evidence of a global magma ocean in Io's interior. Science, 332(6034): 1186-1189
Kirchoff MR and McKinnon WB. 2009. Formation of mountains on Io:Variable volcanism and thermal stresses. Icarus, 201(2): 598-614
Kirchoff MR, McKinnon WB and Schenk PM. 2011. Global distribution of volcanic centers and mountains on Io:Control by asthenospheric heating and implications for mountain formation. Earth and Planetary Science Letters, 301(1-2): 22-30
Kirchoff MR, McKinnon WB and Bland MT. 2020. Effects of faulting on crustal stresses during mountain formation on Io. Icarus, 335: 113326
Kivelson MG, Bagenal F, Kurth WS, Neubauer FM, Paranicas C and Saur J. 2004. Magnetospheric interactions with satellites. In: Bagenal F, Dowling T and McKinnon W (eds.). Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge, U.K.: Cambridge University Press, 513-536
Korenaga J. 2013. Initiation and evolution of plate tectonics on earth:Theories and observations. Annual Review of Earth and Planetary Sciences, 41: 117-151
Korenaga J. 2016. Can mantle convection be self-regulated?. Science Advances, 2(8): e1601168
Kuskov OL and Kronrod VA. 2001. L-and LL-chondritic models of the chemical composition of Io. Solar System Research, 35(3): 198-208 DOI:10.1023/A%3A1010474805263
Lee HS. 2010. Heat pipes. In: Lee HS (ed.). Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. New Jersey: John Wiley & Sons, 180-239
Leone G, Wilson L and Davies AG. 2011. The geothermal gradient of Io:Consequences for lithosphere structure and volcanic eruptive activity. Icarus, 211(1): 623-635
Lewis JS. 1982. Io:Geochemistry of sulfur. Icarus, 50(1): 103-114
Li SZ, Dai LM, Zhang Z, Guo LL, Zhao SJ, Zhao GC and Zhang GW. 2015. Precambrian geodynamics (Ⅳ):Pre-plate regime. Earth Science Frontiers, 22(6): 46-64 (in Chinese with English abstract)
Lopes RMC, Kamp LW, Smythe WD, Mouginis-Mark P, Kargel J, Radebaugh J, Turtle EP, Perry J, Williams DA and Carlson RW. 2004. Lava lakes on Io:Observations of Io's volcanic activity from galileo nims during the 2001 fly-bys. Icarus, 169(1): 140-174
Lopes RMC and Spencer JR. 2007. Io after Galileo:A New View of Jupiter's Volcanic Moon.Berlin. Heidelberg: Springer, 132-161
Lourenco DL, Rozel AB, Gerya T and Tackley PJ. 2018. Efficient cooling of rocky planets by intrusive magmatism. Nature Geoscience, 11(5): 322-327
Lunine JI and Stevenson DJ. 1985. Physics and chemistry of sulfur lakes on Io. Icarus, 64(3): 345-367
Marchi S, Chapman CR, Fassett CI, Head JW, Bottke WF and Strom RG. 2013. Global resurfacing of Mercury 4.0~4.1 billion years ago by heavy bombardment and volcanism. Nature, 499(7456): 59-61
Marchis F, Le Mignant D, Chaffee FH, Davies AG, Kwok SH, Prangé R, De Pater I, Amico P, Campbell R, Fusco T, Goodrich RW and Conrad A. 2005. Keck AO survey of Io global volcanic activity between 2 and 5 μm. Icarus, 176(1): 96-122
Matson DL, Ransford GA and Johnson TV. 1981. Heat flow from Io (JI). Journal of Geophysical Research, 86(B3): 1664-1672
McEwen AS and Soderblom LA. 1983. Two classes of volcanic plumes on Io. Icarus, 55(2): 191-217
McEwen AS, Simonelli DP, Senske DR, Klaasen KP, Keszthelyi L, Johnson TV, Geissler PE, Carr MH and Belton MJS. 1997. High-temperature hot spots on Io as seen by the Galileo Solid State Imaging (SSI) Experiment. Geophysical Research Letters, 24(20): 2443-2446
McEwen AS, Keszthelyi L, Spencer JR, Schubert G, Matson DL, Lopes-Gautier R, Klassen KP, Johnson TV, Head JW, Geissler P, Fagents S, Davies AG, Carr MH, Breneman HH and Belton MJS. 1998. High-temperature silicate volcanism on Jupiter's moon Io. Science, 281(5373): 87-90
McEwen AS. 2002. Active volcanism on Io. Science, 297(5590): 2220-2221
McEwen AS, Keszthelyi LP, Lopes R, Schenk PM and Spencer JR. 2004. The lithosphere and surface of Io. In: Bagenal F, Dowling T and McKinnon W (eds.). Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge, U.K.: Cambridge University Press, 307-328
McKinnon WB. 2007. Formation and early evolution of Io. In: Lopes RMC and Spencer JR (eds.). Io after Galileo: A New View of Jupiter's Volcanic Moon. Berlin, Heidelberg: Springer, 61-88
McSween HY Jr, Raymond CA, Stolper EM, Mittlefehldt DW, Baker MB, Lunning NG, Beck AW and Hahn TM. 2019. Differentiation and magmatic history of Vesta:Constraints from HED meteorites and Dawn spacecraft data. Geochemistry, 79(4): 125526
Melosh HJ. 2011a. Strength versus gravity. In: Planetary Surface Processes. New York: Cambridge University Press, 49-103
Melosh HJ. 2011b. Volcanism. In: Planetary Surface Processes. New York: Cambridge University Press, 169-221
Menneken M, Nemchin AA, Geisler T, Pidgeon RT and Wilde SA. 2007. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature, 448(7156): 917-920
Michaut C and Pinel V. 2018. Magma ascent and eruption triggered by cratering on the Moon. Geophysical Research Letters, 45(13): 6408-6416
Mojzsis SJ, Harrison TM and Pidgeon RT. 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4, 300Myr ago. Nature, 409(6817): 178-181
Moore WB. 2001. The thermal state of Io. Icarus, 154(2): 548-550
Moore WB, Schubert G, Anderson JD and Spencer JR. 2007. The interior of Io. In: Lopes RMC and Spencer JR (eds.). Io after Galileo: A New View of Jupiter's Volcanic Moon. Berlin, Heidelberg: Springer, 89-108
Moore WB and Webb AAG. 2013. Heat-pipe Earth. Nature, 501(7468): 501-505
Moore WB, Simon JI and Webb AAG. 2017. Heat-pipe planets. Earth and Planetary Science Letters, 474: 13-19
Morabito LA, Synnott SP, Kupferman PN and Collins SA. 1979. Discovery of currently active extraterrestrial volcanism. Science, 204(4396): 972
Moresi L. 2013. A resolution of the Archaean paradox. Nature, 501(7468): 496-497
Morrison D and Cruikshank DP. 1973. Thermal properties of the Galilean satellites. Icarus, 18(2): 224-236
Multhaup K. 2009. Thermal evolution of Mercury:Effects of volcanic heat-piping. Geophysical Research Letters, 36(18)
Nemchin AA, Whitehouse MJ, Menneken M, Geisler T, Pidgeon RT and Wilde SA. 2008. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature, 454(7200): 92-95
Nimmo F and McKenzie D. 1998. Volcanism and tectonics on Venus. Annual Review of Earth and Planetary Sciences, 26: 23-51
Nimmo F. 2002. Why does Venus lack a magnetic field?. Geology, 30(11): 987-990
O'Neill C and Zhang S. 2019. Modeling early Earth tectonics: The case for stagnant lid behaviour. In: Van Kranendonk MJ, Bennett VC and Hoffmann JE (eds.). Earth's Oldest Rocks. 2nd Edition. Amsterdam, Netherlands: Elsevier, 65-80
O'Reilly TC and Davies GF. 1981. Magma transport of heat on Io:A mechanism allowing a thick lithosphere. Geophysical Research Letters, 8(4): 313-316
O'Rourke JG. 2020. Venus:A thick basal magma ocean may exist today. Geophysical Research Letters, 47(4): e2019GL086126
Peale SJ, Cassen P and Reynolds RT. 1979. Melting of Io by tidal dissipation. Science, 203(4383): 892-894
Radebaugh J, Keszthelyi LP, McEwen AS, Turtle EP, Jaeger W and Milazzo M. 2001. Paterae on Io:A new type of volcanic caldera?. Journal of Geophysical Research:Planets, 106(E12): 33005-33020
Rathbun JA, Spencer JR, Tamppari LK, Martin TZ, Barnard L and Travis LD. 2004. Mapping of Io's thermal radiation by the Galileo Photopolarimeter-Radiometer (PPR) instrument. Icarus, 169(1): 127-139
Ross MN and Schubert G. 1985. Tidally forced viscous heating in a partially molten Io. Icarus, 64(3): 391-400
Rozel AB, Golabek GJ, Jain C, Tackley PJ and Gerya T. 2017. Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 545(7654): 332-335
Ryder G. 2002. Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. Journal of Geophysical Research:Planets, 107(E4): 6-1
Schenk P, Hargitai H, Wilson R, McEwen A and Thomas P. 2001. The mountains of Io:Global and geological perspectives from Voyager and Galileo. Journal of Geophysical Research:Planets, 106(E12): 33201-33222
Schenk PM and Bulmer MH. 1998. Origin of mountains on Io by thrust faulting and large-scale mass movements. Science, 279(5356): 1514-1517
Segatz M, Spohn T, Ross MN and Schubert G. 1988. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2): 187-206
Siegler MA and Smrekar SE. 2014. Lunar heat flow:Regional prospective of the Apollo landing sites. Journal of Geophysical Research:Planets, 119(1): 47-63
Spencer DC, Katz RF, Hewitt IJ, May DA and Keszthelyi LP. 2020. Compositional layering in Io driven by magmatic segregation and volcanism. Journal of Geophysical Research:Planets, 125(9): e2020JE006604
Spencer JR, Rathbun JA, Travis LD, Tamppari LK, Barnard L, Martin TZ and McEwen AS. 2000a. Io's thermal emission from the Galileo Photopolarimeter-Radiometer. Science, 288(5469): 1198-1201
Spencer JR, Jessup KL, McGrath MA, Ballester GE and Yelle R. 2000b. Discovery of gaseous S2 in Io's Pele Plume. Science, 288(5469): 1208-1210
Spencer JR, Stern SA, Cheng AF, Weaver HA, Reuter DC, Retherford K, Lunsford A, Moore JM, Abramov O, Lopes RMC, Perry JE, Kamp L, Showalter M, Jessup KL, Marchis F, Schenk PM and Dumas C. 2007. Io volcanism seen by New Horizons:A major eruption of the Tvashtar Volcano. Science, 318(5848): 240-243
Stern RJ, Gerya T and Tackley PJ. 2018. Stagnant lid tectonics:Perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(1): 103-119
Stevenson DJ. 2008. A planetary perspective on the deep Earth. Nature, 451(7176): 261-265
Strom RG, Terrile RJ, Masursky H and Hansen C. 1979. Volcanic eruption plumes on Io. Nature, 280(5725): 733-736
Strom RG, Schneider NM, Terrile RJ, Cook AF and Hansen C. 1981. Volcanic eruptions on Io. Journal of Geophysical Research:Space Physics, 86(A10): 8593-8620
Stüwe K. 2007. Energetics: Heat and temperature. In: Stüwe K (ed.). Geodynamics of the Lithosphere. Heidelberg: Springer, 51-137
Tackley PJ. 2001. Convection in Io's asthenosphere:Redistribution of nonuniform tidal heating by mean flows. Journal of Geophysical Research:Planets, 106(E12): 32971-32981
Tackley PJ, Schubert G, Glatzmaier GA, Schenk P, Ratcliff JT and Matas JP. 2001. Three-dimensional simulations of mantle convection in Io. Icarus, 149(1): 79-93
Terada K, Anand M, Sokol AK, Bischoff A and Sano Y. 2007. Cryptomare magmatism 4.35Gyr ago recorded in lunar meteorite Kalahari 009. Nature, 450(7171): 849-852
Turcotte DL. 1989. A heat pipe mechanism for volcanism and tectonics on Venus. Journal of Geophysical Research:Solid Earth, 94(B3): 2779-2785
Turcotte DL and Schubert G. 2014. Fluid mechanics. In: Geodynamics. New York: Cambridge University Press, 263-335
Turtle EP, Jaeger WL, Keszthelyi LP, McEwen AS, Milazzo M, Moore J, Phillips CB, Radebaugh J, Simonelli D, Chuang F and Schuster P. 2001. Mountains on Io:High-resolution Galileo observations, initial interpretations, and formation models. Journal of Geophysical Research:Planets, 106(E12): 33175-33199
Turtle EP, Jaeger WL and Schenk PM. 2007. Ionian mountains and tectonics: Insights into what lies beneath Io's lofty peaks. In: Lopes RMC and Spencer JR (eds.). Io after Galileo: A New View of Jupiter's Volcanic Moon. Berlin, Heidelberg: Springer, 109-131
Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE and Spicuzza MJ. 2014. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7(3): 219-223
Van Hoolst T, Baland RM, Trinh A, Yseboodt M and Nimmo F. 2020. The Librations, Tides, and Interior Structure of Io. Journal of Geophysical Research:Planets, 125(8): e2020JE006473
Van Hunen J and Van Den Berg AP. 2008. Plate tectonics on the early Earth:Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103(1-2): 217-235
Van Hunen J and Moyen JF. 2012. Archean subduction:Fact or fiction?. Annual Review of Earth and Planetary Sciences, 40: 195-219
Veeder GJ, Matson DL, Johnson TV, Blaney DL and Goguen JD. 1994. Io's heat flow from infrared radiometry:1983-1993. Journal of Geophysical Research:Planets, 99(E8): 17095-17162
Veeder GJ, Davies AG, Matson DL, Johnson TV, Williams DA and Radebaugh J. 2012. Io:Volcanic thermal sources and global heat flow. Icarus, 219(2): 701-722
Veeder GJ, Davies AG, Matson DL, Johnson TV, Williams DA and Radebaugh J. 2015. Io:Heat flow from small volcanic features. Icarus, 245: 379-410
Wan YS, Dong CY, Ren P, Bai WQ, Xie HQ, Liu SJ, Xie SW and Liu DY. 2017. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton:A synthesis. Acta Petrologica Sinica, 33(5): 1405-1419 (in Chinese with English abstract)
Wang Q and Wilde SA. 2018. New constraints on the Hadean to Proterozoic history of the Jack Hills belt, Western Australia. Gondwana Research, 55: 74-91
Watters TR, Robinson MS and Cook AC. 1998. Topography of lobate scarps on Mercury:New constraints on the planet's contraction. Geology, 26(11): 991-994
Watters TR, Solomon SC, Robinson MS, Head JW, André SL, Hauck SA, Ii and Murchie SL. 2009. The tectonics of Mercury:The view after MESSENGER'S first flyby. Earth and Planetary Science Letters, 285(3-4): 283-296
Wieczorek MA, Zuber MT and Phillips RJ. 2001. The role of magma buoyancy on the eruption of lunar basalts. Earth and Planetary Science Letters, 185(1-2): 71-83
Wilde SA, Valley JW, Peck WH and Graham CM. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4Gyr ago. Nature, 409(6817): 175-178
Williams DA, Wilson AH and Greeley R. 2000. A komatiite analog to potential ultramafic materials on Io. Journal of Geophysical Research:Planets, 105(E1): 1671-1684
Williams DA and Howell RR. 2007. Active volcanism: Effusive eruptions. In: Lopes RMC and Spencer JR (eds.). Io after Galileo: A New View of Jupiter's Volcanic Moon. Berlin, Heidelberg: Springer, 132-161
Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE and Becker TL. 2011. Volcanism on Io:New insights from global geologic mapping. Icarus, 214(1): 91-112
Wilson L and Head JW. 2001. Lava fountains from the 1999 Tvashtar Catena fissure eruption on Io:Implications for dike emplacement mechanisms, eruption rates, and crustal structure. Journal of Geophysical Research:Planets, 106(E12): 32997-33004
Wilson L and Head JW. 2008. Volcanism on Mercury:A new model for the history of magma ascent and eruption. Geophysical Research Letters, 35(23): L23205
Wilson L. 2009. Volcanism in the solar system. Nature Geoscience, 2(6): 389-397
Wilson L and Keil K. 2012. Volcanic activity on differentiated asteroids:A review and analysis. Geochemistry, 72(4): 289-321
Witteborn FC, Bregman JD and Pollack JB. 1979. Io:An intense brightening near 5 micrometers. Science, 203(4381): 643-646
Zhai MG. 2019. Tectonic evolution of the North China Craton. Journal of Geomechanics, 25(5): 722-745 (in Chinese with English abstract)
Zhang Q and Zhai MG. 2012. What is the Archean TTG?. Acta Petrologica Sinica, 28(11): 3446-3456 (in Chinese with English abstract)
第五春荣, 孙勇, 董增产, 王洪亮, 陈丹玲, 陈亮, 张红. 2010. 北秦岭西段冥古宙锆石(4.1~3.9Ga)年代学新进展. 岩石学报, 26(4): 1171-1174.
李三忠, 戴黎明, 张臻, 郭玲莉, 赵淑娟, 赵国春, 张国伟. 2015. 前寒武纪地球动力学(Ⅳ):前板块体制. 地学前缘, 22(6): 46-64.
陶文铨. 2019. 传热学. 第5版.北京: 高等教育出版, 321-322.
万渝生, 董春艳, 任鹏, 白文倩, 颉颃强, 刘守偈, 谢士稳, 刘敦一. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述. 岩石学报, 33(5): 1405-1419.
翟明国. 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722-745.
张旗, 翟明国. 2012. 太古宙TTG岩石是什么含义?. 岩石学报, 28(11): 3446-3456.