岩石学报  2020, Vol. 36 Issue (11): 3331-3345, doi: 10.18654/1000-0569/2020.11.05   PDF    
大同第四纪玄武岩成因:主微量元素及Sr-Nd-Pb-Hf同位素研究
孙嘉祥1,2, 李霓1,2, 张雯倩1,2     
1. 吉林长白山火山国家野外科学观测研究站, 中国地震局地质研究所, 北京 100029;
2. 中国地震局地震与火山灾害重点实验室, 北京 100029
摘要: 大同火山区位于大兴安岭-太行山重力梯度带西侧,所发育的第四纪玄武岩岩石地球化学特征为探索该区火山岩成因提供了重要约束,同时也为华北克拉通西部岩石圈地幔与软流圈的相互作用提供重要依据。根据火山地貌和岩性的不同,沿着北东向陈庄-许堡断裂可将大同玄武岩大致分为东、西两区,西区火山多呈锥状,以碱性玄武岩为主;东区则以溢流拉斑玄武岩为主,锥体少。镜下岩相学研究观察到大量橄榄石和单斜辉石斑晶,结合Ni、Cr两种元素随着MgO含量降低而减小,这两种矿物应是分离结晶作用下的主要产物。这些玄武岩的SiO2和(K2O+Na2O)含量分别为45.02%~53.3%和3.60%~6.53%,相对富集轻稀土元素((La/Yb)N=5.8~31.6),并显示富集LILE(Rb、Ba、Sr正异常)以及HFSE(Nb、Ta、Zr正异常)的洋岛玄武岩(OIB)特征。根据La/Yb-Sm/Yb图解模拟计算得出大同玄武岩均是石榴石相二辉橄榄岩低程度部分熔融的结果,其中碱性玄武岩部分熔融程度约为1.5%~3%,拉斑玄武岩约为4%~8%。所研究的玄武岩有较低87Sr/86Sr(0.703302~0.705102)、较高143Nd/144Nd(0.512561~0.512963)和176Hf/177Hf(0.282922~0.283072)比值。在143Nd/144Nd-87Sr/86Sr图解上大同玄武岩落在OIB范围内;207Pb/204Pb-206Pb/204Pb和143Nd/144Nd-206Pb/204Pb图解表明它们来自PREMA和EMⅠ端元的二元混合。大同碱性玄武岩和拉斑玄武岩的地球化学特征不同可以用两点原因来解释:(1)主量与微量元素特征的差异是两种玄武岩部分熔融程度不一样形成的;(2)同位素特征表明两种玄武岩都来自软流圈亏损端元的部分熔融并存在少量岩石圈富集端元物质的加入,其差异则是加入比例不同造成的。
关键词: 第四纪    大同玄武岩    部分熔融    岩石圈    软流圈    
Petrogenesis and characteristics of the mantle source for the Quaternary Datong basalt: Research on the major, trace elements and Sr-Nd-Pb-Hf isotopes
SUN JiaXiang1,2, LI Ni1,2, ZHANG WenQian1,2     
1. Jilin Changbaishan Volcano National Observation and Research Station, Institute of Geology, China Earthquake Administration, Beijing 100029, China;
2. Key Laboratory of Seismic and Volcanic Hazards, China Earthquake Administration, Beijing 100029, China
Abstract: The Quaternary Datong basalt is located to the west of the Daxing'anling-Taihangshan Gravity Lineament (DTGL). The research of geochemical characteristics of the basalt will place important constraint on the origin as well as the interaction between lithosphere mantle and asthenosphere in the western North China Craton. According to the different landform and lithology, Datong basalt can be roughly divided into east and west regions by the NE-oriented Chenzhuang-Xubao fault. The western region is characterized by numbers of volcanic cones with dominant alkaline basalt, whereas the eastern region is characterized by overflowing tholeiitic basalt with few cones. Many olive and clinopyroxene phenocrysts are observed under the microscope. As the Ni and Cr abundance decrease with that of MgO, we conclude that these phenocrysts should be formed by crystallization. The SiO2 contents of these rocks vary from 45.02% to 53.3% and (K2O+Na2O) from 3.60% to 6.53%. The trace element normalized curves show relatively rich light rare earth elements ((La/Yb)N=5.8~31.6), and the primitive mantle-normalized spider patterns show both positive Rb, Ba, and Sr anomalies (LILE enrichment) and Nb, Ta, and Zr anomalies (HFSE enrichment), similar to those of Ocean Island-like basalt (OIB). According to the simulation calculations of La/Yb-Sm/Yb, it is suggested that the Datong basalts derive from low degree partial melting of garnet-bearing lherzolite, with the melting degree of the alkaline basalt about 1.5%~3.0% and the tholeiitic basalt about 4%~8%. The Datong basalts have relatively lower 87Sr/86Sr (0.703302~0.705102) ratios and higher 143Nd/144Nd (0.512561~0.512963) and 176Hf/177Hf (0.282922~0.283072) ratios, falling into the OIB range. The 207Pb/204Pb-206Pb/204Pb and 143Nd/144Nd-206Pb/204Pb diagrams both show that the Datong basalts are a binary mixture of PREMA and EMⅠ. The differences of the geochemical characteristics can be explained by the two reasons:(1) The different main and trace element features are formed by various degrees of partial melting; (2) The isotope characteristics indicate that the Datong basalts are mainly produced by the partial melting of the depleted asthenosphere, with the varied addition of the few amount of enriched lithospheric components.
Key words: Quaternary    Datong basalt    Partial melting    Lithosphere    Asthenosphere    

来源于地幔的玄武岩是探究深部地质过程的窗口,其地球化学特征可以反演源区组成,并为该区的地幔演化提供线索。前人应用玄武岩地球化学特征深入探讨了华北克拉通的地幔特征和演化历史,但是大多数成果集中在克拉通东部玄武岩及其地幔包体的研究上(Nakamura et al., 1989; Fan and Menzies, 1992; 郑建平, 1999; Gao et al., 2002; Zhang et al., 2002, 2009; Yang et al., 2010; Zeng et al., 2010; 陈立辉等, 2012; Guo et al., 2013),对于克拉通西部地区除了汉诺坝地区因为玄武岩规模较大并且携带地幔包体研究程度较高以外(Song et al., 1990; Zhi et al., 1990; Basu et al., 1991; 解广轰和王俊文, 1992; 刘丛强和解广轰, 1996; Liu et al., 2001; Xu, 2002; Zhou et al., 2002; Rudnick et al., 2004; Choi et al., 2008; Zheng et al., 2009; Qian et al., 2015),重力梯度带西侧其它玄武岩的研究资料相对较少(Zhang et al., 2005; 叶蕾等, 2015),对于大同玄武岩的研究自二十世纪八十年代末才开始起步。

陈孝德等(1997)采集了大同玄武岩中的幔源包体,并对包体中橄榄石Ca含量进行测定,采用地质温压计证明了大同火山群的岩浆主要来源于60km左右深处的上地幔,且第四纪以来大同地区地温梯度有增高的趋势。解广轰和王俊文(1989)报道了少量大同玄武岩Sr-Nd同位素特征,根据Sr-Nd的线性关系以及玄武岩εNd(t)>0的特征推测大同玄武岩来源于亏损的上地幔且未受到地壳的混染。马金龙和徐义刚(2004)对大同玄武岩进行了较为系统的研究,发现大同玄武岩具有类似洋岛玄武岩(OIB)的地球化学特征,并提出DM+EMⅠ的混合模型来解释大同玄武岩的成因。Xu et al. (2005)进一步指出大同玄武岩主要受控于软流圈物质,并加入了少量岩石圈成分。上述学者都得出大同玄武岩来源于上地幔,但对于玄武岩部分熔融程度、源区残留相、地幔端元成分以及岩石圈作用的认识仍然不够清晰。本文拟通过研究大同玄武岩地球化学特征来揭示该区玄武岩的形成机制,为华北克拉通西部地区破坏提供新的证据。

1 区域地质背景

华北克拉通是我国东部重要的构造单元,也是地球上克拉通破坏的典型地区之一。在华北克拉通周围发育一系列俯冲/碰撞带,包括北部的古生代古亚洲洋俯冲、南部的三叠纪扬子地块俯冲、东面的侏罗-白垩纪太平洋板块俯冲,形成了北临中亚造山带,南接秦岭-大别造山带,东临太平洋板块的大地构造(图 1)(Jahn et al., 1987; Liu et al., 1992; Maruyama et al., 1997; Zhao et al., 2001; Li and Santosh, 2017)。自中生代以来的岩石圈减薄是去克拉通化的重要标志之一,虽然众多学者对于减薄的时间和空间有争论,但是大部分学者还是倾向于认为早白垩世是减薄的高峰期(Xu et al., 2001, 2009; 裴福萍, 2004; 吴福元等, 2008; 朱日祥等, 2011; Kusky et al., 2014)。空间上,重力梯度带东西两侧岩石圈厚度存在差异(娄辛辉等, 2017; 徐小兵等, 2018),西部岩石圈自新生代逐渐减薄,东部岩石圈逐渐加厚(徐义刚, 2006; Xu et al., 2009)。总体来说,无论在时间或空间上,东西部岩石圈的“热状态”、厚度以及地球化学性质都有着明显的不同(Menzies et al., 1993; Niu, 2005; Xu, 2007;吴福元等, 2008; Xu et al., 2009; Zhu et al., 2012; Guo et al., 2014)。

图 1 华北克拉通构造简图(a, 据Yang et al., 2010修改)及大同第四纪玄武岩分布简图(b, 据马金龙和徐义刚, 2004) DTGL-大兴安岭-太行山重力梯度带;TLFZ-郯庐断裂带;①汉诺坝;②集宁;③大同;④繁峙 Fig. 1 Geological map of the North China Craton (a, modified after Yang et al., 2010) and the Quaternary basalt in Datong (b, after Ma and Xu, 2004) DTGL-Daxing'anling-Taihangshan Gravity Lineament; TLFZ-Tanlu Fault Zone; ①Hannuoba; ②Jining; ③Datong; ④Fanshi

大同火山区分布在华北克拉通太行山-大兴安岭重力梯度带西侧,位于山陕地堑最北端盆地,处于中国东部NNE向剪切拉张断陷盆地的构造地貌格局之中,北界是阳高-天镇断裂,南至六棱山山前断裂,西临口泉断裂(王乃樑等, 1996; 岑敏等, 2015)。大同第四纪玄武岩出露范围大致位于39°55′22″~40°10′35″N,113°34′17″~113°56′45″E。前人以陈庄-许堡为界将大同火山区大致分为东西两个部分,西区玄武岩多以爆发和溢流相产出,形成大小形状不同的30余座火山锥,由于西区玄武岩来源深度较深,所以形成低硅高碱的碱性玄武岩;东区火山爆发系数较小,常沿着断裂位置(桑干河、六棱山断裂)溢出,形成溢流玄武岩,由于东区玄武岩来源较浅,形成高硅低碱的拉斑玄武岩(韩军青, 1992; 李文宣等, 1994; 陈孝德等, 2001; 安卫平和苏宗正, 2008)。前人通过释光法、古地磁以及K-Ar测年等方法对大同玄武岩喷发年龄进行了研究(裴静娴, 1981; 李虎侯和孙建中, 1984; 朱日祥等, 1985, 1990; 陈文寄等, 1992; 赵华等, 2012),虽然测定结果不完全一致,但是总体上大同玄武岩喷发可分为三个阶段:第一阶段是以东区册田水库溢流玄武岩为代表距今0.74~0.54Ma的喷发;第二阶段西区爆破相和东区溢流相玄武岩均在0.4~0.3Ma左右大规模产出;第三阶段的大规模喷发以秋林村山前断裂溢流玄武岩为代表,年龄在0.2Ma左右,即大同玄武岩的喷发时代发生在早更新世晚期-晚更新世早期(李虎侯和孙建中, 1984; 陈文寄等, 1992)。本文所采集的样品包括西区碱性玄武岩和东区拉斑玄武岩。

2 样品的采集与分析

大同玄武岩呈灰-灰黑色,块状构造,少数玄武岩含有排列规则的气孔,气孔中充填白色碳酸盐矿物呈杏仁状构造。本文采样点涵盖东区和西区,分析所用样品为新鲜致密块状灰黑色玄武岩。与汉诺坝玄武岩含有丰富的地幔橄榄岩包体相比,仅在大同金山、狼窝山处发现少量尖晶石二辉橄榄岩包体。大同玄武岩呈块状构造,显微斑状结构。西区玄武岩斑晶含量约为20%~30%,基质含量约为40%~50%。斑晶为橄榄石(ol)和单斜辉石(cpx),橄榄石常呈半自形或他形粒状,单斜辉石多为半自形粒状。基质由橄榄石、单斜辉石、斜长石(pl)、铁钛氧化物以及玻璃质组成。东区玄武岩主要矿物成分与碱性玄武岩基本一致,差别在于斑晶组成上,橄榄石含量下降,辉石含量上升;基质中斜长石微晶明显增多,其组成的三角格架中充填他形粒状辉石、橄榄石和磁铁矿的细小颗粒(图 2)。

图 2 大同东区溢流玄武岩野外照片(a)和镜下显微照片(b) Fig. 2 Field (a) and microscopic (b) photographs of the eastern Datong basalts

样品的主量、微量和同位素分析测试均在武汉上谱分析科技有限责任公司完成。挑选新鲜样品,切去风化面,研磨至5mm,剔除杂质,最后磨至200目粉末。全岩主量元素在波长色散X射线荧光光谱仪(ZSXPrimusⅡ)上完成,标样采用GBW07105(标准值)来保证测试精度,分析精度为1%~5%。微量元素测试在电感耦合等离子体质谱仪(Agilent 7700e ICP-MS)上采用GB/T14506.30—2010硅酸盐岩石化学分析方法完成,分析精度好于10%。具体流程:(1)将200目样品置于105℃烘箱中烘干12小时;(2)准确称取粉末样品50mg置于Teflon溶样弹中;(3)依次缓慢加入1mL高纯硝酸和1mL高纯氢氟酸;(4)将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热24小时以上;(5)待溶样弹冷却,开盖后置于140℃电热板上蒸干,然后加入1mL硝酸并再次蒸干(确保溶样弹壁无液体);(6)加入1mL高纯硝酸、1mL MQ水和1mL内标In(浓度为1×10-6),再次将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热12小时以上;(7)将溶液转入聚乙烯塑料瓶中,并用2%硝酸稀释至100g以备ICP-MS测试。岩石主微量分析结果见表 1。Sr-Nd-Pb-Hf同位素测试采用BCR-2、RGM-2两个标样在MC-ICP-MS上完成,分析结果见表 2。同位素分析利用美国Thermo Fisher Scientific公司的MC-ICP-MS(Neptune Plus)完成。

表 1 大同玄武岩主量元素(wt%)和微量元素(×10-6)含量 Table 1 Major (wt%) and trace (×10-6) element contents of Datong basalts

表 2 大同玄武岩Sr-Nd-Pb-Hf同位素组成 Table 2 Sr-Nd-Pb-Hf isotopic composition of Datong basalts
3 分析结果 3.1 主量元素

表 1经标准化计算得知,大同西区玄武岩SiO2含量为45.02%~49.07%,K2O+Na2O含量为5.23%~6.53%,TiO2含量为2.46%~3.05%;东区玄武岩SiO2含量为49.76%~53.30%,K2O+Na2O含量为3.60%~4.56%,TiO2含量为1.81%~2.28%。相较于东区玄武岩,西区玄武岩整体呈低硅高碱高钛的特征。在TAS投图上(图 3),大同西区玄武岩属于碱性玄武岩系列,东区玄武岩属于拉斑玄武岩系列。主量元素Fe2O3、TiO2、Na2O、K2O与MgO之间均无明显协变关系,这和汉诺坝、繁峙、集宁玄武岩类似,但可以看出相对于东区拉斑玄武岩,西区碱性玄武岩具有明显高的主量元素含量(图 4)。SiO2-MgO图解表明,随着SiO2含量增加,MgO含量降低(图 4a);CaO/Al2O3-MgO图解显示简单的正相关(图 4b);大同碱性玄武岩和拉斑玄武岩MgO含量虽然不同,但两种玄武岩Mg#并没有明显的演化关系。

图 3 大同玄武岩TAS图解(底图据Le Bas et al., 1986;碱性玄武岩和拉斑玄武岩分界虚线据Irvine and Baragar, 1971) 实心图标数据马金龙和徐义刚(2004)图 9 Fig. 3 TAS diagram of Datong basalts (after Le Bas et al., 1986, the boundary line between alkaline basalt and tholeiitic basalt after Irvine and Baragar, 1971) The data of solid triangles and squares from Ma and Xu, 2004

图 9 大同玄武岩MgO-Ni(a)和MgO-Cr(b)图解 Fig. 9 Diagrams of MgO vs. Ni (a) and MgO vs. Cr (b) for Datong basalts

图 4 大同第四纪玄武岩主量元素氧化物与MgO协变图 汉诺坝,繁峙,集宁数据来自Zhi et al., 1990; Zhang et al., 2005; 叶蕾等, 2015 Fig. 4 Diagrams of major element oxides vs. MgO for Quaternary Datong basalts Data sources of Hannuoba, Fanshi, Jining after Zhi et al., 1990; Zhang et al., 2005; Ye et al., 2015
3.2 微量元素

大同玄武岩微量元素分析结果见表 1,其中碱性玄武岩的稀土元素总量为192.1×10-6~254.6×10-6,明显高于拉斑玄武岩的69.25×10-6~103.7×10-6含量范围。在稀土元素配分图上,无论西区碱性玄武岩还是东区拉斑玄武岩均显示富集轻稀土(LREE)、亏损重稀土(HREE)的配分模式(图 5a),但两种玄武岩的轻重稀土分馏程度不同,碱性玄武岩(La/Yb)N=19.74~31.62,(La/Sm)PM=2.90~3.40;拉斑玄武岩(La/Yb)N=5.82~12.27,(La/Sm)PM=1.39~2.37,可见碱性玄武岩的轻重稀土分馏程度明显更高。此外,两种玄武岩均未显示Eu异常。原始地幔标准化蛛网图中显示两种玄武岩类似洋岛玄武岩(OIB)的特征,富集Ba、Sr、K等大离子亲石元素(LILE),Nb、Ta两种高场强元素(HFSE)轻微富集,在图上基本显示平滑曲线,且不亏损Zr的特征(图 5b)。

图 5 大同玄武岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化不相容元素曲线(b) 球粒陨石、原始地幔、OIB、E-MORB和N-MORB参考值据Sun and McDonough, 1989 Fig. 5 Chondrite-normalized REE patterns (a) and primitive-mantle normalized incompatible element curves (b) for Datong basalts Chondrite, primitive mantle, OIB, E-MORB and N-MORB reference values after Sun and McDonough, 1989
3.3 Sr-Nd-Pb-Hf同位素

大同玄武岩Sr-Nd-Hf同位素组成分别是87Sr/86Sr为0.703302~0.705102,143Nd/144Nd为0.512561~0.512963,以及176Hf/177Hf为0.282922~0.283072(表 2)。Sr-Nd二元同位素图解显示大同玄武岩整体具有负相关特征,并落在洋岛玄武岩(OIB)范围内,接近全硅酸盐地球值(BSE)(图 6a)。εNd(t)为-1.5~6.3,εHf(t)为5.3~10.6,在εNd(t)-εHf(t)图解(图 6b)上,大同玄武岩样品沿着地幔演化趋势线呈正相关分布,并且也落在OIB范围内。相较于大同拉斑玄武岩,大同碱性玄武岩具有较高Nd和较低Sr同位素特征,显示了同位素组成与岩性的相关关系。大同玄武岩Pb同位素比值如下:206Pb/204Pb为17.131~18.266,207Pb/204Pb为15.382~15.531,208Pb/204Pb为37.591~38.381,在208Pb/204Pb-206Pb/204Pb图解(图 7a)显示大同碱性玄武岩落在I-MORB(印度洋MORB)范围内,而拉斑玄武岩则更接近五大连池钾质玄武岩,这点在207Pb/204Pb-206Pb/204Pb图解(图 7b)得到了验证。所有研究区样品都在NHRL (北半球参考线)之上,且相较于富集端元EMⅡ具有更低的放射性Pb同位素组成,同时可以看出大同碱性玄武岩Pb同位素比值要高于拉斑玄武岩,这些特征与重力梯度带附近繁峙、汉诺坝、集宁等地玄武岩类似(解广轰等, 1989; Xu, 2002;马金龙和徐义刚, 2004; Zhang et al., 2005; Chen et al., 2007; Yan and Zhao, 2008; Yang et al., 2010; 叶蕾等, 2015)。

图 6 大同及周边玄武岩87Sr/86Sr-143Nd/144Nd图解(a)和εNd(t)-εHf(t)图解(b) (a)数据来源:PREMA、MORB、OIB、EMⅠ和EMⅡ (Zindle and Hart, 1986)、古老岩石圈地幔(Zhang et al., 2002)、集宁玄武岩(Zhang et al., 2005)、汉诺坝玄武岩(Song et al., 1990)、繁峙玄武岩(叶蕾等,2015);(b)数据来源:汉诺坝(Choi et al., 2008)、集宁玄武岩(Zhang et al., 2005; Ho et al., 2011; Zhao et al., 2013)、方城玄武岩(Zhang et al., 2002),繁峙玄武岩数据同图 6a Fig. 6 Diagrams of 87Sr/86Sr vs. 143Nd/144Nd (a) and εNd(t) vs. εHf(t) (b) for basalts at Datong and adjacent areas Data sources in Fig. 6a: MORB, OIB, EMⅠ, PREMA and EMⅡ (Zindle and Hart, 1986), ancient lithosphere mantle (Zhang et al., 2002), Jining basalt (Zhang et al., 2005), Hannuoba basalt (Song et al., 1990), Fanshi basalt (Ye et al., 2015). Fig. 6b data source: Hannuoba (Choi et al., 2008), Jining basalt (Zhang et al., 2005; Ho et al., 2011; Zhao et al., 2013), Fangcheng basalt (Zhang et al., 2002), Fanshi basalt data are the same as those of Fig. 6a

图 7 大同及其它玄武岩208Pb/204Pb-206Pb/204Pb(a)和207Pb/204Pb-206Pb/204Pb(b)图解 数据来源:太平洋、大西洋MORB和印度洋MORB (Barry and Kent, 1998; Zou et al., 2000; Chauvel and Blichert-Toft, 2001)、汉诺坝玄武岩(Song et al., 1990; Basu et al., 1991)、五大连池玄武岩(Zhang et al., 1998; Zou et al., 2003)、NHRL (Hart, 1984),其他图例同图 6]]> Data sources: Pacific, Atlantic and Indian MORB (Barry and Kent, 1998; Zou et al., 2000; Chauvel and Blichert-Toft, 2001), Hannuoba basalt (Song et al., 1990; Basu et al., 1991), Wudalianchi basalt (Zhang et al., 1998; Zou et al., 2003), NHRL (Hart, 1984), other legends same as in Fig. 6]]> 讨论 地壳混染 克拉通背景下的大陆玄武质岩浆在上升至地表过程中会经历较厚的大陆地壳,存在着被地壳混染的可能性(Carter et al., 1978; Watson, 1982; Huppert et al., 1985; Reiners et al., 1995)。大同玄武岩是华北克拉通西部玄武岩的重要组成部分,部分拉斑玄武岩在微量元素蛛网图上显示Pb正异常,暗示岩浆同样可能被大陆地壳混染,但是基于以下事实可以排除地壳混染的可能性:(1)狼窝山和金山所见的玄武岩含有橄榄岩包体,这一般被认为是玄武质岩浆快速上升的标志,所以与地壳混染的可能性不大。(2)大陆地壳相较于地幔来源的物质具有低Nb、富集LREE、更低的Nb/U和更高的La/Nb比值(Hofmann, 1988),如果大同玄武岩经历了地壳混染,则Nb/U-Nb以及La/Nb-Ba/Nb应该有正相关关系,而在图 8a图 8b中并未发现大同碱性玄武岩样品具有这种特征,且投点落在OIB范围内,具有比地壳更低的La/Nb比值,更高的Nb含量和Nb/U比值,远离地壳投点。(3)在微量元素蛛网图中并未观察到Nb、Ti、Ta亏损的特征,相反绝大部分样品(Nb/La)N>1,并且显示Ti、Ta的轻微富集,所以基本可以排除地壳混染的可能性。大同拉斑玄武岩La/Nb-Ba/Nb正相关,Nb、Ti、Ta元素相较于碱性玄武岩含量更低,微量元素蛛网图显示Pb正异常,可能暗示地壳混染,但是Ce/Pb-Nb/U图解显示拉斑玄武岩仍然远离地壳投点(图略),且如果经历了较大程度的地壳混染,则εNd值应该与MgO含量存在相关性,但是拉斑玄武岩并没有显示这样的特征,这与AFC预测的混染模型不一致,总体而言微量元素仍然以类似OIB特征为主,所以拉斑玄武岩经历了轻微的地壳混染,但根据上述讨论可以排除地壳混染对于玄武岩成因的影响。基于这个前提,大同玄武岩样品的地球化学特征可以更好地反映地幔源区的特征,这与前人对重力梯度带附近的新生代玄武岩区地壳混染程度不高的评估结果一致(Zhi et al., 1990; Xu et al., 2005; Zhang et al., 2005; 刘金菊等, 2014; 叶蕾等, 2015)。 大同玄武岩La/Nb-Ba/Nb图解(a)和Nb/U-Nb图解(b) Plot of La/Nb vs. Ba/Nb (a) and Nb/U vs. Nb (b) for Datong basalts 数据源:OIB、N-MORB (Sun and McDonough, 1989),全大陆地壳BCC (Rudnick and Gao, 2003) Fig. 7 Plots of 208Pb/204Pb vs. 206Pb/204Pb (a) and 207Pb/204Pb vs. 206Pb/204Pb (b) for Datong and other basalts Data sources: OIB, N-MORB (Sun and McDonough, 1989), BCC (Rudnick and Gao, 2003)
4.2 分离结晶作用

大同玄武岩MgO变化范围为6.63%~8.04%,低于中国东部新生代原始岩浆参考值(MgO 10%~12%),样品的Ni(130×10-6~175×10-6)、Cr(165×10-6~265×10-6)含量又远远低于地幔原始岩浆的含量(Ni>235×10-6, Cr>400×10-6, Sato, 1977; Wilson, 1989),镜下观察到大同玄武岩含有橄榄石、单斜辉石斑晶和斜长石微晶,这些都是大同玄武岩发生分离结晶作用的重要证据。由于Ni在橄榄石中的分配系数为5.9~29,Cr在单斜辉石中的分配系数约为34(Arth, 1976),图 9中显示随着MgO的降低,Ni、Cr含量降低,所以暗示岩浆过程中发生了橄榄石和单斜辉石的分离结晶作用。同时观察到碱性玄武岩MgO与Cr、Ni的正相关趋势明显,而拉斑玄武岩的正相关趋势则稍弱,表明碱性玄武岩分离结晶程度更高;另外CaO/Al2O3-MgO协变图(图 4b)的良好正相关关系也是大同碱性玄武岩和拉斑玄武岩经历单斜辉石分离结晶的证据。微量元素蛛网图(图 5b)并未见Sr、Eu的负异常,说明斜长石的分离结晶作用不明显。总的来说,虽然两种玄武岩均经历了橄榄石、单斜辉石的分离结晶作用,未见明显斜长石结晶,但大同碱性玄武岩分离结晶程度要高于拉斑玄武岩,这与重力梯度带附近汉诺坝等地玄武岩的结晶演化作用基本一致(Song and Frey, 1989; Zhi et al., 1990; Liu et al., 2001; Xu et al., 2005; 叶蕾等, 2015)。

4.3 岩浆源区

中国东部新生代玄武岩被认为是源区两端元不同混合比例形成的(Peng et al., 1986; Basu et al., 1991; Fan and Hooper, 1991; Tatsumoto et al., 1992; Liu et al., 1994)。大同附近的汉诺坝、集宁和繁峙等重力梯度带周边的新生代玄武岩源区同样被认为是来自二端元的混合(解广轰等, 1989; 刘丛强和解广轰, 1996; Coulon et al., 1996; Tang et al., 2006; Zhang et al., 2012; Guo et al., 2014)。那么大同玄武岩的岩浆源区是否同样如此呢,这可从所采集样品的主微量和同位素的地球化学特征来推断其源区成因。

微量元素蛛网图和稀土配分图(图 5b)均显示大同玄武岩有类似OIB的元素特征,和MORB相比非常富集Rb、Ba、Th、U、La等强不相容元素,碱性玄武岩的上述元素含量要高于拉斑玄武岩,这些强不相容元素的含量一般和源区性质有关,暗示两种岩性的岩浆源区有差异。这种类似OIB富集不相容元素的特征和重力梯度带西侧集宁、汉诺坝、繁峙等地玄武岩极为类似(解广轰等, 1989; Zhi et al., 1990; 马金龙和徐义刚, 2004; Xu et al., 2005; Zhang et al., 2005; 叶蕾等, 2015),后者被认为来自软流圈地幔(Song and Frey, 1989; Basu et al., 1991; Fan and Hooper, 1991),结合大同玄武岩右倾的稀土元素配分模式要求源区残留石榴石,据此推测大同玄武岩也可能来自软流圈地幔。

143Nd/144Nd-87Sr/86Sr、207Pb/204Pb-206Pb/204Pb图解(图 6a图 7b)可以看出大同玄武岩主要来自PREMA与EMⅠ端元的混合,并有少量EMⅡ端元的影响,故PREMA是大同玄武岩的亏损端元。PREMA是由国外学者根据全球不同地方玄武岩的同位素特征划分出来的地幔端元中的一个,它的主要特征有(1)与洋岛玄武岩极为相似的同位素特征,富集地壳亏损的元素;(2)可以代表很多大陆玄武岩的亏损端元;(3)具有PREMA同位素特征的玄武岩来源深度可能大于100km(Zindle et al., 1982; Zindle and Hart, 1986)。大同玄武岩在143Nd/144Nd-87Sr/86Sr、εNd(t)-εHf(t)图解(图 6)均落在OIB范围内,根据现有地球物理资料显示大同部分区域岩石圈厚度要超过100km(娄辛辉等, 2017; 徐小兵等, 2018),并且大同附近的汉诺坝和集宁玄武岩Pb同位素特征也显示了PREMA作为亏损端元参与了新生代玄武岩的形成(解广轰和王俊文, 1992; Zhang et al., 2005),所以认为来自软流圈的PREMA是大同玄武岩的亏损端元。

Sr-Nd二元图解显示大同拉斑玄武岩可能受到少量富集组分的影响(图 6a),但是不能确定富集端元EMⅠ和EMⅡ哪一个参与得更多。首先,EMⅡ组分相对大同玄武岩具有较高的206Pb/204Pb和87Sr/86Sr比值,而且它一般起源于大陆下地壳或陆源沉积物(Carlson, 1984; Zindle and Hart, 1986),前文中的讨论以及微量元素蛛网图上也显示大同玄武岩并未有明显的地壳混染特征,因此可以排除EMⅡ作为主要端元参与了大同玄武岩的形成,但不排除有少部分EMⅡ的参与。图 7显示大同玄武岩均有良好的从PREMA到EMⅠ的混合趋势,所以推断EMⅠ是主要的富集端元。关于EMⅠ端元的形成,国内外学者看法不一致,部分学者推测EMⅠ可能来自古洋壳及其携带的沉积物俯冲至深部交代富集软流圈地幔形成(McDonough, 1990; Weaver, 1991; 石林等, 1998),另一部分学者认为EMⅠ来源于古老克拉通之下的大陆岩石圈地幔下部(Tatsumoto et al., 1992)。大同玄武岩的富集端元EMⅠ可能是第二种成因,即来自于古老岩石圈地幔。证据如下:(1)同为重力梯度带西侧且临近大同的汉诺坝、集宁等地的大陆岩石圈地幔下部具有和EMⅠ一样低的143Nd/144Nd和高的87Sr/86Sr同位素特征(Tatsumoto et al., 1992; Tang et al., 2006);(2)中国东部包括上述区域新生代玄武岩EMⅠ型特征也被广泛认为是大陆岩石圈地幔(SCLM)下部的贡献(Zhi et al., 1990; Basu et al., 1991; Fan and Hooper, 1991; Tatsumoto et al., 1992; 马金龙和徐义刚, 2004; Zhang et al., 2005; Ho et al., 2011; 叶蕾等, 2015);(3)208Pb/204Pb-206Pb/204Pb图解上(图 7a),大同拉斑玄武岩更靠近五大连池玄武岩(板块内部SCLM来源),因此本文认为来自古老岩石圈地幔的EMⅠ是大同玄武岩的富集端元。

同位素特征揭示了大同玄武岩是软流圈(PREMA)+大陆古老岩石圈地幔下部(EMⅠ)形成的。因为古老岩石圈地幔一般比较难熔,但是玄武岩的形成需要饱满岩石熔融(Griffin et al., 1999),Sr-Nd组分混合模拟曲线显示大同拉斑玄武岩有不超过20%、大同碱性玄武岩不超过10%的富集组分的参与(图 6a),所以大同第四纪玄武岩主要来源于软流圈的部分熔融,并熔融了少量古老岩石圈地幔。同位素图解上碱性玄武岩更靠近亏损端元(PREMA),拉斑玄武岩更靠近富集端元(EMⅠ),说明拉斑玄武岩中岩石圈组分比例较碱性玄武岩大。

4.4 部分熔融程度和深度

玄武岩部分熔融的深度和硅的饱和程度有较大关系,通常硅越饱和玄武岩形成深度越浅,所以碱性玄武岩形成深度要大于拉斑玄武岩(Hirose and Kushiro, 1993; Kushiro, 2001)。前人研究表明华北碱性玄武岩形成深度>80km,拉斑玄武岩的形成深度为50~60km(Nohda et al., 1991)。大同西区主要为碱性玄武岩,形成深度应该大于80km。主量上碱性玄武岩SiO2含量大于拉斑玄武岩,在硅碱投图上处于硅不饱和区域,拉斑玄武岩则相对硅饱和。微量上(La/Sm)碱性>(La/Sm)拉斑、(La/Yb)碱性>(La/Yb)拉斑,显示拉斑玄武岩轻重稀土分馏程度低于碱性玄武岩,这种轻重稀土的分馏程度受控于岩石圈厚度(源区深度),岩石圈厚度越大,发生部分熔融程度越低,轻重稀土的分馏程度就越明显,即源区来源越深的玄武岩,其轻重稀土越分馏(Ellam, 1992; Niu, 2005, 2016; Guo et al., 2020),所以东区拉斑玄武岩形成深度应浅于西区碱性玄武岩。

对于石榴子石,Yb是相容元素,而La、Sm为不相容元素,石榴子石相橄榄岩部分熔融的程度越低,分异程度越明显;而在尖晶石相橄榄岩部分熔融作用中,La/Yb变化较小,Sm/Yb基本不变,因此La/Yb-Sm/Yb图常用于区分来自石榴子石相橄榄岩和尖晶石相橄榄岩的玄武岩(Xu et al., 2005)。从图 10中可以看出大同玄武岩落在石榴子石二辉橄榄岩熔融曲线上,碱性玄武岩熔融程度较小为1.5%~3%,拉斑玄武岩熔融程度明显比碱性玄武岩大,约为4%~8%。不相容元素的含量和比值通常也是判断部分熔融程度的重要方法,Zr/Y比值不受分离结晶影响而受控于部分熔融程度,这是因为Zr的不相容性更高,随着熔融程度的增加,Zr/Y比值下降,图 10b显示拉斑玄武岩更小的Zr/Y比值,这与图 10a的模拟结果一致。

图 10 大同玄武岩La/Yb-Sm/Yb (a)和Zr-Zr/Y (b)图解 曲线旁边数字代表熔融比例,源区矿物组分、矿物熔融比例和元素分配系数据Johnson et al., 1990; McKenzie and O’Nions, 1991 Fig. 10 La/Yb vs. Sm/Yb (a) and Zr vs. Zr/Y (b) diagrams of Datong basalt The numbers next to the curve represent the melting ratio. Mineral composition, melting ratio, and elemental distribution data of the source area after Johnson et al., 1990; McKenzie and O'Nions, 1991
5 结论

(1) 大同第四纪火山岩以陈庄-许堡断裂为界分为东西两区,西区是碱性玄武岩,东区为拉斑玄武岩。

(2) 大同玄武岩含有大量橄榄石和单斜辉石斑晶,结合Ni、Cr与MgO的负相关特征,推断这两种矿物是主要的分离结晶矿物。

(3) La/Yb-Sm/Yb图解模拟计算得出大同玄武岩是石榴子石二辉橄榄岩低程度部分熔融的结果,碱性玄武岩约为1.5%~3%,拉斑玄武岩为4%~8%,部分熔融程度不同控制着两种玄武岩主、微量元素的差异。

(4) 大同碱性玄武岩和拉斑玄武岩相对富集LREE、LILE和HFSE,具有类似洋岛玄武岩(OIB)的特征,同位素图解表明它们都是以PREMA端元为代表的软流圈地幔低程度部分熔融,并有较少比例以EMⅠ端元为代表的古老岩石圈地幔的加入(碱性玄武岩不超过10%,拉斑玄武岩不超过20%),其同位素特征的差异则是岩石圈物质参与比例不同造成的。

致谢      感谢三位评审专家及编辑部俞良军博士对本文的建设性修改意见,使本文的论述及表达更为严谨清晰。

参考文献
An WP and Su ZZ. 2008. Landform of volcanoes in Datong of Shanxi. Earthquake Research in Shanxi, (1): 1-5 (in Chinese with English abstract)
Arth JG. 1976. Behavior of trace elements during magmatic processes:A summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey, 4(1): 41-47
Barry TL and Kent RW. 1998. Cenozoic magmatism in Mongolia and the origin of central and East Asian basalts. In: Flower MFJ, Chung SL, Lo CH and Lee TY (eds.). Mantle Dynamics and Plate Interactions in East Asia. Washington: American Geophysical Union, 347-364
Basu AR, Wang JW, Huang WK, Xie GH and Tatsumoto M. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China:Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105(1-3): 149-169
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258
Carlson RW. 1984. Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental mantle. Geochimica et Cosmochimica Acta, 48(11): 2357-2372
Carter SR, Evensen NM, Hamilton PJ and O'nions RK. 1978. Neodymium and strontium isotope evidence for crustal contamination of continental volcanics. Science, 202(4369): 743-747
Cen M, Dong SW, Shi W, Zhou TF, Chen L and Chen XQ. 2015. Structural analysis on the formation mechanism of Datong basin. Geological Review, 61(6): 1235-1247 (in Chinese with English abstract)
Chauvel C and Blichert-Toft J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190(3-4): 137-151
Chen LH, Zeng G, Hu SL, Yu X and Chen XY. 2012. Crustal recycling and genesis of continental alkaline basalts:Case study of the Cenozoic alkaline basalts from Shandong Province, eastern China. Geological Journal of China Universities, 18(1): 16-27 (in Chinese with English abstract)
Chen WJ, Li DM and Dai TM. 1992. K-Ar age and excess argon of the Quaternary basalts in Datong. In: Liu RX (ed.). Chronology and Geochemistry of Cenozoic Volcanic Rocks in China. Beijing: Seismological Press, 81-92(in Chinese)
Chen XD, Lin CY, Zhang XO and Shi LB. 1997. Deformation features of mantle xenoliths from quaternary basalts in Datong, Shanxi Province and their rheological implications. Seismology and Geology, 19(4): 313-320 (in Chinese with English abstract)
Chen XD, Shi LB and Lin CY. 2001. A research on Quaternary volcanism in North China. Seismology and Geology, 23(4): 564-573 (in Chinese with English abstract)
Chen Y, Zhang YX, Graham D, Su SG and Deng JF. 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96(1-2): 108-126
Choi SH, Mukasa SB, Zhou XH, Xian XH and Andronikov AV. 2008. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology, 248(1-2): 40-61
Coulon C, Vidal P, Dupuy C, Baudin P, Popoff M, Maluski H and Hermitte D. 1996. The Mesozoic to Early Cenozoic magmatism of the Benue trough (Nigeria):Geochemical evidence for the involvement of the St Helena plume. Journal of Petrology, 37(6): 1341-1358
Ellam RM. 1992. Lithospheric thickness as a control on basalt geochemistry. Geology, 20(2): 153-156
Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China:Petrology and chemical composition. Journal of Petrology, 32(4): 765-810
Fan WM and Menzies MA. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia, 16: 171-180
Gao S, Rudnick RL, Carlson RW, McDonough WF and Liu YS. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198(3-4): 307-322
Griffin WL, O'Reilly SY and Ryan CG. 1999. The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Bertka CM and Mysen BO (eds.). Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd. Houston: The Geochemical Society Special Publications, 13-46
Guo JT, Guo F, Wang CY and Li CW. 2013. Crustal recycling processes in generating the Early Cretaceous Fangcheng basalts, North China Craton:New constraints from mineral chemistry, oxygen isotopes of olivine and whole-rock geochemistry. Lithos, 170-171: 1-16
Guo PY, Niu YL, Ye L, Liu JJ, Sun P, Cui HX, Zhang Y, Gao JP, Su L, Zhao JX and Feng YX. 2014. Lithosphere thinning beneath west North China Craton:Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts. Lithos, 202-203: 37-54
Guo PY, Niu YL, Sun P, Gong HM and Wang XH. 2020. Lithosphere thickness controls continental basalt compositions:An illustration using Cenozoic basalts from eastern China. Geology, 48(2): 128-133
Han JQ. 1992. Quaternary period Datong basin groups of volcano eruption type and structure feature. Journal of Shanxi Normal University (Natural Science Edition), 6(3): 72-77 (in Chinese with English abstract)你原文是Teacher's University, 修改了, 查实!!!!
Hart SR. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309(5971): 753-757
Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressures:Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4): 477-489
Ho KS, Liu Y, Chen JC, You CF and Yang HJ. 2011. Geochemical characteristics of Cenozoic Jining basalts of the western North China Craton:Evidence for the role of the lower crust, lithosphere, and asthenosphere in petrogenesis. Terrestrial, Atmospheric and Oceanic Sciences, 22(1): 15-40
Hofmann AW. 1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314
Huppert HE, Stephen R and Sparks J. 1985. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth and Planetary Science Letters, 74(4): 371-386
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548
Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH and Liu DY. 1987. 3.5Ga old amphibolites from eastern Hebei Province, China:Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Research, 34(3-4): 311-346
Johnson KTM, Dick HJB and Shimizu N. 1990. Melting in the oceanic upper mantle:An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research:Solid Earth, 95(B3): 2661-2678
Kushiro I. 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annual Review of Earth and Planetary Sciences, 29(1): 71-107
Kusky TM, Windley BF, Wang L, Wang ZS, Li XY and Zhu PM. 2014. Flat slab subduction, trench suction, and craton destruction:Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208-221
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750
Li HH and Sun JZ. 1984. Using thermoluminescence age to study the age of volcanic activity in Datong. Science in China (Series B), 14(7): 637-644 (in Chinese)
Li SR and Santosh M. 2017. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Research, 50: 267-292
Li WX, Wu XG and Feng JL. 1994. Study on the basalt of volcanic cluster in Datong, Shanxi. Journal of Hebei College of Geology, 17(6): 547-555 (in Chinese with English abstract)
Liu CQ, Masuda A and Xie GH. 1994. Major-and trace-element compositions of Cenozoic basalts in eastern China:Petrogenesis and mantle source. Chemical Geology, 114(1-2): 19-42
Liu CQ and Xie GH. 1996. REE, Sr and Nd isotope geochemistry of mantle xenoliths from basalts in Hannuoba. Acta Petrologica Sinica, 12(3): 382-389 (in Chinese with English abstract)
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339-342
Liu JJ, Ye L, Niu YL, Guo PY, Sun P and Cui HX. 2014. The geochemistry of late Mesozoic volcanic rocks from the North China craton and temporal and spatial constraints on the lithospheric thinning. Geological Journal of China Universities, 20(4): 491-506 (in Chinese with English abstract)
Liu YS, Gao S, Jin SY, Hu SH, Sun M, Zhao ZB and Feng JL. 2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton:Implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604
Lou XH, Ai YS, Zhang YY, Chen YS and Ning JY. 2017. Study of lithospheric structure in the central and western North China craton. Progress in Geophysics, 32(4): 1458-1464 (in Chinese with English abstract)
Ma JL and Xu YG. 2004. Petrology and geochemistry of the Cenozoic basalts from Yangyuan of Hebei Province and Datong of Shanxi Province:Implications for the deep process in the western North China Craton. Geochemistry, 33(1): 75-88 (in Chinese with English abstract)
Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750Ma to the present. The Island Arc, 6(1): 121-142
McDonough WF. 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 101(1): 1-18
McKenzie D and O'Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091
Menzies MA, Fan WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London, Special Publications, 76(1): 71-81
Nakamura E, Campbell IH, McCulloch MT and Sun SS. 1989. Chemical geodynamics in a back arc region around the Sea of Japan:Implications for the genesis of alkaline basalts in Japan, Korea, and China. Journal of Geophysical Research:Solid Earth, 94(B4): 4634-4654
Niu YL. 2005. Generation and evolution of basaltic magmas:Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities, 11(1): 9-46
Niu YL. 2016. The meaning of global ocean ridge basalt major element compositions. Journal of Petrology, 57(11-12): 2081-2103
Nohda S, Chen H and Tatsumi Y. 1991. Geochemical stratification in the upper mantle beneath NE China. Geophysical Research Letters, 18(1): 97-100
Pei FP, Xu WL, Wang QH, Wang DY and Lin JQ. 2004. Mesozoic basalt and mineral chemistry of the mantle-derived xenocrysts in Feixian, western Shandong, China:Constraints on nature of Mesozoic lithospheric mantle. Geological Journal of China Universities, 10(1): 88-97 (in Chinese with English abstract)
Pei JX. 1981. Determination of thermoluminescence age of volcanic flow baked sediments in Datong area. Chinese Science Bulletin, 26(16): 1003-1005 (in Chinese)
Peng ZC, Zartman RE, Futa K and Chen DG. 1986. Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology:Isotope Geoscience Section, 59: 3-33
Qian SP, Ren ZY, Zhang L, Hong LB and Liu JQ. 2015. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton:Implications for petrogenesis and mantle source. Chemical Geology, 401: 111-125
Reiners PW, Nelson BK and Ghiorso MS. 1995. Assimilation of felsic crust by basaltic magma:Thermal limits and extents of crustal contamination of mantle-derived magmas. Geology, 23(6): 563-566
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Rudnick RL, Gao S, Ling WL, Liu YS and McDonough WF. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77(1-4): 609-637
Sato H. 1977. Nickel content of basaltic magmas:Identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2): 113-120
Shi L, Xie GH and Xia B. 1998. Geochemistry of trace elements of mantle domains:A review. Geology-Geochemistry, 26(2): 77-82 (in Chinese with English abstract)
Song Y and Frey FA. 1989. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China:Implications for subcontinental mantle heterogeneity. Geochimica et Cosmochimica Acta, 53(1): 97-113
Song Y, Frey FA and Zhi XC. 1990. Isotopic characteristics of Hannuoba basalts, eastern China:Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology, 88(1-2): 35-52
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tang YJ, Zhang HF and Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime:Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3-4): 309-327
Tatsumoto M, Basu AR, Huang WK, Wang JW and Xie GH. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China:Enriched components EMⅠ and EMⅡ in subcontinental lithosphere. Earth and Planetary Science Letters, 113(1-2): 107-128
Wang CY, Liu YS, Min N, Zong KQ, Hu ZC and Gao S. 2016. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton:Evidence from peridotite xenoliths in the Datong basalts. Lithos, 261: 109-127
Wang NL, Yang JC, Xia ZK, Mo DW, Li YL and Pan M. 1996. Cenozoic Sedimentary and Tectonic Geomorphology of Shanxi Graben System. Beijing: Science Press (in Chinese)
Watson EB. 1982. Basalt contamination by continental crust:Some experiments and models. Contributions to Mineralogy and Petrology, 80(1): 73-87
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397
Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London: Springer, 1-466
Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract)
Xie GH, Wang JW, Tatsumoto M and Basu AR. 1989. Petrochemistry and isotope geochemistry of Hannuoba basalts and Datong volcano. Geochimica, (4): 277-296 (in Chinese with English abstract)
Xie GH and Wang JW. 1992. Geochemistry of Hannuoba basalt and ultramafic xenoliths. In: Liu RX (ed.). Chronology and Geochemistry of Cenozoic Volcanic Rocks in China. Beijing: Seismological Press, 149-170 (in Chinese)
Xu XB, Zhao L, Wang K and Yang JF. 2018. Indication from finite-frequency tomography beneath the North China Craton:The heterogeneity of craton destruction. Science China (Earth Sciences), 61(9): 1238-1260
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 747-757
Xu YG. 2002. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms:Pyroxenite xenoliths from Hannuoba, North China. Chemical Geology, 182(2-4): 301-322
Xu YG, Ma JL, Frey FA, Feigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247-271
Xu YG. 2006. Using basalt geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton. Earth Science Frontiers, 13(2): 93-104 (in Chinese with English abstract)
Xu YG. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin'anling-Taihangshan gravity lineament. Lithos, 96(1-2): 281-298
Xu YG, Li HY, Pang CJ and He B. 2009. On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin, 54(19): 3379
Yan J and Zhao JX. 2008. Cenozoic alkali basalts from Jingpohu, NE China:The role of lithosphere-asthenosphere interaction. Journal of Asian Earth Sciences, 33(1-2): 106-121
Yang JH, O'Reilly S, Walker RJ, Griffin W, Wu FY, Zhang M and Pearson N. 2010. Diachronous decratonization of the Sino-Korean craton:Geochemistry of mantle xenoliths from North Korea. Geology, 38(9): 799-802
Ye L, Liu JJ, Niu YL, Guo PY, Sun P and Cui HX. 2015. Mantle sources and petrogenesis of the Cenozoic basalts in Fanshi, Shanxi Province:Geochemical and Sr-Nd-Pb-Hf isotopic evidence. Acta Petrologica Sinica, 31(1): 161-175 (in Chinese with English abstract)
Zeng G, Chen LH, Xu XS, Jiang SY and Hofmann AW. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology, 273(1-2): 35-45
Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG and Yin JF. 2002. Mesozoic lithosphere destruction beneath the North China Craton:Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254
Zhang JJ, Zheng YF and Zhao ZF. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110(1-4): 305-326
Zhang M, Zhou X H and Zhang JB. 1998. Nature of the lithospheric mantle beneath NE China: Evidence from potassic volcanic rocks and mantle xenoliths. In: Flower MFJ, Chung SL, Lo CH and Lee TY (eds.). Mantle Dynamics and Plate Interactions in East Asia. Washington: American Geophysical Union, 197-219
Zhang WH, Han BF, Du W and Liu ZQ. 2005. Characteristics of mantle source for Jining Cenozoic basalts from southern Inner Mongolia:Evidence from element and Sr-Nd-Pb isotopic geochemistry. Acta Petrologica Sinica, 21(6): 1569-1582 (in Chinese with English abstract)
Zhang WH, Zhang HF, Fan WM, Han BF and Zhou MF. 2012. The genesis of Cenozoic basalts from the Jining area, northern China:Sr-Nd-Pb-Hf isotope evidence. Journal of Asian Earth Sciences, 61: 128-142
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73
Zhao H, Wang CM, Mao HL, Lu YC, Liu LJ, JI YP and Zhao HM. 2012. OSL dating of volcanic baked sediments in Datong area, Shanxi Province of China. Quaternary Sciences, 32(3): 510-515 (in Chinese with English abstract)
Zhao XM, Zhang HF, Su F, Hu ZC, Lo CH, Wang Y, Yang SH and Guo JH. 2013. Phlogopite 40Ar/39Ar geochronology of mantle xenoliths from the North China Craton:Constraints on the eruption ages of Cenozoic basalts. Gondwana Research, 23(1): 208-219
Zheng JP. 1999. Mantle Replacement in Eastern China and Lithospheric Thinning in Mesozoic and Cenozoic. Wuhan: China University of Geosciences Press (in Chinese)
Zheng JP, Griffin WL, Qi L, O'Reilly SY, Sun M, Zheng S, Pearson N, Gao JF, Yu CM, Su YP, Tang HY, Liu QS and Wu XL. 2009. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology, 264(1-4): 266-280
Zhi XC, Song Y, Frey FA, Feng JL and Zhai MZ. 1990. Geochemistry of Hannuoba basalts, eastern China:Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology, 88(1-2): 1-33
Zhou XH, Sun M, Zhang GH and Chen SH. 2002. Continental crust and lithospheric mantle interaction beneath North China:Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62(3-4): 111-124
Zhu RX, Liu C and Zhu GK. 1985. Measurement of the paleomagnetic intensity of the Pleistocene Datong Volcanic Group. Chinese Science Bulletin, 30(20): 1564-1566 (in Chinese)
Zhu RX, Liu C and Zhu GK. 1990. Determination of the Paleomagnetic field of Datong region and its geological significance. Journal of Graduate School, USTC, 7(2): 72-78 (in Chinese with English abstract)
Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797
Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QK and Zheng TY. 2012. Destruction of the North China craton. Science China (Earth Sciences), 55(10): 1565-1587
Zindler A, Jagoutz E and Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three-component mantle:A new perspective. Nature, 298(5874): 519-523
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571
Zou HB, Zindler A, Xu XS and Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China:mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1-2): 33-47
Zou HB, Reid MR, Liu YS, Yao YP, Xu XS and Fan QC. 2003. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology, 200(1-2): 189-201
安卫平, 苏宗正. 2008. 山西大同火山地貌. 山西地震, (1): 1-5.
岑敏, 董树文, 施炜, 施炜, 周涛发, 陈龙, 陈兴强. 2015. 大同盆地形成机制的构造研究. 地质论评, 61(6): 1235-1247.
陈立辉, 曾罡, 胡森林, 俞恂, 陈霞玉. 2012. 地壳再循环与大陆碱性玄武岩的成因:以山东新生代碱性玄武岩为例. 高校地质学报, 18(1): 16-27.
陈文寄, 李大明, 戴潼谟等. 1992.大同第四纪玄武岩的K-Ar年龄及过剩氩.见: 刘若新编.中国新生代火山岩年代学与地球化学.北京: 地震出版社, 81-92
陈孝德, 林传勇, 张小鸥, 史兰斌. 1997. 山西大同第四纪火山岩中幔源包体的变形特征及其上地幔流变学意义. 地震地质, 19(4): 313-320.
陈孝德, 史兰斌, 林传勇. 2001. 华北第四纪火山作用研究. 地震地质, 23(4): 564-573.
韩军青. 1992. 第四纪大同盆地火山群喷发类型及构造特点. 山西师范大学学报(自然科学版), 6(3): 72-77.
李虎侯, 孙建中. 1984. 用热释光年龄研究大同火山活动的时代. 中国科学(B辑), 14(7): 637-644.
李文宣, 吴新国, 冯家麟. 1994. 大同火山群玄武岩研究. 河北地质学院学报, 17(6): 547-555.
刘丛强, 解广轰. 1996. 汉诺坝玄武岩中地幔岩捕掳体REE和Sr, Nd同位素地球化学. 岩石学报, 12(3): 382-389.
刘金菊, 叶蕾, 牛耀龄, 郭鹏远, 孙普, 崔慧霞. 2014. 华北克拉通重力梯度带两侧晚中生代火山岩地球化学特征对比研究及其对岩石圈减薄的时空制约. 高校地质学报, 20(4): 491-506.
娄辛辉, 艾印双, 张耀阳, 陈永顺, 宁杰远. 2017. 华北克拉通中西部岩石圈结构研究. 地球物理学进展, 32(4): 1458-1464.
马金龙, 徐义刚. 2004. 河北阳原和山西大同新生代玄武岩的岩石地球化学特征:华北克拉通西部深部地质过程初探. 地球化学, 33(1): 75-88.
裴福萍, 许文良, 王清海, 王冬艳, 林景仟. 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97.
裴静娴. 1981. 大同地区火山岩流烘烤沉积物的热发光年龄测定. 科学通报, 26(16): 1003-1005.
石林, 解广轰, 夏斌. 1998. 地幔端元组分的微量元素地球化学研究综述. 地质地球化学, 26(2): 77-82.
王乃樑, 杨景春, 夏正楷, 莫多闻, 李有利, 潘懋. 1996. 山西地堑系新生代沉积与构造地貌. 北京: 科学出版社.
吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174.
解广轰, 王俊文, Tatsumoto M, Basu AR. 1989. 汉诺坝玄武岩及大同火山群的岩石学和同位素地球化学. 地球化学, (4): 277-296.
解广轰, 王俊文. 1992.汉诺坝玄武岩及其超镁铁质岩捕虏体的地球化学.见: 刘若新编.中国新生代火山岩年代学与地球化学.北京: 地震出版社, 149-170
徐小兵, 赵亮, 王坤, 杨建锋. 2018. 华北克拉通地区有限频体波层析成像——克拉通破坏的空间非均匀性. 中国科学(地球科学), 48(9): 1223-1247.
徐义刚. 2006. 用玄武岩组成反演中-新生代华北岩石圈的演化. 地学前缘, 13(2): 93-104.
叶蕾, 刘金菊, 牛耀龄, 郭鹏远, 孙普, 崔慧霞. 2015. 山西繁峙新生代玄武岩地幔源区及成因探讨:元素及Sr-Nd-Pb-Hf同位素地球化学证据. 岩石学报, 31(1): 161-175.
张文慧, 韩宝福, 杜蔚, 刘志强. 2005. 内蒙古集宁新生代玄武岩的地幔源区特征:元素及Sr-Nd-Pb同位素地球化学证据. 岩石学报, 21(6): 1569-1582.
赵华, 王成敏, 毛洪亮, 卢演俦, 刘林敬, 吉云平, 赵红梅. 2012. 大同火山烘烤层的光释光年龄. 第四纪研究, 32(3): 510-515.
郑建平. 1999. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社.
朱日祥, 刘椿, 朱岗昆. 1985. 更新世大同火山群地磁场古强度的测定. 科学通报, 30(20): 1564-1566.
朱日祥, 刘椿, 朱岗昆. 1990. 大同地区古地磁场测定及其地质意义. 中国科学院研究生院学报, 7(2): 72-78.
朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学(地球科学), 41(5): 583-592.