岩石学报  2020, Vol. 36 Issue (10): 3041-3062, doi: 10.18654/1000-0569/2020.10.07   PDF    
藏南冈底斯岩基东段米林地区晚侏罗世-白垩纪侵入岩的岩石成因和地球动力学意义
王海涛1, 曾令森1, 许翠萍1, 高家昊1, 赵令浩1,2, 王亚飞1, 胡昭平1     
1. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 中国地质科学院国家地质实验测试中心, 北京 100037
摘要: 冈底斯岩基东部的米林地区发育辉长质片麻岩和花岗质片麻岩近垂向相间排布的侵入杂岩体及东侧未变形闪长岩体。野外穿切关系和锆石SHRIMP U-Pb年龄结果表明:早期辉长质片麻岩(146.3±1.6Ma)被晚期花岗质片麻岩(141.7±2.0Ma)侵入,并一起经历了后期变质作用(~90Ma)和晚白垩世闪长质岩浆作用(87.8±1.1Ma)。辉长质片麻岩具有E-MORB特征,经历了富Ti矿物相的堆晶作用,母岩浆主要来源于板片流体交代上覆亏损地幔楔物质(εHf(t)=+9.9~+14.5;εNd(t)=+3.0~+4.1)。花岗质片麻岩具有岛弧型岩浆岩的地球化学特征,同时伴有Fe-Ti氧化物的分离结晶,源区物质主要为部分熔融的初生下地壳(εHf(t)=+10.9~+15.1;εNd(t)=+4.1~+4.3)。闪长岩具有弱的Eu正异常,暗示源区存在斜长石的堆晶作用,其母岩浆来源于板片流体交代上覆亏损地幔楔物质(εHf(t)=+12.2~+15.6),并在岩浆演化的过程中混入地壳物质。冈底斯岩基南缘发育晚侏罗世的辉长岩和早白垩世花岗可能是第一次新特提斯洋北向俯冲即将终止的产物。晚白垩世岩浆岩是与新特提斯洋再次俯冲引起的峰期岩浆活动的标志,可能是板块回撤引发软流圈上涌的产物。
关键词: 冈底斯岩基    晚侏罗世    白垩纪    侵入体    新特提斯洋    
Petrogenesis and geodynamic significances of Late Jurassic-Cretaceous intrusion in the Mainling area, eastern Gangdese, southern Tibet
WANG HaiTao1, ZENG LingSen1, XU CuiPing1, GAO JiaHao1, ZHAO LingHao1,2, WANG YaFei1, HU ZhaoPing1     
1. Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: The intrusion complex consists of alternative distributions of gabbroic gneiss and granitic gneiss occurred in Mainling area,southeastern Tibet. Zircon U-Pb dating results indicate that: (1) the protoliths of the gabbroic and granitic gneisses formed at 146.3±1.6Ma and 141.7±2.0Ma,respectively,consistent with field cross-cutting relationship; (2) An nearby undeformed diorite pluton formed at 87.8±1.1Ma; and (3) both types of gneisses were suffered from metamorphism at ~90Ma,possibly derived by widespread regional magmatism during this time. The gabbroic gneisses show geochemical features resembling enriched mid-ocean range basalt (E-MORB) and various degrees of accumulation of Ti-rich phases. The protoliths of the gabbroic gneisses with εHf(t)=+9.9~+14.5 and εNd(t)=+3.0~+4.1 were originated from hydrous partial melting of mantle wedge metasomatized by fluids released from the subducting oceanic slabs. In contrast,the protoliths of the granitic gneisses,characterized by depleted Hf (εHf(t)=+10.9~+15.1) and Nd (εNd(t)=+4.1~+4.3) isotope compositions,possibly represent the residue magma from the juvenile-crust derived magma after fractional crystallization of Fe-Ti oxides. The undeformed diorites (εHf(t)=+12.2~+15.6) were derived from hydrous partial melting of mantle wedge triggered by fluids released from subducting Neo-Tethyan oceanic slabs and experienced slightly crustal contamination. Late Jurassic-early Cretaceous intrusion complex occurred in the southern margin of Gangdese possibly represent the magmatism during the waning stage of first phase of northward subduction of the Neo-Tethyan Oceanic lithosphere. Late Cretaceous diorite is a symbol of peak magmatism stage,triggered by the second phase of northward subduction of the Neo-Tethyan Oceanic lithosphere. It may be a product of asthenosphere upwelling caused by slab rollback.
Key words: Gangdese    Late Jurassic    Cretaceous    Intrusion    New-Tethys Ocean    

冈底斯岩基以晚白垩世以来的岩浆岩为主,这些岩浆岩为揭示新特提斯洋北向俯冲、印度-欧亚大陆的陆陆碰撞事件及碰撞后的深部动力学过程及其物理化学效应提供了重要的记录(Yin and Harrison, 2000; Chung et al., 2005; Mo et al., 2007; Ji et al., 2009; Zhu et al., 2011; Hou et al., 2015a; Wang et al., 2019; Zhang et al., 2010, 2020; Xu et al., 2020;莫宣学等, 2005;高家昊等, 2017;徐倩等, 2019b)。最近的研究发现晚三叠世-中侏罗世的岩浆岩在拉萨地块也广泛发育(Chu et al., 2006, 2011; Wen et al., 2008; Ji et al., 2009; Zhu et al., 2011; Guo et al., 2013; Wang et al., 2016; Wei et al., 2017; Ma et al., 2020;张宏飞等, 2007;邱检生等, 2015),包括桑日群火山岩(Kang et al., 2014; Wang et al., 2016)、叶巴组火山岩(Zhu et al., 2008; Hou et al., 2015b; Wei et al., 2017; Liu et al., 2018;黄丰等, 2015)及大小规模不等的侵入体(Chu et al., 2006, 2011; Wen et al., 2008; Ji et al., 2009; Zhu et al., 2011; Shui et al., 2018; Chen et al., 2019; Xu et al., 2019;张宏飞等, 2007;董昕和张泽明, 2013;邱检生等, 2015;董汉文等, 2016)。自晚侏罗世(150±6Ma)以来,冈底斯带的岩浆作用记录鲜有报道(Ji et al., 2009; Zhu et al., 2009;钟云等, 2013;张豪等, 2019),其原因尚无定论。直到晚白垩时期(90±10Ma),岩浆活动再次频繁,从东段的米林地区到中段的日喀则地区均有露头(Wen et al., 2008; Ji et al., 2009; Zhang et al., 2010; Ma et al., 2013;康志强等, 2010;管琪等, 2011;王莉等, 2013;高家昊等, 2017;曾令森等, 2017;徐倩等, 2019a),总体上被认为是新特提斯洋向北俯冲的产物,他们构成了冈底斯岩基主要组成部分之一。遗憾的是,冈底斯岩基东段晚侏罗世-早白垩世的岩浆记录的匮乏,限制了我们对冈底斯岩基物质组成的认识与新特提斯洋构造演化的全面了解。而米林地区发育晚侏罗世-早白垩世的岩浆岩成为我们探索冈底斯岩基物质组成的重要窗口,同时也为我们了解新特提斯洋俯冲作用及相关效应提供素材。

本文在详细的野外地质调查和室内岩相学观察基础上,报道了冈底斯带东段米林地区侵入杂岩体(辉长质片麻岩和花岗质片麻岩)和闪长岩的锆石U-Pb年龄和Hf同位素组成、以及元素和Sr-Nd同位素地球化学特征,以期探讨冈底斯岩基晚侏罗世-晚白垩世岩浆岩的岩石成因和地球动力学意义。

1 地质背景和岩相学特征

拉萨地块是青藏高原的重要组成部分,夹持于班公湖-怒江缝合带和雅鲁藏布江缝合带中间,以洛巴堆-米拉山断裂带(LMF)和狮泉河-纳木错混杂岩带(SNMZ)为界,自南向北分为南拉萨地块、中拉萨地块和北拉萨地块(Zhu et al., 2011)。南拉萨地块主要由冈底斯岩基组成。冈底斯岩基西起冈仁波齐峰,向东延伸到南迦巴瓦峰,全长约2500 km(Ji et al., 2009; Mo et al., 2007; Wu et al., 2010)。

研究区位于冈底斯岩基东段的林芝市,样品采自于米林县扎西绕登乡东侧7km出露的辉长质-花岗质侵入杂岩体(图 1b)。研究区内发育念青唐古拉岩群八拉岩组斜长角闪片麻岩、肉切村岩群二云石英片岩和高喜马拉雅南迦巴瓦岩群深灰色黑云斜长片麻岩、石英岩等(西藏自治区地质矿产局, 1993)。上述岩群的原岩形成于早古生代和中元古代(Zhang et al., 2020及其中的参考文献),构成拉萨地块的古老基底,随后在晚中生代和新生代经历了多期变质作用再造(Zhang et al., 2010, 2020)。冈底斯带东段的朗县至米林县一带广泛发育晚白垩世的岩浆岩(Wen et al., 2008; Zhang et al., 2010; Ma et al., 2013;管琪等, 2011;王莉等, 2013),构成了冈底斯岩基东段岩浆岩的主要组成部分。

图 1 青藏高原区域构造划分图(a)和冈底斯岩基东段米林地区侵入杂岩体地质简图(b) KSZ-昆仑缝合带;JSZ-金沙江缝合带:LSSZ-龙木错-双湖缝合带;BNSZ-班公湖-怒江缝合带;IYSZ-印度-雅鲁藏布江缝合带.数据来源:Wen et al., 2008; Zhang et al., 2010, 2014; Ma et al., 2013;管琪等, 2011, 及其中的参考文献 Fig. 1 Tectonic framework of the Tibet Plateau (a) and geological sketch map of the instrusion complex in Mainling area, eastern Gangdese (b) KSZ-Kunlun suture zone; JSZ-Jingsha suture zone; LSSZ-Longmu Co-Shuanghu suture zone; BNSZ-Bangong-Nujiang suture zone; IYSZ-Indus-Yarlung suture zone

辉长质片麻岩(T1011-A)和花岗质片麻岩(T1011-B)采自近垂向层状侵入混杂岩体中(图 2a, b),两种岩性近平行交替产出,二者为侵入关系,花岗质片麻岩的侵位时间较晚。同时二者又是侵入混杂岩体的主要组成岩石类型,均发育片麻理构造。辉长质片麻岩中沿着片麻理方向发育浅色体,呈条带状、透镜体状或雁列状产出(图 2a, b),而花岗质片麻岩中未见浅色体。辉长质片麻岩呈深灰色,片状变晶结构,片麻状构造,主要由斜长石(30%~40%)、辉石(20%~30%)和角闪石(20%~30%)组成(图 2c),辉石填充斜长石的架构(图 2d),并含少量的绿帘石、黑云母、锆石、磁铁矿等。花岗质片麻岩呈灰白色,片状粒状变晶结构,片麻状构造,主要由石英(30%~35%)、斜长石(20%~30%)、钾长石(10%~15%)、白云母(10%~15%)和少量的黑云母(~5%)组成(图 2e)。斜长石多为板状,表面发生不同程度的蚀变(图 2e)。在侵入杂岩体东部200m处发育未变形的闪长岩体(T1013)露头,与Ma et al. (2013)报道的苏长岩和角闪石岩露头特征相似。闪长岩呈灰色,主要有角闪石(30%~35%)、斜长石(30%~35%)、石英(10%~20%)、云母(>10%)组成(图 2f),角闪石发育两组斜交解理(夹角约为56°),斜长石发育典型的机械双晶,同时发育石英微晶、斜长石微晶、云母微晶以及磷灰石和锆石等副矿物(图 2f)。

图 2 米林地区侵入杂岩体的野外照片(a、b)和显微照片(c-f) (a)花岗质片麻岩侵入到辉长质片麻岩中;(b)花岗质片麻岩侵入到辉长质片麻岩中,含浅色体;辉长质片麻岩(c、d)、花岗质片麻岩(e)及闪长岩(f)显微照片. Q-石英;Pl-斜长石;Kfs-钾长石;Ms-白云母;Px-辉石;Hbl-角闪石;Ep-绿帘石;Ap-磷灰石 Fig. 2 Field photographs (a, b) and microphotographs (c-f) of the instrusion complex in Mainling area, eastern Gangdese (a) the gabbroic gneiss is intruded by the granitic gneiss; (b) the gabbroic gneiss is intruded by the granitic gneiss, inclunding leucosome; the micrographs of gabbroic gneiss (c, d), granitic gneiss (e) and diorite (f). Q-quartz; Pl-plagioclase; Kfs-potassium feldspar; Ms-muscovite; Px-pyroxene; Hbl-hornblende; Ep-epidote; Ap-apatite
2 分析方法 2.1 锆石U-Pb定年

为确定两种片麻岩和闪长岩的形成年代,从样品T1011-A、T1011-B和T1013中分选出锆石并制靶,抛光后进行阴极发光图像(CL)拍摄和扫描电镜背散射(BSE)成像观察。CL图像在中国地质科学院地质研究所北京离子探针中心拍摄。BSE图像和锆石的成分分析在中国地质科学院地质研究所大陆动力学实验室进行。SHRIMP锆石U-Pb同位素定年测试在北京离子探针中心进行,所用仪器为高分辨率、高灵敏度离子探针SHRIMPⅡ。分析时所用标样为TEM锆石,每组样品分析前后均用标样限定,每测定3个未知点插入一次标样,以便及时校正,保障测试精度。分析离子束直径为25μm。锆石年龄谐和图用Isoplot 3.75程序获得(Ludwig, 2003)。

2.2 全岩地球化学测试

为确定米林地区两种片麻岩和闪长岩的地球化学特征,通过野外系统采样和室内样品的制备,分析了它们的全岩主量和微量元素组成。测试在自然资源部国家地质实验测试中心进行。样品的主量元素通过XRF(X荧光光谱仪3080E)方法测试,稀土元素(REE)和微量元素通过等离子质谱仪(ICP MS-Excell)分析。

2.3 全岩Sr-Nd同位素测试

两种片麻岩的Rb-Sr和Sm-Nd同位素分析在中国科学技术大学放射性同位素地球化学实验室进行,采用同位素稀释法,利用热电离质谱仪MAT-26测试完成。样品的化学分离纯化在净化实验室完成。详细的分析方法和流程常见Chen et al.(2002, 2007)。根据样品的锆石U-Pb定年结果,分别计算初始Sr和Nd同位素比值。

2.4 锆石Hf同位素测试

两种片麻岩和闪长岩的锆石Hf同位素测试在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室完成。实验室采用Neptune多接收等离子质谱和Newwave UP213紫外激光剥蚀系统(LA-MC-ICP-MS),剥蚀直径为40μm,测定时使用锆石国际标样GJ1和Plesovice作为参考物质,分析点与U-Pb定年分析点为同一位置或有部分重叠。相关仪器运行条件及详细分析流程见侯可军等(2007)

3 分析结果 3.1 SHRIMP锆石U-Pb年代学

在两种片麻岩中,锆石都具有核-边的结构特征,核部表现为韵律生长环带,边部为灰黑色均匀特征(图 3),表明核部为岩浆锆石,边部为变质锆石。为确定这些片麻岩的原岩形成时代,U-Pb测试主要集中于锆石的核部。测试结果见表 1

图 3 米林地区侵入杂岩体T1011-A (a)、T1011-B (b)和T1013(c)中锆石的阴极发光照片 实线圆圈表示年龄分析点,虚线圆圈表示Hf同位素分析点 Fig. 3 Cathodoluminescence (CL) images showing the texture, spot, and respective age of zircon U-Pb dating for the intrusion complex T1011-A (a), T1011-B (b) and T1013 (c) in Mainling area Solid and dashed circles show the locations of U-Pb dating and Hf analyses, respectively

表 1 冈底斯岩基东段米林侵入体的锆石SHRIMP U-Pb同位素测试结果 Table 1 SHRIMP zircon U-Pb analytical results of intrusion in Mainling area, eastern Gangdese

辉长质片麻岩(T1011-A)中的锆石均呈自形-半自形,长柱状或短柱状,长轴长为200~100μm,长短轴比为1.5:1~2:1。CL图像显示大部分锆石均具有震荡环带,且发育典型的核边结构(图 3a)。核部锆石的Th和U的含量分别为394×10-6~50.0×10-6和995×10-6~141×10-6,其中T1011-A-10.1的Th和U含量远高于其他锆石含量,分别为2006×10-6和1305×10-6。Th/U比值为1.59~0.14(平均值为0.53),仅T1011-A-9.1的Th/U比值为0.09,小于0.1。以上证据均表明这组锆石整体具有岩浆成因锆石的特征(Hoskin and Schaltegger, 2003)。这组辉长质片麻岩的锆石206Pb/238U加权平均年龄为146.3±1.6Ma(n=14,MSWD=1.4)(图 4a, b),代表辉长岩原岩结晶年龄。其中T1011-A-18.1、2.1两颗岩浆锆石的年龄分别为153Ma和136Ma,且均落在谐和线上,可能均代表稍早期或者随后发生的岩浆活动。此外,边部具有变质锆石特征的年龄为87.5~95.8Ma左右。而T1011-A-15.1也是核部锆石(49Ma),其结构与其他边部锆石相似,但是U含量较低,可能与印度大陆俯冲到拉萨地块之下造成岩石圈加厚引起部分熔融有关(Wang et al., 2019)。

图 4 米林地区侵入杂岩体T1011-A(a、b)、T1011-B(c、d)和T1013(e、f)中锆石SHRIMP U-Pb定年谐和图及加权平均年龄图 Fig. 4 U-Pb Concordia diagram and weighted average age diagram for the intrusion complex T1011-A (a, b), T1011-B (c, d) and T1013 (e, f) in Mainling area

花岗质片麻岩(T1011-B)中的锆石均呈自形-半自形,长柱状或粒状,长轴长为150~100μm,长短轴比约为1:1~2:1。CL图像显示所有锆石均具有较宽的震荡环带,且发育不同宽度的深灰色变质边,大部分测试点均位于震荡环带上,少量测试点位于边部(图 3b)。核部锆石的Th和U的含量分别为644×10-6~50.1×10-6和1364×10-6~106×10-6,其中T1011-B-16.2具有较高的Th和U含量(分别为3819×10-6和2944×10-6)。大部分锆石的Th/U比值较高,为1.34~0.16(平均值为0.62)。以上特征均表明本组锆石大部分具有岩浆成因锆石的特征(Hoskin and Schaltegger, 2003)。这组花岗质片麻岩的锆石206Pb/238U加权平均年龄为141.7±2.0Ma(n=21,MSWD=4.0)(图 4c, d),代表花岗岩原岩结晶年龄。仅T1011-B-16.2年龄较老,锆石206Pb/238U年龄为152Ma,分布在谐和线附近,可能代表较早期的岩浆活动,与王海涛等(2019)报道的花岗岩脉中的捕获锆石年龄(晚侏罗世)一致。T1011-B-10.2和T1011-B-13.2的锆石边部具有具有变质锆石特征,年龄为85.6~88.3Ma。

闪长岩(T1013)中的锆石均呈自形-半自形,长柱状,长轴长为300~150μm,长短轴比约为2:1。CL图像显示所有锆石均发育较宽的震荡环带,仅少部分锆石发育亮白色变质边(< 20μm),所有测试点均位于震荡环带上(图 3c)。锆石的Th和U的含量分别为406×10-6~30.0×10-6和1066×10-6~66.5×10-6,Th/U比值较高,为0.82~0.38(平均值为0.63)。以上特征均表明本组锆石具有岩浆成因锆石的特征(Hoskin and Schaltegger, 2003)。这组花岗岩的锆石206Pb/238U加权平均年龄为87.8±1.1Ma(n=14,MSWD=1.6)(图 4e, f),代表该岩石的结晶年龄为晚白垩世。

上述数据表明:(1)辉长质片麻岩和花岗质片麻岩的原岩形成时代分别为146.3±1.6Ma和141.7±2.0Ma;(2)未变形闪长岩的结晶时代为87.8±1.1Ma;(3)两类片麻岩都包含时代约为85.6~95.8Ma的变质锆石,与未变形闪长岩的形成时代相似,可能代表在~90Ma闪长岩侵位过程中,辉长质片麻岩和花岗质片麻岩的变质作用时代。

3.2 全岩地球化学

为了获得辉长质片麻岩、花岗质片麻岩和闪长岩的元素地球化学组成,本次研究分别对三者进行了全岩地球化学分析。分析结果见表 2

表 2 冈底斯岩基东段米林侵入体的主量元素(wt%)和微量元素(×10-6)分析测试结果 Table 2 Analysis results of major elements (wt%) and trace elements (×10-6) of intrusion in Mainling area, eastern Gangdese

辉长质片麻岩的主量元素具有贫SiO2(53.01%~47.94%)、Na2O(5.30%~3.63%)、K2O(1.95%~1.26%),富FeOT(9.73%~6.45%)、MgO(5.41%~2.24%)、CaO(10.78%~8.71%)、Al2O3(20.39%~17.88%)(图 5),以及较低的烧失量(LOI=2.46%~1.34%)。其中Na2O/K2O比值大于1,TiO2含量和FeOT/MgO比值较低,因此辉长质片麻岩整体具有钙碱性的特征(图 5i图 6a-c)。稀土元素总含量为50.4×10-6~36.6×10-6,存在轻重稀土分馏作用((La/Yb)N=3.24~2.33),略微富集轻稀土和亏损重稀土,几乎无Eu异常(Eu/Eu*=1.07~0.98),与E-MORB的分配曲线相似(图 7a)。在微量元素方面,辉长质片麻岩富集Rb(17.8×10-6~13.6×10-6)、U、K等大离子亲石元素(LILE),亏损Nb、Ta等高场强元素(HFSE),具有明显的Pb和Sr(421×10-6~288×10-6)正异常(图 7b)。同时具有较低的Rb/Sr(0.06~0.04)、Sr/Y(26.3~19.7)、Zr/Hf(32.2~29.6)和Nb/Ta(20.0~3.65)比值,其中Zr/Hf和Nb/Ta比值均低于球粒陨石(36.2和19.9, Sun and McDonough, 1989; Münker et al., 2003)。此外,Ba(102×10-6~57.6×10-6),Y(16.0×10-6~13.8×10-6),Yb(1.70×10-6~1.48×10-6)、Cu(149.0×10-64~3.3×10-6)、Cr(62.6×10-6~2.31×10-6)、Ni(29.1×10-6~6.84×10-6)含量较高。其中1件样品(T1011-A2)与其他样品不同,表现为较高的Si、K、Ti,较低的Na、Al、Ca,以及较高的总稀土含量(69.9×10-6),存在Eu负异常(Eu/Eu*=0.89)。同时Rb(62.6×10-6)、Ba(184×10-6)、Y(21.7×10-6)、Yb(2.54×10-6)和Rb/Sr比值(0.18)都高于其他样品。其他样品均表现出低Si高Al的特征,与高铝玄武岩(HAB)相似(Crawford et al., 1987; Luhr and Haldar, 2006; Zhu et al., 2010)。

图 5 米林地区侵入杂岩体的Al2O3 (a)、TiO2 (b)、FeOT (c)、MgO (d)、CaO (e)、P2O5 (f)、Na2O (g)和Na2O/K2O (h)与SiO2的协变关系 Fig. 5 Major oxides of Al2O3 (a), TiO2 (b), FeOT (c), MgO (d), CaO (e), P2O5 (f), Na2O (g)和Na2O/K2O (h) plotted against SiO2 for the intrusion complex in Mainling area

图 6 米林地区侵入杂岩体的Na2O+K2O-SiO2 (a)、K2O-SiO2 (b)、TiO2-FeOT/MgO (c)和A/NK-A/CNK (d)的关系图解 Fig. 6 Plots of Na2O+K2O vs. SiO2 (a), K2O vs. SiO2 (b), TiO2 vs. FeOT/MgO (c) and A/NK vs. A/CNK (d) for intrusion complex in Mainling area

花岗质片麻岩在主量元素上具有富SiO2(70.23%~69.10%)、Al2O3(16.27%~15.60%)、Na2O(5.03%~3.76%)、K2O(4.00%~3.01%),贫FeOT(2.37%~1.87%)、MgO(0.62%~0.49%)、CaO(2.04%~1.94%)(图 5),以及较低的烧失量(LOI=1.49%~0.78%)。其中Na2O/K2O和A/CNK比值均大于1,说明花岗质片麻岩具有高钾钙碱性、过铝质花岗岩的特征(图 5i6a, b, d)。稀土元素总含量为129×10-6~79.3×10-6,轻重稀土分馏明显((La/Yb)N=29.5~5.81),富集轻稀土,略微亏损重稀土(图 7c)。同时具有明显的Eu负异常(Eu/Eu*=0.67~0.42)(图 7c)。在微量元素方面,花岗质片麻岩明显富集Rb(65.9×10-6~49.4×10-6)、Ba(637×10-6~251×10-6)、Th、U、K等大离子亲石元素(LILE),亏损Nb、Ta、Ti、P等高场强元素(HFSE),具有明显的Pb、Zr、Hf正异常和Sr负异常(图 7d)。同时具有较高的Rb/Sr比值(0.30~0.11)和Zr/Hf比值(39.7~35.6),其中Zr/Hf比值略高于球粒陨石,和较低的Sr/Y比值(95.5~13.2),Nb/Ta比值(20.2~16.5),Nb/Ta比值略低于球粒陨石。此外,Y(17.4×10-6~5.53×10-6),Yb(2.01×10-6~0.68×10-6)含量较高,Sr(528×10-6~199×10-6)含量较低。

图 7 米林地区侵入杂岩体球粒陨石标准化稀土元素配分图解(a)和原始地幔标准化微量元素蜘蛛网图(b) (标准化值及OIB、MORB值据Sun and McDonough, 1989) Fig. 7 Chondrite-normalized rare earth element distribution patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for the intrusion complex in Mainling area (normalization values, OIB and MORB values from Sun and McDonough, 1989)

未变形闪长岩在主量元素上具有富SiO2(55.46%~54.01%)、Al2O3(18.19%~17.86%)、Na2O(3.55%)、K2O(1.25%~1.10%)、CaO(7.67%~7.48%),贫FeOT(7.79%~7.43%)、MgO(4.07%~4.00%)(图 5),以及较低的烧失量(LOI=1.34%~1.28%)。稀土元素总含量为57.5×10-6~49.5×10-6,轻重稀土分馏明显((La/Yb)N=4.67~4.42),略微富集轻稀土和亏损重稀土(图 7a)。具有轻微的Eu正异常(Eu/Eu*=1.20~1.04)(图 7a)。在微量元素方面,闪长岩明显富集Rb(23.7×10-6~20.9×10-6)、Ba(283×10-6~243×10-6)、U、K等大离子亲石元素(LILE),亏损Nb、Ta等高场强元素(HFSE),同时具有明显的Pb和Sr正异常(图 7b)。闪长岩具有较高的Sr/Y比值(48.2~40.5),较低的Rb/Sr(0.04~0.03)、Zr/Hf(36.0~32.0)和Nb/Ta(11.8~10.3)比值,其中Zr/Hf和Nb/Ta比值略低于球粒陨石。Y(13.9×10-6~12.7×10-6),Yb(1.44×10-6~1.31×10-6),Sr(612×10-6~563×10-6)元素含量较高。

3.3 全岩Sr-Nd同位素

为确定米林县辉长质片麻岩和花岗质片麻岩的Sr-Nd同位素组成特征,本次研究分别对二者进行了Sr-Nd同位素分析。分析结果见表 3

表 3 冈底斯岩基东段米林侵入体的全岩Sr-Nd同位素分析测试结果 Table 3 Analysis results of whole-rock Sr-Nd isotopic compositions of intrusion in Mainling area, eastern Gangdese

辉长质片麻岩具有较低的Rb(17.8×10-6~13.6×10-6)和Sr(421×10-6~288×10-6),较高的Sm(2.73×10-6~2.09×10-6)和Nd (10.1×10-6~7.5×10-6),Rb/Sr比值(0.16~0.04)、Sm/Nd比值(0.28~0.26)均较低。初始87Sr/86Sr值较低(t=146.3Ma),为0.704786~0.704518。Nd同位素比值较高,具有较亏损的同位素特征(εNd(t)=+4.1~+3.5)(图 8)。对应的一阶段模式年龄tDM为1192~955Ma,二阶段模式年龄tDMC为689~598Ma。其中样品T1011-A2的Rb(62.6×10-6)、Sm(3.72×10-6)和Nd (14.6×10-6)最高,εNd(t)值(+3.0)和87Sr/86Sr(t)值(0.704172)最低,可能受地壳混染所致。

图 8 藏南冈底斯岩基中生代岩浆岩εNd(t)-年龄(a)、εNd(t)-87Sr/86Sr(t) (b)、εNd(t)-SiO2 (c)和εHf(t)-εNd(t) (d)关系图解 数据来源:马门酸性岩,Zhu et al., 2009;米林中酸性岩,Ma et al., 2013;叶巴组玄武岩,Zhu et al., 2008;特提斯玄武岩,Mahoney et al., 1998;新特提斯洋蛇绿岩及样品DZ98-1G(Nd=6.66×10-6εNd(t)=8.9,Sr=180.7×10-687Sr/86Sr(t)=0.70354),Mahoney et al., 1998, Xu and Castillo, 2004, Zhang et al., 2005;印度洋深海沉积物及样品V28-343(Nd=23.05×10-6εNd(t)=-9.3,Sr=119×10-687Sr/86Sr(t)=0.71682),Ben Othman et al., 1989;印度洋洋中脊玄武岩(MORB)、洋岛玄武岩(OIB)Nd-Hf同位素区域,Ingle et al., 2003;地幔序列,Chauvel and Blichert-Toft, 2001 Fig. 8 Plots of εNd(t) vs. U-Pb age (a), εNd(t) vs. 87Sr/86Sr(t) (b), εNd(t) vs. SiO2 (c) and εHf(t) vs. εNd(t) (d) for Mesozoic magmatic rocks of Gangdese batholith from South Tibet

花岗质片麻岩具有较低的Rb(65.9×10-6~49.4×10-6)和Sr(528×10-6~199×10-6),较高的Sm(4.70×10-6~3.38×10-6)和Nd(25.1×10-6~16.1×10-6),较高的Rb/Sr比值(0.30~0.11),较低的Sm/Nd比值(0.22~0.16)。初始87Sr/86Sr值较低(t=141.7Ma),为0.704773~0.704478。同时具有较亏损的Nd同位素特征(εNd(t)=+4.3~+4.1)(图 8)。对应的一阶段模式年龄tDM为650~503Ma,二阶段模式年龄tDMC为601~584Ma。

3.4 锆石Hf同位素

辉长质片麻岩的加权平均年龄为146.3±1.6Ma,176Lu/177Hf值为0.001711~0.000932(表 4),除了2个测试点(T1011-A-10.1和T1011-A-16.1)以外均小于0.002,表明锆石形成后没有明显的放射性成因Hf的积累,可以使用所获得的176Hf/177Hf值代表其形成时Hf同位素的组成(Wu et al., 2006)。所有测点的176Hf/177Hf(t)值为0.28309~0.28296,对应的εHf(t)值为+14.5~+9.9,锆石Hf同位素的一阶段模式年龄tDM为412~227Ma(表 4),表明源区主要由亏损地幔物质组成(图 9)。4个测试点(T1011-A-04.2、T1011-A-09.1、T1011-A-16.1和T1011-A-21.1)具有变质锆石成因,其Hf同位素特征与前述数据有略微差异,表现在略低的εHf(t)值(+13.0~+11.5)和较年轻的模式年龄值(tDM=298~236Ma)。而T1011-A-15.1(49Ma)比中生代辉长质片麻岩具有更小的εHf(t)值(+2.5)和更老的模式年龄值(tDM=631Ma),可能与拉萨地块基底物质的部分熔融有关。

表 4 冈底斯岩基东段米林侵入体的锆石Hf同位素测试结果 Table 4 Analysis results of zircon Hf isotopic compositions of intrusion in Mainling area, eastern Gangdese

图 9 藏南冈底斯岩基中新生代岩浆岩εHf(t)-年龄图解 数据来源:冈底斯岩基,Chu et al., 2011; Guo et al., 2013; Ji et al., 2009;白堆复合岩体,高家昊等, 2017;弧前盆地碎屑锆石,Wu et al., 2010;弧前盆地酸性岩, 曾令森等, 2017;东嘎基性岩和酸性岩, 邱检生等, 2015;日多酸性岩,王海涛等, 2019;马门酸性岩,Zhu et al., 2009;米林中酸性岩,Ma et al., 2013 Fig. 9 Plot of εHf(t) vs. U-Pb ages for Mesozoic-Cenozoic magmatic rocks of Gangdese batholith from South Tibet

花岗质片麻岩的加权平均年龄为141.7±2.0Ma,176Lu/177Hf值为0.001761~0.000910(表 4),除了2个测试点(T1011-B-10.1和T1011-B-16.2)以外均小于0.002,同样可以使用所获得的176Hf/177Hf值代表其形成时Hf同位素的组成(Wu et al., 2006)。所有测点的176Hf/177Hf(t)值为0.28311~0.28299,对应的εHf(t)值为+15.1~+10.9,锆石Hf同位素的两阶段模式年龄tDMC为504~222Ma(表 4),说明它们的源区较年轻(图 9)。T1011-B-10.2和T1011-B-13.2作为87Ma的变质锆石(εHf(t)=+12.4~+11.7,tDMC=405~358Ma),其Hf同位素特征也与其他花岗质片麻岩样品几乎一致。

闪长岩的加权平均年龄为87.8±1.1Ma,176Lu/177Hf值为0.001417~0.000001,均小于0.002(表 4)。所有测点的176Hf/177Hf(t)值为0.28316~0.28307,对应的εHf(t)值为+15.6~+12.2,锆石Hf同位素的一阶段模式年龄tDM为263~125Ma,两阶段模式年龄tDMC为370~150Ma(表 4),表明源区主要为较亏损物质(图 9)。其中一颗锆石T1013-11.1具有较年轻的模式年龄(tDM=125Ma,tDMC=150Ma),可能来源于前述侵入杂岩体的部分熔融。

4 讨论 4.1 米林侵入杂岩体的时代特征和冈底斯岩基的物质组成

米林县出露的辉长质片麻岩和花岗质片麻岩侵位时代分别为晚侏罗世(146Ma)和早白垩世(142Ma),与野外露头展示的侵入关系相吻合,说明该地区经历了晚侏罗世和早白垩世两期岩浆作用。在侵入杂岩体的东侧出露未变形的闪长岩,侵位时代为晚白垩世(88Ma)。结合辉长质片麻岩和花岗质片麻岩中发育的晚白垩世变质锆石和董昕等(2012)报道的晚白垩世变质岩(90~80Ma),我们认为侵入杂岩体的变质时代为晚白垩世(~90Ma)。近年来在冈底斯岩基东段的米林至卧龙一带先后多次报道了晚白垩世的岩浆作用,如98~88Ma的角闪辉长岩(管琪等, 2011)和100~89Ma的闪长岩-花岗闪长岩(Ma et al., 2013),这些镁铁质岩石均被认为是相应时段新特提斯洋板片俯冲诱发幔源基性岩浆上侵的产物。晚白垩世岩浆作用一直向西延伸至朗县(Wen et al., 2008;王莉等, 2013)、松卡(徐倩等, 2019a)和白堆(高家昊等, 2017)等地区,说明冈底斯岩基经历了大规模的晚白垩世岩浆事件。

对于整个冈底斯岩基而言,Ji et al. (2009)张泽明等(2019)通过总结前人研究分别将其分为四期(205~152Ma、109~80Ma、65~41Ma、33~13Ma)和五期(220~100Ma、100~80Ma、80~65Ma、65~40Ma、40~8Ma)岩浆事件,为重塑拉萨地块的岩浆演化历史提供了基本时代框架。但已知的晚侏罗世-早白垩世的岩浆记录相对贫乏,目前仅在冈底斯岩基中段的大竹卡(152~156Ma:Ji et al., 2009;钟云等, 2013)和鸭洼(~155Ma:张豪等, 2019)附近发现了该时期的岩浆岩露头。王海涛等(2019)报道了冈底斯岩基东段墨竹工卡县古近纪花岗岩脉(~59Ma)中存在大量晚侏罗世(~155Ma)捕掳锆石,代表冈底斯岩基经历了晚侏罗世岩浆活动,但是日多岩体附近未见晚侏罗世岩浆岩的原生露头。此外,日喀则弧前盆地中也发育大量侏罗纪碎屑锆石(Wu et al., 2010),均为岩浆成因,大部分碎屑锆石均来源于冈底斯岩基,其年龄分布和同位素组成方面与Ji et al. (2009)报道的冈底斯岩浆岩具有一定的亲缘性(图 9)。晚侏罗世泽当微陆块(155~160Ma:McDermid, 2002; Zhang et al., 2014;王莉等, 2012)发育兼具岛弧岩浆岩和埃达克岩的特征的中酸性岩浆岩,代表侏罗纪时期新特提斯洋的残留洋内弧。Zhu et al. (2009)康志强等(2010)在桑日县马门乡先后报道了早白垩世埃达克质岩(137Ma)和晚白垩世马门侵入岩(93Ma),均认为是新特提斯洋向北俯冲的产物。但仍然存在俯冲板片角度变化和地壳厚度变化等问题。冈底斯岩基记录了上述晚侏罗世-早白垩世(150±6Ma)的岩浆活动,但是原生露头和数据有限。因此,米林侵入杂岩体的报道丰富了我们对冈底斯岩基物质组成的认识。

4.2 岩石成因 4.2.1 分离结晶作用

从前面列出的数据可以看出,米林杂岩体的主量元素相对SiO2整体具有相关关系(图 5),且烧失量LOI不高,可以忽略后期蚀变作用对元素变化带来的影响,说明分离结晶作用在岩浆演化的过程中起着重要作用。

辉长质片麻岩的SiO2含量低(53.01%~47.94%),Al2O3含量高(16.73%~20.39%),Al2O3、MgO和CaO与SiO2呈负相关关系(图 5a, d, e),FeOT含量变化不明显(图 5c),具有高铝玄武岩的(HAB)特征。TiO2和P2O5含量随着SiO2含量增加而增加(图 5b, f),表明富Ti矿物相的堆晶作用。重稀土元素(HREE)中的(Ho/Yb)N比值接近1.0,说明辉长质片麻岩中发生了角闪石主控的分离结晶作用。

相比辉长质片麻岩而言,花岗质片麻岩具有高SiO2(70.23%~69.10%)、富Al2O3,贫CaO、FeOT、MgO的特征(图 5c-e)。TiO2、FeOT、MgO含量随着SiO2含量增大而减少(图 5b-d),可能代表Fe-Ti氧化物的分离结晶作用。Eu负异常和Sr元素亏损说明该套岩浆经历了斜长石分离结晶作用。花岗质片麻岩富集轻稀土(LREE)和大离子亲石元素(如:Rb、Ba、Th、U、K),亏损重稀土(HREE)和高场强元素(如:Nb、Ta、Ti、P)(图 7d),具有明显的Eu负异常(图 7c),与岛弧型岩浆岩的地球化学特征相似。

与两种片麻岩相比,未变形的闪长岩的主量元素含量与辉长质片麻岩类似,但元素变化趋势却与花岗质片麻岩一致(图 5)。而稀土和微量元素的含量和变化趋势均与辉长质片麻岩相近(图 7)。晚白垩世闪长岩与米林中酸性岩(Ma et al., 2013)均具有一定程度的Eu正异常(分别为1.04~1.20和0.87~1.39)和较高的Sr含量,由于Eu和Sr元素在斜长石中类质同像替代,二者表现的盈亏特征也具有一致的效应,因此它们可能与斜长石堆晶作用相关。

4.2.2 岩浆源区

全岩Sr-Nd同位素组成显示辉长质片麻岩和花岗质片麻岩均具有亏损的同位素组成特征(图 8)。两种片麻岩的εNd(t)值与马门埃达克质岩(Zhu et al., 2009)和米林闪长岩-花岗闪长岩(Ma et al., 2013)相似,与形成时代无明显关系(图 8a),也不随SiO2含量的变化而变化(图 8c),表明晚侏罗世-晚白垩世冈底斯岩基的岩浆源区几乎不变,均为亏损地幔源区。辉长质片麻岩和花岗质片麻岩的Sr-Nd同位素组成与新特提斯洋蛇绿岩(Mahoney et al., 1998; Xu and Castillo, 2004; Zhang et al., 2005)和特提斯玄武岩(Mahoney et al., 1998)略有差别,与来源于岩石圈地幔的早侏罗世叶巴组玄武岩(Zhu et al., 2008)和来源于新特提斯洋俯冲板片流体交代地幔楔橄榄岩形成的早白垩世马门埃达克质岩(Zhu et al., 2009)一致(图 8b),暗示米林侵入杂岩体也与受板片流体交代的亏损地幔楔有关。辉长质片麻岩样品T1011-A2的87Sr/86Sr(t)值和εNd(t)值都较低(图 8b),暗示源区存在地壳物质的加入。闪长岩(T1013)的岩性、时代、出露位置等方面可与米林闪长岩-花岗闪长岩(Ma et al., 2013)对比,也应具有一致的、略低的Sr-Nd同位素组成(图 8b),暗示亏损地幔源区受到了地壳物质的混染。另外,辉长质片麻岩和花岗质片麻岩与米林闪长岩-花岗闪长岩(Ma et al., 2013)和马门埃达克质岩(Zhu et al., 2009)的锆石εHf(t)值高于地幔序列,而全岩εNd(t)值均低于印度洋洋中脊玄武岩(MORB)(图 8d),表明大洋板片并非米林杂岩体母岩浆的直接岩浆源区,俯冲大洋板片仅提供了“水”,且在岩浆形成演化的过程中混入了大约10%的印度洋深海沉积物(图 8b)。米林杂岩体和闪长岩的锆石Hf同位素具有亏损的特征,与冈底斯岩基已报道的中新生代岩浆岩的Hf同位素组成(Ji et al., 2009; Zhu et al., 2009; Wu et al., 2010; Chu et al., 2011; Guo et al., 2013; Ma et al., 2013;邱检生等, 2015;高家昊等, 2017;曾令森等, 2017;王海涛等, 2019)在一致的演化线上(图 9),说明其源区具有亏损的幔源物质特征,与Sr-Nd同位素所反映的源区特征相呼应。

如前所述,辉长质片麻岩和闪长岩来源于亏损地幔楔受板片流体交代而形成的部分熔融体;花岗质片麻岩具有亏损特征的同位素特征,可能来源于中基性岩浆的结晶分异作用,也可能来源于新生下地壳部分熔融。在Zr/Nb-Zr图解中,辉长质片麻岩、花岗质片麻岩和闪长岩均显示出以部分熔融作用为主的趋势,而非结晶分异作用的趋势(图 10a),表明部分熔融作用是三种岩石的主要形成机制。米林杂岩体中的花岗质片麻岩与日多花岗岩脉(王海涛等, 2019)和东嘎花岗闪长岩(邱检生等, 2015)均具有低Rb/Sr比值、低Ba含量的特点(图 10b),这与来源于角闪岩部分熔融的喜马拉雅新生代淡色花岗岩(Zeng et al., 2011)的特征相一致,暗示其来源于基性下地壳的部分熔融。辉长质片麻岩与闪长岩具有更低的Rb/Sr比值和Ba含量,在Rb/Sr-Ba关系图(图 10b)中与东嘎基性岩(邱检生等, 2015)和米林中酸性岩(Ma et al., 2013)具有一致变化关系,均为亏损地幔物质的部分熔融。Richards and Kerrich (2007)认为,若岩浆源区存在石榴石的分离结晶作用,必然会引起LREE/MREE(如(La/Sm)N)和MREE/HREE(如(Dy/Yb)N)比值升高,若岩浆源区存在角闪石的分离结晶作用,则只会升高LREE/MREE比值,而MREE/HREE比值要么几乎不变,要么随着LREE/MREE比值的升高而呈现出降低趋势。在图 10c中可以见到,米林杂岩体的(Dy/Yb)N比值几乎不随(La/Sm)N比值的升高而变化,说明角闪石是主要分离结晶矿物相。当角闪岩作为主要残留相时,重稀土元素曲线会表现的比较平坦(Davidson et al., 2007;高永丰等, 2003)。图 7a, c显示米林杂岩体具有比较平坦的重稀土配分模式((Ga/Yb)N=1.33~2.09,T1011-B3除外),说明角闪石是米林杂岩体的主要源区残留相。前人研究成果表明,低Mg角闪岩(非高Mg角闪岩和榴辉岩)可以形成低Mg#值、低Nb/Ta比值的熔体(Foley et al., 2002)。米林杂岩体中的辉长质片麻岩和闪长岩具有较低的Nb/Ta比值和Mg#值,而花岗质片麻岩具有较高的Nb/Ta比值和较低的Mg#值(图 10d),这些元素的差异说明辉长质片麻岩和闪长岩的岩浆源区物质可能为低Mg角闪岩,而花岗质片麻岩的岩浆源区物质主要为含石榴石的角闪岩。

图 10 米林地区侵入杂岩体的Zr/Nb-Zr (a,底图据Geng et al., 2009)、Rb/Sr-Ba (b)、(Dy/Yb)N-(La/Sm)N (c)和Nb/Ta-Zr/Hf (d)的关系图解 数据来源:米林中酸性岩,Ma et al., 2013;东嘎基性岩和酸性岩, 邱检生等, 2015;日多酸性岩,王海涛等, 2019;淡色花岗岩,Zeng et al., 2011 Fig. 10 Plots of Zr/Nb vs. Zr (a, after Geng et al., 2009), Rb/Sr vs. Ba (b), (Dy/Yb)N vs. (La/Sm)N (c) and Nb/Ta vs. Zr/Hf (d) for intrusion complex in Mainling area

因此,晚侏罗世辉长质片麻岩来源于板片流体交代上覆亏损地幔楔物质,熔融后侵位形成。由于受洋壳板片持续的俯冲消减作用和后期热事件影响,这种新生地壳再次发生熔融形成花岗质熔体(Atherton and Petford, 1983; Petford and Atherton, 1996)。花岗质熔体再沿岩浆通道侵入到先前形成的辉长质岩体中,形成米林地区辉长质-花岗质两种岩性相间交错排列的复合杂岩体。而晚白垩世闪长岩的岩浆源区以亏损的地幔楔为主,并在岩浆演化的过程中混入地壳物质。形成的闪长质熔体一部分侵入念青唐古拉岩群巴拉岩组中,形成闪长岩(~88Ma),另一部分上涌的岩浆使早期形成的杂岩体发生变质作用(~90Ma),并发育典型的变质成因锆石。

4.3 地球动力学意义

新特提斯洋起源于石炭纪时期(约350Ma)的弧后拉张盆地(Ji et al., 2012; Dong et al., 2014;王莉等, 2013;李广旭等, 2020),经过复杂的演化过程在二叠纪(280~270Ma)形成裂谷,即新特提斯洋的雏形,并伴随Panjal Trap大火成岩省和大规模裂陷型岩浆作用(Veevers and Tewari, 1995; Zhu et al., 2010; Shellnutt, 2018;曾令森等, 2012)。随后大洋持续生长,至240~210Ma,新特提斯洋开始俯冲,并发育洋内俯冲(Ma et al., 2020)和洋陆俯冲(Wang et al., 2016)两种俯冲形式。新特提斯洋的俯冲记录自三叠纪一直到晚白垩世均有阶段性峰期岩浆作用报道(Chu et al., 2006, 2011; Wen et al., 2008; Ji et al., 2009; Zhu et al., 2009, 2011; Guo et al., 2013; Ma et al., 2013; Kang et al., 2014; Wang et al., 2016; Wei et al., 2017;张宏飞等, 2007;邱检生等, 2015;高家昊等, 2017;曾令森等, 2017),可能为多期次,多成因机制的岩浆作用过程。

通过对前人发表数据的总结,我们发现冈底斯岩基晚侏罗世-早白垩世发育零星岩浆作用(Ji et al., 2009;钟云等, 2013;王海涛等, 2019;张豪等, 2019),可能与前人根据早白垩世岩浆作用提出的新特提斯洋板片呈低角度俯冲或平板俯冲(Coulon et al., 1986; Ding et al., 2003; Kapp et al., 2003, 2005; Leier et al., 2007)有关。我们结合中拉萨地块报道的同时代岩浆记录(闫晶晶等, 2017及其中参考文献),可初步判断低角度或平板俯冲的板片可能延伸较远,远至中拉萨地块许如错地区。而Zhu et al. (2009)在马门乡报道了桑日群麻木下组137Ma的埃达克质岩,其形成于新特提斯洋板片陡俯冲背景。米林侵入杂岩(146~142Ma)与马门埃达克质岩仅相差5~9Myr,新特提斯洋板片无法在短时间内完成从低角度俯冲到陡俯冲的转变,而且闫晶晶等(2017)认为晚侏罗世许如错岩体是班公湖-怒江洋向南俯冲的产物。因此,米林侵入杂岩体并非形成于新特提斯洋的低角度俯冲或平板俯冲的构造背景,而与Zhu et al. (2009)报道的埃达克质岩(137Ma)一致,均出露于俯冲带北侧,且均形成于新特提斯洋板片陡俯冲背景。Dai et al. (2020)认为冈底斯岩基相对少的早白垩世岩浆活动可能是由于新特提斯洋俯冲板片的后撤导致在冈底斯岩基出现一个相对贫岩浆的“静歇期”。然而,目前冈底斯岩基几乎没有137~120Ma的岩浆作用记录,即使大洋板片后撤可以形成晚侏罗世-早白垩世岩浆岩,而板片后撤引起的局部伸展环境没有对应的地质记录,因而此种动力学模型需要更多证据来支撑。Zhang et al. (2019)通过对雅江蛇绿岩中段变质底板(125Ma)的详细研究,提出在洋中脊处发生俯冲重新起始(Subduction Re-initiation)模型来解释这套变质岩的成因。即在130~120Ma之时,新特提斯洋发育二次俯冲作用。该模型认为新特提斯洋再次俯冲前,俯冲带处于消亡状态,即新特提斯洋的早期俯冲作用在晚侏罗世-早白垩世之前(>130Ma)可能已经停止。因此,本文更倾向认为,晚侏罗世-早白垩世的岩浆作用是新特提斯洋早期俯冲作用终结的前兆。120Ma之后,新特提斯洋重新开始俯冲(王莉等, 2013),直到103~80Ma,晚白垩世岩浆作用爆发,波及范围广,岩石类型丰富,代表新特提斯洋再次俯冲作用诱发的峰期岩浆活动,可能是特提斯洋板块回撤引发软流圈上涌的产物。

5 结论

(1) 米林侵入杂岩体的花岗质片麻岩(142Ma)侵入辉长质片麻岩(146Ma)中,并一起经历了晚白垩世变质作用(~90Ma)和岩浆作用(88Ma)。

(2) 辉长质片麻岩存在富Ti矿物相的堆晶作用,母岩浆主要来源于板片流体交代上覆亏损地幔楔物质。

(3) 花岗质片麻岩具有岛弧型岩浆岩的地球化学特征,源区物质主要为部分熔融的初生下地壳。

(4) 闪长岩中斜长石的堆晶作用明显,其母岩浆来源于板片流体交代上覆亏损地幔楔物质,并在岩浆演化的过程中混入地壳物质。

(5) 冈底斯岩基南缘晚侏罗世-早白垩世的零星岩石露头暗示新特提斯洋早期向北俯冲即将终止。晚白垩世岩浆岩可能是新特提斯洋板块回撤引发软流圈上涌的产物。

致谢      感谢戴紧根教授和戚学祥研究员仔细审阅稿件,提出建设性修改意见。

参考文献
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0
Ben Othman D, White WM and Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94(1-2): 1-21 DOI:10.1016/0012-821X(89)90079-4
Bureau of Geology and Mineral Resources of Tibet Autonomous Region. 1993. Regional Geology of Tibet Autonomous Region. Beijing: Geological Publishing House (in Chinese)
Chauvel C and Blichert-Toft J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190(3-4): 137-151 DOI:10.1016/S0012-821X(01)00379-X
Chen FK, Siebel W, Satir M, Terzioğlu M and Saka K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91(3): 469-481 DOI:10.1007/s00531-001-0239-6
Chen FK, Li XH, Wang XL, Li QL and Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194 DOI:10.1007/s00531-006-0146-y
Chen XL, Richards JP, Liang HY, Zou YQ, Zhang J, Huang WT, Ren L and Wang FY. 2019. Contrasting arc magma fertilities in the Gangdese belt, Southern Tibet: Evidence from geochemical variations of Jurassic volcanic rocks. Lithos, 324-325: 789-802 DOI:10.1016/j.lithos.2018.12.008
Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson NJ, Ji JQ and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748 DOI:10.1130/G22725.1
Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu CH and Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3-4): 479-486 DOI:10.1016/j.epsl.2011.05.020
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196
Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302 DOI:10.1016/0012-821X(86)90186-X
Crawford AJ, Falloon TJ and Eggins S. 1987. The origin of island arc high-alumina basalts. Contributions to Mineralogy and Petrology, 97(3): 417-430 DOI:10.1007/BF00372004
Dai JG, Wang CS, Stern RJ, Yang K and Shen J. 2020. Forearc magmatic evolution during subduction initiation: Insights from an Early Cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc. GSA Bulletin DOI:10.1130/B35644.1
Davidson J, Turner S, Handley H, MacPherson C and Dosseto A. 2007. Amphibole "sponge" in arc crust?. Geology, 35(9): 787-790 DOI:10.1130/G23637A.1
Ding L, Kapp P, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865 DOI:10.1093/petrology/egg061
Dong HW, Xu ZQ, Li Y and Liu Z. 2016. Genesis and geological significance of early Jurassic gabbro in Medog area, the eastern part of the Gangdese magmatic belt. Acta Petrologica Sinica, 32(12): 3624-3634 (in Chinese with English abstract)
Dong X, Zhang ZM, Liu F, Wang W, Yu F, Lin YH, Jiang HY and He ZY. 2012. Genesis of the metamorphic rock from southeastern Lhasa terrane and the Mesozoic-Cenozoic orogenesis. Acta Petrologica Sinica, 28(6): 1765-1784 (in Chinese with English abstract)
Dong X and Zhang ZM. 2013. Genesis and tectonic significance of the Early Jurassic magmatic rocks from the southern Lhasa terrane. Acta Petrologica Sinica, 29(6): 1933-1948 (in Chinese with English abstract)
Dong X, Zhang ZM, Liu F, He ZY and Lin YH. 2014. Late Paleozoic intrusive rocks from the southeastern Lhasa terrane, Tibetan Plateau, and their Late Mesozoic metamorphism and tectonic implications. Lithos, 198-199: 249-262 DOI:10.1016/j.lithos.2014.04.001
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840 DOI:10.1038/nature00799
Gao JH, Zeng LS, Guo CL, Li QL and Wang YY. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, Southern Tibet: A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412-2436 (in Chinese with English abstract)
Gao YF, Hou ZQ and Wei RH. 2003. Neogene porphyries from Gangdese: Petrological, geochemical characteristics and geodynamic significances. Acta Petrologica Sinica, 19(3): 418-428 (in Chinese with English abstract)
Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K and Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?. Chemical Geology, 266(3-4): 364-389 DOI:10.1016/j.chemgeo.2009.07.001
Guan Q, Zhu DC, Zhao ZD, Dong GC, Mo XX, Liu YS, Hu ZC and Yuan HL. 2011. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magnatism in the southern Lhasa Terrane and its implications. Acta Petrologica Sinica, 27(7): 2083-2094 (in Chinese with English abstract)
Guo LS, Liu YL, Liu SW, Cawood PA, Wang ZH and Liu HF. 2013. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: Implications for early history of the Neo-Tethys. Lithos, 179: 320-333 DOI:10.1016/j.lithos.2013.06.011
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015a. Lithospheric architecture of the lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575 DOI:10.2113/econgeo.110.6.1541
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015b. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250
Huang F, Xu JF, Chen JL, Kang ZQ and Dong YH. 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group: Products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7): 2089-2100 (in Chinese with English abstract)
Ingle S, Weis D, Doucet S and Mattielli N. 2003. Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hot spot activity since ~120Ma. Geochemistry, Geophysics, Geosystems, 4(8): 1068 DOI:10.1029/2002GC000482
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245 DOI:10.1016/j.chemgeo.2009.01.020
Ji WQ, Wu FY, Chung SL and Liu CZ. 2012. Identification of Early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-Tethyan evolution. The Journal of Geology, 120(5): 531-541 DOI:10.1086/666742
Kang ZQ, Xu JF, Chen JL, Wang BD and Dong YH. 2010. The geochronology of Sangri Group volcanic rocks in Tibet: Constraints from later Mamen intrusions. Geochimica, 39(6): 520-530 (in Chinese with English abstract)
Kang ZQ, Xu JF, Wilde SA, Feng ZH, Chen JL, Wang BD, Fu WC and Pan HB. 2014. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200-201: 157-168 DOI:10.1016/j.lithos.2014.04.019
Kapp P, Murphy MA, Yin A, Harrison TM, Ding L and Guo JR. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 1029 DOI:10.1029/2001TC001332
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. GSA Bulletin, 117(7): 865-878 DOI:10.1130/B25595.1
Leier AL, Kapp P, Gehrels GE and DeCelles PG. 2007. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Research, 19(3): 361-378 DOI:10.1111/j.1365-2117.2007.00330.x
Li GX, Zeng LS, Gao LE, Gao JH and Zhao LH. 2020. Carboniferous magmatic records of the eastern Gangdese batholith, southern Tibet. Acta Petrologica Sinica, 36(10): 3018-3040 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.10.06
Liu ZC, Ding L, Zhang LY, Wang C, Qiu ZL, Wang JG, Shen XL and Deng XQ. 2018. Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction. Lithos, 312-313: 72-88 DOI:10.1016/j.lithos.2018.04.026
Ludwig KR. 2003. ISOPLOT: A Geochronological Tolkit for Microsoft Excel 3.04. Berkeley: Geochronology Center Special Publication
Luhr JF and Haldar D. 2006. Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research, 149(3-4): 177-212 DOI:10.1016/j.jvolgeores.2005.06.003
Ma L, Wang Q, Wyman DA, Li ZX, Jiang ZQ, Yang JH, Gou GN and Gou HF. 2013. Late Cretaceous (100~89Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: Partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175-176: 315-322 DOI:10.1016/j.lithos.2013.04.006
Ma XX, Xu ZQ, Zhao ZB and Yi ZY. 2020. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet. Geosphere, 16(1): 407-434 DOI:10.1130/GES02154.1
Mahoney JJ, Frei R, Tejada MLG, Mo XX, Leat PT and Nägler TF. 1998. Tracing the Indian Ocean mantle domain through time: Isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. Journal of Petrology, 39(7): 1285-1306 DOI:10.1093/petroj/39.7.1285
McDermid IRC, Aitchison JC, Davis AM, Harrison TM and Grove M. 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3-4): 267-277 DOI:10.1016/S0009-2541(02)00040-2
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract)
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242 DOI:10.1016/j.lithos.2006.10.005
Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T and Mezger K. 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science, 301(5629): 84-87 DOI:10.1126/science.1084662
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru. Journal of Petrology, 37(6): 1491-1521 DOI:10.1093/petrology/37.6.1491
Qiu JS, Wang RQ, Zhao JL and Yu SB. 2015. Petrogenesis of the Early Jurassic gabbro-granite complex in the middle segment of the Gangdese belt and its implications for tectonic evolution of Neo-Tethys: A case study of the Dongga pluton in Xi'gaze. Acta Petrologica Sinica, 31(12): 3569-3580 (in Chinese with English abstract)
Richards JP and Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537-576 DOI:10.2113/gsecongeo.102.4.537
Shellnutt JG. 2018. The panjal traps. In: Sensarma S and Storey BC (eds.). Large Igneous Provinces from Gondwana and Adjacent Regions. Geological Society, London, Special Publications, 463(1): 59-86
Shui XF, He ZY, Klemd R, Zhang ZM, Lu TY and Yan LL. 2018. Early Jurassic adakitic rocks in the southern Lhasa sub-terrane, southern Tibet: Petrogenesis and geodynamic implications. Geological Magazine, 155(1): 132-148 DOI:10.1017/S0016756817000577
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Veevers JJ and Tewari RC. 1995. Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea. Geology, 23(5): 467-470 DOI:10.1130/0091-7613(1995)023<0467:PCAPTM>2.3.CO;2
Wang C, Ding L, Zhang LY, Kapp P, Pullen A and Yue YH. 2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320-333 DOI:10.1016/j.lithos.2016.07.021
Wang HT, Zeng LS, Gao LE, Hu ZP, Wang YF, Zhao LH, Gao JH and Xu Q. 2019. Timing and geochemical characteristics of the Riduo granitic pluton within the Gangdese batholith, southern Tibet. Acta Petrologica Sinica, 35(2): 439-454 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.11
Wang L, Zeng LS, Gao LE, Tang SH and Hu GY. 2012. Remnant Jurassic intra-oceanic arc system in Southern Tibet: Geochemistry and tectonic implications. Acta Petrologica Sinica, 28(6): 1741-1754 (in Chinese with English abstract)
Wang L, Zeng LS, Gao LE and Chen ZY. 2013. Early Cretaceous high Mg# and high Sr/Y clinopyroxene-bearing diorite in the Southeast Gangdese batholith, Southern Tibet. Acta Petrologica Sinica, 29(6): 1977-1994 (in Chinese with English abstract)
Wang YF, Zeng LS, Gao JH, Zhao LH, Gao LE and Shang Z. 2019. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos, 324-325: 877-892 DOI:10.1016/j.lithos.2018.11.036
Wei YQ, Zhao ZD, Niu YL, Zhu DC, Liu D, Wang Q, Hou ZQ, Mo XX and Wei JC. 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 278-281: 477-490 DOI:10.1016/j.lithos.2017.02.013
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201 DOI:10.1016/j.chemgeo.2008.03.003
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Wu FY, Ji WQ, Liu CZ and Chung SL. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 271(1-2): 13-25 DOI:10.1016/j.chemgeo.2009.12.007
Xu JF and Castillo PR. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393(1-4): 9-27 DOI:10.1016/j.tecto.2004.07.028
Xu Q, Zeng LS, Gao JH, Zhao LH, Wang YF and Hu ZP. 2019a. Geochemical characteristics and genesis of the Songka Late Cretaceous adakitic high-Mg diorite in the southern margin of Gangdese, southern Tibet. Acta Petrologica Sinica, 35(2): 455-471 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.12
Xu Q, Zeng LS, Gao JH, Gao LE, Wang YF, Hu ZP and Zhao LH. 2019b. Geochemical characteristics and genesis of the Miocene high Sr/Y intermediate-felsic magmatic rocks in eastern Gangdese batholith, southern Tibet. Acta Petrologica Sinica, 35(6): 1627-1646 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.06.02
Xu Q, Zeng LS, Zhao LH, Hu ZP, Wang HT, Shen Y, Wang YY and Wang YF. 2020. Geochemical characteristics and petrogenesis of Miocene high Sr/Y rocks in Xigatze fore-arc basin, southern Tibet. Lithos, 366-367: 105543 DOI:10.1016/j.lithos.2020.105543
Xu W, Zhu DC, Wang Q, Weinberg RF, Wang R, Li SM, Zhang LL and Zhao ZD. 2019. Constructing the Early Mesozoic Gangdese crust in Southern Tibet by hornblende-dominated magmatic differentiation. Journal of Petrology, 60(3): 515-552 DOI:10.1093/petrology/egz005
Yan JJ, Zhao ZD, Liu D, Wang ZZ and Tang Y. 2017. Geochemistry and petrogenesis of the Late Jurassic Xuru Tso batholith in central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 33(8): 2437-2453 (in Chinese with English abstract)
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280 DOI:10.1146/annurev.earth.28.1.211
Zeng LS, Gao LE, Xie KJ and Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266 DOI:10.1016/j.epsl.2011.01.005
Zeng LS, Gao LE, Hou KJ and Tang SH. 2012. Late Permian mafic magmatism along the Tethyan Himalayan Belt, southern Tibet and tectonic implications. Acta Petrologica Sinica, 28(6): 1731-1740 (in Chinese with English abstract)
Zeng LS, Gao LE, Guo CL, Hou KJ and Wang Q. 2017. Early Cretaceous forearc extension of the Gangdese continental arc, southern Tibet. Acta Petrologica Sinica, 33(8): 2377-2394 (in Chinese with English abstract)
Zhang C, Liu CZ, Xu Y, Ji WB, Wang JM, Wu FY, Liu T, Zhang ZY and Zhang WQ. 2019. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth and Planetary Science Letters, 523: 115707 DOI:10.1016/j.epsl.2019.07.009
Zhang H, Ji WQ, Zhang SH, Wang JG and Wu FY. 2019. Zircon U-Pb age and Hf isotope of intrusive rocks from the Yawa area in the west part of southern Lhasa terrane, Tibet. Acta Petrologica Sinica, 35(2): 423-438 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.10
Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdise terrane, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353 (in Chinese with English abstract)
Zhang LL, Liu CZ, Wu FY, Ji WQ and Wang JG. 2014. Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin?. Journal of Asian Earth Sciences, 80: 34-55
Zhang SQ, Mahoney JJ, Mo XX, Ghazi AM, Milani L, Crawford AJ, Guo TY and Zhao ZD. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics. Journal of Petrology, 46(4): 829-858
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615-631
Zhang ZM, Ding HX, Dong X and Tian ZL. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275-294 (in Chinese with English abstract)
Zhang ZM, Ding HX, Palin RM, Dong X, Tian ZL and Chen YF. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet: Implication for the growth of continental crust. Gondwana Research, 77: 136-146
Zhong Y, Xia B, Liu WL, Xia LZ, Xia ZY and Wang LH. 2013. LA-ICP-MS zircon U-Pb age and genesis of Longbucun granite in Southern Gangdise Belt, Tibet. Geological Bulletin of China, 32(9): 1362-1370 (in Chinese with English abstract)
Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471
Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC and Liu B. 2009. Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Sciences, 34(3): 298-309
Zhu DC, Mo XX, Zhao ZD, Niu Y, Wang LQ, Chu QH, Pan GT, Xu JF and Zhou CY. 2010. Presence of Permian extension-and arc-type magmatism in southern Tibet: Paleogeographic implications. GSA Bulletin, 122(7-8): 979-993
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255
董汉文, 许志琴, 李源, 刘钊. 2016. 冈底斯带东段墨脱地区早侏罗世辉长岩的成因及其构造意义. 岩石学报, 32(12): 3624-3634.
董昕, 张泽明, 刘峰, 王伟, 于飞, 林彦蒿, 姜洪颖, 贺振宇. 2012. 拉萨地体东南部变质岩的成因与中-新生代造山作用. 岩石学报, 28(6): 1765-1784.
董昕, 张泽明. 2013. 拉萨地体南部早侏罗世岩浆岩的成因和构造意义. 岩石学报, 29(6): 1933-1948.
高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用:以拉萨白堆复合岩体中-基性岩脉群为例. 岩石学报, 33(8): 2412-2436.
高永丰, 侯增谦, 魏瑞华. 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义. 岩石学报, 19(3): 418-428.
管琪, 朱弟成, 赵志丹, 董国臣, 莫宣学, 刘勇胜, 胡兆初, 袁洪林. 2011. 西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义. 岩石学报, 27(7): 2083-2094.
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604.
黄丰, 许继峰, 陈建林, 康志强, 董彦辉. 2015. 早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?. 岩石学报, 31(7): 2089-2100.
康志强, 许继峰, 陈建林, 王保弟, 董彦辉. 2010. 西藏南部桑日群火山岩的时代:来自晚期马门侵入体的约束. 地球化学, 39(6): 520-530.
李广旭, 曾令森, 高利娥, 高家昊, 赵令浩. 2020. 藏南冈底斯岩基东段石炭纪岩浆作用记录. 岩石学报, 36(10): 3018-3040.
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290.
邱检生, 王睿强, 赵姣龙, 喻思斌. 2015. 冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示:以日喀则东嘎岩体为例. 岩石学报, 31(12): 3569-3580.
王海涛, 曾令森, 高利娥, 胡昭平, 王亚飞, 赵令浩, 高家昊, 徐倩. 2019. 藏南冈底斯岩基日多地区花岗岩体形成时代和地球化学特征. 岩石学报, 35(2): 439-454.
王莉, 曾令森, 高利娥, 唐索寒, 胡古月. 2012. 藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义. 岩石学报, 28(6): 1741-1754.
王莉, 曾令森, 高利娥, 陈振宇. 2013. 藏南冈底斯岩基东南缘早白垩世高镁-高Sr/Y含单斜辉石闪长岩. 岩石学报, 29(6): 1977-1994.
西藏自治区地质矿产局. 1993. 西藏自治区区域地质志. 北京: 地质出版社.
徐倩, 曾令森, 高家昊, 赵令浩, 王亚飞, 胡昭平. 2019a. 西藏南部冈底斯南缘松卡晚白垩世埃达克质高镁闪长岩地球化学特征及其成因. 岩石学报, 35(2): 455-471.
徐倩, 曾令森, 高家昊, 高利娥, 王亚飞, 胡昭平, 赵令浩. 2019b. 藏南冈底斯岩基东段中新世中酸性高Sr/Y比岩浆岩的地球化学特征及成因探讨. 岩石学报, 35(6): 1627-1646.
闫晶晶, 赵志丹, 刘栋, 王珍珍, 唐演. 2017. 西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因. 岩石学报, 33(8): 2437-2453.
曾令森, 高利娥, 侯可军, 唐索寒. 2012. 藏南特提斯喜马拉雅带晚二叠纪基性岩浆作用及其构造地质意义. 岩石学报, 28(6): 1731-1740.
曾令森, 高利娥, 郭春丽, 侯可军, 王倩. 2017. 西藏南部冈底斯大陆弧早白垩纪弧前伸展作用. 岩石学报, 33(8): 2377-2394.
张豪, 纪伟强, 张少华, 王建刚, 吴福元. 2019. 西藏南拉萨地块西部鸭洼地区侵入岩的锆石年代学和Hf同位素特征. 岩石学报, 35(2): 423-438.
张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353.
张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275-294.
钟云, 夏斌, 刘维亮, 夏连泽, 夏中宇, 王利红. 2013. 西藏南冈底斯带拢布村花岗岩LA-ICP-MS锆石U-Pb年龄及其成因. 地质通报, 32(9): 1362-1370.