岩石学报  2020, Vol. 36 Issue (9): 2869-2892, doi: 10.18654/1000-0569/2020.09.16   PDF    
稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究——以阿尔金中段吐格曼北锂铍矿床为例
李杭1,2,3, 洪涛1,2,3, 杨智全4, 陈建中4, 柯强1,2,3, 王学海1,2,3, 牛磊1,2,3, 徐兴旺1,2,3     
1. 中国科学院地质与地球物理研究所, 中国科学院矿产资源研究重点实验室, 北京 100029;
2. 中国科学院大学, 北京 100049;
3. 中国科学院地球科学研究院, 北京 100029;
4. 新疆地矿局第三地质大队, 库尔勒 841000
摘要: 稀有金属花岗伟晶岩年代学是花岗伟晶岩型稀有金属矿床研究的重要内容。目前测年方法较多,但不同方法测试结果的对比研究亟待开展。我们选择吐格曼北花岗伟晶岩型锂铍矿床3条含矿伟晶岩开展锆石、锡石、铌钽铁矿及白云母四种矿物不同方法的测年对比研究。结果显示:1)ρ31白云母-锡石伟晶岩中锡石238U/206Pb-207Pb/206Pb谐和年龄为468±8.7Ma(MSWD=1.1,N=39)、白云母-钠长石-锂辉石伟晶岩中锆石206Pb/238U谐和年龄为458.7±2.3Ma(MSWD=7.2,N=16);2)ρ38白云母-钠长石-锂辉石伟晶岩中锆石206Pb/238U谐和年龄为454.7±4.0Ma(MSWD=8.0,N=10)、白云母40Ar/39Ar坪年龄为350.2±1.6Ma(MSWD=4.7);3)ρ87含铌钽铁矿-白云母-石英伟晶岩中铌钽铁矿206Pb/238U谐和年龄为464.1±2.7Ma(MSWD=5.2,N=39)。可以看出,铌钽铁矿与锡石的U-Pb年龄在误差范围内一致,可能代表花岗伟晶岩岩浆结晶的年龄;2件样品的蜕晶化锆石U-Pb年龄也可以对比,可能代表岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的时间。白云母Ar-Ar年龄明显晚于铌钽铁矿、锡石和锆石的U-Pb年龄,鉴于ρ38白云母-钠长石-锂辉石伟晶岩脉中白云母与锂辉石发生了强烈变形与蚀变,认为变形的白云母记录的是叠加变形与热液蚀变的时间。由此推断吐格曼北锂铍花岗伟晶岩形成于468~454Ma,这意味着阿尔金山地区中-晚奥陶世可能存在持续时间较长的稀有金属成矿事件。基于花岗伟晶岩矿物成因与吐格曼北锂铍花岗伟晶岩不同方法测年对比结果,可以得出以下结论:铌钽铁矿与锡石的U-Pb年龄可代表伟晶岩岩浆结晶的年龄,蜕晶化的锆石U-Pb年龄记录的是岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的时间,含钾矿物的40Ar/39Ar年龄能够约束伟晶岩的变形与蚀变年龄;多种定年方法的联合约束可以更好地限定稀有金属花岗伟晶岩的各个阶段成矿事件时间。
关键词: 锆石U-Pb定年    锡石U-Pb定年    铌钽铁矿U-Pb定年    白云母Ar-Ar定年    稀有金属伟晶岩    
Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh
LI Hang1,2,3, HONG Tao1,2,3, YANG ZhiQuan4, CHEN JianZhong4, KE Qiang1,2,3, WANG XueHai1,2,3, NIU Lei1,2,3, XU XingWang1,2,3     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
4. No.3 Geological Party, Xinjiang Bureau of Geology and Mineral Exploration and Development, Korla 841000, China
Abstract: Geochronological dating is a vital part of the study of granitic pegmatite type rare-metal deposits. There are many dating methods; however, comparative study on dating results obtained by different methods hasn't been performed. In this study, we report new dating results of zircon, cassiterite, coltan (short for columbite-tantalite) and muscovite from three pegmatites of the northern Tugman lithium-beryllium deposit. The results show that: 1) the ρ31 muscovite-cassiterite pegmatite has a concordant U-Pb age of 468±8.7Ma (MSWD=1.1, N=39) of cassiterite, whereas the muscovite-albite-spodumene pegmatite has a concordant U-Pb age of 458.7±2.3Ma (MSWD=7.2, N=16) of zircon; 2) the deformed ρ38 muscovite-albite-spodumene pegmatite has a concordant U-Pb age of 454.7±4.0Ma (MSWD=8.0, N=10) of zircon and 40Ar/39Ar plateau age of 350.2±1.6Ma (MSWD=4.7) of muscovite; and 3) the ρ87 coltan-bearing muscovite-quartz pegmatite has a concordant U-Pb age of 464.1±2.7Ma (MSWD=5.2, N=39) of coltan. The U-Pb ages of coltan and cassiterite are consistent within the error range, they may represent the crystallization age of granitic pegmatite at the magmatic stage. The U-Pb ages of the metamict zircons of the two samples can also be compared, they may represent the reset time of U-Pb isotope system caused by fluid metasomatism and recrystallization of magmatic zircon after metamictization. The 40Ar/39Ar plateau age of muscovite is obviously later than the U-Pb age of coltan, cassiterite, and zircon. Considering the strong deformation and alteration of muscovite and spodumene in the ρ38 muscovite-albite-spodumene pegmatite, it is suggested that the 40Ar/39Ar age of deformed muscovite may decipher the superposition deformation and alteration time. It is concluded that the lithium-beryllium granitic pegmatites in the northern Tugman area were formed in a period of 468~454Ma. Therefore, we consider that an intensive rare metal mineralization during the Middle-Late Ordovician might occur in the Altyn Tagh area. Moreover, it is also suggested that the U-Pb ages of coltan and cassiterite might represent the crystallization time of a pegmatite during the magmatic stage, whereas the U-Pb age of metamict zircon could record a reset time of U-Pb isotope system by fluid metasomatism and recrystallization, while the 40Ar/39Ar age of deformed potassium-bearing minerals might represent the deformation and alteration time of the pegmatites. The combination of different dating methods may constrain the integrated formation epoch of the rare-metal pegmatite deposit.
Key words: Zircon U-Pb dating    Cassiterite U-Pb dating    Coltan U-Pb dating    Muscovite Ar-Ar dating    Pegmatite in Tugeman    

稀有金属(包括锂、铍、铌、钽、铯、锆、铪和铷)是重要的战略金属,广泛应用于国防、航天、航空等工业领域(Linnen et al., 2014; Nassar, 2017; Kaeter et al., 2018)。近年来,稀有金属因其重要战略意义而被中国和欧、美、日等国列入“战略与关键金属”清单中(Linnen et al., 2012; 张辉等,2019)。其中稀有金属锂元素被称为“绿色高能金属”、“白色石油”。随着新能源汽车和储能技术的高速发展,未来世界对锂资源的需求将愈演愈烈,亟需在锂矿资源上找到突破(王秋舒和元春华,2019)。花岗伟晶岩是稀有金属的重要来源,花岗伟晶岩型稀有金属矿床也是目前矿床学研究的热点(Linnen et al., 2012; Chakhmouradian et al., 2015; Kaeter et al., 2018; Yin et al., 2020)。稀有金属花岗伟晶岩成岩成矿年龄的确定是此类矿床研究的重要内容(周振华等,2016王倩等,2019)。

稀有金属花岗伟晶岩测年的方法较多,有锆石U-Pb(任宝琴等,2011Zhou et al., 2015, 2018; 马占龙等,2015杨红等,2017)、白云母和微斜长石Ar-Ar (Zhou et al., 2015, 2018; Chen et al., 2000)、白云母和微斜长石K-Ar (邹天人等,1986;)和全岩Rb-Sr (Clark, 1982; 邹天人等,1986朱永峰和曾贻善,2002Zhu et al., 2006)等定年方法。其中,锆石U-Pb年龄一般解释为岩浆岩结晶年龄,而蜕晶化的锆石U-Pb年龄记录的是岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的时间(杨红等,2017)。云母等含钾矿物的K-Ar和Ar-Ar法测定的年龄可能代表岩浆结晶结束的年龄或后期多期次热事件的年龄(Zhu et al., 2006李建康等, 2006a, b)。铌钽铁矿U-Pb定年(Romer et al., 1996b; Lupulescu et al., 2011; 钟龙等,2011Li et al., 2019; Feng et al., 2020; Wang et al., 2020)在近些年取得巨大进展,该方法不存在继承矿物影响,被认为是目前伟晶岩定年最可靠的方法。锡石U-Pb定年方法多用于确定锡多金属矿床的成矿时代,但近年来越来越多的含锡石稀有金属伟晶岩矿床用锡石U-Pb定年法来确定伟晶岩型稀有金属矿床的成矿时代(袁顺达等,2010张东亮等,2011Yan et al., 2018; 代鸿章等,2018Kendall-Langley et al., 2020费光春等,2020; 许家斌等,2020),如:松潘-甘孜造山带的李家沟(许家斌等,2020)、党坝(费光春等,2020)、甲基卡308号脉(代鸿章等,2018),西昆仑-喀喇昆仑成矿带的大红柳滩稀有金属矿床(Yan et al., 2018)都使用了锡石U-Pb定年,且可与铌钽矿U-Pb定年结果相互验证。

然而,不同定年方法在同一个矿床中得出的定年结果往往差异很大。例如:可可托海3号脉中锆石U-Pb年龄为180~220Ma (Wang et al., 2007; 陈剑锋,2011周起凤,2013),铀细晶石U-Pb年龄为196.4Ma (邹天人等,1986),白云母K-Ar年龄为160~292Ma (邹天人等,1986),微斜长石K-Ar年龄为120Ma (邹天人等,1986),白云母Ar-Ar年龄为160~292Ma (陈富文等,1999周起凤,2013),钾长石Ar-Ar年龄为148Ma (陈富文等,1999),铌钽铁矿U-Pb年龄为218Ma (Che et al., 2015)、205.6Ma (王倩等,2019),辉钼矿Re-Os年龄为210~208Ma (Liu et al., 2014)及Rb-Sr等时线年龄为331.9Ma (邹天人等,1986)、238Ma (朱永峰和曾贻善,2002)、218.4Ma (Zhu et al., 2006)。这可能和不同定年体系的适用条件有关。这些方法中哪种更合理、更可靠?哪些方法给出的结果是可以相互验证的?不同方法给出的结果出现差异的原因是什么?为了综合评价稀有金属伟晶岩不同定年方法,我们选择阿尔金中段吐格曼北锂铍矿床含矿伟晶岩分别开展锆石、锡石、铌钽铁矿及白云母不同方法的测年对比研究,以期了解不同测年方法的使用条件,同时也对获得的数据进行合理解释。

1 阿尔金中段吐格曼花岗伟晶岩型稀有金属矿床特征 1.1 区域地质背景

阿尔金造山带位于青藏高原北缘,地处塔里木板块、柴达木地块及祁连-昆仑造山带之间(图 1),是由早古生代板块(或地块)之间相互俯冲-碰撞形成的复杂构造带,在中、新生代又被走滑断裂所切割,整个造山带由不同时期、不同构造层次和形成于不同构造环境的地质体拼合而成(郑剑东,1991车自成等, 1995, 1998刘良等, 1996, 1999郭召杰等,1998Zhang et al., 1999, 2001; 周勇和潘裕生,1999徐兴旺等,2019)。

图 1 阿尔金中段地区地质简图(据康磊等,2016徐兴旺等,2019修编) Fig. 1 Simplified geoogical map of the middle part of Altyn Tagh (after Kang et al., 2016; Xu et al., 2019)

阿尔金中段吐格曼地区位于新疆若羌县城南侧的阿尔金山,构造上属于阿中地块(图 1)。吐格曼地区出露的地层主要有新太古界米兰岩群(Ar1-2M)、中元古界阿尔金岩群(Pt2A)与复理石建造(fw(Pt2))、长城系贝壳滩组(Chb)与蓟县系金雁山组(Jxj)(图 2)。其中,米兰岩群为一套强烈变形变质的碎屑岩、碳酸盐岩夹火山岩建造,普遍含有蓝晶石、石榴石、十字石、夕线石等变质矿物,主要岩石类型包括石榴黑云斜长片麻岩、蓝晶石榴黑云斜长片麻岩、十字夕线蓝晶黑云片岩、石榴斜长角闪岩、大理岩、石英岩与变粒岩等,分布于研究区的东南部;阿尔金岩群广泛出露于研究区的中部及西南部,主要为一套由变质碎屑岩、碳酸盐岩和变质火山(碎屑)岩组成的绿片岩相-角闪岩相变质岩系;中元古界复理石建造为英格里克构造蛇绿混杂岩的组成部分,呈北东-南西向分布于研究区西南、东北部,为主要由斜长二云石英片岩、石榴石十字石二云石英片岩、黑云斜长变粒岩与二云母片岩等构成的绿片岩相-角闪岩相变质岩系,其与南北两侧的米兰岩群和阿尔金岩群地层间为断层接触;长城系贝壳滩组由灰白、灰-深灰色中厚层状石英岩、黑云石英岩、二云石英片岩、变质粗粒长石岩屑砂岩与斜长白云母石英片岩等绿片岩相变质岩组成;区内蓟县系金雁山组分布于库木加克沟两侧,大致呈近东西向展布,岩性主要为一套大理岩(徐兴旺等,2019)。

图 2 阿尔金中段吐格曼地区区域地质图(据徐兴旺等,2019) Fig. 2 Geological map of the Tugeman area in the middle part of Altyn Tagh (after Xu et al., 2019)

吐格曼地区花岗岩发育,岩石类型主要有片麻状黑云二长花岗岩、二长花岗岩、二云母花岗岩与黑云斜长花岗岩,规模较大的岩体从北向南依次主要分布有库鲁赛、阿亚格、托巴、吐格曼、萨拉姆五个岩体。其中,吐格曼岩体是2018年野外地质调查过程新识别的大型层状岩体(徐兴旺等,2019),岩体产出于中元古界复理石建造中(图 2);岩体层状构造发育,包括不同矿物组成花岗岩的岩性层及其内部矿物分带而显示的层状构造;岩体岩石类型多样,有黑云母花岗岩、二云母花岗岩、白云母花岗岩、及钠长花岗岩;层状黑云母花岗岩分布于岩体的外侧与边缘(图 2),而其它岩性层构成的淡色层状花岗岩体是岩体的主体;层状淡色花岗岩中发育从二云母花岗岩到白云母花岗岩和钠长花岗岩的连续结晶分异与演化的多个韵律组合。钠长花岗岩层顶部可发育电气石与石榴子石相对富集的钠长花岗岩(徐兴旺等,2019)。

1.2 矿床地质特征

阿尔金中段吐格曼地区是稀有金属锂铍元素成矿的有利地区,是花岗伟晶岩型稀有金属矿床成矿与找矿研究的新区(徐兴旺等,2019)。近年来新发现了吐格曼铍锂矿、吐格曼北锂铍矿和瓦石峡南锂铍矿3个矿床(徐兴旺等,2019)。其中吐格曼铍锂矿和吐格曼北锂铍矿分别位于吐格曼岩体的中心地带和北接触带(图 2)。

吐格曼北锂铍矿位于吐格曼岩体的北接触带(图 2),为花岗伟晶岩型锂铍矿。锂铍花岗伟晶岩脉发育于二云母花岗岩及其北侧的石榴子石云母石英片岩中。区内发现27条锂铍花岗伟晶岩脉,脉带整体呈东西向展布,各脉体规模大小不一,长50~700m,宽1~35m,脉体呈透镜状和树枝状产出(图 3)。主要由钠长石、钾长石、白云母、石英、电气石、锂辉石和绿柱石等矿物组成,含少量铌钽铁矿、磷灰石、独居石和锆石等副矿物。根据矿物组成,矿区伟晶岩可分为钠长石-锂辉石伟晶岩、白云母-钠长石-锂辉石伟晶岩、钾长石-绿柱石伟晶岩和白云母-锡石伟晶岩四种类型。下面重点介绍ρ31、ρ38与ρ87脉体的产出特征。

图 3 吐格曼北锂铍矿区地质图(据新疆维吾尔自治区地质矿产勘查开发局第三地质大队,2016修编) Fig. 3 Geological map of the northern Tugeman lithium-beryllium deposit

① 新疆维吾尔自治区地质矿产勘查开发局第三地质大队. 2016.新疆若羌县塔什萨依一带铅锌、锰矿调查评价报告. 1-240

1) ρ31花岗伟晶岩特征(图 4ab):脉体呈北东向产出,产状150°∠53°,长200m、宽3~6m,脉体截切地层片理。ρ31伟晶岩脉内部结构分带清楚,中心发育白云母-石英-锂辉石伟晶岩,两侧均为钠长花岗岩带,局部也有细长的锂辉石脉体,钠长花岗岩带。脉体整体向东延伸,锡石产出于脉体边部的上盘(图 4c)。

图 4 吐格曼北锂铍矿ρ31(a-c)和ρ38南段(d-f)伟晶岩脉野外露头及手标本照片 (a) ρ31伟晶岩脉体露头;(b) ρ31锂辉石伟晶岩露头;(c) ρ31白云母-锡石伟晶岩手标本;(d) ρ38南段伟晶岩脉体露头;(e) ρ38南段含绿柱石-钾长石伟晶岩露头;(f) ρ38北段白云母-钠长石-锂辉石伟晶岩手标本. Qtz-石英;Mus-白云母;Brl-绿柱石;Spd-锂辉石;Cst-锡石 Fig. 4 Photographs of outcrop and hand specimens of ρ31 (a-c) and in the south segment of ρ38 (d-f) pegmatite dyke in the northern Tugeman lithium-beryllium deposit (a) ρ31 pegmatite vein outcrop; (b) ρ31 spodumene pegmatite outcrop; (c) ρ31 muscovite-cassiterite pegmatite specimen; (d) outcrop of pegmatitic dyke body in the southern segment of ρ38; (e) outcrop of beryl-bearing potassium feldspar pegmatite in the southern segment of ρ38; (f) specimens of muscovite-albite-spodumene pegmatite in the northern segment of ρ38. Qtz-quartz; Mus-muscovite; Brl-beryl; Spd-spodumene; Cst-cassiterite

2) ρ38花岗伟晶岩特征:ρ38北段发育白云母-钠长石-锂辉石伟晶岩,脉体产状89°∠80°,长210m、宽1.5m;ρ38南段伟晶岩脉体产状170°∠35°,长198m、宽约2m,其形态为倒立树枝状(由上向下分叉)。该脉中部发育大量钾长石,为浅黄色的钾长石伟晶岩,上部和下部分别发育钾长石-绿柱石伟晶岩和钠长石-锂辉石伟晶岩(图 4d-f)。

3) ρ87花岗伟晶岩特征:ρ87号伟晶岩脉位于矿区南侧,脉体产状平缓、明显截切近直立的地层片理。花岗伟晶岩脉内部结构分带(图 5ab)共分为四个带,包括白云母-石英带(Ⅰ)、文象带(Ⅱ)、钠长石-石英-锂辉石带(Ⅲ)、细晶岩带(Ⅳ)。在细晶花岗岩带中见交代的含铌钽铁矿-白云母-石英伟晶岩脉(图 5c, d)。

图 5 吐格曼北锂铍矿ρ87伟晶岩脉剖面素描图(a)、野外露头(b)及手标本(c、d)照片 (a)伟晶岩脉分带现象剖面;(b)白云母石英带剖面;(c)透镜状含铌钽铁矿-白云母-石英伟晶岩;(d)钠长石-石英-锂辉石带中锂辉石标本 Fig. 5 ρ87 pegmatite vein profile sketch (a), field outcrop (b) and hand specimen (c, d) photographs in the northern Tugeman lithium-beryllium deposit (a) pegmatitic vein zoning phenomenon profile; (b) section of muscovite-quartz belt; (c) lenticular coltan-bearing muscovite-quartz pegmatite; (d) spodumene specimen in albite-quartz-spodumene belt

矿区发现的27条花岗伟晶岩型锂铍矿体,共生Nb、Ta、Rb、Cs;Li2O品位0.57%~6.1%,平均品位1.1%,资源量达2万吨;BeO品位0.04%~2.6%,平均品位0.47%,资源量达0.37万吨;Nb2O5品位0.014%~0.029%;Ta2O5品位0.008%~0.078%;Rb2O品位0.051%~0.27%;Cs2O品位0.04%~1.96%。初步估算锂铍金属资源量已达中型矿床规模。

2 样品选择及岩石学特征

针对吐格曼北锂铍矿床伟晶岩样品开展了系统的同位素年代学研究。采集样品(表 1)后,对38号脉白云母-钠长石-锂辉石伟晶岩样品进行锆石U-Pb测试(1件:18AE18)和白云母40Ar/39Ar测试(1件:18AE18)、对31号脉白云母-锡石伟晶岩样品进行锆石U-Pb测试(1件:18AE30)、锡石U-Pb测试(1件:19AE43)以及对87号脉含铌钽铁矿-白云母-石英伟晶岩样品进行铌钽铁矿U-Pb测试(1件:19TC87)。具体采样位置见图 3

表 1 样品及采样位置 Table 1 Geological features and the locations of the study samples

白云母-钠长石-锂辉石伟晶岩(18AE18、18AE30)为灰白色,伟晶结构,块状构造;主要矿物组成为石英(10%~15%)、锂辉石(70%~85%)、白云母(~5%)和钠长石(5%~10%)(图 4f图 6)。手标本中石英呈无色透明,他形粒状,粒径1 ~ 2cm;锂辉石呈灰白色板状、柱状,长度为1~13cm,镜下可见发生碎裂化锂辉石;白云母为亮白色片状,片状部分最长可达2cm,白云母片状晶体发生构造变形与热液蚀变;钠长石白色板柱状,自形程度较好,长度为1 ~ 2cm。

图 6 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩(18AE18)显微照片 (a)锂辉石受热液蚀变和后期构造影响发生破碎;(b)白云母受热液蚀变和后期构造影响发生变形.Ab-钠长石 Fig. 6 Microphotographs of muscovite-albite-spodumene pegmatite (18AE18) in the northern Tugeman lithium-beryllium deposit (a) spodumene was fractured by hydrothermal alteration and late structure; (b) muscovite deforms under the influence of hydrothermal alteration and later structure. Ab-albite

白云母-锡石伟晶岩(19AE43)为伟晶结构,块状构造;主要矿物组成为石英(50%~60%)、白云母(15%~25%)和锡石(15%~25%)。其中锡石集合体长度范围为1~4cm,呈短柱状、自形,表面光滑,呈铁黑色至褐黑色,多与白云母、石英共生(图 4c)。

含铌钽铁矿-白云母-石英伟晶岩(19TC87)为伟晶结构,块状构造;主要矿物组成为石英(50%~65%)、白云母(20%~30%)和铌钽铁矿(15%~20%),其中铌钽铁矿集合体宽1~2mm、长1~2cm,呈长柱状,多与白云母、石英共生(图 5c)。

3 测试方法 3.1 锆石U-Pb测年

单颗粒锆石分选在河北区域地质矿产调查研究所实验室使用常规的重选和磁选技术完成。锆石制靶和U-Pb同位素定年分析在武汉上谱分析科技有限责任公司利用LA-ICP-MS分析完成。将晶型较好的锆石样品颗粒和锆石标样粘贴在环氧树脂靶上,抛光使其曝露一半晶面。然后进行锆石透反射光显微照相和阴极发光图像分析,选择适宜的测试点位(图 7)。详细的仪器参数和分析流程见文献(Zong et al., 2017)。GeolasPro激光剥蚀系统由COMPexPro102 ArF193nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。激光剥蚀过程中采用氩气为补偿气、氦气作载气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置(Hu et al., 2015)。本次分析的激光束斑和频率分别为32μm和5Hz。U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括大约20~30s空白信号和50s样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMSDataCal (Liu et al., 2008, 2010)完成。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3 (Ludwig, 2003)完成。

图 7 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩中锆石阴极发光(CL)图像(a、b)及锆石U-Pb年龄谐和图(c、d) 1/455代表 1号锆石测点206Pb-238U年龄为455Ma,实线圆表示LA-ICP-MS U-Pb年龄分析点位置 Fig. 7 Cathodoluminescence images (a, b) and U-Pb concordia diagrams (c, d) of zircon from the muscovite-albite-spodumene pegmatite the northern Tugeman lithium-beryllium deposit 1/455 represents that the 206Pb-238U age of the No. 1 zircon is 455Ma, the solid circles indicate the location of LA-ICP-MS U-Pb analysis
3.2 锡石U-Pb测年

锡石单矿物分选在中国科学院地质与地球物理研究所岩矿制样与分析实验室完成。选取新鲜的白云母-锡石伟晶岩样品进行机械破碎,经磁选、重选后在双目显微镜下挑选得到晶形较好的锡石。将挑选的锡石粘在环氧树脂上,待树脂固化后刨磨至大部分锡石颗粒露出。

锡石制靶和U-Pb同位素定年在天津地质调查中心分析测试室完成。所用仪器为Neptune多接收电感耦合等离子体质谱仪和193nmArF准分子激光取样系统(LA-MC-ICP-MS)。实验流程具体如下:根据反射光和透射光图像,避开包裹体和裂纹,选择锡石颗粒的合适区域,以减少普通铅的影响(李惠民等,2009; Yuan et al., 2011)。利用193nmFX激光器对选择好的锡石区域进行剥蚀,激光斑束为78μm,频率为15Hz,样品信号采集时间为26s,激光剥蚀物质以He为载气送入Neptune (MC-ICP-MS),利用动态变焦扩大色散使质量数相差很大的U-Pb同位素可以同时接收,从而对U-Pb同位素进行测定(Yuan et al., 2011)。数据处理采用Isoplot程序进行分析和作图(Ludwig, 2003)。通过U-Pb Tera-Wasserburg年龄谐和图的下交点来计算锡石年龄。Yuan et al. (2011)中标样AY-4数据为159.9±1.9Ma,本次测试时标样数据为158.1±4.1Ma,二者在误差范围内一致,数据可靠。

3.3 铌钽铁矿U-Pb测年

铌钽铁矿单矿物分选在河北区域地质矿产调查研究所完成。选取新鲜的含铌钽铁矿-白云母-石英伟晶岩样品进行机械破碎,经磁选、重选后在双目显微镜下挑选得到晶形较好的铌钽铁矿。将挑选的铌钽铁矿粘在环氧树脂上,待树脂固化后刨磨至大部分铌钽铁矿颗粒露出。铌钽铁矿反射光、背散射(BSE)图像的拍摄在中国科学院地质与地球物理研究所矿产资源研究院重点实验室完成。

铌钽铁矿的U-Pb年代学测定由南京大学内生金属矿床成矿机制研究国家重点实验室电感耦合等离子体质谱Thermo Fisher Scientific iCAP-Q型ICP-MS与RESOlution S155型193nm的ArF准分子激光器联用完成,详细的分析步骤参见Che et al. (2015)。铌钽矿定年采用铌铁矿Coltan139作为外部标准进行校正。激光束斑直径为67μm,频率4Hz,每个分析点的气体背景采集为20s,信号采集时间50s,204Pb、206Pb和208Pb驻留时间为15ms,207Pb为30ms,232Th和238U为10ms,其他元素均为6ms。每测定8个样品点,分析2次年龄标样(Coltan 139)和1次NIST610。数据分馏和校正处理采用是ICPMSDataCal程序(Liu et al., 2008)。处理后利用Isoplot 4.15对U-Pb同位素年龄进行计算和作图(Ludwig, 2003)。

3.4 白云母Ar-Ar测年

白云母单矿物分选在河北区域地质矿产调查研究所完成。将选定的样品(18AE18)清洗晒干并逐步粉碎至40~60目,之后在双目镜下人工挑选白云母,在40~60目颗粒级别上获得均匀的样品。置于去离子水中超声清洗5次,每次20min,之后置于丙酮中再超声清洗3次,每次20min。

白云母Ar-Ar同位素定年在核工业北京地质研究院分析测试研究中心完成。称取适量40~60目粒级的岩石或矿物样品进行清洗,用铝箔将每个样品单独包装,将多个样品用石英管融封,外面包裹厚1mm的镉皮,在中国原子能科学研究院快中子反应堆照射24小时。照射后的样品在超高真空析氩系统双真空炉中进行阶段升温融样,用含有锆铝泵的NGP REP SYSTEM型纯化系统纯化各阶段释放的气体。室温下40Ar本底小于1.0E-15mol,1300℃时,本底小于1.0E-14mol。

用Helix SFT型惰性气体质谱仪静态测定氩的同位素比值。用阶段升温各温度段获得的年龄及累计39Ar百分比含量及ArArCALC ver2.4软件,绘制年龄谱图,并用加权法计算出坪年龄,用直线拟合方法计算出40Ar/39Ar的初始比值及等时线年龄。用于中子通量监测的标准样品为:GBW04418角闪石,其K=0.729±0.005%,Ar=109.06×10-6 (CCSTP/g),年龄值为2060±8Ma。ZBH-25黑云母,其K=7.599%,Ar=1.8157×10-9 (mol/g),年龄值为132.9±1.3Ma。

4 分析结果 4.1 锆石U-Pb年龄

ρ31白云母-钠长石-锂辉石伟晶岩(18AE30)样品中锆石长度在50~100μm之间,宽度在50~70μm之间,长宽比为1~1.5之间,锆石主要以半自形-不规则次圆状为主。锆石多无色、透明,晶形较好,少数锆石具碎裂现象,锆石CL图像多呈灰黑色模糊海绵状(图 7a)。锆石的LA-ICP-MS U-Pb分析结果显示:该伟晶岩锆石U、Th与Pb含量分别为:4148×10-6~10066×10-6、9×10-6~29×10-6、311×10-6~731×10-6,Th/U值0.002~0.003。16个锆石的206Pb/238U年龄在450.6~468Ma之间,在误差范围内基本一致,206Pb/238U谐和年龄为458.7±2.3Ma。数据置信度95%,数据可信度高(表 2图 7c)。

表 2 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩样品(18AE30、18AE18)锆石LA-ICP-MS U-Pb定年结果 Table 2 The LA-ICP-MS U-Pb ages results of zircons from the muscovite-albite-spodumene pegmatite sample (18AE30, 18AE18) from the northern Tugeman lithium-beryllium deposit

ρ38白云母-钠长石-锂辉石伟晶岩(18AE18)样品中锆石长度在75~200μm之间,宽度在60~130μm之间,长宽比为1~1.7之间,锆石主要以半自形、规则-次圆状为主。锆石多无色、透明,晶形较好。CL图像多呈灰黑色模糊海绵状,少量锆石CL图像呈灰色、发育微弱环带构造(图 7b)。锆石的LA-ICP-MS U-Pb分析结果显示:该伟晶岩锆石U、Th与Pb含量分别为:2219×10-6~14964×10-6、6×10-6~72×10-6、161×10-6~1129×10-6,Th/U值0.002~0.005。10个锆石的206Pb/238U年龄在447.5~464.9Ma之间,在误差范围内基本一致,206Pb/238U谐和年龄为454.7±4.0Ma。数据置信度95%,数据可信度高(表 2图 7d)。

2个样品(18AE30与18AE18)中的锆石Th/U比值较低(分别为0.002~0.003、0.002~0.005),平均值分别为0.0026、0.0034,均小于0.1。2个样品中锆石具高的稀土总量,平均值分别为2575×10-6、739×10-6 (表 3)。球粒陨石标准化稀土元素配分曲线整体呈左倾趋势,重稀土明显富集、轻稀土相对亏损。2个样品中除个别锆石外,稀土配分曲线具有的正Ce异常负Eu异常,其中样品18AE30稀土配分曲线具明显的正Ce异常(平均值为2.05)和负Eu异常(图 8a)。与典型岩浆锆石相比,样品锆石的轻稀土含量升高、曲线左倾趋势变缓(Hoskin and Ireland, 2000; Belousova et al., 2002; Rubatto, 2002; Hoskin and Schaltegger, 2003; Liu and Liou, 2011)。2个样品的锆石具异常高的P(分别为613×10-6~2463×10-6、665×10-6~1239×10-6)、Y (1215×10-6~4844×10-6、171×10-6~1344×10-6)、Yb (424×10-6~3841×10-6、167×10-6~634×10-6)与Hf (10237×10-6~50286×10-6、11427×10-6~60387×10-6)含量、及高的(Sm/La)N值与低的Ce/Ce*值(表 3),显示出典型的热液锆石特征(图 8bHoskin, 2005)。

表 3 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩(18AE30、18AE18)样品单颗粒锆石微量元素(×10-6)分析结果 Table 3 The LA-ICP-MS trace elemental results (×10-6) of zircons from the muscovite-albite-spodumene pegmatite sample (18AE30, 18AE18) from the northern Tugeman lithium-beryllium deposit

图 8 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩中锆石的球粒陨石标准化稀土元素配分曲线(a,标准化值据Sun and McDonough, 1989;岩浆锆石据Xu et al., 2014)及锆石Ce/Ce*-(Sm/La)N图解(b,底图据Hoskin, 2005) Fig. 8 Chondrite-normalized rare earth element pattern (a, normalization values after Sun and McDonough, 1989; magma zircon after Xu et al., 2014) and Ce/Ce* vs. (Sm/La)N diagram (b, base map after Hoskin, 2005) of zircons from the muscovite-albite-spodumene pegmatite from the northern Tugeman lithium-beryllium deposit
4.2 锡石U-Pb年龄

白云母-锡石伟晶岩样品(19AE43)中锡石为深褐色-黑色、半透明、自形-半自形晶体,透反射图像显示其内部结构较简单,环带不发育,少见矿物包裹体(图 9ab)。测点共39个,238U/206Pb值变化范围为2.73~13.04,238U/207Pb值变化范围为4.90~176.1,206Pb/207Pb值变化范围为1.82~14.24 (表 4),锡石238U/206Pb-207Pb/206Pb谐和年龄为468±8.7Ma (图 9c;MSWD=1.1,N=39)。

图 9 吐格曼北锂铍矿床白云母-锡石伟晶岩(19AE43)样品中代表性锡石透反射图像(a、b)和U-Pb T-W图解(c) Fig. 9 Transmission-reflected images (a, b) and U-Pb Tera-Wasserburg diagram (c) of cassiterite from the muscovite-cassiterite pegmatite sample (19AE43) from the northern Tugeman lithium-beryllium deposit

表 4 吐格曼北锂铍矿床白云母-锡石伟晶岩样品(19AE43)锡石微区原位LA-MC-ICP-MS U-Pb定年结果 Table 4 In-situ LA-MC-ICP-MS U-Pb dating results of the muscovite-cassiterite pegmatite sample (19AE43) cassiterite from the northern Tugeman lithium-beryllium deposit
4.3 铌钽铁矿U-Pb年龄

含铌钽铁矿-白云母-石英伟晶岩样品(19TC87)中铌钽铁矿为黑色、半透明、自形-半自形晶体,反射光和背散射图像显示其内部结构较简单,环带不发育(图 10ab)。铌钽铁矿206Pb/238U值变化范围为0.072~0.078,207Pb/235U值变化范围为0.541~0.625,207Pb/206Pb值变化范围为0.048~0.073,铌钽铁矿颗粒具有较低的U含量(38×10-6~527×10-6)、较低的Th含量(0.02×10-6~0.27×10-6),Th/U的范围为0.0003~0.0012 (表 5)。铌钽铁矿共39个测点产生的207Pb/235U-206Pb/238U谐和年龄为464.1±2.7Ma (图 10c,MSWD=5.2,N=39),数据可靠。

图 10 吐格曼北锂铍矿床含铌钽铁矿-白云母-石英伟晶岩(19TC87)样品中铌钽铁矿反射光、背散射(BSE)图像(a、b)和U-Pb年龄谐和图(c) 2/449代表 2号测点206Pb-238U年龄为449Ma,实线圆表示LA-ICP-MS U-Pb年龄分析点位置 Fig. 10 Reflected and back-scattered electron (BSE) images (a, b) and concordia diagram (c) of coltan from the coltan-bearing muscovite-quartz pegmatite sample (19TC87) from the northern Tugeman lithium-beryllium deposit 2/449 represents that the 206Pb-238U age of the No. 2 is 449Ma, the solid circles indicate the location of LA-ICP-MS U-Pb analysis

表 5 吐格曼北锂铍矿床LA-ICP-MS铌钽铁矿微区原位U-Pb年龄测试结果 Table 5 In-situ LA-ICP-MS U-Pb ages of coltan from the northern Tugeman lithium-beryllium deposit
4.4 白云母Ar-Ar年龄

白云母样品的40Ar/39Ar阶段升温加热分析结果见表 6图 11给出了坪年龄谱图、等时线年龄图,所有的误差置信水平为2σ。采用Isoplot3.0软件(Ludwig, 2003)进行数据处理与作图,由表 6图 11可知,白云母样品9个阶段加热分析过程中,39Ar在(0%~100%)的释放区域内呈现一条平坦的Ar-Ar坪年龄谱图(图 11a),坪年龄为350.2±1.6Ma,这表明样品K和放射性40Ar*分布均匀,且自矿物生成以来保持良好的封闭状态,没有受到明显的后期热扰动。对参与坪年龄计算的数据进行39Ar/36Ar-40Ar/36Ar等时线拟合处理,结果构成了线性关系较好的等时线(图 11b),等时线年龄为351.4±2.7Ma (MSWD=5.1),和坪年龄在误差范围内一致,证实白云母定年结果可靠且具有地质意义。

表 6 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩(18AE18)样品中白云母40Ar/39Ar阶段升温加热分析结果 Table 6 Step wise heating 40Ar/39Ar age data of muscovite from the muscovite-albite-spodumene pegmatite sample (18AE18) from the northern Tugeman lithium-beryllium deposit

图 11 吐格曼北锂铍矿床白云母-钠长石-锂辉石伟晶岩(18AE18)样品中白云母40Ar/39Ar坪年龄谱图(a)和等时线年龄图(b) Fig. 11 40Ar/39Ar plateau age diagram (a) and isochron diagram (b) of muscovite from the muscovite-albite-spodumene pegmatite sample (18AE18) from the northern Tugeman lithium-beryllium deposit
5 讨论 5.1 花岗伟晶岩矿物成因及其年代学意义

稀有金属花岗伟晶岩的成因目前存在是形成于花岗岩浆的结晶分异还是形成于地壳深熔成因的争论(Černy, 1992; Shaw et al., 2016; 张辉等,2019)。基于大部分花岗伟晶岩与花岗岩在空间和成因上有一定联系的因素(Černy et al., 2012; Grew, 2002; London and Evensen, 2002),绝大多数研究者认为花岗伟晶岩为花岗岩结晶分异成因(Jahns and Burnham, 1969; London and Morgan, 2012; Simmons and Webber, 2008)。即花岗伟晶岩浆为花岗岩分异结晶的残余岩浆(Simmons and Webber, 2008),是经历了二云母花岗岩、白云母花岗岩和钠长花岗岩浆分异结晶后的残余岩浆(London and Evensen, 2002; London, 2008; 王汝成等,2017吴福元等,2017Liu et al., 2019; Wu et al., 2020; Xie et al., 2020)。

花岗伟晶岩中的矿物按成因划分可分为两种:新生矿物和残留矿物。前者指由于花岗伟晶岩浆结晶过程新形成的矿物,花岗伟晶岩中绝大多数矿物为新生矿物,包括钾长石、钠长石、白云母、石英、磷灰石、及锂辉石、锂云母、绿柱石、金绿宝石与铌钽铁矿等稀有金属矿物。这些新生矿物由于结晶温度与元素在熔体中溶解度的不同可在花岗伟晶岩内部分带产出(Jahns and Burnham, 1969; Jahns, 1982; Burnham and Nekvasil, 1986; London, 2008; Simmons et al., 2012)。这些新生矿物记录了花岗伟晶岩的形成与演化信息,可用于研究与测定花岗伟晶岩的形成时代。

花岗伟晶岩中锆石、夕线石、蓝晶石、堇青石和红柱石可能多为残留矿物(Wu et al., 2020)。花岗伟晶岩中的残留锆石由于高的U、Th含量多表现出显著的蜕晶化。Zhou et al. (2015)徐兴旺等(2019)王倩等(2019)研究结果显示这种蜕晶化的残留锆石部分具有热液锆石的特征,其可能是岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的结果。

近年来,除了锆石以外,大量与成矿有关的含U副矿物被用来直接进行U-Pb定年,如锡石、独居石、磷灰石、石榴子石、黑钨矿、铌钽矿等,对相关矿床的研究有了更深入的认识。自Marini and Botelho (1986)最早尝试利用锡石U-Pb同位素体系对锡矿床进行年龄测定以来,该方法先后被国内外学者应用于不同锡矿床的成矿年代学研究(Gulson and Jones, 1992; 刘玉平等,2007Yuan et al., 2008, 2011)。其中锡石属于金红石族矿物,具有比较稳定的化学结构,其晶格内一般可容纳高含量的U并且不易受后期热液作用的影响(Jiang et al., 2004; 刘玉平等,2007)。锡石作为伟晶岩型稀有金属矿床的矿石矿物,其结晶年龄直接代表了锡石结晶的年龄和伟晶岩的形成时代,以其同位素年龄来确定稀有金属矿床的形成时代,与脉石矿物、蚀变矿物(如云母、闪石)以及全岩同位素数据相比具有优越性。因此比较适合作为伟晶岩型稀有金属矿床的直接定年矿物。据前人研究,在冷却速率为10℃/Myr的体系中、非超高温条件下,锡石封闭温度为600~800℃(张东亮等,2011)。锡石U-Pb法是一种准确测定锡石结晶年龄的有效方法(McNaughton et al., 1993; 刘玉平等,2007Yuan et al., 2008, 2011; 袁顺达等,2010张东亮等,2011)。

铌钽铁矿族矿物普遍存在于各种稀有金属伟晶岩矿床(Černy and Lenton, 1995; Selway et al., 2005)、花岗岩有关的热液型钨锡(Lerouge et al., 2007)及稀土(Möller, 1989)矿床中。确定铌钽铁矿族矿物的年龄可以为多种矿床类型提供重要的年龄限制,特别是与富含稀有元素的花岗岩和伟晶岩有关的矿床(Melleton et al., 2012)。自Aldrich et al. (1956)建立铌钽铁矿U-Pb定年方法以来,一些学者开始尝试使用同位素稀释热电离质谱法(ID-TIMS, Romer and Wright, 1992; Romer and Smeds, 1994, 1996, 1997; Romer and Lehmann, 1995; Romer et al., 1996b)和多接收电感耦合等离子体质谱法(LA-MC-ICP-MS, Smith et al., 2004; Dill et al., 2007; Melcher et al., 2008; Dewaele et al., 2011; Deng et al., 2013; Che et al., 2015)测定铌钽铁矿U-Pb年龄,并取得了可靠的年龄数据。例如,Camacho et al. (2012)对加拿大东南部著名的Tanco和Silverleaf稀有金属矿床进行了年代学研究,获得花岗伟晶岩中钽铁矿U-Pb年龄为2641±3Ma,与磷灰石Pb-Pb年龄2657±18Ma、白云母和钠长石Rb-Sr等时线年龄~2630Ma在误差范围内一致。

白云母Ar-Ar定年已发展为同位素地质年代学主要的研究手段之一,也是矿床年代学研究的主要技术手段。白云母Ar-Ar定年也应用到了稀有金属矿床的年代学研究(陈郑辉等,2006李建康等, 2006a, b20092013李建康,2006; 张泽等,2019),如Wang et al. (2003)通过对伟晶岩型稀有金属矿床中白云母的Ar-Ar法同位素定年研究,首次在阿尔泰中部的大喀拉苏大型稀有金属矿床和小喀拉苏稀有金属矿床获得了新的同位素年龄数据,其坪年龄分别为248.4±2.1Ma和233.8±0.4Ma,从而证实了印支期稀有金属成矿作用的存在,提出了伟晶岩型矿床形成于多个时代,且稀有金属成矿作用主要发生在海西期造山运动之后的看法。陈富文等(1999)对可可托海Ⅰ带和Ⅴ带中白云母进了Ar-Ar年龄测试,分别获得39Ar/36Ar-40Ar/36Ar等时线年龄177.9±0.03Ma、176.9±1.8Ma,认为是由花岗质岩浆在地下深处封闭体系中经过漫长的岩浆结晶分异形成。Zhang et al. (2014)通过对雪宝顶Sn-W-Be矿床中白云母和锡石分别进行了Ar-Ar和U-Pb年龄测试,获得白云母40Ar/39Ar年龄为194.5±1.0Ma、锡石U-Pb谐和年龄为193.6±6Ma,李建康等(2007)获得了白云母40Ar/39Ar年龄为189.9±1.8Ma,锡石U-Pb与白云母40Ar/39Ar年龄在误差范围内基本一致。但有学者指出大喀拉苏(任宝琴等,2011Liu et al., 2018)伟晶岩形成时代是二叠纪,而可可托海3号脉形成于三叠纪(Zhu et al., 2006; Wang et al., 2007; 陈剑锋,2011Che et al., 2015)。无论是大喀拉苏、小喀拉苏还是可可托海3号脉,利用含钾矿物的Ar-Ar定年结果比锆石、铌钽矿U-Pb定年结果至少年轻数十百万年。

综上所述:不同定年体系因为封闭条件不一样,测年对象的差异性,导致了对年龄数据没有很好的、合理的解释。此外,多数伟晶岩利用含钾矿物的Ar-Ar定年结果比锆石、铌钽矿U-Pb定年结果至少年轻数十百万年,这可能是由于这些伟晶岩经历过后期热液活动的改造,但在区域内没有发现伟晶岩经历过后期热液活动的岩相学证据,造成了含钾矿物Ar-Ar定年不足为信的假象。

5.2 吐格曼北锂铍矿床成矿时代及其区域成矿学意义

吐格曼北锂铍矿床ρ31白云母-锡石伟晶岩样品中锡石U-Pb测年的T-W图解中下交点的年龄为468±8.7Ma (图 9c,MSWD=1.1,N=39),该结果能代表锡石结晶年龄。由于锡石封闭温度较高(600~800℃,张东亮等,2011),所以锡石结晶年龄可代表伟晶岩浆结晶阶段的年龄。

ρ87含铌钽铁矿-白云母-石英伟晶岩中铌钽铁矿物,常与白云母和石英共生。铌钽铁矿U-Pb年龄464.1±2.7Ma (MSWD=5.2,N=39)可约束稀有金属伟晶岩的岩浆结晶年龄。

2条脉体(ρ31、ρ38)白云母-钠长石-锂辉石伟晶岩样品中锆石U-Pb年龄分别为458.7±2.3Ma (MSWD=7.2, N=16)、454.7±4.0Ma (MSWD=8.0, N=10)。锆石的CL图像(图 7a, b)表明样品中的锆石多呈黑色模糊海绵状,仅部分颗粒见弱的薄边,这些特征表明其在岩浆阶段由于高U含量和晚期流体的作用,锆石经历了蜕晶化和重结晶(Dickin, 1995; Romer et al., 1996a)。另外,锆石(Sm/La)N-Ce/Ce*图解(图 8b)显示2个样品中锆石(18AE18、18AE30)均为热液成因,说明该锆石为岩浆锆石在伟晶岩热液阶段U-Pb同位素系统重置的锆石(杨红等,2017),意味着锆石谐和年龄记录的是岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的时间。

吐格曼北锂铍矿床白云母-锡石伟晶岩中锡石U-Pb年龄、含铌钽铁矿-白云母-石英伟晶岩中铌钽铁矿U-Pb年龄(分别为468±8.7Ma、464.1±2.7Ma)在误差范围内一致;2条伟晶岩脉(ρ31、ρ38)锆石U-Pb年龄相近,并可与该矿床南侧的吐格曼铍锂矿花岗伟晶岩的年龄459.9±3.7Ma对比(徐兴旺等,2019)。鉴于锡石封闭温度较高、可代表伟晶岩浆早期结晶阶段的年龄,铌钽铁矿可能为岩浆-热液过渡阶段的产物,而蜕晶化的锆石记录的是岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的时间。

由此可以认为,吐格曼北锂铍矿床稀有金属伟晶岩的形成年龄为468~454Ma (图 12),持续时间为14Myr。这与许多伟晶岩结晶时间持续10~20Myr (Chen et al., 2000; Wang et al., 2007; Lv et al., 2012; Zhou et al., 2015)的特征是一致的,尽管模拟实验结果显示一个花岗岩体与花岗伟晶岩脉的结晶成岩时间一般小于几个百万年(Coleman et al., 2004; Matzel et al., 2006; Michel et al., 2008; Sirbescu et al., 2008; London et al., 2020)。

图 12 吐格曼稀有金属花岗伟晶岩不同测年方法对比 Fig. 12 Comparison of different dating methods of Tugeman rare metal granite pegmatites

ρ38白云母-钠长石-锂辉石伟晶岩中白云母Ar-Ar测年的测试结果显示:白云母40Ar/39Ar坪年龄为350.2±1.6Ma (MSWD=4.7),39Ar/36Ar-40Ar/36Ar等时线年龄为351.4±2.7Ma (MSWD=5.1),该年龄较含矿伟晶岩中锆石、锡石与铌钽铁矿的U-Pb年龄年轻约110Ma。由于吐格曼北锂铍矿床中白云母褶曲变形强烈(图 6),本文认为该期白云母可能与含矿伟晶岩脉遭受到后期的构造运动有关,研究区在早石炭世时可能存在构造运动叠加的热事件。

5.3 不同方法结果对比与启示

如上所述,吐格曼北锂铍矿床不同矿物记录了不同岩浆-热液阶段的时间,其中锡石年龄代表伟晶岩浆早期结晶阶段的年龄,铌钽铁矿可能为岩浆-热液过渡阶段的产物,而蜕晶化的锆石记录的是岩浆锆石蜕晶化后经流体交代作用及重结晶作用导致U-Pb同位素系统重置的时间。这些年龄在误差范围内是一致的,综合考虑分析结果的误差可以确定伟晶岩矿床形成的时间;而白云母Ar-Ar年龄记录的是最晚期的构造叠加热事件时间。前人关于稀有金属花岗伟晶岩的定年结果(表 7)也能佐证我们的观点:(1)稀有金属花岗伟晶岩的锆石U-Pb与铌钽铁矿U-Pb法所测得年龄基本一致,如Bohemian伟晶岩(捷克)锆石U-Pb年龄(480Ma,Glodny et al., 1998)与铌钽铁矿U-Pb年龄(480Ma,Glodny et al., 1998)、小秦岭伟晶岩锆石U-Pb年龄(143±1Ma,Deng et al., 2013)与铌钽铁矿U-Pb年龄(143±1Ma,Deng et al., 2013);但多数伟晶岩的锆石U-Pb与铌钽铁矿U-Pb法所测得年龄不一致,如阿尔泰3号脉Ⅰ带锆石U-Pb年龄(220±9Ma,Wang et al., 2007)与铌钽铁矿年龄(205.6±2.6Ma,王倩等,2019)、大喀拉苏1号脉锆石U-Pb年龄(270.1±1.7Ma/272.5±1.4Ma,任宝琴等,2011)与铌钽铁矿U-Pb年龄(239.6±3.8Ma,Zhou et al., 2018);(2)白云母的Ar-Ar年龄是否与锆石和铌钽铁矿的U-Pb年龄一致取决于花岗伟晶岩是否存在后期热液活动叠加改造。多数伟晶岩的锆石及铌钽铁矿U-Pb与白云母Ar-Ar法所测得年龄不一致,如可可托海3号脉Ⅱ、Ⅶ带,阿祖拜伟晶岩(邹天人等,1986王登红等,2000Wang et al., 2007; 周起凤,2013Zhang et al., 2016)。广泛的对比研究可以发现白云母Ar-Ar法比锆石、铌钽矿U-Pb法所测得年龄偏年轻,如Gatumba(卢旺达)、阿祖拜、虎斯特、群库尔、Bohemian、Dalan (索马里)、小喀拉苏208号脉伟晶岩(表 7),可能是由于白云母的封闭温度(400±50℃,Dallmeyer and VanBreeman, 1981; Hames and Bowring, 1994; Dunlap, 1997; Ortega-Rivera et al., 1997; Möller et al., 2000; Chakungal et al., 2004; Wang and Li, 2008; Meinhold, 2010)略低于伟晶岩中白云母的形成温度(350 ~ 550℃)所致(Küster, 1995; Glodny et al., 1998; 王登红等,2000Dewaele et al., 2011; 任宝琴等,2011Zhang et al., 2016; Zhou et al., 2018),这也可以说明本文的白云母Ar-Ar年龄记录的是最晚期叠加改造热事件时间。

表 7 一些花岗伟晶岩不同方法测年结果对比表 Table 7 Comparison of dating results of different methods in some granitic pegmatites

另外,阿尔泰可可托海3号脉年龄数据多样,从外向内Ⅰ~Ⅷ结构带的年龄数据分布范围为160~246Ma (表 7)。从所测各带年龄数据看,不仅分布范围大,而且同一个带年龄有很大差别,如文象伟晶岩带(Ⅰ带)178~246Ma,糖粒状钠长石带(Ⅱ带)180~292Ma。这种年龄值差别一方面可能与20世纪80年代测试水平有关(钟龙等,2011);另一方面,巨型伟晶岩脉形成通常需经历较长时间,样品经受较强热液作用,造成不同程度的氩丢失(钟龙等,2011)。因此,在开展花岗伟晶岩白云母Ar-Ar测年分析时开展岩石结构构造与热液活动分析是必要的。

6 结论

(1) 采用不同方法对吐格曼北锂铍矿床进行年代学研究,结果显示:白云母-锡石伟晶岩中锡石U-Pb年龄与含铌钽铁矿-白云母-石英伟晶岩中铌钽铁矿U-Pb年龄分别为468±8.7Ma、464.1±2.7Ma,2件白云母-钠长石-锂辉石伟晶岩样品中锆石U-Pb年龄分别为458.7±2.3Ma、454.7±4.0Ma,1件白云母-钠长石-锂辉石伟晶岩中白云母40Ar/39Ar坪年龄为350.2±1.6Ma。综合分析测试年龄的误差与伟晶岩可能的持续结晶时间,推断吐格曼北锂铍花岗伟晶岩形成于468~454Ma,这表明吐格曼北锂铍矿床成矿作用主要发生在中-晚奥陶世。花岗伟晶岩脉在早石炭世时经历了一次变形与热液叠加改造事件。

(2) 稀有金属花岗伟晶岩中不同矿物记录了不同岩浆-热液阶段的时间,其中锡石年龄代表伟晶岩浆早期结晶阶段的年龄,铌钽铁矿可能为岩浆-热液过渡阶段的产物,蜕晶化的锆石记录的是后期流体作用下锆石U-Pb同位素系统重置的时间,多种方法结果的综合可以更好地约束稀有金属伟晶岩的成矿过程;而白云母Ar-Ar年龄记录的可能是最晚期叠加改造热事件时间。

致谢      野外考察与采样工作中,得到了新疆地矿局第三地质大队刘建兵、张笋、宋俊华工程师等地质同行的支持与帮助;中国地质调查局天津地质调查中心分析实验室涂家润、郝爽、肖志斌老师帮助完成了LA-MC-ICP-MS法锡石同位素测年;两位审稿人对本文的审阅并提出建设性问题及建议,使得本文能更加规范、完整,内容上也更加严谨、充实;在此一并表示衷心的感谢!

参考文献
Aldrich LT, Davis GL, Tilton GR and Wetherill GW. 1956. Radioactive ages of minerals from the Brown Derby mine and the Quartz Creek granite near Gunnison, Colorado. Journal of Geophysical Research:Solid Earth, 61(2): 215-232 DOI:10.1029/JZ061i002p00215
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Burnham CW and Nekvasil H. 1986. Equilibrium properties of granite pegmatite magmas. American Mineralogist, 71(3-4): 239-263
Camacho A, Baadagaard H, Davis DW and Černy P. 2012. Radiogenic isotope systematics of the Tanco and Silverleaf granitic pegmatites, Winnipeg River pegmatite district, Manitoba. The Canadian Mineralogist, 50(6): 1775-1792 DOI:10.3749/canmin.50.6.1775
Černý P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7(5): 393-416 DOI:10.1016/0883-2927(92)90002-K
Černý P and Lenton PG. 1995. The Buck and Pegli lithium deposits, southeastern Manitoba:The problem of updip fractionation in subhorizontal pegmatite sheets. Economic Geology, 90(3): 658-675 DOI:10.2113/gsecongeo.90.3.658
Černý P, London D and Novák M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8(4): 289-294 DOI:10.2113/gselements.8.4.289
Chakhmouradian AR, Smith MP and Kynicky J. 2015. From "strategic" tungsten to "green" neodymium:A century of critical metals at a glance. Ore Geology Reviews, 64: 455-458 DOI:10.1016/j.oregeorev.2014.06.008
Chakungal J, Reynolds PH, Jamieson RA and Corrigan D. 2004. Slow post-orogenic cooling in a deeply eroded orogen:Reindeer Zone, Trans-Hudson Orogen, Saskatchewan. Canadian Journal of Earth Sciences, 41(7): 867-880 DOI:10.1139/e04-023
Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH and Zhu ZY. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979-989 DOI:10.1016/j.oregeorev.2014.07.008
Che ZC, Liu L, Liu HF and Luo JH. 1995. Discovery and occurrence of high-pressure metapelitic rocks from Altun Mountain areas, Xinjiang Autonomous Region. Chinese Science Bulletin, 40(23): 1988-1991
Che ZC, Liu L, Liu HF and Luo JH. 1998. The constituents of the Altun fault system and genetic characteristics of related Meso-Cenozoic petroleum-bearing basin. Regional Geology of China, 17(4): 377-384 (in Chinese with English abstract)
Chen FW, Li HQ, Wang DH, Cai H and Chen W. 2000. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt. Chinese Science Bulletin, 45(2): 108-114 DOI:10.1007/BF02884652
Chen JF. 2011. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution. Master Degree Thesis. Beijing: Graduate University of the Chinese Academy of Sciences, 1-87 (in Chinese)
Chen ZH, Wang DH, Gong YF, Chen YC and Chen SP. 2006. 40Ar-39Ar isotope dating of muscovite from Jingerquan pegmatite rare metal deposit in Hami, Xinjiang, and its geological significance. Mineral Deposits, 25(4): 470-476 (in Chinese with English abstract)
Clark GS. 1982. Rubidium-strontium isotope systematics of complex granitic pegmatites. In:Černý P (ed.). Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Short Course Handbook, Toronto, 8:347-371
Coleman DS, Gray W and Glazner AF. 2004. Rethinking the emplacement and evolution of zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32(5): 433-436 DOI:10.1130/G20220.1
Dai HZ, Wang DH, Liu LJ, Yu Y, Dai JJ and Fu XF. 2018. Geochronology, geochemistry and their geological significances of No. 308 pegmatite vein in the Jiajika deposit, western Sichuan, China. Earth Science, 43(10): 3664-3681 (in Chinese with English abstract)
Dallmeyer RD and VanBreeman O. 1981. Rb-Sr whole-rock and 40Ar/39Ar mineral ages of the Togus and Hallowell quartz monzonite and Three Mile Pond granodiorite plutons, south-central Maine:Their bearing on post-Acadian cooling history. Contributions to Mineralogy and Petrology, 78(1): 61-73 DOI:10.1007/BF00371144
Deng XD, Li JW, Zhao XF, Hu ZC, Hu H, Selby D and de Souza ZS. 2013. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS:Implications for geochronology of pegmatite and associated ore deposits. Chemical geology, 344: 1-11 DOI:10.1016/j.chemgeo.2013.02.014
Dewaele S, Henjes-Kunst F, Melcher F, Sitnikova M, Burgess R, Gerdes A, Fernandez MA, de Clercq F, Muchez P and Lehmann B. 2011. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). Journal of African Earth Sciences, 61(1): 10-26
Dickin AP. 1995. Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 101-135
Dill HG, Gerde A and Weber B. 2007. Cu-Fe-U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany:With special reference to laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of limonite-cored torbernite. Mineralogical Magazine, 71(4): 371-387 DOI:10.1180/minmag.2007.071.4.371
Dunlap WJ. 1997. Neocrystallization or cooling? 40Ar/39Ar ages of white micas from low-grade mylonites. Chemical Geology, 143(3-4): 181-203 DOI:10.1016/S0009-2541(97)00113-7
Fei GC, Yang Z, Yang JY, Luo W, Deng Y, Lai YT, Tao XX, Zheng L, Tang WC and Li J. 2020. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposits, Markam, Sichuan Province:Evidence from cassiterite LA-MC-ICP-MS U-Pb dating. Acta Geologica Sinica, 94(3): 836-849 (in Chinese with English abstract)
Feng YG, Liang T, Zhang Z, Wang YQ, Zhou Y, Yang XQ, Gao JG, Wang H and Ding K. 2019. Columbite U-Pb geochronology of Kalu'an lithium pegmatites in northern Xinjiang, China:Implications for genesis and emplacement history of rare-element pegmatites. Minerals, 9(8): 456 DOI:10.3390/min9080456
Feng YG, Liang T, Linnen RL, Zhang Z, Zhou Y, Zhang ZL and Gao JG. 2020. LA-ICP-MS dating of high-uranium columbite from No. 1 pegmatite at Dakalasu, the Chinese Altay orogen:Assessing effect of metamictization on age concordance. Lithos, 362-363: 105461 DOI:10.1016/j.lithos.2020.105461
Glodny J, Grauert B, Fiala J, Vejnar Z and Krohe A. 1998. Metapegmatites in the western Bohemian massif:Ages of crystallisation and metamorphic overprint, as constrained by U-Pb zircon, monazite, garnet, columbite and Rb-Sr muscovite data. Geologische Rundschau, 87(1): 124-134 DOI:10.1007/s005310050194
Grew ES. 2002. Beryllium in metamorphic environments (emphasis on aluminous compositions). Reviews in Mineralogy and Geochemistry, 50(1): 487-549 DOI:10.2138/rmg.2002.50.12
Gulson BL and Jones MT. 1992. Cassiterite:Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites. Geology, 20(4): 355-358 DOI:10.1130/0091-7613(1992)020<0355:CPFDDO>2.3.CO;2
Guo ZJ, Zhang ZC and Wang JJ. 1999. Sm-Nd isochron age of ophiolite along northern margin of Altun Tagh Mountain and its tectonic significance. Chinese Science Bulletin, 44(5): 456-458 DOI:10.1007/BF02977887
Hames WE and Bowring SA. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters, 124(1-4): 161-169 DOI:10.1016/0012-821X(94)00079-4
Hoskin PWO and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630 DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648 DOI:10.1016/j.gca.2004.07.006
Hu ZC, Zhang W, Liu YS, Gao S, Li M, Zong KQ, Chen HH and Hu SH. 2015. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152-1157
Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis:Ⅰ. A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864 DOI:10.2113/gsecongeo.64.8.843
Jahns RH. 1982. Internal evolution of pegmatite bodies. In: Černý P (ed.). Granitic Pegmatites in Science and Industry. Mineral Association of Canada Short Course Handbook, 8: 293-327
Jiang SY, Yu JM and Lu JJ. 2004. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China:Implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chemical Geology, 209(3-4): 193-213 DOI:10.1016/j.chemgeo.2004.04.021
Kaeter D, Barros R, Menuge JF and Chew DM. 2018. The magmatic-hydrothermal transition in rare-element pegmatites from Southeast Ireland:LA-ICP-MS chemical mapping of muscovite and columbite-tantalite. Geochimica et Cosmochimica Acta, 240: 98-130 DOI:10.1016/j.gca.2018.08.024
Kang L, Xiao PX, Gao XF, Xi RG and Yang ZC. 2016. Early Paleozoic magmatism and Collision orogenic process of the South Altyn. Acta Geologica Sinica, 90(10): 2527-2550 (in Chinese with English abstract)
Kendall-Langley LA, Kemp AIS, Grigson JL and Hammerli J. 2020. U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of western Australia. Lithos, 352-353: 105231 DOI:10.1016/j.lithos.2019.105231
Küster D. 1995. Rb-Sr isotope systematics of muscovite from Pan-African granitic pegmatites of western and northeastern Africa. Mineralogy and Petrology, 55(1-3): 71-83 DOI:10.1007/BF01162580
Lerouge C, Deschamps Y, Piantone P, Gilles C and Breton J. 2007. Metal-carrier accessory minerals associated with W±Sn mineralization, La Chataigneraie tungsten ore district, massif central, France. The Canadian Mineralogist, 45(4): 875-889 DOI:10.2113/gscanmin.45.4.875
Li HM, Hao S, Geng JZ, Li HK, Zhang YQ and Zhou HY. 2009. Direct dectermination of cassiterite U-Pb isotope age in the tin polymentallic deposit by laser ablation multiple collector plasma mass spectrometry (LA-MC-ICP-MS). Acta Mineralogica Sinica, 29(Suppl.): 313 (in Chinese)
Li JK. 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-225 (in Chinese with English summary)
Li JK, Wang DH and Fu XF. 2006a. 40Ar-39Ar ages of the Keeryin pegmatite type rare metal deposit, western Sichuan, and its tectonic significances. Acta Geologica Sinica, 80(6): 843-848 (in Chinese with English abstract)
Li JK, Wang DH and Fu XF. 2006b. Metallogenic epoch and tectonic implications of Danba pegmatite type muscovite deposit in Sichuan Province, China. Mineral Deposits, 25(1): 95-100
Li JK, Liu SB, Wang DH and Fu XF. 2007. Metallogenic epoch of Xubaoding W-Sn-Be deposit in Northwest Sichuan and its tectonic tracing significance. Mineral Deposits, 26(5): 557-562 (in Chinese with English abstract)
Li JK, Yang XJ, Wang DH, Xiong CL and Fu XF. 2009. Cooling process of granite in northwestern Sichuan Province and its constraint to regional mineralization. Acta Geologica Sinica, 83(8): 1141-1149 (in Chinese with English abstract)
Li JK, Wang DH, Li HQ, Chen ZH and Mei YP. 2013. Late Jurassic-Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province. Earth Science (Journal of China University of Geosciences), 38(5): 1023-1036 (in Chinese with English abstract) DOI:10.3799/dqkx.2013.100
Li JK, Zou TR, Liu XF, Wang DH and Ding X. 2015. The metallogenetic regularities of lithium deposits in China. Acta Geologica Sinica, 89(2): 652-670 DOI:10.1111/1755-6724.12453
Li P, Li JK, Chou IM, Wang DH and Xiong X. 2019. Mineralization epochs of granitic rare-metal pegmatite deposits in the Songpan-Garzê orogenic belt and their implications for orogeny. Minerals, 9(5): 280 DOI:10.3390/min9050280
Linnen RL, Van Lichtervelde M and Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275-280 DOI:10.2113/gselements.8.4.275
Linnen RL, Trueman DL and Burt R. 2014. Tantalum and niobium. In: Gunn G (ed.). Critical Metals Handbook. Chicester, UK: Wiley, 361-384
Liu F, Zhang ZX, Li Q, Zhang C and Li C. 2014. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209-219 DOI:10.1016/j.oregeorev.2013.08.020
Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39
Liu L, Che ZC, Luo JH, Wang Y and Gao ZJ. 1997. Recognition and implication of eclogite in the western Altun Mountains, Xinjiang. Chinese Science Bulletin, 42(11): 931-934 DOI:10.1007/BF02882551
Liu L, Che ZC, Wang Y, Luo JH and Chen DL. 1999. The petrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains. Acta Petrologica Sinica, 15(1): 57-64 (in Chinese with English abstract)
Liu YL, Zhang H, Tang Y, Zhang X, Lv ZH and Zhao JY. 2018. Petrogenesis and tectonic setting of the Middle Permian A-type granites in Altay, northwestern China:Evidences from geochronological, geochemical, and Hf isotopic studies. Geological Journal, 53(2): 527-546 DOI:10.1002/gj.2910
Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit:Evidence for cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Liu ZC, Wu FY, Liu XC, Wang JG, Yin R, Qiu ZL, Ji WQ and Yang L. 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos, 340-341: 71-86 DOI:10.1016/j.lithos.2019.05.004
London D and Evensen JM. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445-486 DOI:10.2138/rmg.2002.50.11
London D. 2008. Pegmatites. Ottawa: Mineralogical Association of Canada, 10-347
London D and Morgan GB VI. 2012. The pegmatite puzzle. Elements, 8(4): 263-268 DOI:10.2113/gselements.8.4.263
London D, Hunt LE and Duval CL. 2020. Temperatures and duration of crystallization within gem-bearing cavities of granitic pegmatites. Lithos, 360-361: 105417 DOI:10.1016/j.lithos.2020.105417
Ludwig KR. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-39
Lupulescu MV, Chiarenzelli JR, Pullen AT and Price JD. 2011. Using pegmatite geochronology to constrain temporal events in the Adirondack Mountains. Geosphere, 7(1): 23-39 DOI:10.1130/GES00596.1
Lv ZH, Zhang H, Tang Y and Guan SJ. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China:Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374-391 DOI:10.1016/j.lithos.2012.08.005
Ma ZL, Zhang H, Tang Y, Lv ZH, Zhang X and Zhao JY. 2015. Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite. Geochimica, 44(1): 9-26 (in Chinese with English abstract)
Marini OJ and Botelho NF. 1986. A província de granitos estaníferos de Goiás. Revista Brasileira De Geociencias, 16(1): 119-131 DOI:10.25249/0375-7536.1986119131
Matzel JEP, Bowring SA and Miller RB. 2006. Time scales of pluton construction at different crustal levels:Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geological Society of America Bulletin, 118(11-12): 1412-1430 DOI:10.1130/B25923.1
McNaughton NJ, Pollard PJ, Gulson BL and Jones MT. 1993. Cassiterite:Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites:Comment and Reply. Geology, 21(3): 285-286
Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102(1-2): 1-28 DOI:10.1016/j.earscirev.2010.06.001
Melcher F, Sitnikova MA, Graupner T, Martin N, Oberthür T, Henjes-Kunst F, Gäbler E, Gerdes A, Brätz H, Davis DW and Dewaele S. 2008. Fingerprinting of conflict minerals:Columbite-tantalite ("coltan") ores. SGA News, 23: 1-14
Melleton J, Gloaguen E, Frei D, Novak M and Breiter K. 2012. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech republic?. The Canadian Mineralogist, 50(6): 1751-1773 DOI:10.3749/canmin.50.6.1751
Michel J, Baumgartner L, Putlitz B, Schaltegger U and Ovtcharova M. 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90k.y. Geology, 36(6): 459-462 DOI:10.1130/G24546A.1
Möller P. 1989. REE(Y), Nb, and Ta enrichment in pegmatites and carbonatite-alkalic rock complexes. In: Möller P, Černý P and Saupé F (eds.). Lanthanides, Tantalum and Niobium. Berlin, Heidelberg: Springer, 103-144
Möller A, Mezger K and Schenk V. 2000. U-Pb dating of metamorphic minerals:Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precambrian Research, 104(3-4): 123-146 DOI:10.1016/S0301-9268(00)00086-3
Nassar NT. 2017. Shifts and trends in the global anthropogenic stocks and flows of tantalum. Resources, Conservation and Recycling, 125: 233-250 DOI:10.1016/j.resconrec.2017.06.002
Ortega-Rivera A, Farrar E, Hanes JA, Archibald DA, Gastil RG, Kimbrough DL, Zentilli M, López-Martinez M, Féraud G and Ruffet G. 1997. Chronological constraints on the thermal and tilting history of the Sierra San Pedro Mártir pluton, Baja California, México, from U/Pb, 40Ar/39Ar and fission-track geochronology. GSA Bulletin, 109(6): 728-745 DOI:10.1130/0016-7606(1997)109<0728:CCOTTA>2.3.CO;2
Ren BQ, Zhang H, Tang Y and Lv ZH. 2011. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance. Acta Mineralogica Sinica, 31(3): 587-596 (in Chinese with English abstract)
Romer RL and Wright JE. 1992. U-Pb dating of columbites:A geochronologic tool to date magmatism and ore deposits. Geochimica et Cosmochimica Acta, 56(5): 2137-2142 DOI:10.1016/0016-7037(92)90337-I
Romer RL and Smeds SA. 1994. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90~1.85Ga magmatic arcs to the Baltic Shield. Precambrian Research, 67(1-2): 141-158 DOI:10.1016/0301-9268(94)90008-6
Romer RL and Lehmann B. 1995. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi. Economic Geology, 90(8): 2303-2309 DOI:10.2113/gsecongeo.90.8.2303
Romer RL and Smeds SA. 1996. U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden. Precambrian Research, 76(1-2): 15-30 DOI:10.1016/0301-9268(95)00023-2
Romer RL, Schärer U and Steck A. 1996a. Alpine and pre-Alpine magmatism in the root-zone of the western Central Alps. Contributions to Mineralogy and Petrology, 123(2): 138-158 DOI:10.1007/s004100050147
Romer RL, Smeds SA and Černý P. 1996b. Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite. Mineralogy and Petrology, 57(3-4): 243-260 DOI:10.1007/BF01162361
Romer RL and Smeds SA. 1997. U-Pb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden. Precambrian Research, 82(1-2): 85-99 DOI:10.1016/S0301-9268(96)00050-2
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138 DOI:10.1016/S0009-2541(01)00355-2
Selway JB, Breaks FW and Tindle AJ. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1-30 DOI:10.2113/gsemg.14.1-4.1
Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR and Gunn AG. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:A case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Research, 281: 338-362 DOI:10.1016/j.precamres.2016.06.008
Simmons WB, Pezzotta F, Shigley JE and Beurlen H. 2012. Granitic pegmatites as sources of colored gemstones. Elements, 8(4): 281-287 DOI:10.2113/gselements.8.4.281
Simmons WBS and Webber KL. 2008. Pegmatite genesis:State of the art. European Journal of Mineralogy, 20(4): 421-438 DOI:10.1127/0935-1221/2008/0020-1833
Sirbescu MLC, Hartwick EE and Student JJ. 2008. Rapid crystallization of the Animikie Red Ace pegmatite, Florence County, northeastern Wisconsin:Inclusion microthermometry and conductive-cooling modeling. Contributions to Mineralogy and Petrology, 156(3): 289-305 DOI:10.1007/s00410-008-0286-0
Smith SR, Foster GL, Romer RL, Tindle AG, Kelley SP, Noble SR, Horstwood M and Breaks FW. 2004. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS. Contributions to Mineralogy and Petrology, 147(5): 549-564 DOI:10.1007/s00410-003-0538-y
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Wang DH, Chen YC, Zou TR, Xu ZG, Li HQ, Chen W, Chen FW and Tian F. 2000. 40Ar-39Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang:New evidence for Yanshanian mineralization of rare metals. Geological Review, 46(3): 307-311 (in Chinese with English abstract)
Wang DH, Chen YC and Xu ZG. 2003. 40Ar/39Ar isotope dating on muscovites from Indosinian rare metal deposits in central Altay, northwestern China. Bulletin of Mineralogy Petrology and Geochemistry, 22(1): 14-17
Wang H, Gao H, Zhang XY, Yan QH, Xu YG, Zhou KL, Dong R and Li P. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos, 360-361: 105449 DOI:10.1016/j.lithos.2020.105449
Wang Q, Hou KJ and Zou TR. 2019. Isotopic dating method suitable for rare-metal deposits and its application. Acta Geologica Sinica, 93(6): 1523-1532 (in Chinese with English abstract)
Wang QS and Yuan CH. 2019. The global supply situation of lithium ore and suggestions on resources security in China. China Mining Magazine, 28(5): 1-6 (in Chinese with English abstract)
Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 DOI:10.1007/s11430-017-9075-8
Wang T, Tong Y, Jahn BM, Zou TR, Wang YB, Hong DW and Han BF. 2007. SHRIMP U-Pb zircon geochronology of the Altai No. 3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32(1-2): 325-336 DOI:10.1016/j.oregeorev.2006.10.001
Wang Y and Li HM. 2008. Initial formation and Mesozoic tectonic exhumation of an intracontinental tectonic belt of the northern part of the Taihang Mountain Belt, eastern Asia. Journal of Geology, 116(2): 155-172
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites:Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1
Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 DOI:10.1016/j.lithos.2019.105319
Xie L, Tao XY, Wang RC, Wu FY, Liu C, Liu XC, Li XK and Zhang RQ. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355: 105286 DOI:10.1016/j.lithos.2019.105286
Xu JB, Fei GC, Qin LY, Yang JY, Zheng L and Tang WC. 2020. LA-MC-ICP-MS U-Pb dating of cassiterite from the Lijiagou pegmatite-type rare-metal deposit in the Ke'eryin orefield, Sichuan Province and its geological implication. Geology and Exploration, 56(2): 346-358 (in Chinese with English abstract)
Xu XW, Mao Q, Li XH, Pirajno FM, Qu X, Deng G, Chen DZ, Zhang BL and Dong LH. 2014. Copper-zinc albite porphyry in the Hersai porphyry copper deposit, East Junggar, China:A transition between late magmatic and hydrothermal porphyry copper deposit. Ore Geology Reviews, 61: 141-156 DOI:10.1016/j.oregeorev.2014.01.009
Xu XW, Li H, Shi FP, Yao FJ, Chen JZ, Yang ZQ, Hong T and Ke Q. 2019. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, Middle part of Altyn Tagh. Acta Petrologica Sinica, 35(11): 3303-3316 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.11.03
Yan QH, Qiu ZW, Wang H, Wang M, Wei XP, Li P, Zhang RQ, Li CY and Liu JP. 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China):Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite. Ore Geology Reviews, 100: 561-573 DOI:10.1016/j.oregeorev.2016.11.010
Yang H, Wang W and Liu JH. 2017. Zircon U-Pb dating and its geological significance of granitic pegmatites from the Kuandian and Sanjiazi area in eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675-2688 (in Chinese with English abstract)
Yin R, Huang XL, Xu YG, Wang RC, Wang H, Yuan C, Ma Q, Sun XM and Chen LL. 2020. Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China. Lithos, 352-353: 105208 DOI:10.1016/j.lithos.2019.105208
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382 DOI:10.1007/s00126-007-0166-y
Yuan SD, Li HM, Hao S, Geng JZ and Zhang DL. 2010. Situ LA-MC-ICP-MS U-Pb dating of cassiterite and its significance in giant Furong tin deposit, Hunan Province, South China. Mineral Deposits, 29(Suppl.): 543-544 (in Chinese)
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China:New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242 DOI:10.1016/j.oregeorev.2011.08.002
Zhang DL, Peng JT, Hu RZ, Yuan SD and Zheng DS. 2011. The closure of U-Pb isotope system in cassiterite and its reliability for dating. Geological Review, 57(4): 549-554 (in Chinese with English abstract)
Zhang DL, Peng JT, Coulson IM, Hou LH and Li SJ. 2014. Cassiterite U-Pb and muscovite 40Ar-39Ar age constraints on the timing of mineralization in the Xuebaoding Sn-W-Be deposit, western China. Ore Geology Reviews, 62: 315-322 DOI:10.1016/j.oregeorev.2014.04.011
Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract)
Zhang JX, Zhang ZM, Xu ZQ, Yang JS and Cui JW. 1999. The ages of U-Pb and Sm-Nd for eclogite from the western segment of Altyn Tagh tectonic belt. Chinese Science Bulletin, 44(24): 2256-2259 DOI:10.1007/BF02885933
Zhang JX, Zhang ZM, Xu ZQ, Yang JS and Cui JW. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56(2-3): 187-206 DOI:10.1016/S0024-4937(00)00052-9
Zhang X, Zhang H, Ma ZL, Tang Y, Lv ZH, Zhao JY and Liu YL. 2016. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155 DOI:10.1016/j.jseaes.2016.04.020
Zhang Z, Liang T, Feng YG, Yang XQ, Li K, Ding K and Wang YQ. 2019. Geological feature and chronology study of Kangxiwar beryl-bearing muscovite pegmatite in Weste Kunlun Orogen, Xinjiang. Northwestern Geology, 52(1): 75-88 (in Chinese with English abstract)
Zheng JD. 1991. Tectonics and evolution of the Altun Tagh Mountain. Geoscience, 5(4): 347-354 (in Chinese with English abstract)
Zhong L, Wang ZH and Liu YL. 2011. The geochronology research status of Altai pegmatite, NW China:The confusion of the conventional dating methods used in granitic pegmatite. Xinjiang Geology, 29(4): 412-415 (in Chinese with English abstract)
Zhou QF. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No.3 pegmatitic rare-element deposit, Altai, China. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-222 (in Chinese with English summary)
Zhou QF, Qin KZ, Tang DM, Tian Y, Cao MJ and Wang CL. 2015. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China:Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65(3): 210-231 DOI:10.1111/rge.12067
Zhou QF, Qin KZ, Tang DM, Wang CL and Sakyi PA. 2018. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geological Magazine, 155(3): 707-728 DOI:10.1017/S0016756816001096
Zhou Y and Pan YS. 1999. The initial shear sense of the Altun fault and its timing. Geological Review, 45(1): 1-9 (in Chinese with English abstract)
Zhou ZH, Che HW, Ma XH and Gao X. 2016. A preliminary discussion on some important advances of the rare metal deposit. Geology and Exploration, 52(4): 614-626 (in Chinese with English abstract)
Zhu YF and Zeng YS. 2002. Rb-Sr isochron age of Keketuohai No. 3 pegmatite. Mineral Deposits, 21(Suppl.1): 1110-1111 (in Chinese)
Zhu YF, Zeng YS and Gu LB. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27(1): 61-77 DOI:10.1016/j.jseaes.2005.01.007
Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC and Zhang ZM. 2017. The assembly of Rodinia:The correlation of Early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48 DOI:10.1016/j.precamres.2016.12.010
Zou TR, Zhang XC, Jia FY, Wang RC, Cao HZ and Wu BQ. 1986. The origin of No. 3 pegmatite in Altay Shan, Xinjiang. Mineral Deposits, 5(4): 34-48 (in Chinese with English abstract)
车自成, 刘良, 刘洪福, 罗金海. 1995. 阿尔金山地区高压变质泥质岩石的发现及其产出环境. 科学通报, 40(14): 1298-1300.
车自成, 刘良, 刘洪福, 罗金海. 1998. 阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征. 中国区域地质, 17(4): 377-384.
陈富文, 李华芹, 王登红, 蔡红, 陈文. 1999. 中国阿尔泰造山带燕山期成岩成矿同位素年代学新证据. 科学通报, 44(11): 1142-1148.
陈剑锋. 2011.阿尔泰3号伟晶岩脉缓倾斜部分岩浆的形成与演化.硕士学位论文.北京: 中国科学院研究生院, 1-87
陈郑辉, 王登红, 龚羽飞, 陈毓川, 陈世平. 2006. 新疆哈密镜儿泉伟晶岩型稀有金属矿床40Ar-39Ar年龄及其地质意义. 矿床地质, 25(4): 470-476.
代鸿章, 王登红, 刘丽君, 于扬, 代晶晶, 付小方. 2018. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义. 地球科学, 43(10): 3664-3681.
费光春, 杨峥, 杨继忆, 罗伟, 邓运, 赖宇涛, 陶鑫鑫, 郑硌, 唐文春, 李剑. 2020. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定:来自LA-MC-ICP-MS锡石U-Pb定年的证据. 地质学报, 94(3): 836-849.
郭召杰, 张志诚, 王建君. 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981-1984.
康磊, 校培喜, 高晓峰, 奚仁刚, 杨再朝. 2016. 阿尔金南缘早古生代岩浆作用及碰撞造山过程. 地质学报, 90(10): 2527-2550.
李惠民, 郝爽, 耿建珍, 李怀坤, 张永清, 周红英. 2009. 用激光烧蚀多接收器等离子体质谱(LA-MC-ICPMS)直接原位测定锡多金属矿床中的锡石U-Pb同位素年龄. 矿物学报, 29(增刊): 313.
李建康. 2006.川西典型伟晶岩型矿床的形成机理及其大陆动力学背景.博士学位论文.北京: 中国地质大学(北京), 1-225
李建康, 王登红, 付小方. 2006a. 川西可尔因伟晶岩型稀有金属矿床的40Ar/39Ar年代及其构造意义. 地质学报, 80(6): 843-848.
李建康, 王登红, 付小方. 2006b. 四川丹巴伟晶岩型白云母矿床的成矿时代及构造意义. 矿床地质, 25(1): 95-100.
李建康, 刘善宝, 王登红, 付小方. 2007. 川西北雪宝顶钨锡铍矿床的成矿年代及其构造示踪意义. 矿床地质, 26(5): 557-562.
李建康, 杨学俊, 王登红, 熊昌利, 付小方. 2009. 川西北花岗岩的冷却过程及其对区域成矿的制约. 地质学报, 83(8): 1141-1149.
李建康, 王登红, 李华芹, 陈郑辉, 梅玉萍. 2013. 云南老君山矿集区的晚侏罗世-早白垩世成矿事件. 地球科学(中国地质大学学报), 38(5): 1023-1036.
刘良, 车自成, 罗金海, 王焰, 高章鉴. 1996. 阿尔金山西段榴辉岩的确定及其地质意义. 科学通报, 41(16): 1485-1488.
刘良, 车自成, 王焰, 罗金海, 陈丹玲. 1999. 阿尔金高压变质岩带的特征及其构造意义. 岩石学报, 15(1): 57-64.
刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
马占龙, 张辉, 唐勇, 吕正航, 张鑫, 赵景宇. 2015. 新疆卡鲁安矿区伟晶岩锆石U-Pb定年、铪同位素组成及其与哈龙花岗岩成因关系研究. 地球化学, 44(1): 9-26.
任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596.
王登红, 陈毓川, 邹天人, 徐志刚, 李华芹, 陈文, 陈富文, 田锋. 2000. 新疆阿尔泰阿祖拜稀有金属-宝石矿床的成矿时代——燕山期稀有金属成矿的新证据. 地质论评, 46(3): 307-311.
王倩, 侯可军, 邹天人. 2019. 适合于稀有金属矿床的同位素定年方法及其应用. 地质学报, 93(6): 1523-1532.
王秋舒, 元春华. 2019. 全球锂矿供应形势及我国资源安全保障建议. 中国矿业, 28(5): 1-6.
王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(地球科学), 47(8): 871-880.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
许家斌, 费光春, 覃立业, 杨继忆, 郑硌, 唐文春. 2020. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义. 地质与勘探, 56(2): 346-358.
徐兴旺, 李杭, 石福品, 姚佛军, 陈建中, 杨智全, 洪涛, 柯强. 2019. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测. 岩石学报, 35(11): 3303-3316.
杨红, 王伟, 刘建辉. 2017. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2675-2688.
袁顺达, 李惠民, 郝爽, 耿建珍, 张东亮. 2010. 湘南芙蓉超大型锡矿锡石原位LA-MC-ICP-MS U-Pb测年及其意义. 矿床地质, 29(增刊): 543-544.
张东亮, 彭建堂, 胡瑞忠, 袁顺达, 郑德顺. 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554.
张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814.
张泽, 梁婷, 凤永刚, 杨秀清, 李侃, 丁坤, 王艺茜. 2019. 新疆西昆仑造山带康西瓦含绿柱石白云母伟晶岩的地质特征与年代学研究. 西北地质, 52(1): 75-88.
郑剑东. 1991. 阿尔金山大地构造及其演化. 现代地质, 5(4): 347-354.
钟龙, 王政华, 刘玉琳. 2011. 阿尔泰花岗伟晶岩年代学研究现状——兼谈常规年代学方法在花岗伟晶岩定年中之困惑. 新疆地质, 29(4): 412-415.
周起凤. 2013.阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用.博士学位论文.北京: 中国科学院大学, 1-222
周勇, 潘裕生. 1999. 阿尔金断裂早期走滑运动方向及其活动时间探讨. 地质论评, 45(1): 1-9.
周振华, 车合伟, 马星华, 高旭. 2016. 初论稀有金属矿床研究的一些重要进展. 地质与勘探, 52(4): 614-626.
朱永峰, 曾贻善. 2002. 可可托海3号脉伟晶岩铷-锶同位素等时线年龄. 矿床地质, 21(增1): 1110-1111.
邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34-48.