岩石学报  2020, Vol. 36 Issue (12): 3813-3839, doi: 10.18654/1000-0569/2020.12.15   PDF    
斑岩钼-热液脉状铅锌银矿成矿系统特征、控制因素及勘查指示
金露英1,2,3, 秦克章2,3,4, 李光明2,3, 赵俊兴2,3, 李真真2,3,5     
1. 中国铜业有限公司, 北京 100082;
2. 中国科学院矿产资源研究重点实验室, 中国科学院地质与地球物理研究所, 北京 100029;
3. 中国科学院地球科学研究院, 北京 100029;
4. 中国科学院大学地球与行星科学学院, 北京 100049;
5. 防灾科技学院, 三河 065210
摘要: 斑岩钼矿与热液脉状铅锌银矿为两类重要的矿床类型,两者往往分别独立产出,但越来越来的勘查实例揭示二者也可共生产出,构成统一的成矿系统。斑岩钼-热液脉状铅锌银成矿系统,主要分布在北美西部、加拿大西南部、中国秦岭-大别地区、华北北缘及西拉沐伦带、大兴安岭北段-额尔古纳等地区。根据斑岩钼矿与热液脉状铅锌银矿的平面关系,成矿系统可分为近源和远源两类:近源时,两者直接叠置或者平面距离小于2km;而远源时,两类矿化平面距离一般不超过6km。成矿系统空间上表现可为上铅-锌-银、下钼的垂向叠置或者内钼、外铅-锌-银侧向共存的形式。时间上两类矿化一般近同期形成,或者相差通常不超过8Myr。成矿系统岩浆性质多为高演化的钙碱性花岗质岩浆,起源于下地壳且加入了不同比例的地幔物质。成矿系统的蚀变特征一般为斑岩钼矿化蚀变向热液脉状铅锌银矿蚀变的渐变,其中粘土化带与绢英岩化带是两类矿床的叠加区。钼矿化常与钾硅酸盐化或者绢英岩化带内侧密切相关,铅锌银矿化则常与浅部的低温硅化-绢云母-伊利石-水白云母化、碳酸盐化密切相关。基于S、Pb、Sr、Nd等同位素研究成果,钼铅锌银系统中成矿物质主要为岩浆来源,但可能有地层物质的加入。成矿流体主要以岩浆水来源为主,初始流体通常为单相中低密度流体,辉钼矿沉淀往往伴随着减压沸腾、大气水混合、冷却及/或水岩反应的进行,发生大规模钼矿化的温度区间通常在300~450℃。浅部脉状铅锌银矿化则由持续降温的流体在混入较多大气水或流体pH值中和而形成,温度区间在175~320℃。成矿系统空间上钼-铅-锌-银的分带,可能受控于流体演化过程中上述多个过程的综合叠加作用。通过总结对比钼铅锌银成矿系统、单一斑岩钼矿、单一热液脉状铅锌银矿床在勘查历史、构造因素、成矿岩体属性、流体特征、特征矿物、地球物理-地球化学勘查指标等方面的异同,本文提出了指示浅部热液脉状铅锌银矿之下同一成矿系统深部斑岩钼矿的找矿标志,且对该成矿系统形成的岩浆性质、岩浆-热液系统、成矿元素、构造条件、保存条件等多个方面进行了探讨。在前人基础上,本文提出本类成矿系统理论研究展望:1)利用微区原位技术分辨矿物的不同期次及元素的分布状态,进而获得该类型铅锌银矿相对准确的成矿年龄;2)确定斑岩钼-热液脉状铅锌银成矿系统的初始流体成矿元素和相关配位剂元素的含量;3)建立钼铅锌银成矿系统的矿物学指示标志;4)查明成矿系统岩浆过程、元素行为等精细成矿过程,研究其与其他成矿系统的差异。上述问题的深入研究和找矿标志的提出或将提高对斑岩钼-脉状铅锌银成矿系统成矿过程的认识,为该类系统勘查找矿工作提供理论支撑。
关键词: 斑岩钼矿    脉状铅锌银矿床    成矿物质来源    流体演化    成矿系统    控制因素    勘查指示    
Characteristics, controlling factors and exploration implications of porphyry molybdenum-hydrothermal vein-style lead-zinc-silver metallogenic systems
JIN LuYing1,2,3, QIN KeZhang2,3,4, LI GuangMing2,3, ZHAO JunXing2,3, LI ZhenZhen2,3,5     
1. China Copper Corporation Limited, Beijing 100082, China;
2. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
5. Institute of Disaster Prevention, Sanhe 065210, China
Abstract: Porphyry molybdenum-vein-style lead-zinc-silver mineralization systems are principally distributed in the western part of North America, Qinling-Dabie orogen in China, northern margin of North China Craton, Xilamulun metallogenic belt, and Eerguna district-northern Great Xing'an Range. Based on the alignment relationships between porphyry Mo deposits and vein-style Pb-Zn-Ag deposits, this study divides this kind of mineralization system into proximal and distal types: the proximal type presents those include both types of deposits overlapped or aligned in the distance less than 2km, and the distal type includes the alignment distance between two types of mineralization from 2km to 6km. In the cross-sections, vein-style mineralization can overlap in the upper part or distribute alongside porphyry-type mineralization. The deposit clusters were usually formed in the same period or may remain active for 8Myr or shorter. The ore-forming magma of the system is tied to highly-evolved calc-alkaline granitic magmatism, and mainly derived from lower crust with different contribution of mantle material. The alteration patterns in the system are featured as the gradual evolution from the porphyry Mo-type to vein-style alteration, and among them, the argillic and phyllic alteration zones represent the transitional, overlapped district. Molybdenite mineralization is characteristic of potassic or inner phyllic zones, and galena+sphalerite+silver-host minerals assemblages often occur in the sericite+illite alteration and low-temperature carbonate alteration in the shallow part. Based on the S, Pb, Sr and Nd isotopic compositions, magma is considered as the predominant source for ore-forming material of the system, and strata may also make some contributions. Hydrothermal fluids causing Mo mineralization are exsolved from magma and showing characteristics of single-phase intermediate-density. This fluid undergoes various processes to precipitation molybdenum, such as decompression, phase separation, cooling, mixing and interaction with host rocks. The temperature range of the major molybdenite precipitation varies from 450℃ to 300℃. This same liquid could also cause vein-style Pb-Zn-Ag mineralization in the shallow, peripheral parts of the system, caused by mixing with meteoric water in a great content or neutralization of the fluid acidity (pH value) between 175℃ and 320℃. Thus, this combination of a variety of hydrothermal controlling factors in the fluid evolution discussed above could account for the metal zonation in the porphyry Mo-vein-style Pb-Zn-Ag mineralization systems. This study also compiles a dataset of exploration histories, geological features, structural factors, characteristics of causative intrusions, fluid compositions, targeting appraisal for geophysical-geochemical exploration in Mo-Pb-Zn-Ag systems, porphyry Mo deposits, and vein-style Pb-Zn-Ag deposits, to propose the exploration indicators to target the hidden porphyry Mo deposits underlying the vein-style deposits in the shallow. This study also discusses some controlling factors for the system formation, including magma, magmatic-hydrothermal system, ore-forming material, tectonic and preserve conditions. Several key problems needed to be solved in the future research are as follows: (1) to acquire the high-precision geochronologic data of the mineralizing events in the vein-style Pb-Zn-Ag deposits, based on multiple-stage of alteration-mineralization minerals and the element distribution by in situ analytical technology; (2) the determination on the compositions of metal and volatile contents (F, Cl and S) in the primary fluids in the porphyry molybdenum-vein-style lead-zinc-silver mineralization systems; (3) the set-up of mineral indicators for exploration in this system; (4) to understand the mineralization processes such as magma evolution and element behaviors of the systems, and study their differences from other metallogenic systems (i.e. Mo only, Pb-Zn-Ag only deposits). The solving of these problems mentioned above and the advanced discussion of the proposed exploration indicators may help improve the understandings on the Mo-Pb-Zn-Ag mineralization process and provide supports for the exploration of the same mineralization systems.
Key words: Porphyry molybdenum deposit    Vein-style lead-zinc-silver deposit    Source of ore-forming materials    Fluid evolution    Mineralization systems    Controlling factors    Exploration implications    

纵观全球,浅成低温热液Au-Ag矿床、热液脉状Pb-Zn-Ag矿床与斑岩型Cu/Mo/Au矿床在空间上共同产出的现象比较普遍,例如保加利亚Southern Panagyurishte地区产出Cu-Au系统(Kouzmanov et al., 2009),俄罗斯远东Koni-P'yagin半岛产出Cu-Mo-Zn-Pb-Co-Au-Ag-Bi系统(Sidorov et al., 2006),秘鲁中部Morococha地区产出Cu-Mo-Pb-Zn-Ag成矿系统(Catchpole et al., 2011),中国秦岭-大别地区产出Mo-Pb-Zn-Ag系统(李厚民等,2008毛景文等,2009Mao et al., 2011aZhao et al., 2018),中国德兴产出Cu-Au-Pb-Zn系统(Mao et al., 2011b),中国额尔古纳南段(秦克章等,1990Qin et al., 1995)、东南沿海治岭头(Zeng et al., 2013Wang et al., 2020)、大兴安岭南段车户沟(Zeng et al., 2011)、大兴安岭北段岔路口(金露英等, 2014, 2015)产出(Au-Ag)-Pb-Zn-(Cu)Mo系统等。

这些成矿系统中,研究最深入的是主要位于环太平洋成矿域的斑岩-浅成低温Cu-Au系统,在成矿系统模型(Sinclair,2007; Sillitoe,2010)、时空关系(Arribas et al., 1995; Marsh et al., 1997Qin and Ishihara, 1998Muntean and Einaudi, 2001Masterman et al., 2005Waters et al., 2011)、蚀变-矿化过程(Rye,1993Hedenquist et al., 1998秦克章,1998Cooke et al., 2011Franchini et al., 2011)、流体演化(Pudack et al., 2009; Deyell and Hedenquist, 2011)、金属运移-沉淀机制(Heinrich, 2005; Williams-Jones and Heinrich, 2005Seo et al., 2012)、矿物及元素特征(Baumgartner et al., 2008Chang et al., 2011Deyell and Hedenquist, 2011李光明等,2015)、构造背景(Qin et al., 2002Cooke et al., 2005; Zhang et al., 2018Wang et al., 2019)等多方面均取得了重要进展。

斑岩钼矿与热液脉状铅锌银矿是两种十分重要的矿床类型。过去所见更多的是二者独立产出,即不少斑岩钼矿周边并没有热液脉状铅锌银矿相伴,一些热液脉状铅锌银矿也没有斑岩钼矿相伴。究其原因,一则热液脉状铅锌银矿床向下蚀变仍然为线状或带状,没有转变为面状蚀变,或未进行深部勘查;二则部分斑岩钼矿剥蚀已到一定程度,即使上部和边部曾经发育有热液脉状铅锌银系统,也已剥蚀殆尽。近十年来,随着找矿勘查工作的深入进行,越来越多脉状铅锌银矿床在深部发现了斑岩钼矿化,例如满洲里甲乌拉铅锌银矿、云南老厂铅锌矿深部探获斑岩铜钼矿化(李峰等,2009),大兴安岭北段岔路口矿床最初发现浅部脉状铅锌银矿化后,又在深部探获超大型斑岩钼矿(孟昭君等,2011);此外斑岩钼矿床的周边也发现较多脉状铅锌银矿床,例如浙江治岭头先后发现了浅部金银矿化、深部钼矿化及外围脉状铅锌银矿化(Wang et al., 2020)。实际勘查成果表明,浅部热液脉状铅锌银矿化与深部的斑岩钼矿化之间,常常互为指示,因而研究成矿系统的主要特征、分析两类矿化共生与分离控制因素、查明两者之间的成因联系,对于理解斑岩成矿系统成矿过程、丰富成矿理论、指导区域矿产勘查具有重要意义。

本文通过收集目前该成矿系统的研究成果与勘查进展,总结出该成矿系统的基本特征、时空分布、岩浆特征及起源、蚀变-矿化特征、成矿物质来源、流体演化、金属分带和典型成矿系统勘查过程,在此基础上,提出该成矿系统的勘查标志及形成的若干要素,分析当前研究工作面临的问题并作出展望。

1 斑岩钼-脉状铅锌银成矿系统分布

典型的斑岩钼-热液脉状铅锌银系统国外主要分布在北美西部,例如Colorado成矿带的Rico Mining地区(Larson,1987),以及加拿大西南部不列颠哥伦比亚的Kitsault矿床(Steininger,1985)、Max矿床等(Lawley et al., 2010)。在中国,斑岩钼(钨)-热液脉状铅锌银成矿系统分布非常广泛(图 1),主要集中在东部地区,包括秦岭-大别地区的南泥湖钨钼铅锌银矿田、付店钼铅锌银矿田和金寨钼铅锌银矿田等(李厚民等,2008毛景文等,2009Xu et al., 2011),该区的典型矿床包括南泥湖-三道庄、东沟(Li et al., 2017Jin et al., 2019)、沙坪沟(张红等,2011)、千鹅冲(李法岭,2011)等;华北北缘及西拉沐伦带也发育较多这类成矿系统,包括车户沟(Zeng et al., 2011)、劳家沟(曾庆栋等,2013)、大西沟(黄俊等,2012)、曹四夭(刘永慧等,2014范海洋等,2018)、牛圈(沈利霞等,2012)等,该斑岩钼-热液脉状铅锌银系统还包括大兴安岭北段的岔路口(孟昭君等,2011)、满洲里地区的甲乌拉;此外,东南沿海的治岭头(王永彬,2014赵超等,2014)、毛断(Li et al., 2012)、永定新村(韩胜康,2008);西藏的亚圭拉(高一鸣等,2011),湘南的黄沙坪(潘卓,2011Li et al., 2016)和滇西的老厂(黄钰涵等,2017)也可能属于这一类成矿系统。

图 1 中国斑岩钼矿-热液脉状铅锌银矿成矿系统分布 图中红色字体为钼铅锌银成矿系统 Fig. 1 The distributions of porphyry Mo-vein-sytle Pb-Zn-Ag mineralization systems in China Mo-Zn-Pb-Ag systems are labeled in red color
2 成矿系统基本特征

根据前人和本文的研究成果,斑岩钼-热液脉状铅锌银系统,通常与高分异高演化的钙碱性花岗质岩浆相关(见下文),成矿元素主要为钼(铜、钨)-铅-锌-银(金),斑岩钼矿化与脉状铅锌银矿化两类矿化通常其中一类达大型,另一类为中小型,矿床可能含有萤石、磁铁矿等特征矿物,蚀变具有浅部粘土化-过渡带绢英岩化-深部钾硅酸盐化的分带,矿化具有上部或者外缘铅锌银矿化、下部及中心斑岩钼矿化的分带特征,两类矿化具有叠置关系或相距较近(见表 1)。其中,岔路口、沙坪沟、治岭头、东沟、千鹅冲、甲乌拉六个典型钼铅锌系统的大地构造位置、金属资源储量、平均品位、地层、构造、岩体特征、蚀变组合、成矿时代、成矿流体特征、钼铅锌银矿化空间关系等内容概述于表 2中。

表 1 斑岩钼-热液脉状铅锌银系统基本特征 Table 1 Summarized features of porphyry Mo-vein-sytle Pb-Zn-Ag mineralization system

表 2 六个典型斑岩钼-热液脉状铅锌银成矿系统的地质特征 Table 2 Summarized geological characteristics of six selected porphyry Mo-vein-style Pb-Zn-Ag systems

除上述基本地质特征外,该系统的确立需符合三个判定条件:(1)斑岩型钼矿化与热液脉状铅锌银矿化具有时空要素的耦合特征,两类矿化的时空框架一致(Sillitoe, 1973)。(2)两类矿化之间有着相互关联的地质因素,可表现为具有辉钼矿-闪锌矿-方铅矿矿物组合(如加拿大Max和中国岔路口),也可以是构造断裂因素连接两种矿化类型等,例如脉状矿化与斑岩型矿化虽并不直接共生,但成矿热液沿着先存断裂就近沉淀形成脉状矿化(Redmond and Einaudi, 2010)。(3)成矿流体和成矿物质具有同源性和连续演化的特点,硫和铅同位素应指示岩浆成因(叶会寿等,2006b王莹等,2019),氢-氧同位素、流体的温度和盐度应出现连续演化的趋势(Lawley et al., 2010)。

3 各要素时空关系

根据斑岩钼矿化与热液脉状铅锌银矿化的平面关系,钼铅锌银系统可分为近源和远源两类分布关系。斑岩钼矿化与热液脉状铅锌银矿化近源分布时,两者直接叠置或者平面距离一般小于2km,典型矿床包括我国千鹅冲(图 2a李法岭,2011)、盖井(Xu et al., 2011)、毛断(Li et al., 2012)等,以及加拿大西南缘不列颠哥伦比亚的MAX矿床,与其周边的Lucky Boy和Copper Chief两个铅锌银矿床的距离小于2km (Lawley et al., 2010);两类矿化远源分布时,其平面距离一般为不超过6km,例如东秦岭付店地区,三元沟、列山、西灶沟、老仗代沟、王坪西沟等热液脉状铅锌银矿床距离东沟斑岩钼矿的平面距离均在2~6km之间(图 2b李厚民等,2008Mao et al., 2011a)。钼铅锌银系统垂向上表现可为垂向叠置或者侧向分布,通常浅部脉状铅锌银矿化与深部斑岩钼矿化之间的垂向距离大多为500m,一般不超过800m,典型矿床包括治岭头(图 2c)、岔路口(图 2d)、甲乌拉、大西沟、劳家沟、沙坪沟等。

图 2 典型斑岩钼-脉状铅锌银成矿系统平面和剖面简化示意图 (a)千鹅冲矿(近源实例,Li et al., 2017);(b)东秦岭东沟矿集区(远源实例,Ye et al., 2008);(c)浙江治岭头矿(垂向叠置实例,王永彬,2014);(d)大兴安岭岔路口(垂向叠置实例,金露英等,2015) Fig. 2 Simplified geological maps and cross-sections for the typical porphyry Mo-vein-style Pb-Zn-Ag systems (a) Qian'erchong deposit (proximal example, modified after Li et al., 2017); (b) Donggou ore district, eastern Qinling (distal example, modified after Ye et al., 2008); (c) Zhilingtou deposit (vertically overlapped example, modified after Wang, 2014); (d) Chalukou deposit (vertically overlapped example, modified after Jin et al., 2015)

成矿系统中两类矿化成矿时限关系,基于有限的数据可推测两者为同期形成,或者脉状铅锌银矿化相对略晚,但二者间隔通常最大不超过8Myr(表 3)。北美Rico区域的斑岩钼-热液脉状铅锌银系统,根据K-Ar年龄可知两类矿化近同期形成(Larson,1987)。加拿大MAX矿床辉钼矿的Re-Os年龄为80.3±0.2Ma,周边Lucky boy和Copper chief脉状铅锌银矿床中矿脉蚀变晕的白云母Ar-Ar年龄为72.2±0.5Ma,Lawley et al.(2010)认为这些周边的铅锌银矿化或者与80Ma的MAX斑岩钼矿化或者没有联系,或者是同一系统但K-Ar同位素体系在晚期的热液事件中被改变。我国秦岭-大别地区发育较为典型的斑岩钼-热液脉状铅锌银系统(毛景文等,2009Cao et al., 2015Zhao et al., 2018),例如南泥湖成矿系统,前人研究获得南泥湖斑岩钼矿的辉钼矿Re-Os年龄为139~146Ma(叶会寿等,2006b),周边冷水北沟、三道沟等脉状铅锌银矿床的绢云母Ar-Ar及闪锌矿Rb-Sr年龄,主要集中于137Ma。例如东沟钼矿化的辉钼矿Re-Os年龄为115~116Ma,周边同一成矿系统的三元沟、王坪西沟铅锌银矿床的绢云母Ar-Ar及闪锌矿Rb-Sr年龄为110~117Ma(Jin et al., 2019)。例如沙坪沟钼矿化的辉钼矿Re-Os年龄为111.1~113.6Ma,周边盖井铅锌钼矿化的辉钼矿Re-Os年龄为112.6~113.5Ma(Xu et al., 2011)。我国东南沿海治岭头矿床钼矿化的辉钼矿Re-Os年龄为113Ma,铅锌矿化的闪锌矿Ar-Ar年龄为113.9Ma(Wang et al., 2020)。受限于热液矿物Rb-Sr和Ar-Ar体系测得年龄能否准确反映铅锌银矿化形成时代的影响,例如后期热液时间导致同位素体系改变、同位素不均一、不封闭等因素干扰,成矿系统的精确热液时限尚需进一步深入。

表 3 斑岩钼-热液脉状铅锌银成矿系统成矿时代 Table 3 Ages of porphyry Mo-vein-style Pb-Zn-Ag systems
4 岩体特征及岩浆起源

斑岩钼矿化多与酸性的高演化花岗质岩浆或者中酸性的钙碱性岩浆(Mutschler et al., 1981Westra and Keith, 1981Carten et al., 1993)相关。综合岔路口、千鹅冲等九个钼铅锌银系统的成矿岩体特征可知,该成矿系统的成矿母岩也多为高演化的钙碱性花岗质岩石,这类岩石的地球化学性质总结于表 4中。其主量元素通常呈现高硅(SiO2>71.0%)、高碱(K2O+Na2O为7 %~9%)、高钾(K2O/ Na2O为1.1~4.0)、高分异(分异指数>90)的特征,岩石性质属于偏铝或过铝质(ACNK为1~1.5)的钙碱性(里特曼指数σ为1~3)系列。成矿岩体一般富集K、Rb等大离子亲石元素,亏损Nb、Ta、Hf等高场强元素,且常相对亏损Sr、Ba、P、Ti等元素。成矿岩体的REE总量通常在60×10-6~250×10-6,稀土配分模式为轻稀土富集重稀土亏损的右倾铲状或海鸥型(图 3a)并具有Eu异常(δEu=0.4~0.7)。

表 4 斑岩钼矿-热液脉状铅锌银矿系统成矿岩体地球化学特征 Table 4 Characteristics of the causative intrusions in the selected porphyry Mo-vein-style Pb-Zn-Ag mineralization systems

图 3 钼铅锌银成矿系统中成矿斑岩稀土元素配分图(a)和成矿元素Cu、Pb、Zn、Mo柱状图(b) 数据史长义等,2005姚军明等,2005包志伟等,2009戴宝章等,2009Lawley et al., 2010杨梅珍等,2010杨帆等,2012Li et al., 2014b Fig. 3 Chondrite-normalized REE patterns (a) and group bar diagrams of concerntrations of Cu, Pb, Zn, Mo (b) in the causative porphyries in the selected porphyry Mo-vein-style Pb-Zn-Ag system Data from Shi et al., 2005; Yao et al., 2005; Bao et al., 2009; Dai et al., 2009; Lawley et al., 2010; Yang et al., 2010, 2012; Li et al., 2014b

对于成矿系统中高硅岩体的源区特征研究,岩石的Pb-Sr-Nd-Hf同位素研究支持高氟、高品位斑岩钼矿(Climax型)的成矿岩浆大部分来源于古老下地壳部分熔融的假说,例如Climax、Henderson、Mount Emmons等(Stein and Hannah, 1985Stein and Crock, 1990)。但中亚造山带中,以岔路口为代表的斑岩钼-热液脉状铅锌银矿床,成矿岩体具有较低的初始87Sr/86Sr比值(0.705413~0.707889)、εNd(t)值(-1.28~+0.92)、正εHf(t)值(+2.4~+10.1)及年轻的两阶段Nd和Hf模式年龄,地球化学和同位素数据表明其成矿岩浆起源于新生下地壳部分熔融,具有较高比例的幔源物质参与(Li et al., 2014b)。而部分与俯冲相关的钙碱性成矿岩浆,其源区则可能与斑岩铜矿的岩浆源区类似,通过壳-幔过渡带的MASH过程提供(Richards,2003),例如沙坪沟、东沟、曹四夭、毛断等成矿系统的侵入体87Sr/86Sr比值为0.707268~0.7236,εNd(t)为-17.3~-11.17(图 4),被认为起源于古老大陆地壳且加入了地幔物质(Wu et al., 2017Ren et al., 2018aZhao et al., 2018)。

图 4 钼铅锌银成矿系统中成矿岩体的Sr-Nd同位素组成 岩体数据引自Li et al., 2014bWu et al., 2017He et al., 2016Ren et al., 2018aWang et al., 2014戴宝章等,2009Yang et al., 2013.中国东北上地壳数据来自Wu et al., 2003;下地壳数据来自Othman et al., 1984;华北克拉通南北缘斑岩钼矿数据引自Li et al., 2014b及其参考文献;中国秦岭太华群数据引自Zhao et al., 2018 Fig. 4 The Sr-Nd isotopic compositions of the ore-forming intrusions in the selected porphyry Mo-vein-style Pb-Zn-Ag system Data of pluton from Li et al., 2014b; Wu et al., 2017; He et al., 2016; Ren et al., 2018a; Wang et al., 2014; Dai et al., 2009; Yang et al., 2013. Upper crust of Northeastern China from Wu et al., 2003; lower continental crust from Othman et al., 1984; porphyry Mo deposits in the North China Craton from Li et al., 2014b and the references therein; Taihua Group in Qinling Orogen from Zhao et al., 2018

结合前述主微量元素特征及分异指数可知,这类高硅岩体具有高分异特征,例如具有较高的Rb和Nb含量,东沟成矿岩体Rb和Nb含量为400×10-6~600×10-6和70×10-6~80×10-6 (Yang et al., 2015);沙坪沟成矿岩体Rb为360×10-6~700×10-6,Nb为70×10-6~170 ×10-6 (Zhang et al., 2014)。结晶分异过程可促进不相容元素和挥发分元素富集(Candela,1997),Mo作为不相容元素在岩浆结晶分异过程中相对容易富集在残余熔体中,会使得高分异花岗质熔体具有较高钼含量。同时,这种高分异岩浆中富集的高含量挥发分对金属的富集和运移通常起到重要作用(Kouzmanov and Pokrovski, 2012),例如岔路口、沙坪沟等超大型矿床的形成即受益于高硅富碱富氟的岩浆成分和长期结晶分异的过程(Li et al., 2014bWang et al., 2014)。

钼铅锌银成矿系统的成矿岩体,与中国花岗岩中成矿元素的平均含量(史长义,2005)相比,Cu、Pb、Zn、Mo、W、Sn、Mn等虽有不同程度的富集,却并不太高(图 3b),这可能是由于这些活动性强的金属元素从岩浆中大量进入流体,致使残余熔体结晶形成的岩石仅显示一定程度的富集(Audétat,2010)。随着LA-ICP-MS微量元素分析在熔融包裹体中应用,Climax型斑岩钼矿中熔体包裹体的元素成分逐渐被揭示,斑岩钼矿中成矿熔体并无异常高的初始Mo元素含量,成矿过程往往与后期热液演化-金属沉淀等过程相关(Audétat and Li, 2017)。例如Cave Peak斑岩钼矿中熔融包裹体的Mo含量5×10-6~12 ×10-6(Audétat,2010)、Pine Grove斑岩钼矿中熔融包裹体Mo含量为2×10-6~4×10-6(Audétat et al., 2011)、Urad-Henderson斑岩钼矿中熔融包裹体Mo含量为10×10-6~20×10-6(Mercer et al., 2015),总体而言,大多数Climax型斑岩钼矿的成矿硅酸盐熔体为高氟(0.5%~4.0%)、高水(4%~9%)和低Mo含量(2×10-6~25×10-6)的高演化流纹质熔体(Audétat and Li, 2017),表明要形成具有经济意义的钼矿,深部需要有大量岩浆提供金属元素。但钼铅锌银成矿系统的岩浆中钼、铅、锌、银等成矿元素的实际含量,仍需进一步开展微区精细分析。

5 蚀变-矿化特征

前人对斑岩钼矿的蚀变矿化特征进行了一系列研究与总结(Sharp,1978Wallace et al.,1978Wallace,1995)。White et al.(1981)以美国Henderson矿床为例,结合其它的斑岩型钼矿,详细阐述了斑岩型钼矿床蚀变带的划分和特征,并认为斑岩型钼矿的主要蚀变带可与斑岩型铜矿相比较,即两者有相似的蚀变分带特征。赵俊兴等(2011)总结了世界上几个典型斑岩钼矿的蚀变特征,发现斑岩钼矿的蚀变分带基本上与其他斑岩型矿床相似:平面上呈现以岩体为中心的同心分带面状蚀变带,自内向外为钾硅酸盐化带(包括钾长石化和黑云母化)、绢英岩化带(石英-绢云母-黄铁矿化)、粘土化带(高岭土化和伊利石-水白云母化)、青磐岩化带(绿泥石-绿帘石-碳酸盐),但垂向上则具有其他特殊的蚀变带,如Henderson的磁铁矿化和黄玉化,东沟的萤石化。另外斑岩钼矿还存在根据其他特殊蚀变矿物来定名的蚀变带,如脉硅化带、弥散性硅化带、磁铁矿和黄玉带、磁铁矿-黄铁矿带等。值得强调的是,含氟矿物是斑岩钼矿蚀变中的特征矿物,对高氟型斑岩钼矿更是如此。

斑岩钼矿体一般在成矿岩体上部呈披覆状产出,常见多层矿体,矿体形态也可为倒钟形(如Climax)、开放锥形或圆柱形(Mt Emmons,Ranta et al., 1984)、穹窿形和拳形(Carten et al., 1988)。当成矿岩体为多期侵入,且每期岩体形成不同的矿体时,最终的矿体形态为各期矿化叠加形成(Seedorff and Einaudi, 2004)。斑岩钼矿的矿化类型主要包括网脉状矿化、纹层状石英-辉钼矿脉、石英-辉钼矿-硫化物(及其他脉石矿物)脉、辉钼矿细脉、浸染状矿化、矿化角砾岩脉或角砾岩型矿化(如Boss Mountain,Soregaroli,1975;Questa,Ishihara,1967;Ross et al., 2002;鱼池岭钼矿,周珂等,2009),多种矿化类型中以网脉状矿化和纹层状石英-辉钼矿脉最为常见。

前人对于热液脉状铅锌银矿的蚀变矿化研究并不深入,目前认为铅锌矿脉周边常发育的蚀变类型主要有硅化、绢云母化、伊利石-水白云母化、碳酸盐化、绿泥石化等(秦克章等,1990孙丰月和王力,2008)。热液脉状铅锌银矿的规模和产状常受成矿断裂形态控制,与主断裂面有一定倾角的次级断裂、破碎带及角砾岩一般为主要容矿空间,产出含矿脉、细脉及块状矿石。由于含矿断裂控制了矿化,矿体可沿着断裂走向追踪,矿体最长可达1.5~2km(如甲乌拉),垂向的矿化延伸则常有几百米甚至超1000m。此外,铅锌比值一般随深度变化,上部更富Pb,向下逐渐过渡至富集Zn,例如在俄罗斯北高加索地区的Sadon矿带,赋存在火山岩中的矿体,从矿化最顶部至1600m海拔标高,脉体中方铅矿占主导,Pb/Zn比值维持在3/1;在1400~1200m海拔标高,比值接近1/1;在900~700m海拔标高,Pb/Zn比值为1/(4~6)(Nekrasov,2007)。

较成型的斑岩钼矿-热液脉状铅锌银矿垂向共同产出的实例较少,根据岔路口、云南澜沧江老厂、湘南黄沙坪、千鹅冲剖面上的蚀变特征,可知成矿系统的蚀变特征通常为独立斑岩钼矿向热液脉状铅锌银矿的渐变,接触部位蚀变类型有叠加。自深向浅主要为钾硅酸盐化带、绢英岩化带、粘土化带、青磐岩化带,其中,粘土化带与绢英岩化带是两类矿床的叠加区。钼矿化常与钾化或者绢云母化带内侧密切相关(Seedorff et al., 2005赵俊兴等,2011),铅锌银矿化则常与浅部的绢云母-伊利石-水白云母化、碳酸盐化密切相关(秦克章等,1990孙丰月和王力,2008段士刚等,2011)。此外,根据Seedorff and Einaudi(2004)的研究,Henderson斑岩钼矿中发育其他钼矿中不常见的锰铝榴石带,该带覆盖粘土化带和绢英岩化带,其中该石榴石与一套方铅矿-闪锌矿-菱锰矿有关,是晚期热液事件的一部分。在这类两种矿化共存的系统中,常发育有典型钼铅锌银复合型脉体(金露英等,2014),如岔路口的该类脉体是先存的石英-辉钼矿脉被之后的含铅锌脉体充填,形成含闪锌矿(-方铅矿)-辉钼矿的复合叠加脉体(图 5),手标本容易辨认成同时沉淀的单一脉体。这类闪锌矿-辉钼矿脉脉宽5~30mm,规则,脉壁平直。脉体常具对称性,自脉壁向中心,依次为石英、辉钼矿、黄铁矿-闪锌矿-方铅矿±萤石。

图 5 岔路口斑岩钼-脉状铅锌银成矿系统中典型的钼铅锌复合型脉体 (a)石英+闪锌矿(-方铅矿)+辉钼矿脉穿切早期石英脉;(b)石英+绢云母化岩体中的石英+闪锌矿(-方铅矿)+辉钼矿脉;(c)伊利石+水白云母化火山岩中石英+闪锌矿(-方铅矿)+辉钼矿+萤石脉,可见辉钼矿在脉体边部发育,闪锌矿和萤石处在在脉体中央;(d)斑岩钼矿中典型纹层状石英+辉钼矿+黄铁矿+闪锌矿-方铅矿脉,闪锌矿和方铅矿在脉体中央呈团块状产出 Fig. 5 Typical composite Mo-Pb-Zn vein in the Chalukou porphyry Mo-vein-style Pb-Zn-Ag mineralization systems (a) quartz+sphalerite(-galena)+molybdenite vein cut early quartz vein; (b) quartz+sphalerite(-galena)+molybdenite vein in the quartz+sericite altered intrusions; (c) quartz+sphalerite(-galena)+molybdenite+fluorite vein in the illite altered volcanic rocks, among which molybdenite distributed in the vein edge and sphalerite and fluorite occur in the center; (d) typical ribbon-textured quartz+molybdenite+pyrite+sphalerite-galena vein with sphalerite-galena clustered in the center
6 成矿物质来源

斑岩型矿床研究中一个关键的问题是金属和硫的来源(Hedenquist and Lowenstern, 1994)。斑岩铜(±金,钼)矿的金属和硫来源主要为镁铁质岩浆已被大量研究所支持(Halter et al., 2002Stavast et al., 2006Stern et al., 2007)。而斑岩钼矿的金属和硫起源仍具有争议,一些研究者认为钼的来源由地壳主控(Candela and Piccoli, 2005Seedorff et al., 2005Sinclair,2007Klemm et al., 2008Song et al., 2019)。北美Colorado成矿带和秦岭钼成矿带中成矿岩体的Sr-Nd-Pb同位素证据都支持成矿岩浆源区为古老地壳物质(Johnson et al., 1990Stein and Crock, 1990Chen et al., 2000)。但过去也有部分研究成果支持钼主要来自幔源的镁铁质岩浆(Westra and Keith, 1981Keith et al., 1986Carten et al., 1993)。地幔起源的基性岩浆通过结晶分异作用可富集钼(Westra and Keith, 1981),如Audétat(2010)对北美Cave Peak斑岩钼(铌)矿的熔融包裹体成分分析表明,在大陆裂谷背景下产生的镁铁质碱性岩浆,经过结晶分异作用,成矿岩浆中Mo的含量从镁铁质端元的4×10-6增加到12×10-6,形成了富钼的成矿岩浆。此外,基于北美西南部多个超大型斑岩钼(铜)矿(Rocky Mountains中部及东部)的铅同位素数据,Pettke et al.(2010)提出这些矿床中的钼起源于受俯冲流体交代的古老岩石圈地幔。因此,基于目前的研究可知钼来源具有复杂性和多解性(Ishihara and Qing, 2014),需要更多的研究去进一步印证。

对于热液脉状铅锌银矿床,成矿物质的来源也存在支持岩浆来源或者地层来源的争论。部分学者支持岩浆来源,如Gökçe and Bozkaya(2006)对土耳其北部Inler Yaylasi铅锌矿的铅同位素研究得出其来源为造山带储库;Rice et al.(2007)对保加利亚Madjarovo的铅锌矿床运用硫同位素研究,认为成矿物质来源于火成岩和/或变质基底,但铅同位素数据更倾向于火成岩的源区;何鹏等(2018)对我国大兴安岭中南段扎木钦铅锌银矿的硫和铅同位素研究,认为成矿物质来自深源岩浆。还有部分学者重点强调地层或基底的作用,如Subías et al.(2010)对西班牙北东侧脉状铅锌(银)矿的同位素研究认为成矿物质主要来自于地层。而秦克章等(1990)则认为我国满洲里地区铅锌银主要来源于成矿母岩次火山岩,但围岩的作用也不可忽视。

斑岩钼-铅锌银成矿系统,硫、铅、锶、钕等多种同位素研究结果支持成矿物质主要起源于壳源岩浆(如南泥湖,叶会寿等,2006b;沙坪沟,张红等,2011;毛断,Li et al., 2012;曹四夭,Wang et al., 2017b),通常具有不同程度的地幔物质和地层物质的加入。硫同位素结果显示,成矿系统中斑岩钼矿化的δ34S值主要位于-6‰~9.7‰,铅锌银矿化的δ34S值范围更宽主要在-3.1‰~12.1‰(图 6),这些硫同位素范围虽大于岩浆硫范围(0‰±3‰,Ohmoto and Rye, 1979),但与普遍报道的东北、秦岭-大别、扬子河、华南地区的钼矿化硫同位素特征一致(-6‰~10.2‰,Zhao et al., 2018及其引文;Wang et al., 2020及其引文),且大部分位于I型花岗岩的硫同位素值范围(δ34S=1‰~9‰,Ishihara and Sasaki, 1989),硫同位素被认为总体继承了岩浆硫的特征但可能有其他物质的混染,例如东沟钼-王坪西沟铅锌矿较高的硫同位素与熊耳组地层硫同位素一致,表明了地层物质贡献了硫等部分成矿物质(Zhao et al., 2018Jin et al., 2019)。

图 6 钼铅锌银成矿系统中硫化物的S同位素组成 数据来自Li et al., 2012Liu et al., 2014Zhang et al., 2014金露英,2016Ni et al., 2015Wang et al., 2017a, 2017b, 2019Zhao et al., 2018及其引文;Jin et al., 2019 Fig. 6 The S isotopic compositions of sulfides in the porphyry Mo-vein-style Pb-Zn-Ag system Data from Li et al., 2012; Liu et al., 2014; Zhang et al., 2014; Jin, 2016; Ni et al., 2015; Wang et al., 2017a, 2017b, 2019; Zhao et al., 2018 and references therein; Jin et al., 2019

成矿系统的硫化物铅同位素分析结果可知,斑岩型钼矿化的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为15.962~18.574、15.200~15.779和35.918~39.431,脉状铅锌银矿化的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为17.214~17.954、15.414~15.606和37.712~39.012。铅同位素图解(图 7)上显示大部分值位于造山带与下地壳演化线之间,且硫化物具有低-中等的放射性成因Pb同位素值和中等μ值(9.0~9.54),低于上地壳μ值9.6,高于地幔μ值8~9(Zartman and Doe, 1981),表明Pb具有下地壳和地幔混合的特征。前已述及,成矿系统中已知的Sr-Nd同位素结果也支持成矿岩浆形成于地壳熔融且加入了幔源物质。

图 7 钼铅锌银成矿系统中硫化物Pb同位素组成(底图据Zartman and Doe, 1981) 数据来自Li et al., 2012, 2017Liu et al., 2014Ni et al., 2015Wang et al., 2017a, bWu et al., 2017Zhao et al., 2018及其引文;Jin et al., 2019 Fig. 7 The Pb isotopic compositions of sulfides in the porphyry Mo-vein-style Pb-Zn-Ag system (base map after Zartman and Doe, 1981) Data from Li et al., 2012, 2017; Liu et al., 2014; Ni et al., 2015; Wang et al., 2017a, b; Wu et al., 2017; Zhao et al., 2018 and the references therein; Jin et al., 2019
7 流体起源和演化

成矿流体的起源可用流体的氢-氧同位素进行追踪,斑岩钼矿化的流体主要为岩浆水,脉状铅锌银矿化的流体通常被认为是岩浆-热液成因(王祥东等,2014),但部分矿床存在岩浆-热液成因与变质热液成因的争议。例如部分学者认为东秦岭-大别铁炉坪(陈衍景等,2003Chen et al., 2004)、冷水北沟(祁进平等,2007)、沙沟(Han et al., 2014)、王坪西沟(姚军明等,2008)等脉状铅锌银矿床成矿热液起源于造山带变质热液,陈衍景(2006)对造山型银、铅锌矿床的特征和实例进行了系统总结;而另一部分学者则认为流体温度、成分及H-O同位素证据更为支持上述脉状矿为岩浆热液成因(Wang et al., 2013Zhao et al., 2018),且通过年代学、原位S、Pb及矿物微量元素研究,Jin et al.(2019)提出王坪西沟脉状铅锌矿与东沟斑岩钼矿属于同一钼铅锌成矿系统,为斑岩钼矿的远源矿化,表明王坪西沟矿床的岩浆-热液成因。虽然部分脉状铅锌银矿床的热液起源及其与斑岩钼矿的成因联系,尚需进一步通过多种方法进行多角度深入研究确定,但基于已知钼铅锌银成矿系统的H-O同位素结果(例如岔路口,东沟,沙坪沟,鱼池岭等)可知,与钼矿化相关的流体δDH2O值为-142‰~-52.79‰,δ18OH2O值为-4.2‰~8.5‰,同一系统中与铅锌银矿化相关的流体δDH2O值为-146.0‰~-54.5‰,δ18OH2O值为-13.9‰~13.9‰(图 8),氢氧同位素特征显示成矿流体主要为岩浆水来源,铅锌银矿化时具有不同程度的大气水加入,铅锌银矿化流体继承了岩浆水性质并呈现连续演化的特征。

图 8 钼铅锌银成矿系统中成矿流体的H-O同位素组成 数据来自Larson,1987Yang et al., 2013, 2015; Liu et al., 2014Zhang et al., 2014金露英,2016Ni et al., 2015Wang et al., 2017a, b王莹等,2019Zhao et al., 2018及其引文 Fig. 8 The H-O isotopic compositions of ore-forming fluids in the selected porphyry Mo-vein-style Pb-Zn-Ag systems Data from Larson, 1987; Yang et al., 2013, 2015; Liu et al., 2014; Zhang et al., 2014; Jin, 2016; Ni et al., 2015; Wang et al., 2017a, b, 2019;Zhao et al., 2018 and the references therein

成矿流体从岩浆中出溶的地质证据包括单相固结结构(Shannon et al., 1982Lowenstern and Sinclair, 1996)、显微联通晶洞构造(Candela,1997Harris et al., 2004Audétat et al., 2008)等,例如典型的钼铅锌银成矿系统北美MAX矿床中,成矿岩体产出单相固结结构(Lawley et al., 2010),我国东北岔路口钼铅锌银矿床的成矿岩体中产出单相固结结构、显微联通晶洞构造等多种记录流体出溶的结构(李真真,2014)。Lowenstern and Sinclair(1996)指出相比于无矿岩体,成矿岩体往往经历较大程度的岩浆、流体分异和出溶作用。同时该成矿岩体往往作为提供巨量金属和流体的深部岩浆房的重要通道(Sillitoe,1973),一旦通道形成,大量成矿元素将从岩浆分配至流体中(Huber et al., 2012),例如超大型沙坪沟矿床很可能形成于流体出溶后岩浆通道中的成矿元素和挥发分的高效对流(Wang et al., 2014)。学者们对岩浆热液流体的出溶过程进行细致研究并提出许多模型,包括气泡由重力作用从静态熔体中上升、流体通过多孔气泡连接的岩浆对流(Lowenstern,1994)、矿床下部导管内岩浆自身的对流(Shinohara et al., 1995)等。除少数报道斑岩系统中初始流体可能是高盐度流体(>50.0%NaCleqv,Li et al., 2011),通常认为斑岩系统初始流体为单相中低盐度(Klemm et al., 2007, 2008Pudack et al., 2009Allan et al., 2011),而后期普遍发育的含石盐子晶包裹体和富气相包裹体则是由该初始流体发生沸腾或不混溶形成的(Rusk et al., 2008)。

热液脉体可记录成矿流体演化过程中温度、盐度、成分等信息的变化。斑岩型矿床中,热液脉体通常可分为早期含磁铁矿的M脉(Arancibia and Clark, 1996Ulrich and Heinrich, 2002)、弯曲的A脉(Gustafson and Hunt, 1975)、EB(黑云母)脉(Gustafson and Quiroga, 1995),主成矿期的B脉和D脉(Gustafson and Hunt, 1975),以及成矿晚期的G脉(李光明等,2007)、石英-绿泥石脉(Sillitoe,2010)等。

目前钼铅锌银成矿系统各阶段的流体温度、盐度特征具有较多报道(沙坪沟,Ni et al., 2015;东沟,Yang et al., 2015;千鹅冲,Yang et al., 2013;鱼池岭,Zhang et al., 2014;岔路口,Liu et al., 2014Li et al., 2019;治岭头,Wang et al., 2017a;曹四夭,Wang et al., 2017b),但整个系统的演化过程、初始流体特征及成矿元素含量等方面精细研究仍较为薄弱。对早期A脉的研究表明,单一斑岩钼矿床的初始流体通常为单相中低密度流体,例如Questa斑岩钼矿的最早期流体为单相含CO2的低盐度流体(~7% NaCleqv,Klemm et al., 2008),单相流体可能具有~100×10-6的金属钼含量(Audétat and Li, 2017)。钼铅锌银系统的A脉也呈现高温单相中低密度流体特征(例如岔路口,金露英,2016Li et al., 2019)。伴随着减压沸腾作用、大气水加入、流体冷却以及水岩反应的进行,成矿流体常形成大规模的钾硅酸盐蚀变以及绢英岩化蚀变,并发生大规模的钼矿化,沉淀出含辉钼矿的B脉,其温度区间通常在300~450℃(杨永飞等,2009Lawley et al., 2010Li et al., 2019)。该流体持续降温,混入较多大气水后,则会形成粘土化蚀变以及外围的青磐岩化蚀变,并发生浅部的脉状铅锌银矿化,形成含闪锌矿-方铅矿的D脉或者宽几米至几十米的大脉,该阶段的流体呈现中低温中低盐度的特征,温度区间在175~320℃,盐度区间在0.6%~5.5%NaCleqv (Larson,1987Lawley et al., 2010Li et al., 2019王莹等,2019)。

8 金属沉淀和分带

携带大量成矿金属元素的流体自出溶后的演化过程则是理解沉淀机制的关键。岩浆热液流体在气液相的分离过程中,大部分的Zn、Pb、Mo、Ag等金属元素倾向于进入高盐度流体中(Ulrich et al., 2002Heinrich,2005Pokrovski et al., 2005Williams-Jones and Heinrich, 2005Simon et al., 2007Audétat et al., 2008Nagaseki and Hayashi, 2008Pudack et al., 2009),且成矿流体中这些成矿元素含量相近,甚至部分矿床的Zn、Pb、Ag含量比Mo含量更高,即矿床中的金属含量和比值已预先被输入的岩浆流体成分所确定。结合前人对单一斑岩型铜、钼矿床,单一脉状铅锌银矿床的研究成果可知,钼铅锌银系统的金属分带可能受控于成矿物质从热液流体中的依次沉淀(Audétat et al., 2000),其触发机制主要包括:(1)减压所致的流体不混溶(Rusk et al., 2008Landtwing et al., 2010Allan et al., 2011);(2)流体降温(Klemm et al., 2007);(3)流体混合(Cooke et al., 2011Song et al., 2019Li et al., 2019);和(4)水岩反应(Hemley and Hunt, 1992; Cooke and Simmons, 2000)等。(1)流体不混溶现象在斑岩矿床中常被观察到,部分学者认为该过程导致了钼沉淀(Li et al., 2012Ni et al., 2015),但也有部分学者认为流体不混溶无法导致整个系统的变化,因而不会触发金属沉淀,但可促进钼在卤水中的预富集(Audétat and Li, 2017)。因此,流体不混溶现象与金属沉淀的关系仍需进一步厘定。(2)流体冷却可以造成钼溶解度下降,驱动钼沉淀(Ulrich and Mavrogenes, 2008),Questa斑岩钼矿的研究结果支持这一观点,气液相分离后成矿流体温度从420℃降低到360℃,在不到100℃的温度区间内,沉淀了99%的金属钼(Klemm et al., 2008)。(3)大气水加入并与岩浆热液流体混合所导致的流体温度下降可能是控制岔路口矿床大量辉钼矿的集中沉淀的关键因素(Li et al., 2019)。(4)沙让斑岩钼矿利用H-O同位素模拟水岩反应过程,认为成矿流体与围岩的相互作用,可能控制着钼的沉淀(赵俊兴,2013)。此外,Bingham Canyon斑岩铜-钼-金矿床时空上铜和钼两种金属的分离,被认为受控于成矿流体性质的改变,早期铜阶段成矿流体较氧化且中性,而晚期钼阶段成矿流体则更还原且较酸性(Seo et al., 2012),磁铁矿等氧化性矿物的沉淀可导致成矿流体氧逸度的下降进而引发金属的沉淀(Sun et al., 2004, 2013Liang et al., 2009)。因此酸碱度和氧化还原态等物理化学条件的变化,可能也是控制钼沉淀的重要因素。

初始成矿流体中通常具有较高的氯浓度,此时Zn、Pb、Ag等元素以氯化物形式存在于热液流体中(Ruaya and Seward, 1986Mibe et al., 2009Tagirov and Seward, 2010)。流体温度的降低,可导致Zn-Cl等络合物稳定性降低而沉淀出金属元素。Kostova et al.(2004)通过测定单个流体包裹体中金属的浓度,证明保加利亚Madan的多金属脉状矿床的Pb和Zn,在一温度范围内随着冷却沉淀,金属含量剧烈降低。此外,大气水的混入稀释流体中氯的浓度,也都会导致金属的沉淀(Hemley and Hunt, 1992Seward and Barnes, 1997)。而水岩反应过程或者其他高pH值的溶体的混入,会导致流体pH值的增大,导致Zn在流体中的络合物以Zn-Cl为主转变为Zn(HS)20和Zn(HS)3-络合物为主(Kouzmanov and Pokrovski, 2012),由于Zn-Cl络合物的溶解度更高,络合物种类的转变也同样会致使金属大量沉淀。

Pb、Zn、Ag等金属元素能比Mo在更低的温度下保持溶解状态(Wood et al., 1987Hemley et al., 1992)。从Mo沉淀至Pb、Zn、Ag等元素沉淀,其温度区间具有连续降低的趋势,说明金属元素的分带,受控于流体降温过程。此外,前已述及,水岩反应过程及大气水混合作用对于Mo、Pb、Zn、Ag等元素的沉淀也具有控制作用,因此空间上Mo、Pb、Zn、Ag的分带,可能受控于流体演化过程中,各种地质作用的综合叠加效应。另外,由于岩浆热液流体可能并未包含足够的硫来沉淀所有金属元素(Audétat et al., 2000),硫的浓度和主要的亲铜元素(Cu,Fe)通常在同一数量级上(Seo et al., 2012),因此不同金属之间对于硫的竞争作用,可能对于元素分带也起了重要作用。

9 成矿系统的勘查指标

通过分析同一成矿系统内斑岩钼矿与脉状铅锌银矿的特征、关联性及勘查历史,本文重点分析该成矿系统勘查工作的指示依据,尤其是借助已查明的浅部脉状铅锌银矿,来寻找指示深部斑岩钼矿存在与否的勘查线索。以岔路口钼铅锌银矿勘查工作(孟昭君等,2011)为例,该矿床首先进行地球化学勘查发现Mo、Zn、Pb、Ag等元素异常,浓集中心明显且分带好,进一步实施地球物理测量,表明河东区激电中梯为低阻高极化异常、高精度磁法负磁异常,经探矿工程验证,槽探揭露出浅部脉状铅锌银矿体;向深部验证过程中,钻探揭露出规律性的斑岩型矿床蚀变分带特征且钼品位较高,通过调整勘查思路,成功探获深部超大型斑岩钼矿床。此外,其他典型钼铅锌银成矿系统例如沙坪沟(张怀东,2018)、千鹅冲(李法岭,2011)、东沟(王令全等,2014)、永定新村(韩胜康,2008)等矿床的勘查发现过程(表 5),也均包括化探研究揭示Mo、Pb、Zn、Ag等元素浓集和套合、物探资料研判、岩浆岩成矿专属性、斑岩成矿理论、指示性矿物、构造控矿机制等共性特点和步骤。

表 5 典型斑岩钼-脉状铅锌银成矿系统的主要勘查过程 Table 5 Summaries of exploration history of typical porphyry Mo-vein-style Pb-Zn-Ag systems

通过分析多个矿床实例的地球化学和地球物理勘查过程(表 5),构造、岩相特征(表 6),且结合前述该成矿系统的主要地质、地球化学特征及研究成果,本文总结出可能存在钼铅锌银成矿系统的若干地球化学-地球物理-地质特征指标(表 7)如下:(1)化探结果中Mo、Pb、Zn、Ag等元素浓度高且套合好;(2)物探资料判断深部存在岩体,且显示面状夹线状的激电异常;(3)存在一些浅部优势方位的构造带,例如次级断裂等,深部为面状应力均一体;(4)通常存在高分异的花岗质岩株、岩脉及相关的同期火山岩;(5)热液蚀变自浅向深具有向高温蚀变矿物变化的趋势;(6)可能存在萤石等指示矿物;(7)可能存在辉钼矿-闪锌矿复合脉体;(8)浅部硫化物具有高Mo含量、高Mo/Ag-Bi/Sb和Mo/Pb-Sn/Sb比值(金露英等,2015),辉钼矿微量元素中具有较高的Pb和Zn含量(Ren et al., 2018b)。

表 6 典型斑岩钼矿-脉状铅锌银成矿系统和仅有斑岩钼矿实例中同期岩浆活动和构造因素总结 Table 6 Summaries of syn-ore magmatism and tectonic activities in the selected porphyry Mo-vein-style Pb-Zn-Ag systems and Mo-only systems

表 7 典型斑岩钼矿、脉状铅锌银矿床和钼铅锌银成矿系统的若干地球化学-地球物理-地质指标 Table 7 Summaries of proposed geochemical, geophysical and geological indicators in the exploration of porphyry Mo deposits, vein-style Pb-Zn-Ag deposits and porphyry Mo-vein-style Pb-Zn-Ag systems

应用上述提出的指标,当实际勘查中已发现脉状铅锌银矿化,且经综合分析确定目标为寻找同一成矿系统的斑岩钼矿床时,本文建议可从以下方面进一步核查:(1)研究化探结果揭示的Mo与Pb、Zn、Ag、Sb等元素的套合和同心分布特征,分析元素浓度的变化方向;(2)研究物探结果揭示的深部异常体位置,判断岩体存在的实际位置;(3)检查矿床构造特征,即断裂构造和褶皱的构造几何学、运动学和动力学特征,查明控矿构造,研究铅锌银矿化与钼矿化因构造所可能导致的错动或剥蚀情况;(4)研究已揭示的蚀变类型及分带特征;(5)检查辉钼矿-闪锌矿-方铅矿复合脉体的存在情况;(6)分析浅部硫化物的微量元素特征。

10 成矿系统形成的若干因素

斑岩钼-热液脉状铅锌银成矿系统虽已引起越来越多的关注,但两类矿化的成因联系,两者的共生和分离要素研究尚处于起步阶段,综合前文已述的单一斑岩钼矿、单一脉状铅锌银矿、斑岩钼-热液脉状铅锌银系统的基本特征,本文对于成矿系统形成的促进因素和保存条件的若干要素初步提出以下考量。

(1) 高分异、高演化、高氟的花岗质岩浆。形成斑岩钼矿的岩浆多为过铝质中酸性-酸性的钙碱性岩浆或碱性岩浆(Westra and Keith, 1981Carten et al., 1993),与铅锌银矿化相关的岩浆性质多为中酸性的花岗质岩浆,与钼铅锌银成矿系统相关的则多为高硅高碱高钾高分异的钙碱性花岗质岩石。因此,演化程度较高的酸性花岗质岩浆可能与该系统更密切相关。同时,大部分钼铅锌银成矿系统的岩浆-流体具有高氟特征,例如普遍产出萤石及富氟云母等矿物、岩体具有较高氟含量等(例岔路口矿床,沙坪沟等)。氟元素可起源于与钼元素一致的源区,前人研究发现氟元素来源,包括裂谷作用有关的软流圈地幔(Partey et al., 2009),碱性岩浆或花岗质岩石的熔融(Van Alstine,1976Sallet et al., 2005Agangi et al., 2010),以及富氟矿物例如磷灰石、角闪石、金云母等矿物熔融(Van Alstine,1976McLemore et al., 1998)等。氟在岩浆结晶、流体出溶及元素运输过程中起到了重要作用。在岩浆结晶阶段,氟可以降低固相线温度和熔体的粘度/密度(Manning,1981Webster et al., 1987Wyllie and Tuttle, 1961)。在岩浆-热液过渡阶段,Chang and Meinert(2004)对Empire铜锌矽卡岩的研究发现,氟降低了熔体的固相线温度,进而改变了热液流体出溶的时间、温度及持续时长,高氟含量所致的低流体出溶温度,促进了近源锌矿化的形成。熔体中氟含量高,还可促进出溶流体中包含更多水和氯等这些利于金属运移的配位剂(Holtz et al., 1993Seward and Barnes, 1997Webster,1997Webster and Rebbert, 1998Wood and Samson, 1998)。因此,较高的氟含量对于钼铅锌银系统出溶流体的元素预富集、延长出溶时长、降低出溶温度,都可能起到积极的影响。

(2) 具有活跃的岩浆-热液系统。流体出溶过程中的大规模岩浆-热液系统,其成矿元素和挥发分元素高效对流有助于大规模矿化形成(例如沙坪沟,Wang et al., 2014),之后流体演化过程中流体大尺度迁移并萃取围岩中的成矿物质(毛景文等,2009),可能更有利于钼铅锌银成矿系统发育。

(3) 具有充足的成矿元素供给。斑岩型矿化的形成,通常需要大量的金属元素及成矿熔体(Hedenquist et al., 1998)。例如形成Questa矿床钼储量0.24Mt,至少需要60Gt或25km3的钼含量为4×10-6的熔体(Klemm et al., 2008);沙坪沟矿床钼资源量2.43Mt,至少需要500km3的岩浆贡献足量钼(Wang et al., 2014)。脉状铅锌银矿化的形成,也需从成矿岩浆中或者从围岩地层中萃取大量成矿元素(Rice et al., 2007Subías et al., 2010)。因此足够的岩浆补给量或高成矿元素的地层单元将提供足量的钼及铅锌银元素,是钼铅锌银成矿系统形成的先决条件。而对于硫含量,前人对流体中成矿元素含量的微区分析可知,流体中也常具有较高的铅锌含量且甚至高于钼元素含量,例如Questa钼矿流体中Mo含量为6×10-6~90×10-6,Zn含量为340×10-6~1900×10-6 (Klemm et al., 2008);Bingham铜钼金矿床流体中Cu含量为560×10-6~10000×10-6,Mo含量为7×10-6~470×10-6,Zn含量为2100×10-6~5500×10-6 (Seo et al., 2012)。然而,即使成矿流体中具有大量金属元素,受限于是否具有足量硫元素及不同金属之间对于硫的竞争作用,成矿流体中的金属元素并不能全部沉淀(Audétat et al., 2000Seo et al., 2012)。因此在具有足量钼铅锌银元素供给的情况下,金属沉淀阶段是否有足量的硫也是形成成矿系统的关键。

(4) 具有适宜的构造条件(包括同期火山机构发育或同期岩体侵位可能有利于成矿系统形成)。斑岩型矿床通常与区域性构造相关(Sinclair,2007),例如北美西部Rio Grandelie裂谷系统产出一系列斑岩钼矿床,脉状矿化的发育则常与断裂的发育密切相关。因此次级构造交汇及断裂构造更发育的部位,可提供容矿空间,更适宜成矿系统发育(秦克章等,1990秦克章,1998)。综合多个典型矿床钼铅锌银成矿系统特征可知,多数成矿系统发育同期火山机构或多期侵入体(表 6)。Sillitoe(1994)根据对斑岩铜矿-高硫型浅成低温金-银矿研究,认为同成矿期岩体侵位或火山热液系统减弱等导致的扇形坍塌,会令热液系统在1Ma的生命周期内古地表下降1km,引起大气水大量进入岩浆环境并造成流体压力下降,最终有助于形成斑岩型矿化与浅成低温金银或者贱金属矿化的套合。

(5) 较好的保存条件。矿床形成后可能会经受后期构造改造、错动、倾斜或者剥蚀破坏等,例如Ann-Mason斑岩铜矿受后期改造,矿床向西倾斜了约90°,令该矿床古深度1~6km的蚀变-矿化特征出露于近地表(Dilles and Einaudi, 1992),其他例如Robinson斑岩铜金矿等多个矿床形成后倾斜了至少约50°,影响古垂向深度超过3km(Seedorff et al., 2005),新疆包古图斑岩铜矿形成后曾经历了约8km的抬升剥蚀过程(Li et al., 2014a)。因此斑岩钼铅锌银成矿系统形成后,如受后期构造影响也可能导致斑岩钼或者铅锌银矿化倾斜、被剥蚀或错动,相对较小的构造改造才能令完整的成矿系统得以保存且识别。

11 存在问题及研究展望

(1) 为了确切地建立典型斑岩钼-热液脉状铅锌银系统,铅锌银矿化形成时限的精确厘定是非常重要的工作。目前对铅锌成矿年龄多用闪锌矿-黄铁矿Rb-Sr/Re-Os同位素(Li et al., 2015Liu et al., 2019Tang et al., 2019)、绢云母Ar-Ar同位素(范海洋等,2018)、萤石-方解石Sm-Nd同位素(Xu et al., 2015Walter et al., 2018)进行定年。其中,硫化物Rb-Sr等时线年龄准确与否,需要可靠的数据验证硫化物形成时是否同位素高度均一且在相对封闭系统中演化(Wan et al., 2009),而闪锌矿和黄铁矿Re-Os等时线年龄通常得到较为混乱的年龄结果,往往需要应用LA-ICP-MS面扫描技术等分辨测试矿物的Re-Mo的分布状态,进而评估硫化物Re-Os年龄是否准确(Hnatyshin et al., 2020)。特别是在脉状铅锌银矿床中,硫化物和脉石矿物经常显示多期环带结构,需要利用原位技术分辨矿物的不同期次及元素的分布状态,进而获得该类型铅锌银矿相对准确的成矿年龄。

(2) 目前虽有少量Climax型斑岩钼矿中流体组成被揭示(Audétat et al., 2008Klemm et al., 2008Audétat and Li, 2017),斑岩钼-热液脉状铅锌银成矿系统的初始流体成矿元素、硫含量和相关配位剂元素的含量尚未得到准确限定,其与单一斑岩钼矿化甚至其他斑岩矿床系统的初始流体在元素含量上有何差异尚未得知。在限定的钼铅锌银体系中,确定各阶段流体的元素含量组成(特别是钼铅锌复合脉体),将有助于揭示斑岩成矿系统钼铅锌银成矿效率和矿质沉淀的关键控制因素(Kouzmanov and Pokrovski, 2012)。

(3) 热液矿物的空间分布、结构和成分的研究能够揭示成矿流体的组成、来源、演化和矿质沉淀过程(Seedorff et al., 2005Wilson et al., 2007),并为实际勘查工作提供强有力的依据(例如辉钼矿,Ciobanu et al., 2013;明矾石,Chang et al., 2011;绿帘石,Cooke et al., 2014;绿泥石,Wilkinson et al., 2015)。而上述研究多数为斑岩铜金矿床和浅成低温热液矿床,典型斑岩钼-热液脉状铅锌银矿系统指示性矿物研究虽有尝试(例如岔路口硫化物,金露英等,2015;沙坪沟辉钼矿,Ren et al., 2018b),但仍需从脉石矿物和矿石矿物多个角度厘定钼铅锌银矿成矿系统的矿物学指示标志,以期对成矿系统的勘查指标建立提供依据。

(4) 由于钼铅锌银成矿系统近几年才被识别,尚未对典型实例进行全面深入剖析,研究还很薄弱。该系统的岩浆过程,地幔和围岩物质的参与程度及与成矿的关系;硫元素、氟、氯等配位剂元素在流体出溶-演化过程中的行为和影响作用;同期火山作用及构造作用的影响等多方面的精细成矿过程等需要更多的研究实例来支持。此外,该系统与单一斑岩钼矿、单一热液脉状铅锌银矿的差异及共生、分离因素也需进一步研究。

12 结语

斑岩钼-热液脉状铅锌银成矿系统研究的重要意义,在于深入研究斑岩钼矿床与热液脉状铅锌银矿床,乃至浅成低温银矿床的成因联系,厘清岩浆-流体演化过程、蚀变-矿化过程、金属共生及分离机制,有助于丰富钼铅锌银矿系统的成矿理论。我国东部存在大量斑岩钼矿床(矿化点)和脉状铅锌(银)矿床(矿化点),建立斑岩钼-脉状铅锌银矿化的成矿模式和找矿标志,将有助于推进钼铅锌银资源的勘查工作。本文总结了该成矿系统勘探过程中几个重要因素,包括指示性矿物与脉体组合、热液蚀变特征、岩浆岩属性、构造条件、物探-化探特征和浅部硫化物特征等。下一步将搜集更多相关矿床的资料进行对比分析和验证,结合典型成矿系统中指示性矿物的相关研究,检验这些找矿标志是否具有普适性和推广性,以期对浅部铅锌银矿之下深部斑岩钼矿的找矿工作,以及已知斑岩钼矿周边热液脉状铅锌银矿的找矿工作有所帮助。

致谢      成文过程得到了黑龙江有色地勘局706队孟昭君高工、中国科学院地质与地球物理研究所曹明坚研究员、中国科学院青藏高原研究所李金祥研究员的帮助、指导和启发,得到了三位审稿人的宝贵修改意见和建议,得到了期刊编辑的精心修改,使文章得以完善。在此一并致以诚挚的谢意!

参考文献
Agangi A, Kamenetsky VS and McPhie J. 2010. The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas:Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273(3-4): 314-325
Allan MM, Morrison GW and Yardley BWD. 2011. Physicochemical evolution of a porphyry-breccia system:A laser ablation ICP-MS study of fluid inclusions in the mount Leyshon Au deposit, Queensland, Australia. Economic Geology, 106(3): 413-436
Arancibia ON and Clark AH. 1996. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island copper porphyry copper-gold-molybdenum deposit, British Columbia. Economic Geology, 91(2): 402-438
Arribas Jr A, Hedenquist JW, Itaya T, Okada T, Concepción RA and Garcia Jr JS. 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300ka in northern Luzon, Philippines. Geology, 23(4): 337-340
Audétat A, Günther D and Heinrich CA. 2000. Causes for large-scale metal zonation around mineralized plutons:Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Economic Geology, 95(8): 1563-1581
Audétat A, Pettke T, Heinrich CA and Bodnar RJ. 2008. Special Paper:The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Economic Geology, 103(5): 877-908
Audétat A. 2010. Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at Cave Peak, Texas. Journal of Petrology, 51(8): 1739-1760
Audétat A, Dolejš D and Lowenstern JB. 2011. Molybdenite saturation in silicic magmas:Occurrence and petrological implications. Journal of Petrology, 52(5): 891-904
Audétat A and Li WT. 2017. The genesis of Climax-type porphyry Mo deposits:Insights from fluid inclusions and melt inclusions. Ore Geology Reviews, 88: 436-460
Bao ZW, Zeng QS, Zhao TP and Yuan ZL. 2009. Geochemistry and petrogenesis of the ore-related Nannihu and Shangfanggou granite porphyries from East Qinling Belt and their constraints on the molybdenum mineralization. Acta Petrologica Sinica, 25(10): 2523-2536 (in Chinese with English abstract)
Baumgartner R, Fontboté L and Vennemann T. 2008. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3): 493-537
Candela PA. 1997. A review of shallow, ore-related granites:Textures, volatiles, and ore metals. Journal of Petrology, 38(12): 1619-1633
Candela PA and Piccoli PM. 2005. Magmatic processes in the development of porphyry-type ore systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Economic Geology 100th Anniversary Volume, Society of Economic Geologists, 25-37
Cao HW, Zhang ST, Santosh M., Zheng L, Tang L, Li D, Zhang XH and Zhang YH. 2015. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China:Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. Journal of Asian Earth Sciences, 111: 751-780
Cao HW, Pei QM, Zhang ST, Xiang H, Zhang LK and Tang L. 2016. Geochemistry and Sm-Nd age of calcites from the Sandaogou Pb-Zn-Ag deposit in Luanchuan, western Henan Province. Geochimica, 45(2): 144-154 (in Chinese with English abstract)
Carten RB, Geraghty EP, Walker BM and Shannon JR. 1988. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado. Economic Geology, 83(2): 266-296
Carten RB, White W and Stein H. 1993. High-grade granite-related molybdenum systems:Classification and origin. Mineral Deposit Modeling:Geological Association of Canada Special Paper, 40: 521-554
Catchpole H, Kouzmanov K, Fontboté L, Guillong M and Heinrich CA. 2011. Fluid evolution in zoned Cordilleran polymetallic veins:Insights from microthermometry and LA-ICP-MS of fluid inclusions. Chemical Geology, 281(3-4): 293-304
Chang ZS and Meinert LD. 2004. The magmatic-hydrothermal transition-evidence from quartz phenocryst textures and endoskarn abundance in Cu-Zn skarns at the Empire Mine, Idaho, USA. Chemical Geology, 210(1-4): 149-171
Chang ZS, Hedenquist JW, White NC, Cooke DR, Roach M, Deyell CL, Garcia Jr J, Gemmell JB, McKnight S and Cuison AL. 2011. Exploration tools for linked porphyry and epithermal deposits:Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365-1398
Chen YJ, Li C, Zhang J, Li Z and Wang HH. 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (Series D), 43(1): 82-94
Chen YJ, Sui YH and Pirajno F. 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits:Isotope geochemistry of the Tieluping silver deposit, East Qinling orogen. Acta Petrologica Sinica, 19(3): 551-568 (in Chinese with English abstract)
Chen YJ, Pirajno F and Sui YH. 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China:A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita, 39(5-6): 560-575
Chen YJ. 2006. Orogenic-type deposits and their metallogenic model and exploration potential. Geology in China, 33(6): 1181-1196 (in Chinese with English abstract)
Cheng GH, Wang RL, Zeng QD, Guo YP, Duan XX, Wei JJ, Zhang JS and Gao XH. 2015. Zircon U-Pb ages, Hf isotopes of the granitoids and Re-Os ages of the molybdenites in Luming molybdenum ore area, Heilongjiang Province, and its geological significance. Acta Petrologica Sinica, 31(8): 2450-2464 (in Chinese with English abstract)
Ciobanu CL, Cook NJ, Kelson CR, Guerin R, Kalleske N and Danyushevsky LV. 2013. Trace element heterogeneity in molybdenite fingerprints stages of mineralization. Chemical Geology, 347: 175-189
Cooke DR and Simmons SF. 2000. Characteristics and genesis of epithermal gold deposits. In: Hagemann SG and Brown PE (eds.). Reviews in Economic Geology: Gold in 2000, Society of Economic Geologists, 221-244
Cooke DR, Hollings P and Walshe JL. 2005. Giant porphyry deposits:Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801-818
Cooke DR, Deyell CL, Waters PJ, Gonzales RI and Zaw K. 2011. Evidence for magmatic-hydrothermal fluids and ore-forming processes in epithermal and porphyry deposits of the Baguio district, Philippines. Economic Geology, 106(8): 1399-1424
Cooke DR, Baker M, Hollings P, Sweet G, Chang ZS, Danyushevsky L, Gilbert S, Zhou TF, White NC, Gemmell JB and Inglis S. 2014. New advances in detecting the distal geochemical footprints of porphyry systems: Epidote mineral chemistry as a tool for vectoring and fertility assessments. In: Kelley KD and Golden HC (eds.). Building Exploration Capability for the 21st Century. Boulder: Society of Economic Geologists, 127-152
Dai BZ, Jiang SY and Wang XL. 2009. Petrogenesis of the granitic porphyry related to the giant molybdenum deposit in Donggou, Henan Province, China:Constraints from petrogeochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 25(11): 2889-2901 (in Chinese with English abstract)
Deyell CL and Hedenquist JW. 2011. Trace element geochemistry of enargite in the Mankayan district, Philippines. Economic Geology, 106(8): 1465-1478
Dilles JH and Einaudi MT. 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada:A 6-km vertical reconstruction. Economic Geology, 87(8): 1963-2001
Duan SG, Xue CJ, Feng QW, Gao BY, Liu GY, Yan CH and Song YW. 2011. Geology, fluid inclusions and S, Pb isotopic geochemistry of the Chitudian Pb-Zn deposit in Luanchuan, Henan Province. Geology in China, 38(2): 427-441 (in Chinese with English abstract)
Fan HY, Li TG, Wu WH, Zhang MY, Huang F, Zhao Z, Zhang T, Xu LQ, Li XZ and Quan ZX. 2018. Chronology of giant Caosiyao porphyry Mo-Pb-Zn-Au ore-forming system and their geological significance in Xinghe County, Central Inner Mongolia. Mineral Deposits, 37(2): 355-370 (in Chinese with English abstract)
Fan LF. 2014. The geochemical formation mechanism of Shapinggou molybdenum deposit in Anhui Province. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-79 (in Chinese with English summary)
Franchini M, Impiccini A, Lentz D, Ríos FJ, O'Leary S, Pons J and Schalamuk AI. 2011. Porphyry to epithermal transition in the Agua Rica polymetallic deposit, Catamarca, Argentina:An integrated petrologic analysis of ore and alteration parageneses. Ore Geology Reviews, 41(1): 49-74
Gao Y. 2014. Geology, geochemisty and genesis of the Qian'echong and Tangjiaping porphyry Mo deposits, Dabie orogeny. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-171 (in Chinese with English summary)
Gao YM, Chen YC, Tang JX, Li C, Li XF, Gao M and Cai ZC. 2011. Re-Os dating of molybdenite from the Yaguila porphyry molybdenum deposit in Gongbo'gyamda area, Tibet, and its geological significance. Geological Bulletin of China, 30(7): 1027-1036 (in Chinese with English abstract)
Gökçe A and Bozkaya G. 2006. Lead and sulfur isotope evidence for the origin of the Inler Yaylası lead-zinc deposits, Northern Turkey. Journal of Asian Earth Sciences, 26(1): 91-97
Gustafson LB and Hunt JP. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5): 857-912
Gustafson LB and Quiroga GJ. 1995. Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Economic Geology, 90(1): 2-16
Halter WE, Pettke T and Heinrich CA. 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 296(5574): 1844-1846
Han JS, Yao JM, Chen HY, Deng XH and Ding JY. 2014. Fluid inclusion and stable isotope study of the Shagou Ag-Pb-Zn deposit, Luoning, Henan Province, China:Implications for the genesis of an orogenic lode Ag-Pb-Zn system. Ore Geology Reviews, 62: 199-210
Han SK. 2008. On the geologic characteristics and genesis of the Xincun molybdenum, led and zinc polymetallic deposit in Yongding County, Fujian Province. Geology of Fujian, 27(4): 352-360 (in Chinese with English abstract)
Harris AC, Kamenetsky VS, White NC and Steele DA. 2004. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology, 54(3): 341-356
He P, Guo S, Zhang TF, Su H and Fu QL. 2018. The sources of ore-forming materials and genesis of the Zhamuqin Pb-Zn-Ag polymetallic deposit in the middle-southern segment of Da Hinggan Mountains:Constraints from S, Pb isotope geochemistry. Acta Petrologica Sinica, 34(12): 3597-3610 (in Chinese with English abstract)
He T, Yang XY, Deng JH, Zhang H, Zha SX, Li CY and Zhang HD. 2016. Geochronology, geochemistry and Hf-Sr-Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit, East Qinling-Dabie orogenic belt. Solid Earth Sciences, 1(3): 101-117
Hedenquist JW and Lowenstern JB. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519-527
Hedenquist JW, Arribas A and Reynolds TJ. 1998. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373-404
Heinrich CA. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:A thermodynamic study. Mineralium Deposita, 39(8): 864-889
Hemley JJ and Hunt JP. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems:Ⅱ, Some general geologic applications. Economic Geology, 87(1): 23-43
Hemley JJ, Cygan GL, Fein JB, Robinson GR and d'Angelo WM. 1992. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems:I, Iron-copper-zinc-lead sulfide solubility relations. Economic Geology, 87(1): 1-22
Hnatyshin D, Creaser RA, Meffre S, Stern RA, Wilkinson JJ and Turner EC. 2020. Understanding the microscale spatial distribution and mineralogical residency of Re in pyrite:Examples from carbonate-hosted Zn-Pb ores and implications for pyrite Re-Os geochronology. Chemical Geology, 533: 119427
Holtz F, Dingwell DB and Behrens H. 1993. Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contributions to Mineralogy and Petrology, 113(4): 492-501
Huang J, Wu JF, Xia LY, Jin SH, Wang X and Hou KB. 2012. Discovery of the Mo mineralization and its prospecting significance in Liqingdi-Daxigou area, Inner Mongolia. Geological Survey and Research, 35(3): 184-188 (in Chinese with English abstract)
Huang YH, Deng J, Li GJ, Meng FQ, Mao FX and Zhang PF. 2017. Metallization process and metallogenic sources of concealed porphyry-skarn Mo deposit, Laochang, western Yunnan. Acta Petrologica Sinica, 33(7): 2099-2114 (in Chinese with English abstract)
Huber C, Bachmann O, Vigneresse JL, Dufek J and Parmigiani A. 2012. A physical model for metal extraction and transport in shallow magmatic systems. Geochemistry, Geophysics, Geosystems, 13(8): Q08003
Ishihara S. 1967. Molybdenum mineralization in Questa mine, New Mexico, USA. Japan Geological Survey Report, 218: 1-64
Ishihara S and Sasaki A. 1989. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the Sierra Nevada batholith:A reconnaissance study. Geology, 17(9): 788-791
Ishihara S and Qing KZ. 2014. Some pertinent features of Mo-mineralized granitoids in the circum-Pacific region. Resource Geology, 64(4): 367-378
Jin C, Chen WT, Gao XY, Li XC, Bao ZW and Zhao TP. 2019. Origin of the Wangpingxigou Pb-Zn deposit in East Qinling orogenic belt, China:Distal response to the Giant Donggou porphyry Mo system?. Ore Geology Reviews, 109: 101-116
Jin LY, Qin KZ, Meng ZJ, Li GM, Song GX, Li ZZ, Lv KP, Kan XS and Zhao C. 2014. Features and occurrences of veins in Chalukou giant molybdenum-zinc-lead deposit, northern Da Hinggan Mountains, and their indications for mineralization. Mineral Deposits, 33(4): 742-760 (in Chinese with English abstract)
Jin LY, Qin KZ, Li GM, Li ZZ, Song GX and Meng ZJ. 2015. Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system, northern Great Xing'an Range, China:Implications for metal source and ore exploration. Acta Petrologica Sinica, 31(8): 2417-2434 (in Chinese with English abstract)
Jin LY. 2016. Metallogenesis of Chalukou porphyry Mo-vein type Zn-Pb mineralization system in northern Great Xing'an Range. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-231 (in Chinese with English summary)
Johnson CM, Lipman PW and Czamanske GK. 1990. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere. Contributions to Mineralogy and Petrology, 104(1): 99-124
Keith JD, Shanks WC, Archibald DA and Farrar E. 1986. Volcanic and intrusive history of the Pine Grove porphyry molybdenum system, southwestern Utah. Economic Geology, 81(3): 553-577
Klemm LM, Pettke T, Heinrich CA and Campos E. 2007. Hydrothermal evolution of the El Teniente deposit, Chile:Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology, 102(6): 1021-1045
Klemm LM, Pettke T and Heinrich CA. 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533-552
Kostova B, Pettke T, Driesner T, Petrov P and Heinrich CA. 2004. LA ICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit, Madan ore field, Bulgaria. Swiss Bulletin of Mineralogy and Petrology, 84(1): 25-36
Kouzmanov K, Moritz R, Von Quadt A, Chiaradia M, Peytcheva I, Fontignie D, Ramboz C and Bogdanov K. 2009. Late Cretaceous porphyry Cu and epithermal Cu-Au association in the southern Panagyurishte District, Bulgaria:The paired Vlaykov Vruh and Elshitsa deposits. Mineralium Deposita, 44(6): 611-646
Kouzmanov K and Pokrovski GS. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Special Publication of the Society of Economic Geologists, 16: 573-618
Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M and Heinrich CA. 2010. The Bingham canyon porphyry Cu-Mo-Au Deposit:Ⅲ.Zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology, 105(1): 91-118
Larson PB. 1987. Stable isotope and fluid inclusion investigations of epithermal vein and porphyry molybdenum mineralization in the Rico mining district, Colorado. Economic Geology, 82(8): 2141-2157
Lawley CJM, Richards JP, Anderson RG, Creaser RA and Heaman LM. 2010. Geochronology and geochemistry of the MAX porphyry Mo deposit and its relationship to Pb-Zn-Ag mineralization, Kootenay Arc, southeastern British Columbia, Canada. Economic Geology, 105(6): 1113-1142
Li F, Lu WJ, Yang YZ, Chen H, Luo SL and Shi ZL. 2009. The rock-and ore-forming ages of the Laochang porphyry molybdenum deposit in Lancang, Yunnan. Geoscience, 23(6): 1049-1055 (in Chinese with English abstract)
Li FL. 2011. Geological characteristics and metallogenic epoch of Qianechong large-size porphyry Mo deposit at the northern foot of Dabie Mountains, Henan Province. Mineral Deposits, 30(3): 457-468 (in Chinese with English abstract)
Li GM, Li JX, Qin KZ, Zhang TP and Xiao B. 2007. High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt, Tibet:Evidence from fluid inclusions. Acta Petrologica Sinica, 23(5): 935-952 (in Chinese with English abstract)
Li GM, Cao MJ, Qin KZ, Evans NJ, McInnes BIA and Liu YS. 2014a. Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U-Pb, biotite Ar/Ar and zircon/apatite (U-Th)/He dating. Journal of Asian Earth Sciences, 79: 741-758
Li GM, Zhang XN, Qin KZ, Sun XG, Zhao JX, Yin XB, Li JX and Yuan HS. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terane, Central Tibet:Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307-2324 (in Chinese with English abstract)
Li HM, Chen YC, Ye HS, Wang DH, Guo BJ and Li YF. 2008. Mo, (W), Au, Ag, Pb, Zn minerogenetic series related to Mesozoic magmatic activities in the East Qinling-Dabie Mountains. Acta Geologica Sinica, 82(11): 1468-1477 (in Chinese with English abstract)
Li JX, Li GM, Qin KZ and Xiao B. 2011. High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, Northern Tibet. Geofluids, 11(2): 134-143
Li TG, Wu G, Liu J, Hu YQ, Zhang YF and Luo DF. 2014. Rb-Sr isochron age of the Jiawula Pb-Zn-Ag deposit in the Manzhouli area and its geological significance. Acta Petrologica Sinica, 30(1): 257-270 (in Chinese with English abstract)
Li TG, Wu G, Liu J, Hu YQ, Zhang YF, Luo DF and Mao ZH. 2015. Fluid inclusions and isotopic characteristics of the Jiawula Pb-Zn-Ag deposit, Inner Mongolia, China. Journal of Asian Earth Sciences, 103: 305-320
Li XF, Huang C, Wang CZ and Wang LF. 2016. Genesis of the Huangshaping W-Mo-Cu-Pb-Zn polymetallic deposit in southeastern Hunan Province, China:Constraints from fluid inclusions, trace elements, and isotopes. Ore Geology Reviews, 79: 1-25
Li YJ, Wei JH, Chen HY, Tan J, Fu LB and Wu G. 2012. Origin of the Maoduan Pb-Zn-Mo deposit, eastern Cathaysia Block, China:Geological, geochronological, geochemical, and Sr-Nd-Pb-S isotopic constraints. Mineralium Deposita, 47(7): 763-780
Li ZK. 2013. Metallogenesis of the silver-lead-zinc deposits along the southern margin of the North China Craton. Ph. D. Dissertation. Wuhan: China University of Geosciences, 1-197 (in Chinese with English summary)
Li ZK, Bi SJ, Li JW, Zhang W, Cooke DR and Selby D. 2017. Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China Craton. Ore Geology Reviews, 82: 232-251
Li ZZ. 2014. Fluorine-rich and highly oxidized magmatic-hydrothermal evolution and metallogenesis of Chalukou giant porphyry Mo deposit in northern Great Xing'an Range. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-197 (in Chinese with English summary)
Li ZZ, Qin KZ, Li GM, Ishihara S, Jin LY, Song GX and Meng ZJ. 2014b. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China:Partial melting of the juvenile lower crust in intra-plate extensional environment. Lithos, 202-203: 138-156
Li ZZ, Qin KZ, Li GM, Jin LY, Song GX and Han R. 2019. Incursion of meteoric water triggers molybdenite precipitation in porphyry Mo deposits:A case study of the Chalukou giant Mo deposit. Ore Geology Reviews, 109: 144-162
Liang HY, Sun W, Su WC and Zartman RE. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587-596
Liu J, Mao JW, Wu G, Wang F, Luo DF, Hu YQ and Li TG. 2014. Fluid inclusions and H-O-S-Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore Geology Reviews, 59: 83-96
Liu QN. 2013. Relationship between porphyry molybdenum deposit and magmatic rocks from Shapinggou in Jinzhai region, Anhui Province.Master Degree Thesis. Hefei:Hefei University of Technology: 1-87
Liu YC, Song YC, Fard M, Zhou LM, Hou ZQ and Kendrick MA. 2019. Pyrite Re-Os age constraints on the Irankuh Zn-Pb deposit, Iran, and regional implications. Ore Geology Reviews, 104: 148-159
Liu YH, Ma R, Chen ZY, Gan YY, He F, Li XZ, Quan ZX, Zhao QX and A MGL. 2014. Geological characteristics and prospecting indicator of Caosiyao Mo deposit, Inner Mongolia. Global Geology, 33(2): 426-432 (in Chinese with English abstract)
Lowenstern JB. 1994. Dissolved volatile concentrations in an ore-forming magma. Geology, 22(10): 893-896
Lowenstern JB and Sinclair WD. 1996. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 291-303
Lv QW and Fu ZG. 2005. Multiple information in searching for Mo deposit-the concrete case analyses in prospecting Donggou Mo deposit. China Molybdenum Industry, 29(4): 10-13 (in Chinese with English abstract)
Manning DAC. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76(2): 206-215
Mao JW, Xie GQ, Bierlein F, Qü WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626
Mao JW, Ye HS, Wang RT, Dai JZ, Jian W, Xiang JF, Zhou K and Meng F. 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, central China and its implication for prospecting. Geological Bulletin of China, 28(1): 72-79 (in Chinese with English abstract)
Mao JW, Pirajno F, Xiang JF, Gao JJ, Ye HS, Li YF and Guo BJ. 2011a. Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt:Characteristics and tectonic settings. Ore Geology Reviews, 43(1): 264-293
Mao JW, Zhang JD, Pirajno F, Ishiyama D, Su MH, Guo CL and Chen YC. 2011b. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi Province, East China:A linked ore system. Ore Geology Reviews, 43(1): 203-216
Marsh TM, Einaudi MT and McWilliams M. 1997. 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile. Economic Geology, 92(7-8): 784-806
Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW and Clark AH. 2005. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Economic Geology, 100(5): 835-862
McLemore VT, Giordano TH, Lueth VW and Witcher JC. 1998. Origin of barite-fluorite-galena deposits in the Rio Grande rift, New Mexico. In:Las Cruces Country Ⅱ, Mack, GH, Austin GS and Barker JM (eds.). New Mexico Geological Society, Guidebook, 49: 251-264
Meng ZJ, Kan XS, Li XC, Wang JP, Zhang RZ, Lv KP, Sun ZJ, Shi YJ, Zhang JN, Wang HY, Han L and Zhang GY. 2011. The discovery and exploration process of the Chalukou giant porphyry molybdenum polymetallic deposit in forest-covered area of northeastern Da Higgnan Mountains and its geological significance. Geology in China, 38(6): 1504-1517 (in Chinese with English abstract)
Mercer CN, Hofstra AH, Todorov TI, Roberge J, Burgisser A, Adams DT and Cosca M. 2015. Pre-eruptive conditions of the Hideaway Park topaz rhyolite:Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado. Journal of Petrology, 56(4): 645-679
Mibe K, Chou IM, Anderson AJ, Mayanovic RA and Bassett WA. 2009. The speciation of aqueous zinc (Ⅱ) bromide solutions to 500℃ and 900MPa determined using Raman spectroscopy. Chemical Geology, 259(1-2): 48-53
Muntean JL and Einaudi MT. 2001. Porphyry-epithermal transition:Maricunga belt, Northern Chile. Economic Geology, 96(4): 743-772
Mutschler FE, Wright EG, Ludington S and Abbott JT. 1981. Granite molybdenite systems. Economic Geology, 76(4): 874-897
Nagaseki H and Hayashi KI. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, 36(1): 27-30
Nekrasov EM. 2007. Geology and structural features of vein-type lead and zinc deposits. Geology of Ore Deposits, 49(6): 487-496
Ni P, Wang GG, Yu W, Chen H, Jiang LL, Wang BH, Zhang HD and Xu YF. 2015. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China. Ore Geology Reviews, 65: 1078-1094
Ohmoto H and Rye RO. 1979. Isotopes of sulfur and carbon.In Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd Edition.. New York: Wiley, 509-567
Othman DB, Polvé M and Allègre CJ. 1984. Nd-Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust. Nature, 307(5951): 510-515
Pan Z. 2011. The geological characteristics, ore-controlling factors and deposit genesis of the W-Mo polymetallic deposit in the south of Huangshaping mine, Hunan Province. Master Degree Thesis. Changsha: Central South University, 1-51 (in Chinese with English summary)
Partey F, Lev S, Casey R, Widom E, Lueth VW and Rakovan J. 2009. Source of fluorine and petrogenesis of the Rio Grande Rift-type barite-fluorite-galena deposits. Economic Geology, 104(4): 505-520
Pettke T, Oberli F and Heinrich CA. 2010. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters, 296(3-4): 267-277
Pokrovski GS, Roux J and Harrichoury JC. 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology, 33(8): 657-660
Pudack C, Halter WE, Heinrich CA and Pettke T. 2009. Evolution of magmatic vapor to gold-rich epithermal liquid:The porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina. Economic Geology, 104(4): 449-477
Qi JP, Chen YJ, Ni P, Lai Y, Ding JY, Song YW and Tang GJ. 2007. Fluid inclusion constraints on the origin of the Lengshuibeigou Pb-Zn-Ag deposit, Henan Province. Acta Petrologica Sinica, 23(9): 2119-2130 (in Chinese with English abstract)
Qin KZ, Wang ZT and Pan LJ. 1990. Metallogenic conditions and criteria for evaluating the ore potentiality of porphyry bodies in the Manzhouli-Xinbaerhuyouqi Cu, Mo, Pb, Zn and Ag metallogenic belt. Geological Review, 36(6): 479-488 (in Chinese with English abstract)
Qin KZ, Wang ZT and Pan LJ. 1995. Magmatism and metallogenic systematics of the southern Ergun Mo, Cu, Pb, Zn and Ag belt, Inner Mongolia, China. Resource Geology Special Issue, 18: 159-169
Qin KZ. 1998. A comparison of subaerial volcano porphyry Au, Ag, Pb, Zn, Cu deposit systematics with VHMS analogues. Gold Science and Technology, 6(3): 6-17 (in Chinese with English abstract)
Qin KZ and Ishihara S. 1998. On the possibility of porphyry copper mineralization in Japan. International Geology Review, 40(6): 539-551
Qin KZ, Sun S, Li JL, Fang TH, Wang SL and Liu W. 2002. Paleozoic epithermal Au and porphyry Cu Deposits in North Xinjiang, China:Epochs, features, tectonic linkage and exploration significance. Resource Geology, 52(4): 291-300
Qin KZ, Li GM, Zhao JX, Li JX, Xue GQ, Yan G, Su DK, Xiao B, Chen L and Fan X. 2008. Discovery of Sharang large-scale porphyry molybdenum deposit, the first single Mo deposit in Tibet and its significance. Geology in China, 35(6): 1101-1112 (in Chinese with English abstract)
Ranta DE, Ward AD and Ganster MW. 1984. Ore zoning applied to geologic reserve estimation of molybdenum deposits.In:Eriekson Jr AJ (ed.). Applied Mining Geology. New York: Society of Mining Engineers, 83-114
Redmond PB and Einaudi MT. 2010. The Bingham canyon porphyry Cu-Mo-Au Deposit:I.Sequence of intrusions, vein formation, and sulfide deposition. Economic Geology, 105(1): 43-68
Ren Z, Zhou TF, Hollings P and White NC. 2018a. Magmatism in the Shapinggou district of the Dabie orogen, China:Implications for the formation of porphyry Mo deposits in a collisional orogenic belt. Lithos, 308-309: 346-343
Ren Z, Zhou TF, Hollings P, White NC, Wang FY and Yuan F. 2018b. Trace element geochemistry of molybdenite from the Shapinggou super-large porphyry Mo deposit, China. Ore Geology Reviews, 95: 1049-1065
Rice CM, McCoyd RJ, Boyce AJ and Marchev P. 2007. Stable isotope study of the mineralization and alteration in the Madjarovo Pb-Zn district, south-east Bulgaria. Mineralium Deposita, 42(7): 691-713
Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533
Ross PS, Jebrak M and Walker BM. 2002. Discharge of hydrothermal fluids from a magma chamber and concomitant formation of a stratified breccia zone at the Questa porphyry molybdenum deposit, New Mexico. Economic Geology, 97(8): 1679-1699
Ruaya JR and Seward TM. 1986. The stability of chlorozinc (Ⅱ) complexes in hydrothermal solutions up to 350℃. Geochimica et Cosmochimica Acta, 50(5): 651-661
Rusk BG, Reed MH and Dilles JH. 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at butte, Montana. Economic Geology, 103(2): 307-334
Rye RO. 1993. The evolution of magmatic fluids in the epithermal environment:The stable isotope perspective. Economic Geology, 88(3): 733-752
Sallet R, Moritz R and Fontignie D. 2005. The use of vein fluorite as probe for paleofluid REE and Sr-Nd isotope geochemistry:The Santa Catarina Fluorite District, Southern Brazil. Chemical Geology, 223(4): 227-248
Seedorff E and Einaudi MT. 2004. Henderson porphyry molybdenum system, Colorado:I.Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Economic Geology, 99(1): 3-37
Seedorff E, Dilles J, Proffett J, Einaudi M, Zurcher L, Stavast W, Johnson D and Barton M. 2005. Porphyry deposits:Characteristics and origin of hypogene features. Economic Geology 100th Anniversary Volume, 29: 251-298
Seo JH, Guillong M and Heinrich CA. 2012. Separation of molybdenum and copper in porphyry deposits:The roles of sulfur, redox, and pH in ore mineral deposition at Bingham canyon. Economic Geology, 107(2): 333-356
Seward T and Barnes H. 1997. Metal transport by hydrothermal ore fluids. Geochemistry of Hydrothermal Ore Deposits, 3: 435-486
Shannon JR, Walker BM, Carten RB and Geraghty EP. 1982. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology, 10(6): 293-297
Sharp JE. 1978. A molybdenum mineralized breccia pipe complex, Redwell Basin, Colorado. Economic Geology, 73(3): 369-382
Shen LX, Li WS, Wang ZL, Ding JD, Ma JX and Li XY. 2012. Forecast for the deep mineralization of Niujuan silver-gold deposit and Yingfang silver-lead-zinc deposit in northern Hebei Province. Contributions to Geology and Mineral Resources Research, 27(4): 450-457 (in Chinese with English abstract)
Shi CY, Yan MC, Liu CM, Chi QH, Hu SQ, Gu TX, Bu W and Yan WD. 2005. Abundances of chemical elements in granitoids of China and their characteristics. Geochimica, 34(5): 470-482 (in Chinese with English abstract)
Shinohara H, Kazahaya K and Lowenstern JB. 1995. Volatile transport in a convecting magma column:Implications for porphyry Mo mineralization. Geology, 23(12): 1091-1094
Sidorov AA, Tomson IN, Savva NE, Volkov AV, Prokof'ev VY and Kolova EE. 2006. Relation between porphyry deposits and their vein satellites. Doklady Earth Sciences, 409(2): 859-863
Sillitoe RH. 1973. The tops and bottoms of porphyry copper deposits. Economic Geology, 68(6): 799-815
Sillitoe RH. 1994. Erosion and collapse of volcanoes:Causes of telescoping in intrusion-centered ore deposits. Geology, 22(10): 945-948
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
Simon AC, Pettke T, Candela PA, Piccoli PM and Heinrich CA. 2007. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica et Cosmochimica Acta, 71(7): 1764-1782
Song GX, Cook NJ, Li GM, Qin KZ, Ciobanu CL, Yang YH and Xu YX. 2019. Scheelite geochemistry in porphyry-skarn W-Mo systems:A case study from the Gaojiabang deposit, East China. Ore Geology Reviews, 113: 103084
Soregaroli AE. 1975. Geology and genesis of the Boss Mountain molybdenum deposit, British Columbia. Economic Geology, 70(1): 4-14
Stavast WJA, Keith JD, Christiansen EH, Dorais MJ, Larocque A and Evans N. 2006. The fate of magmatic sulfides during intrusion or eruption, Bingham and Tintic districts, Utah. Economic Geology, 101(2): 329-345
Stein HJ and Hannah JL. 1985. Movement and origin of ore fluids in Climax-type systems. Geology, 13(7): 469-474
Stein HJ and Crock JG. 1990. Late Cretaceous-Tertiary magmatism in the Colorado mineral belt:Rare earth element and samarium-neodymium isotopic studies. Geological Society of America Memoir, 174: 195-223
Steininger RC. 1985. Geology of the Kitsault molybdenum deposit, British Columbia. Economic Geology, 80(1): 57-71
Stern CR, Funk JA, Skewes MA and Arévalo A. 2007. Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit, Chile, and the role of sulfur-and copper-rich magmas in its formation. Economic Geology, 102(7): 1335-1344
Subías I, Fanlo I, Mateo E, Billström K and Recio C. 2010. Isotopic studies of Pb-Zn-(Ag) and barite Alpine vein deposits in the Iberian Range (NE Spain). Geochemistry, 70(2): 149-158
Sun FY and Wang Li. 2008. Ore-forming conditions of bairendaba Ag-Pb-Zn polymetallic ore deposit, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 38(3): 376-383 (in Chinese with English abstract)
Sun QL. 2014. The study of geology, geochemistry and metallogenic model in Luming molybdenum deposit, Heilongjiang Province.Master Degree Thesis. Changchun:Jilin University: 1-53
Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978
Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YI, Ireland TR, Wei QR and Fan WM. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275
Tagirov BR and Seward TM. 2010. Hydrosulfide/sulfide complexes of zinc to 250℃ and the thermodynamic properties of sphalerite. Chemical Geology, 269(3-4): 301-311
Tang YY, Bi XW, Zhou JX, Liang F, Qi YQ, Leng CB, Zhang XC and Zhang H. 2019. Rb-Sr isotopic age, S-Pb-Sr isotopic compositions and genesis of the ca.200Ma Yunluheba Pb-Zn deposit in NW Guizhou Province, SW China. Journal of Asian Earth Sciences, 185: 104054
Tu LQ, Ma YF, Shi SR, Yin JF and Tu JF. 2011. Geological and wall-rock alteration characters of Donggebi deposit, Hami City. Xinjiang Geology, 29(4): 433-436 (in Chinese with English abstract)
Ulrich T and Heinrich CA. 2002. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina. Economic Geology, 97(8): 1865-1888
Ulrich T and Mavrogenes J. 2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500℃ to 800℃, and 150MPa to 300MPa. Geochimica et Cosmochimica Acta, 72(9): 2316-2330
Van Alstine RE. 1976. Continental rifts and lineaments associated with major fluorspar district. Economic geology, 71(6): 977-987
Wallace SR, MacKenzie WB, Blair RG and Muncaster NK. 1978. Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with those at Climax, Colorado. Economic Geology, 73(3): 325-368
Wallace SR. 1995. The Climax-type molybdenite deposits:What they are, where they are, and why they are. Economic Geology, 90(5): 1359-1380
Walter BF, Gerdes A, Kleinhanns IC, Dunkl I, Von Eynatten H, Kreissl S and Markl G. 2018. The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting:Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany. Geochimica et Cosmochimica Acta, 240: 11-42
Wan B, Hegner E, Zhang L, Rocholl A, Chen Z, Wu H and Chen F. 2009. Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and geochemical constraints on the origin of hosting granites. Economic Geology, 104(3): 351-363
Wang CM, He XY, Yan CH, Lü WD and Sun WZ. 2013. Ore geology, and H, O, S, Pb, Ar isotopic constraints on the genesis of the Lengshuibeigou Pb-Zn-Ag deposit, China. Geosciences Journal, 17(2): 197-210
Wang GG, Ni P, Yu W, Chen H, Jiang LL, Wang BH, Zhang HD and Li PF. 2014. Petrogenesis of Early Cretaceous post-collisional granitoids at Shapinggou, Dabie Orogen:Implications for crustal architecture and porphyry Mo mineralization. Lithos, 184-187: 393-415
Wang GG, Ni P, Zhao C, Chen H, Yuan HX, Cai YT, Li L and Zhu AD. 2017a. A combined fluid inclusion and isotopic geochemistry study of the Zhilingtou Mo deposit, South China:Implications for ore genesis and metallogenic setting. Ore Geology Reviews, 81: 884-897
Wang GR, Wu G, Xu LQ, Li XZ, Zhang T, Quan ZX, Wu H, Li TG, Liu J and Chen YC. 2017b. Molybdenite Re-Os age, H-O-C-S-Pb isotopes, and fluid inclusion study of the Caosiyao porphyry Mo deposit in Inner Mongolia, China. Ore Geology Reviews, 81: 728-744
Wang L, Qin KZ, Song GX and Li GM. 2019. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geology Reviews, 107: 434-456
Wang LQ, Cui BL and Wu F. 2014. Geological and geochemical characteristics and prospecting significance of Donggou super-large Molybdenum deposit in eastern Qinling. Mineral Resources and Geology, 28(6): 744-751 (in Chinese with English abstract)
Wang XD, Lü XB, Mei W, Tang RK and Li CC. 2014. Characteristics and evolution of ore-forming fluids in Bairendaba Ag-Pb-Zn polymetallic deposit, Inner Mongolia. Mineral Deposits, 33(2): 406-418 (in Chinese with English abstract)
Wang Y, Xie YL, Zhong RC, Wang AG, Wu HR and An WJ. 2019. Metallogenic system of Shapinggou porphyrymolybdenum-hydrothermal lead-zinc deposit in Dabie orogeny belt:Constraints from fluid inclusions and stable isotope. The Chinese Journal of Nonferrous Metals, 29(3): 628-648 (in Chinese with English abstract)
Wang YB. 2014. Research on the zhilingtou polymetallic system from hydrothermal to epithermal mineralization, Zhejiang. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-156 (in Chinese with English summary)
Wang YB, Zeng QD, Liu JM, Wu L and Qin KZ. 2020. Porphyry Mo and epithermal Au-Ag-Pb-Zn mineralization in the Zhilingtou polymetallic deposit, South China. Mineralium Deposita, 55(7): 1385-1406
Wang YH, Zhang FF, Liu JJ, Xue CJ, Wang JP, Liu and Lu WW. 2015. Petrogenesis of granites in Baishan molybdenum deposit, eastern Tianshan, Xinjiang:Zircon U-Pb geochronology, geochemistry, and Hf isotope constraints. Acta Petrologica Sinica, 31(7): 1962-1976 (in Chinese with English abstract)
Waters PJ, Cooke DR, Gonzales RI and Phillips D. 2011. Porphyry and epithermal deposits and 40Ar/39Ar geochronology of the Baguio district, Philippines. Economic Geology, 106(8): 1335-1363
Webster JD, Holloway JR and Hervig RL. 1987. Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochimica et Cosmochimica Acta, 51(3): 389-402
Webster JD. 1997. Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochimica et Cosmochimica Acta, 61(5): 1017-1029
Webster JD and Rebbert CR. 1998. Experimental investigation of H2O and Cl- solubilities in F-enriched silicate liquids:Implications for volatile saturation of topaz rhyolite magmas. Contributions to Mineralogy and Petrology, 132(2): 198-207
Westra G and Keith SB. 1981. Classification and genesis of stockwork molybdenum deposits. Economic Geology, 76(4): 844-873
White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DE and Steininger RC. 1981. Character and origin of Climax-type molybdenum deposits. Economic Geology, 75: 270-316
Wilkinson JJ, Chang ZS, Cooke DR, Baker MJ, Wilkinson CC, Inglis S, Chen HY and Gemmell JB. 2015. The chlorite proximitor:A new tool for detecting porphyry ore deposits. Journal of Geochemical Exploration, 152: 10-26
Williams-Jones AE and Heinrich CA. 2005. 100th Anniversary special paper:Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100(7): 1287-1312
Wilson AJ, Cooke DR, Harper BJ and Deyell CL. 2007. Sulfur isotopic zonation in the Cadia district, southeastern Australia:Exploration significance and implications for the genesis of alkalic porphyry gold-copper deposits. Mineralium Deposita, 42(5): 465-487
Wood SA, Crerar DA and Borcsik MP. 1987. Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argentite-molybdenite in H2O-NaCl-CO2 solutions from 200 degrees to 350 degrees. Economic Geology, 82(7): 1864-1887
Wood SA and Samson IM. 1998. Solubility of ore minerals and complexation of ore metals in hydrothermal solutions.In:Richards JP and Larson PB (eds.). Techniques in Hydrothermal Ore Deposits Geology. Littleton: Society of Economic Geologists, 33-80
Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (Ⅱ):Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3-4): 191-204
Wu G, Li XZ, Xu LQ, Wang GR, Liu J, Zhang T, Quan ZX, Wu H, Li TG, Zeng QT and Chen YC. 2017. Age, geochemistry, and Sr-Nd-Hf-Pb isotopes of the Caosiyao porphyry Mo deposit in Inner Mongolia, China. Ore Geology Reviews, 81: 706-727
Wu YS, Xiang N, Tang HS, Zhou KF and Yang YF. 2013. Molybdenite Re-Os isotope age of the Donggebi Mo deposit and the Indosinian metallogenic event in eastern Tianshan. Acta Petrologica Sinica, 29(1): 121-130 (in Chinese with English abstract)
Wyllie PJ and Tuttle OF. 1961. Experimental investigation of silicate systems containing two volatile components:Part 2, The effects of NH3 and HF, in addition to H2O on the melting temperatures of albite and granite. American Journal of Science, 259(2): 128-143
Xiang JF, Mao JW, Pei RF, Ye HS, Wang CY, Tian ZH and Wang HL. 2012. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo (W) deposit. Geology in China, 39(2): 458-473 (in Chinese with English abstract)
Xu WG, Fan HR, Hu FF, Santosh M, Yang KF, Lan TG and Wen BJ. 2015. Geochronology of the Guilaizhuang gold deposit, Luxi Block, eastern North China Craton:Constraints from zircon U-Pb and fluorite-calcite Sm-Nd dating. Ore Geology Reviews, 65: 390-399
Xu XC, Lou JW, Xie QQ, Xiao QX, Liang JF and Lu SM. 2011. Geochronology and tectonic setting of Pb-Zn-Mo deposits and related igneous rocks in the Yinshan region, Jinzhai, Anhui Province, China. Ore Geology Reviews, 43(1): 132-141
Yang F, Li F, Chen H, Xiao JS and Zhao XY. 2012. Geochemistry and tectonic setting of the Laochang concealed granite porphyry in Lancang, Yunnan Province. Acta Petrologica et Mineralogica, 31(1): 39-49 (in Chinese with English abstract)
Yang MZ, Zeng JN, Qin YJ, Li FL and Wan SQ. 2010. LA-ICP-MS zircon U-Pb and molybdenite Re-Os dating for Qian'echong porphyry-type Mo deposit in northern Dabie, China, and its geological significance. Geological Science and Technology Information, 29(5): 35-45 (in Chinese with English abstract)
Yang YF, Li N and Yang Y. 2009. Fluid inclusion study of the Nannihu porphyry Mo-W deposit, Luanchuan County, Henan Province. Acta Petrologica Sinica, 25(10): 2550-2562 (in Chinese with English abstract)
Yang YF, Chen YJ, Li N, Mi M, Xu YL, Li FL and Wan SQ. 2013. Fluid inclusion and isotope geochemistry of the Qian'echong giant porphyry Mo deposit, Dabie Shan, China:A case of NaCl-poor, CO2-rich fluid systems. Journal of Geochemical Exploration, 124: 1-13
Yang YF, Chen YJ, Pirajno F and Li N. 2015. Evolution of ore fluids in the Donggou giant porphyry Mo system, East Qinling, China, a new type of porphyry Mo deposit:Evidence from fluid inclusion and H-O isotope systematics. Ore Geology Reviews, 65: 148-164
Yao JM, Hua RM and Lin JF. 2005. Zircon LA-ICPMS U-Pb dating and geochemical characteristics of Huangshaping granite in southeast Hunan Province, China. Acta Petrologica Sinica, 21(3): 688-696 (in Chinese with English abstract)
Yao JM, Zhao TP, Wei QG and Yuan ZL. 2008. Fluid inclusion features and genetic type of the Wangpingxigou Pb-Zn deposit, Henan Province. Acta Petrologica Sinica, 24(9): 2113-2123 (in Chinese with English abstract)
Yao JM, Zhao TP and Li XH. 2010. Single grain Rb-Sr dating of sphalerite from the Wangpingxigou Pb-Zn depositin Henan Province. Mineral Deposit, 29(Suppl.1): 535-536 (in Chinese)
Ye HS. 2006. The Mesozoic tectonic evolution and Pb-Zn-Ag metallogeny in the southern margin of North China Craton. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-225 (in Chinese with English summary)
Ye HS, Mao JW, Li YF, Guo BJ, Zhang CQ, Liu J, Yan QR and Liu GY. 2006a. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geologica Sinica, 80(7): 1078-1088 (in Chinese with English abstract)
Ye HS, Mao JW, Li YF, Yan CH, Guo BJ, Zhao CS, He CF, Zheng RF and Chen L. 2006b. Characteristics and metallogenic mechanism of Mo-W and Pb-Zn-Ag deposits in Nannihu ore field, western Henan Province. Geoscience, 20(1): 165-174 (in Chinese with English abstract)
Ye HS, Mao JW, Li YF, Guo BJ, Zhang CQ, Liu J, Yan QR and Liu GY. 2008. SHRIMP zircon U-Pb and molybdenite Re-Os datings of the superlarge Donggou porphyry molybdenum deposit in the East Qinling, China, and its geological implications. Acta Geologica Sinica, 82(1): 134-145
Zartman RE and Doe BR. 1981. Plumbotectonics:The model. Tectonophysics, 75(1-2): 135-162
Zeng QD, Liu JM, Zhang ZL, Zhang WQ, Chu SX, Zhang S, Wang ZC and Duan XX. 2011. Geology, fluid inclusion, and sulfur isotope studies of the Chehugou porphyry molybdenum-copper deposit, Xilamulun metallogenic belt, NE China. Resource Geology, 61(3): 241-258
Zeng QD, Wang YB, Zhang S, Liu JM, Qin KZ, Yang JH, Sun WD and Qu WJ. 2013. U-Pb and Re-Os geochronology of the Tongcun molybdenum deposit and Zhilingtou gold-silver deposit in Zhejiang Province, Southeast China, and its geological implications. Resource Geology, 63(1): 99-109
Zeng Q, Du LL, Guo YP, Sun Y and Liu JM. 2013. Porphyry molybdenum deposits in the eastern Xingmeng orogenic belt. Acta Mineralogica Sinica, 33(Suppl.2): 76 (in Chinese)
Zhai DG, Wang JP, Liu JJ, Wu SH, Mao GJ, Wang SG and Li YX. 2010. Ore-forming fluids evolution and metallogenic mechamism analysis of the Jiawula Ag-poltmetallic deposit, Inner Mongolia. Journal of Mineralogy and Petrology, 30(2): 68-76 (in Chinese with English abstract)
Zhang H, Sun WD, Yang XY, Liang HY, Wang BH, Wang RL and Wang YX. 2011. The geochronology and metallogenesis of the Shapinggou giant porphyry molybdenum deposit in Dabie orogenic belt. Acta Geologica Sinica, 85(12): 2039-2059 (in Chinese with English abstract)
Zhang H, Li CY, Yang XY, Sun YL, Deng JH, Liang HY, Wang RL, Wang BH, Wang YX and Sun WD. 2014. Shapinggou:The largest Climax-type porphyry Mo deposit in China. International Geology Review, 56(3): 313-331
Zhang HD, Wang BH, Hao YJ, Cheng S and Xiang B. 2012. Geological characteristics and comprehensive ore-prospecting information of Shapinggou porphyry-type molybdenum deposit in Anhui Province. Mineral Deposits, 31(1): 41-51 (in Chinese with English abstract)
Zhang HD. 2018. Review and enlightenment on exploration history of the Shapinggou Mo deposit. Mineral exploration, 9(6): 1224-1232 (in Chinese with English abstract)
Zhang J, Ye HS, Zhou K and Meng F. 2014. Processes of ore genesis at the world-class Yuchiling molybdenum deposit, Henan Province, China. Journal of Asian Earth Sciences, 79: 666-681
Zhang XN, Li GM, Qin KZ, Lehmann B, Li JX, Zhao JX, Cao MJ and Zou XY. 2018. Petrogenesis and tectonic setting of Early Cretaceous granodioritic porphyry from the giant Rongna porphyry Cu deposit, central Tibet. Journal of Asian Earth Sciences, 161: 74-92
Zhao C, Ni P, Wang GG, Chen H and Cai YT. 2014. The fluid inclusions study on Zhilingtou molybdenum deposit in Southwest Zhejiang Province. Geological Journal of China Universities, 20(1): 38-49 (in Chinese with English abstract)
Zhao JX, Qin KZ, Li GM and Li JX. 2011. Characteristics of alteration and mineralization in the Sharang pophyry molybdenum deposit in the northern margin of Gangdese and comparison with typical porphyry molybdenum deposits in the world. Geology and Prospecting, 47(1): 54-70 (in Chinese with English abstract)
Zhao JX. 2013. Metallogenesis of Sharang-Yaguila porphyry-skarn Mo-Pb-Zn-Ag deposits in the main-collisional setting at northern Gangdese. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-352 (in Chinese with English summary)
Zhao TP, Meng L, Gao XY, Jin C, Wu Q and Bao ZW. 2018. Late Mesozoic felsic magmatism and Mo-Au-Pb-Zn mineralization in the southern margin of the North China Craton:A review. Journal of Asian Earth Sciences, 161: 103-121
Zhou K, Ye HS, Mao JW, Qu WJ, Zhou SF, Meng F and Gao YL. 2009. Geological characteristics and molybdenite Re-Os isotopic dating of Yuchiling porphyry Mo deposit in western Henan Province. Mineral Deposits, 28(2): 170-184 (in Chinese with English abstract)
包志伟, 曾乔松, 赵太平, 原振雷. 2009. 东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对钼成矿作用的制约. 岩石学报, 25(10): 2523-2536.
陈衍景, 隋颖慧, Pirajno F. 2003. CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学. 岩石学报, 19(3): 551-568.
陈衍景. 2006. 造山型矿床、成矿模式及找矿潜力. 中国地质, 33(6): 1181-1196.
程国华, 王瑞良, 曾庆栋, 郭云鹏, 段晓侠, 魏金江, 张俊生, 高秀航. 2015. 黑龙江鹿鸣钼矿区花岗质杂岩锆石U-Pb年龄、Hf同位素、辉钼矿Re-Os年龄及其地质意义. 岩石学报, 31(8): 2450-2464.
曹华文, 裴秋明, 张寿庭, 向辉, 张林奎, 唐利. 2016. 河南栾川三道沟铅锌银矿床方解石地球化学特征及Sm-Nd年龄研究. 地球化学, 45(2): 144-154.
戴宝章, 蒋少涌, 王孝磊. 2009. 河南东沟钼矿花岗斑岩成因:岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约. 岩石学报, 25(11): 2889-2901.
段士刚, 薛春纪, 冯启伟, 高炳宇, 刘国印, 燕长海, 宋要武. 2011. 豫西南赤土店铅锌矿床地质、流体包裹体和S、Pb同位素地球化学特征. 中国地质, 38(2): 427-441.
范丽逢. 2014.安徽沙坪沟钼矿床形成的地球化学机理.硕士学位论文.北京: 中国地质大学(北京), 1-79
范海洋, 李铁刚, 武文恒, 张明玉, 黄凡, 赵正, 张彤, 许立权, 李香资, 权知心. 2018. 内蒙古兴和县曹四夭超大型斑岩钼铅锌金成矿系统年代学及其地质意义. 矿床地质, 矿床地质, 37(2): 355-370.
高阳. 2014.大别山千鹅冲和汤家坪斑岩钼矿地质地球化学及成因研究.博士学位论文.北京: 中国地质科学院, 1-171
高一鸣, 陈毓川, 唐菊兴, 李超, 李新法, 高明, 蔡志超. 2011. 西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义. 地质通报, 30(7): 1027-1036.
韩胜康. 2008. 福建永定新村钼铅锌多金属矿床地质特征及成因探讨. 福建地质, 27(4): 352-360.
何鹏, 郭硕, 张天福, 苏航, 付启龙. 2018. 大兴安岭中南段扎木钦铅锌银多金属矿床成矿物质来源及矿床成因:来自S、Pb同位素的制约. 岩石学报, 34(12): 3597-3610.
黄钰涵, 邓军, 李龚健, 蒙福清, 毛富祥, 张鹏飞. 2017. 滇西老厂隐伏斑岩-矽卡岩型钼矿床成矿过程与物质来源. 岩石学报, 33(7): 2099-2114.
黄俊, 吴家富, 夏立元, 金世恒, 王翔, 侯克斌. 2012. 内蒙古李清地-大西沟地区钼矿化的发现及找矿意义. 地质调查与研究, 35(3): 184-188.
金露英, 秦克章, 孟昭君, 李光明, 宋国学, 李真真, 吕克鹏, 阚学胜, 赵超. 2014. 大兴安岭北段岔路口巨型钼(锌铅)矿床脉体特征、产状及其对成矿的指示. 矿床地质, 33(4): 742-760.
金露英, 秦克章, 李光明, 李真真, 宋国学, 孟昭君. 2015. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示. 岩石学报, 31(8): 2417-2434.
金露英. 2016.大兴安岭北段岔路口斑岩钼矿-脉状锌铅矿成矿系统结构与成矿作用研究.博士学位论文.北京: 中国科学院大学, 1-231
李法岭. 2011. 河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床地质特征及成矿时代. 矿床地质, 30(3): 457-468.
李峰, 鲁文举, 杨映忠, 陈珲, 罗思亮, 石增龙. 2009. 云南澜沧老厂斑岩钼矿成岩成矿时代研究. 现代地质, 23(6): 1049-1055.
李光明, 李金祥, 秦克章, 张天平, 肖波. 2007. 西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据. 岩石学报, 23(5): 935-952.
李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据. 岩石学报, 31(8): 2307-2324.
李厚民, 陈毓川, 叶会寿, 王登红, 郭保健, 李永峰. 2008. 东秦岭-大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列. 地质学报, 82(11): 1468-1477.
李铁刚, 武广, 刘军, 胡妍青, 张云付, 罗大峰. 2014. 大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义. 岩石学报, 30(1): 257-270.
李占轲. 2013.华北克拉通南缘中生代银-铅-锌矿床成矿作用研究.博士学位论文.武汉: 中国地质大学, 1-197
李真真. 2014.大兴安岭北段岔路口巨型斑岩钼矿高氟高氧化岩浆-流体演化与成矿作用.博士学位论文.北京: 中国科学院大学, 1-246
刘啟能. 2013.安徽金寨沙坪沟斑岩钼矿床及其与岩浆岩的关系.硕士学位论文.合肥: 合肥工业大学, 1-76
刘永慧, 马润, 陈志勇, 甘云燕, 贺斐, 李香资, 权知心, 赵清旭, 阿木古冷. 2014. 内蒙古曹四夭钼矿床地质特征及找矿标志. 世界地质, 33(2): 426-432.
吕伟庆, 付治国. 2005. 综合信息找钼——东沟钼矿床找矿实例分析. 中国钼业, 29(4): 10-13.
毛景文, 叶会寿, 王瑞廷, 代军治, 简伟, 向君锋, 周珂, 孟芳. 2009. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价. 地质通报, 28(1): 72-79.
孟昭君, 阚学胜, 李宪臣, 王建平, 张瑞忠, 吕克鹏, 孙振江, 石耀军, 张佳南, 王宏燕, 韩龙, 张国玉. 2011. 大兴安岭北东段森林覆盖区岔路口巨型斑岩钼多金属矿床的发现过程及意义. 中国地质, 38(6): 1504-1517.
潘卓. 2011. 湖南黄沙坪矿区南部钨钼多金属矿床地质特征、控矿因素及矿床成因. 硕士学位论文.长沙:中南大学, 1.
祁进平, 陈衍景, 倪培, 赖勇, 丁俊英, 宋要武, 唐国军. 2007. 河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因. 岩石学报, 23(9): 2119-2130.
秦克章, 王之田, 潘龙驹. 1990. 满洲里-新巴尔虎右旗铜、钼、铅、锌、银带成矿条件与斑岩体含矿性评价标志. 地质论评, 36(6): 479-488.
秦克章. 1998. 陆相火山-斑岩Au、Ag、Pb、Zn、Cu矿床系统与VHMS矿床系统的对比研究. 黄金科学技术, 6(3): 6-17.
秦克章, 李光明, 赵俊兴, 李金祥, 薛国强, 严刚, 粟登奎, 肖波, 陈雷, 范新. 2008. 西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义. 中国地质, 35(6): 1101-1112.
沈利霞, 李文圣, 王自力, 丁俊德, 马家鑫, 李学源. 2012. 冀北牛圈银金矿及营房银铅锌矿深部成矿预测. 地质找矿论丛, 27(4): 450-457.
史长义, 鄢明才, 刘崇民, 迟清华, 胡树起, 顾铁新, 卜维, 鄢卫东. 2005. 中国花岗岩类化学元素丰度及特征. 地球化学, 34(5): 470-482.
孙丰月, 王力. 2008. 内蒙拜仁达坝银铅锌多金属矿床成矿条件. 吉林大学学报(地球科学版), 38(3): 376-383.
孙庆龙. 2014.黑龙江鹿鸣钼矿床的地质地球化学特征及成矿模式研究.硕士学位论文.长春: 吉林大学, 1-53
涂良权, 马雁飞, 师书冉, 殷建锋, 涂金飞. 2011. 哈密东戈壁钼矿成矿特征及围岩蚀变. 新疆地质, 29(4): 433-436.
王令全, 崔蓓蕾, 吴飞. 2014. 东秦岭东沟超大型钼矿床地质地球化学特征及找矿意义. 矿产与地质, 28(6): 744-751.
王祥东, 吕新彪, 梅微, 唐然坤, 李春诚. 2014. 内蒙古拜仁达坝银铅锌多金属矿床成矿流体特征及其演化. 矿床地质, 33(2): 406-418.
王莹, 谢玉玲, 钟日晨, 王爱国, 吴皓然, 安卫军. 2019. 大别造山带沙坪沟斑岩型钼-热液脉型铅锌矿成矿系统:流体包裹体及稳定同位素约束. 中国有色金属学报, 29(3): 628-648.
王永彬. 2014. 浙江省治岭头岩浆热液-浅成热液多金属成矿系统研究. 博士学位论文.北京:中国科学院大学, 1.
王银宏, 张方方, 刘家军, 薛春纪, 王建平, 刘彬, 路魏魏. 2015. 东天山白山钼矿区花岗岩的岩石成因:锆石U-Pb年代学、地球化学及Hf同位素约束. 岩石学报, 31(7): 1962-1976.
吴艳爽, 项楠, 汤好书, 周可法, 杨永飞. 2013. 东天山东戈壁钼矿床辉钼矿Re-Os年龄及印支期成矿事件. 岩石学报, 29(1): 121-130.
向君峰, 毛景文, 裴荣富, 叶会寿, 王春毅, 田志恒, 王浩琳. 2012. 南泥湖-三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义. 中国地质, 39(2): 458-473.
杨帆, 李峰, 陈珲, 肖静珊, 赵晓勇. 2012. 云南澜沧老厂隐伏花岗斑岩体地球化学特征及构造环境. 岩石矿物学杂志, 31(1): 39-49.
杨梅珍, 曾键年, 覃永军, 李法岭, 万守权. 2010. 大别山北缘千鹅冲斑岩型钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地质科技情报, 29(5): 35-45.
杨永飞, 李诺, 杨艳. 2009. 河南省栾川南泥湖斑岩型钼钨矿床流体包裹体研究. 岩石学报, 25(10): 2550-2562.
姚军明, 华仁民, 林锦富. 2005. 湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征. 岩石学报, 21(3): 688-696.
姚军明, 赵太平, 魏庆国, 原振雷. 2008. 河南王坪西沟铅锌矿床流体包裹体特征和矿床成因类型. 岩石学报, 24(9): 2113-2123.
姚军明, 赵太平, 李向辉. 2010. 河南王坪西沟铅锌矿床单颗粒闪锌矿Rb-Sr定年. 矿床地质, 29.
叶会寿. 2006.华北陆块南缘中生代构造演化与铅锌银成矿作用.博士学位论文.北京: 中国地质科学院, 1-225
叶会寿, 毛景文, 李永峰, 郭保健, 张长青, 刘珺, 闫全人, 刘国印. 2006a. 东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地质学报, 80(7): 1078-1088.
叶会寿, 毛景文, 李永峰, 燕长海, 郭保健, 赵财胜, 何春芬, 郑榕芬, 陈莉. 2006b. 豫西南泥湖矿田钼钨及铅锌银矿床地质特征及其成矿机理探讨. 现代地质, 20(1): 165-174.
曾庆栋, 褚少雄, 段晓侠, 周伶俐, 郭云鹏, 孙燕, 刘建明. 2013. 兴蒙造山带东段斑岩钼矿床. 矿物学报, 33.
翟德高, 王建平, 刘家军, 吴胜华, 毛光剑, 王守光, 李玉玺. 2010. 内蒙古甲乌拉银多金属矿床成矿流体演化与成矿机制分析. 矿物岩石, 30(2): 68-76.
张红, 孙卫东, 杨晓勇, 梁华英, 王波华, 王瑞龙, 王玉贤. 2011. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究. 地质学报, 85(12): 2039-2059.
张怀东, 王波华, 郝越进, 程松, 项斌. 2012. 安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息. 矿床地质, 31(1): 41-51.
张怀东. 2018. 安徽沙坪沟钼矿勘查历程回顾与启示. 矿产勘查, 9(6): 1224-1232.
赵超, 倪培, 王国光, 陈辉, 蔡逸涛. 2014. 浙西南治岭头斑岩钼矿体流体包裹体研究. 高校地质学报, 20(1): 38-49.
赵俊兴, 秦克章, 李光明, 李金祥. 2011. 冈底斯北缘沙让斑岩钼矿蚀变矿化特征及与典型斑岩钼矿床的对比. 地质与勘探, 47(1): 54-70.
赵俊兴. 2013.冈底斯北缘主碰撞期沙让-亚圭拉斑岩-矽卡岩钼铅锌银成矿作用.博士学位论文.北京: 中国科学院大学, 1-352
周珂, 叶会寿, 毛景文, 屈文俊, 周树峰, 孟芳, 高亚龙. 2009. 豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄. 矿床地质, 28(2): 170-184.