岩石学报  2020, Vol. 36 Issue (9): 2799-2814, doi: 10.18654/1000-0569/2020.09.12   PDF    
东南极拉斯曼丘陵斯图尔内斯半岛及邻区片麻岩变质作用:相平衡模拟与锆石年代学
佘一民1,2, 王伟1,3, 程素华2, 赵越1,3, 刘晓春1,3     
1. 中国地质科学院地质力学研究所, 北京 100081;
2. 中国地质大学(北京), 北京 10008;
3. 自然资源部古地磁与构造重建重点实验室, 北京 100081
摘要: 东南极拉斯曼丘陵斯图尔内斯半岛及邻区发育不同类型的片麻岩。本文结合岩相学、相平衡模拟以及年代学分析等方法对该地区石榴石斜方辉石片麻岩(样品LSM178-2)和石榴石夕线尖晶石片麻岩(样品LSM302-10)进行综合研究,结果显示片麻岩经历了中低压高温麻粒岩相变质作用。样品LSM178-2峰期温压条件为T=830~870℃,P=6.1~8.9kbar,后期退变至T < 705℃,P=3.6~5.4kbar。石榴石夕线尖晶石片麻岩(LSM302-10)保存的峰期温压范围为T=860~1050℃,P=4.8~10.2kbar,之后退变至T=820~840℃,P=4.7~5kbar。样品LSM178-2主要矿物组合对应的变质年龄为~543±5.7Ma。样品LSM302-10中锆石暗灰色边年龄为531±5.7Ma,浅灰色边年龄为509±5.9Ma,这些变质年龄可能反映了持续较长时间的泛非期构造热事件(ca.540~510Ma)。结合相关区域已有资料分析,拉斯曼丘陵西部斯图尔内斯半岛及邻区片麻岩记录的中低压高温麻粒岩相变质作用可能反映了造山作用后期的抬升与伸展。
关键词: 东南极斯图尔内斯半岛    相平衡模拟    片麻岩    P-T轨迹    锆石定年    
Metamorphism of gneisses in the Stornes Peninsula and adjacent region of the Larsemann Hills: Phase equilibrium modelling and zircon geochronology
SHE YiMin1,2, WANG Wei1,3, CHENG SuHua2, ZHAO Yue1,3, LIU XiaoChun1,3     
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
2. China University of Geosciences(Beijing), Beijing 10008;
3. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China
Abstract: Different types of gneiss are exposed in the Stornes Peninsula and its adjacent region of the Larsemann Hills, East Antarctica. In this paper, a comprehensive study of garnet-orthopyroxene gneiss (Sample LSM178-2) and garnet-sillimanite-spinel gneiss (Sample LSM302-10) is carried out by combining petrography, phase equilibrium modelling and geochronological analysis. The results indicate that the gneisses experienced medium-low pressure high-temperature granulite facies metamorphism. The estimated peak P-T conditions of the Sample LSM178-2 are T=830~870℃, P=6.1~8.9kbar, which retrogressed to T < 705℃, P=3.6~5.4kbar. The peak P-T ranges of the garnet-sillimanite-spinel gneiss (Sample LSM302-10) are T=860~1050℃, P=4.8~10.2kbar, followed by retrograde conditions of T=820~840℃, P=4.7~5kbar. The metamorphic age corresponding to the development of the major mineral assemblage of Sample LSM178-2 should be ~543±5.7Ma. The age for the dark gray rim of zircon in Sample LSM302-10 is 531±5.7Ma and the age for the light gray rim is 509±5.9Ma. The metamorphic ages may reflect Pan-African tectonic thermal event that lasted for a relatively long period of time (ca. 540~510Ma). Combined with the existing data in the relevant regions, the medium-low pressure high-temperature granulite facies metamorphism recorded by the gneisses in the Stones Peninsula and its adjacent region in the west of the Larsemann Hills may reflect the uplift and extension during the late stage of orogenesis.
Key words: Stornes Peninsula, East Antarctica    Phase equilibrium modeling    Gneiss    P-T Path    Zircon geochronology    

东南极普里兹构造带是东南极岩石出露最广泛的地区之一,包括埃默里冰架东缘、拉斯曼丘陵及西福尔丘陵等普里兹湾沿岸地区,西南可延至内陆格罗夫山(图 1bZhao et al., 1995; 刘小汉等, 2002; 俞良军等, 2002; Liu et al., 2009a, b; Tong et al., 2017)。已有研究表明该构造带遭受了新元古代格林威尔期(Grenvillian)和晚新元古代-早古生代泛非期(Pan-African)两期构造-变质事件(Zhao et al., 1991, 1992, 1995; Hensen and Zhou, 1995; Fitzsimons et al., 1997; Tong et al., 2017; 刘晓春, 2018)。不同区域内两期变质事件发育程度不同,不同程度的叠加作用使变质历史及分布特征复杂化。先前的研究已取得了重要进展,但由于不同程度叠加变质作用的存在,对不同地区两期变质事件性质的认识尚存分歧。一种观点认为新元古代格林威尔期变质作用反映了罗迪尼亚超大陆相关的碰撞造山过程,泛非期的变质作用代表了陆内改造(Wilson et al., 2007; Tong et al., 2002, 2014);另一种观点认为早期的格林威尔期变质作用是局部的,泛非期的变质作用占主导地位,反映了早古生代冈瓦纳大陆汇聚相关的碰撞造山过程(Zhao et al., 1991, 1992, 1995; Hensen and Zhou, 1995; Carson et al., 1997; Liu et al., 2009b)。这些分歧产生的原因包括:缺少对该地区不同地质单元变质历史的全面了解,缺乏变质作用期次与时代之间的对应关系等。因此,对该区出露岩石进行深入研究有助于加强对该地区变质历史的了解,也有助于进一步理清普里兹构造带的多期变质热事件的属性以及各自对应的大地构造背景。

图 1 斯图尔内斯半岛及邻区地质简图(据刘晓春, 2009修改) Fig. 1 Geological sketch map of the Stornes Peninsula and its adjacent region (modified after Liu, 2009)

拉斯曼丘陵是普里兹构造带主要出露区域,本文对拉斯曼丘陵西部斯图尔内斯半岛及邻区获取的泥质/杂砂质片麻岩进行了变质作用和年代学研究。基于最新的热力学数据库和矿物模型,利用THERMOCALC软件在(Mn)NCKFMASHTO体系中模拟计算P-T相图,确定了变质条件及P-T轨迹,并基于锆石定年确定了主要变质作用对应的时代,进而探讨了斯图尔内斯半岛及邻区片麻岩的变质演化及其构造意义。

1 区域地质背景与样品特征

拉斯曼丘陵主要由斯图尔内斯半岛、米洛半岛、布洛克内斯半岛以及众多小岛或半岛构成。主要由高角闪岩相至麻粒岩相泥质、杂砂质副片麻岩,铁镁质-长英质复合正片麻岩以及少量花岗岩和花岗质伟晶岩组成(Zhao et al., 1995; 王彦斌等, 1994; 仝来喜等, 1997; Carson et al., 1997; 周信等, 2014)。副片麻岩成断续层状,包括夕线石榴石片麻岩、黑云斜长片麻岩及长英质片麻岩等,夹少量钙硅酸盐岩等,以局部存在富硼和磷的岩石单元为特征,如硅硼镁铝石、柱晶石和电气石(任留东和刘小汉, 1995; 任留东等, 2004, 2007; Carson et al., 1997; Grew et al., 2013)。

普里兹构造带泛非构造热事件是在拉斯曼丘陵地区首次被识别出来(Zhao et al., 1992, 1995)。早期的研究显示拉斯曼丘陵在泛非期主要经历了中低压麻粒岩相变质作用(Stüwe et al., 1989; Carson et al., 1995, 1997)。Stüwe et al. (1989)获得拉斯曼丘陵地区的峰期变质条件为750℃和4.5kbar。Carson et al. (1997)对各类片麻岩进行研究,获得峰期变质条件为800℃和7kbar,退变条件为750℃和4~5kbar。也有研究报道了泥质麻粒岩更高的峰期温压条件。任留东等(1992)用温压计估算的M1变质阶段的变质条件为850℃、9kbar。Tong et al. (2014)从米洛半岛的泥质麻粒岩中估算出的峰期M1温压条件为900℃、9kbar。在拉斯曼丘陵镁铁质麻粒岩转石中也识别出了较高的温压条件(周信等, 2014; Tong et al., 2017)。这些估算的较高的温压条件被推测为反映了更早期的格林威尔期构造-热事件的影响。

本研究的样品采自东南极拉斯曼丘陵斯图尔内斯半岛(图 1a)东南部石榴石斜方辉石片麻岩(LSM178-2),以及斯图尔内斯半岛西南侧邻近区域的石榴石夕线尖晶石片麻岩(LSM302-10)。

2 分析方法

电子探针主要在中国地质科学院地质研究所电子探针实验室完成。测试中采用的仪器型号为:JXA-8100型电子探针分析仪(日本电子JEOL公司生产),分析条件为:15kV加速电压、2×10-8A束流、5μm束斑、10s计数,ZAF矫正,标准样品为美国SPI矿物标样。主要元素相对误差小于2%。

锆石LA-ICP-MS U-Pb定年和微量元素分析在上谱实验室(武汉)完成。同位素比值校正标准样品为91500,同位素比值监控标准样品为GJ-1,微量元素校正标准样品为NIST 610。分析用激光剥蚀系统为GeoLas Pro,等离子体质谱仪为Agilent7700,激光能量80mJ,频率5Hz,激光束斑直径24μm。具体运行条件等参考Hu et al. (2011)Liu et al. (2010)。本文中矿物缩写参考Holland and Powell (1998)

3 岩相学与矿物化学 3.1 岩相学特征

石榴石斜方辉石片麻岩(LSM178-2)主要含有石榴石(~5%),斜长石(~45%),斜方辉石(~10%),黑云母(~10%),石英(~15%),钾长石(< 8%)和钛铁矿、磷灰石、锆石、独居石等副矿物。石榴石颗粒粒径大小不一,通常大于0.5mm。部分生长在以长石为主的区域中的石榴石以小颗粒出现(图 2b)。黑云母主要呈片状产出,具有较平直的边缘,常围绕石榴石周围生长(图 2a, d, e),大的片状黑云母边部可见枝杈状黑云母与石英共生(图 2e, f)。斜长石颗粒介于0.4~0.8mm之间,常呈自形或半自形发育(图 2b),部分斜长石(反条纹长石)中可见钾长石出溶,反映了较高的形成温度(图 2g)。斜方辉石为不规则状,多数发生不同程度的蚀变(图 2a, c, e)。石英颗粒常呈不规则状,粒径多为0.2mm,在其边缘可见发育有细膜状钾长石(图 2g)。自形斜长石、细膜状钾长石以及手指状黑云母与石英共生这些特征暗示变质峰期应存在熔体。根据矿物特征和反应关系推测峰期矿物组合应为:石榴石+斜方辉石+斜长石+钾长石+少量黑云母+石英+熔体+少量副矿物。后期的退变主要表现为石榴石和斜方辉石的消耗与分解、大量片状黑云母的发育等。

图 2 斯图尔内斯半岛及邻区片麻岩显微图像 (a-h)石榴石斜方辉石片麻岩(样品LSM178-2);(i-m)石榴石夕线尖晶石片麻岩(样品LSM302-10).矿物缩写:bi-黑云母;cd-堇青石;ilm-钛铁矿;g-石榴石;ksp-钾长石;mt-磁铁矿;opx-斜方辉石;pl-斜长石;q-石英;sill-夕线石;sp-尖晶石; perthite-条纹长石; anti-perthite-反条纹长石 Fig. 2 Microphotographs of gneisses from the Stornes Peninsula and its adjacent region (a-h) garnet-orthopyroxene gneiss (Sample LSM178-2); (i-m) garnet-sillimanite-spinel gneiss (Sample LSM302-10). Mineral abbreviation: bi-biotite; cd-cordierite; ilm-ilmenite; g-garnet; ksp-K-feldspar; mt-magnetite; opx-orthopyroxene; pl-plagioclase; q-quartz; sill-sillimanite; sp-spinel

石榴石夕线尖晶石片麻岩(LSM302-10)主要含有石榴石(~5%),夕线石(~15%),黑云母(~5%),钾长石(~15%),尖晶石(~15%),堇青石(~5%),石英(~40%),少量磁铁矿、钛铁矿、锆石、独居石等(图 2i-m)。石榴石含量少,形状不规则,常呈残留状(图 2k)。夕线石含量较高,粒径大小不等(多小于0.2mm),方形横截面可见较为清晰的对角线解理(图 2i)。黑云母含量较少,可见大片黑云母围绕石榴石发育(图 2k),也可见枝杈状黑云母与尖晶石和少量堇青石共生(图 2l)。钾长石主要分布在以石英为主的区域中,可见少量条纹长石(图 2j),暗示较高温度条件。堇青石含量很少,呈不规则状围绕尖晶石发育(图 2l)。石英颗粒较大,粒径0.3~0.6mm,形状多不规则(图 2i, k, l, m)。

根据矿物特征和反应关系推测峰期矿物组合应为:石榴石+夕线石+尖晶石+钾长石(条纹长石)+石英±少量黑云母±熔体+少量副矿物(钛铁矿、磁铁矿)等。少量围绕尖晶石发育的他形堇青石应在后期退变过程中形成的。

3.2 矿物化学

石榴石斜方辉石片麻岩(LSM178-2)中石榴石成分范围为Alm64-71Py16-20Grs6-11Sps4(表 1),石榴石成分剖面分析未见明显环带,只在边部铁铝榴石略有升高,镁铝榴石和锰铝榴石略有降低(图 3c)。石榴石成分中XFe=Fe2+/(Mg+Fe2+)变化范围为0.76~0.80,XCa=Ca/(Ca+Fe2++Mg)变化范围为0.07~0.12。斜方辉石Al2O3含量核部略高于边部,边部Al2O3含量为2.5%~3.1%,核部Al2O3含量为3.3%~3.5%,M1位置的Al[y(opx)]在0.06~0.08之间。不同类型黑云母成分有所不同,在石榴石周围生长的黑云母TiO2含量为5.5%~5.6%,XFe(=Fe2+/(Fe2++Mg))在0.47~0.48之间。在斜方辉石中生长的黑云母TiO2含量为5.5%~5.8%,XFe(=Fe2+/(Fe2++Mg))在0.49~0.50之间,在以长石为主的区域中生长的黑云母TiO2含量为6.3%~6.7%,XFe(=Fe2+/(Fe2++Mg))在0.52~0.53之间。斜长石成分为An43-46Ab52-56Or1-3属中长石。条纹长石中出溶的钾长石成分为An0Ab4Or96

表 1 样品LSM178-2代表性矿物电子探针分析(wt%) Table 1 EPMA analysis (wt%) of representative minerals of Sample LSM178-2

图 3 石榴石化学成分分析图 (a、b)石榴石成分剖面位置;(c、d)石榴石成分二元图解;(e)石榴石成分三元图解 Fig. 3 Diagrams for garnet chemical analysis (a, b) location of garnet compositional profiles; (c, d) binary diagram for garnet compositions; (e) ternary diagram for garnet compositions

石榴石夕线尖晶石片麻岩(LSM302-10)中石榴石含量少,成分分析显示石榴石不具有明显环带,其成分为Alm71-73Py20-22Grs1-2Sps5-6(图 3d表 2)。边部可见铁铝榴石含量略微升高,镁铝榴石含量略有降低,应为后期扩散影响。石榴石成分中XFe变化范围为0.76~0.78,XCa变化范围为0.01~0.02。基质中黑云母TiO2含量为4.9%~6.0%,其中XFe为0.52~0.58。在石榴石周围的黑云母中TiO2含量为4.5%左右,XFe约为0.47。样品中条纹长石主要成分为An1Ab14-18Or82-85

表 2 样品LSM302-10代表性矿物电子探针分析(wt%) Table 2 EPMA analysis (wt%) of representative minerals of Sample LSM302-10
4 变质相平衡模拟

相平衡模拟利用THERMOCALC软件(3.45版本,Holland and Powell, 1998;2016年更新)以及在(Mn)-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O((Mn)NCKFMASHTO)体系中进行。内部一致性热力学数据库采用最新版ds62(Holland and Powell, 2011)。矿物活度模型参考White et al. (2014)。H2O含量根据含水矿物含量及T-X图进行估算(图 4),基于固相线组合与观察到的最终矿物组合相一致原则确定具体H2O含量。在XRF方法分析氧化物含量基础上,根据滴定法测得三价铁含量并对氧含量进行估算,获得模拟计算所用的全岩成分分别为:SiO2:63.950;Al2O3:11.749;CaO:6.063;MgO:4.461;FeO:6.895;K2O:1.319;Na2O:3.291;TiO2:0.598;O:0.345;H2O:1.330(mol%)(样品LSM178-2);SiO2:80.516;Al2O3:5.919;CaO:0.068;MgO:1.085;FeO:7.750;K2O:1.191;Na2O:0.194;TiO2:0.682;MnO:0.045;O:1.550;H2O:1.000(mol%)(样品LSM302-10)。

图 4 样品LSM178-2和LSM302-10 T-X(H2O)视剖面图 Fig. 4 T-X(H2O) pseudosections for Sample LSM178-2 and Sample LSM302-10

石榴石斜方辉石片麻岩(LSM178-2)的P-T视剖面图温压范围为T=600~1050℃,P=1~15kbar(图 5)。在该范围内主要为四变域、五变域和六变域,还存在较少的三变域、七变域和八变域。由于岩石中水含量较低,在温压范围内固相线温度在700~850℃之间变化,在中压条件下固相线温度最高(图 5a)。除低压区域外,石榴石都稳定存在。斜方辉石的稳定范围较广,随温度升高斜方辉石稳定域向高压扩展,在1050℃压力可达13kbar。铝硅酸盐(蓝晶石)只在低温高压的少数矿物组合内出现。斜长石在所有区域内都稳定存在。斜方辉石及熔体等含量等值线和石榴石、斜方辉石、斜长石等矿物成分等值线如图所示(图 5a-c)。根据岩相学观察推测的峰期矿物组合与相图中狭长的四变域对应,温压条件为810~900℃,3.9~11.5kbar,稳定矿物组合包括石榴石、斜方辉石、黑云母、钾长石、斜长石、石英、钛铁矿和熔体。样品富含斜长石,其钙长石(An)含量(ca(pl))可反映近峰期温压条件(Li and Wei, 2016),测得斜长石中ca(pl)范围为0.43~0.46,如其代表峰期斜长石成分则可将峰期温压条件进一步限定为820~870℃,5.0~8.5kbar。测得y(opx)范围(0.06~0.08)限定了跨越不同矿物组合的狭长区域(图 5c),在推测的峰期矿物组合稳定域内,限定的温压条件为830~870℃,6.1~8.9kbar,与ca(pl)等值线限定的温压条件接近。在该温压条件范围内熔体含量较低,斜方辉石含量可达10%左右(图 5b),与岩石中观察的斜方辉石含量接近。结合石榴石的成分等值线,测得的石榴石XFe(0.76~0.80)和XCa(0.07~0.12)成分含量,限定的温压范围为T<705℃,P=3.6~5.4kbar。由于后期Fe-Mg交换影响,石榴石等值线往往反映较低的退变温压条件。

图 5 样品LSM178-2在NCKFMASHTO体系下视剖面图及等值线 全岩成分SiO2:63.950;Al2O3:11.749;CaO:6.063;MgO:4.461;FeO:6.895;K2O:1.319;Na2O:3.291;TiO2:0.598;O:0.345;H2O:1.330 (mol%).等值线包括斜方辉石含量、熔体含量等值线以及石榴石X(Fe)、Z(Ca)、斜长石An值(ca(pl))、斜方辉石M1位置的Al(y(opx))成分等值线等(Ca(pl)=Ca/(Ca+Na+K), y(Opx)=Al/2, X(Fe)=Fe/(Fe+Mg), Z(Ca)=Ca/(Fe+Mg+Ca)) Fig. 5 P-T pseudosection and compositional isopleths in the NCKFMASHTO system for Sample LSM178-2 Bulk composition: SiO2: 63.950; Al2O3: 11.749; CaO: 6.063; MgO: 4.461; FeO: 6.895; K2O: 1.319; Na2O: 3.291; TiO2: 0.598; O: 0.345; H2O:1.330 (mol%). The contoured isopleths include orthopyroxene and melt (liq) modes, X(Fe), Z(Ca) of garnet, An (ca(pl)) content of plagioclase and Al contents in the M1 (y(opx)) in orthopyroxene

石榴石夕线尖晶石片麻岩(LSM302-10)MnNCKFMASHTO体系中计算的的P-T视剖面图温压范围为T=650~1050℃,P=1~15kbar,主要包括四变域、五变域和六变域等(图 6)。石榴石稳定范围广泛,在低压条件下石榴石稳定域随温度升高而向高压方向缩减。铝硅酸盐在多数区域内稳定。钾长石在高温低压条件下消失。斜长石不在模拟的温压范围内出现,与非常低的全岩CaO含量有关。根据岩相学观察推测的峰期矿物组合最可能对应视剖面图中的五变域,温压条件为860~1050℃,4.8~10.2kbar,包括石榴石、夕线石、尖晶石、钾长石、钛铁矿、磁铁矿、石英和熔体等。少量不规则状堇青石围绕尖晶石发育表明峰期之后样品经历降压至邻近含堇青石的四变域(石榴石、堇青石、夕线石、尖晶石、钾长石、钛铁矿、磁铁矿、石英和熔体等)。测得的石榴石成分XFe(0.76~0.78)与XCa(0.014~0.018)在四变域内限定了很窄的温压范围:T=820~840℃,P=4.7~5kbar。随后可能经历了近等压的降温过程。

图 6 样品LSM302-10在MnNCKFMASHTO体系下视剖面图及成分等值线 全岩成分SiO2:80.516;Al2O3:5.919;CaO:0.068;MgO:1.085;FeO:7.750;K2O:1.191;Na2O:0.194;TiO2:0.682;MnO:0.045;O:1.550;H2O:1.000 (mol%).等值线包括夕线石含量、尖晶石含量等值线以及石榴石X(Fe)、Z(Ca)成分等值线等 Fig. 6 The P-T pseudosection and compositional isopleth in the MnNCKFMASHTO system for Sample LSM302-10 Bulk composition: SiO2: 80.516; Al2O3: 5.919; CaO: 0.068; MgO: 1.085; FeO: 7.750; K2O: 1.191; Na2O: 0.194; TiO2: 0.682; MnO: 0.045; O: 1.550; H2O: 1.000 (mol%). The contoured isopleths include sillimanite and spinel modes and X(Fe), Z(Ca) of garnet
5 锆石U-Pb年代学

样品LSM178-2中锆石大部分呈近椭圆形,部分为长柱状,颗粒多处于100~150μm之间。在锆石CL图像中可见明显的核边结构,部分锆石核部具有震荡环带,暗色变质边宽窄不等(图 7)。分析显示暗色边Th/U比值范围为0.04~0.27,大部分小于0.1(表 3)。对暗色边部进行LA-ICPMS定年分析获得较宽的206Pb/238U表观年龄范围543±5.7Ma~970±9.0Ma(表 3图 8)。对具有震荡环带的核部进行定年分析,结果显示206Pb/238U表观年龄分布范围为756±9.8Ma~1053±9.5Ma,多数集中于937~999Ma之间,与暗色变质边的年龄范围存在部分重叠(表 3图 8)。

图 7 片麻岩中代表性锆石阴极发光图像 Fig. 7 Cathodoluminescence image of representative zircon grains from the gneisses

表 3 锆石U-Pb定年结果 Table 3 Zircon U-Pb data for gneisses (LSM178-2, LSM302-10)

图 8 片麻岩锆石U-Pb谐和图 Fig. 8 The U-Pb concordia diagrams of zircon from the gneisses

沿谐和线串珠状分布的变质锆石年龄可能反映了不同程度的重结晶或溶解-再沉淀过程(Halpin et al., 2012, 2020);最小年龄应指向最彻底的重结晶,指示地质事件发生的时间。串珠状分布的较老的变质年龄可能反映了不彻底的重结晶,不一定具有实际的地质意义(Halpin et al., 2020)。特别是当变质边部年龄与锆石核部年龄接近或年龄范围有明显重叠的情况下,较老的锆石变质边年龄是否反映早期构造热事件的影响需要深入研究确定。

样品LSM302-10中锆石大部分呈近椭圆形,颗粒较大基本处于50~150μm之间。多数锆石核部已模糊不清,少数锆石核部具有韵律环带。常发育较宽的暗灰色变质边和较窄的浅灰色变质边(图 7)。分析显示其Th/U比值范围为0.02~0.40,大部分小于0.1(表 3)。锆石分析获得暗色变质边206Pb/238U加权平均年龄为531±5.7Ma(MSWD=4.8,N=25),锆石分析获得浅灰色变质边谐和年龄为509±5.9Ma(MSWD=0.074,N=7)(图 8)。暗灰色的锆石边部可能由重结晶或部分变质增生形成,浅灰色的锆石边应反映了变质增生。对于发生部分熔融的岩石,锆石的变质增生主要发生于退变阶段(Kelsey, et al., 2008a; Wang et al., 2014),相应的年龄主要反映峰期后的退变时间。

6 讨论 6.1 变质条件与P-T轨迹

岩相学和相平衡模拟计算揭示出拉斯曼丘陵斯图尔内斯半岛及邻区的片麻岩记录了较高的变质温压条件。石榴石斜方辉石片麻岩(LSM178-2)记录的峰期温压范围为T=830~870℃、P=6.1~8.9kbar,后期退变至T < 705℃、P=3.6~5.4kbar。由于黑云母的稳定上限与TiO2的含量相关(Stevens et al., 1997; 魏春景和朱文萍, 2016),该样品中黑云母含有较高的TiO2(5.5%~6.7%),其中具有高TiO2含量的黑云母的稳定温度可能比模拟结果更高。样品目前记录的温压条件反映了以降温为主的降温降压退变过程。石榴石夕线尖晶石片麻岩(LSM302-10)保存的峰期矿物组合对应相图中的稳定域具有较宽泛的温压范围(T=860~1050℃、P=4.8~10.2kbar),显示了较高的温度条件。不规则堇青石发育以及石榴石成分等值线限定了较低的温压范围:T=820~840℃、P=4.7~5kbar。这些温压条件也反映了降温降压的演化轨迹。之前研究显示拉斯曼丘陵主要经历了较低温压条件的变质作用。Stüwe et al. (1989)利用平均温压方法获得拉斯曼丘陵地区变泥质岩的峰期变质条件为~750℃、4.5kbar。Carson et al. (1997)对各类片麻岩进行研究,获得峰期变质条件为~800℃、7kbar,之后退变至~750℃、4~5kbar。也有部分研究报道了较高的温压条件。任留东等(1992)用二辉石温压计估算的M1变质阶段的温度为850℃,利用长英质岩石中石榴石-夕线石-斜长石-石英压力计获得850℃时的压力约为9kbar。Tong et al. (2014)用平均温压方法估算米洛半岛的泥质麻粒岩峰期条件为~900℃、~9kbar。Zong et al. (2020)通过对布洛克内斯半岛正片麻岩研究认为变质作用的温压条件为~870℃、~9.5kbar。拉斯曼丘陵斯图尔内斯半岛及邻区副片麻岩记录了较高的温度条件。石榴石斜方辉石片麻岩(LSM178-2)峰期温度应大于830℃,石榴石夕线尖晶石片麻岩(LSM302-10)的峰期温度应大于860℃。尽管限定的峰期压力范围较宽但最高压力应不小于6kbar,可能达到8.5kbar或更高。与拉斯曼丘陵东部地区的岩石类似,西部的斯图尔内斯半岛及邻区副片麻岩经历了高温麻粒岩相变质作用,之后经历了以降温为主的降温降压退变过程。然而所研究的片麻岩中并没有很好保存进变矿物组合,具体进变轨迹难以限定。高温阶段发生降压以及只有少量晚期堇青石发育等特征暗示岩石具有顺时针演化轨迹。

6.2 变质时代

研究显示东南极普里兹构造带受到新元古代格林威尔期构造热事件和晚新元古代-早古生代泛非期构造热事件的影响(Zhao et al., 1995; 仝来喜等, 1998, 2012; Tong et al., 2002; Wang et al., 2008; Grew et al., 2012)。但不同地区对两期变质事件的记录差异极大。格林威尔期高级变质事件的主要证据包括:来自于拉斯曼丘陵之西的姐妹岛(Søstrene Island)的石榴二辉麻粒岩,石榴石-全岩Sm-Nd等时线定年揭示该麻粒岩的主期矿物组合形成于~990Ma(Hensen and Zhou, 1995);埃默里冰架东缘在赖因博尔特丘陵(Reinbolt Hills)长英质正片麻岩中锆石记录了925±24Ma的变质事件,蒙罗克尔山(Munro Kerr Mountains)等地的长英质正片麻岩中发育900~930Ma的变质锆石(Liu et al., 2009a);拉斯曼丘陵之东的西福尔丘陵(Vestfold Hills)中元古代基性岩墙在938±9Ma至957±7Ma之间发生中压麻粒岩相变质作用(Liu et al., 2014);Wang et al. (2008)在拉斯曼丘陵南部斯图尔内斯半岛获得长英质正片麻岩,在格林威尔期的变质年龄为~997±13Ma和~981±13Ma。这一时期还发育花岗质或紫苏花岗质岩体(Wang et al., 2008; Liu et al., 2009a; Grew et al., 2012)。尽管这些年龄存在很大差异,所代表地质事件的具体性质也不甚清晰,但的确表明格林威尔期变质事件在普里兹造山带的基底中广泛存在。拉斯曼丘陵地区副片麻岩中该期事件的确切记录相对较少。Kelsey et al. (2007)在拉斯曼丘陵以东的赖于尔(茹尔)群岛和以西的伯灵恩群岛的部分副片麻岩石榴石中识别出780~1030Ma的独居石包裹体。副片麻岩中的锆石暗色边部常常给出很宽的年龄范围(ca. 500~1100Ma),局部集中的一些较老的年龄被解释成格林威尔期变质事件的影响(Wang et al., 2008)。样品LSM178-2锆石暗色边年龄具有类似的分散分布特征(543±5.7Ma~970±9.0Ma),较老的970Ma左右的年龄可能反映了格林威尔期变质事件的影响。然而,由于有些锆石变质边可能代表了不彻底的重结晶或遭受一定程度的Pb丢失(Halpin et al., 2012, 2020),相应的年龄不一定代表具体的地质事件,该地区格林威尔期变质事件的确切时间和影响范围还需进一步厘清。锆石变质边获取的最低年龄543±5.7Ma应反映了泛非期构造热事件的影响。样品LSM302-10中锆石变质边主要记录泛非期变质年龄,但其暗色边和浅色边具有不同年龄(531±5.7Ma和509±5.9Ma)。这些泛非期变质年龄可能反映了持续较长时间的构造事件(ca. 540~510Ma)。样品中的矿物组合反映了连续的演化过程,年龄结果支持这些矿物组合主要在泛非期发育,对应的P-T轨迹反映了泛非期的演化过程。

6.3 构造意义

对拉斯曼丘陵及其所在的普里兹湾地区的泛非期构造属性有不同认识。一种观点认为泛非期经历了碰撞造山作用(Dirks and Wilson, 1995; Hensen and Zhou, 1997; Fitzsimons, 2000, 2003; Boger et al., 2001; 刘小汉等, 2002; Zhao et al., 2003; Liu et al., 2007, 2009b; Kelsey et al., 2008b),另一种观点认为泛非期经历了陆内造山作用,是东非碰撞造山作用在东冈瓦纳陆块内部的响应(Yoshida, 1995, 2007; Wilson et al., 2007; Tong et al., 2002, 2019)。在拉斯曼丘陵西南侧格罗夫山地区高压基性麻粒岩中具有较高的峰期温压条件(770~840℃、11.8~14.0kbar),峰期变质年龄为~545Ma(Liu et al., 2009b)。最近报道的同地区泥质麻粒岩峰期温压条件为817~834℃、11.6~13.6kbar,峰期变质年龄为540~545Ma(Chen et al., 2018)。这些高压基性岩和泥质麻粒岩的发现暗示包括格罗夫山和拉斯曼丘陵在内的普里兹湾地区在泛非期可能经历了碰撞造山作用。综合拉斯曼丘陵及邻近地区泛非期变质作用温压条件与年龄结果(图 9),拉斯曼丘陵西部斯图尔内斯半岛及邻区片麻岩记录了中低压高温麻粒岩相变质作用,变质作用发生时间(ca.540~510Ma)略晚于格罗夫山地区的高压麻粒岩,可能主要反映了造山作用后期的抬升与伸展。

图 9 拉斯曼丘陵及邻近地区泛非期变质作用的P-T轨迹(据刘晓春, 2018; Chen et al., 2018等补充) Fig. 9 P-T paths of Pan-African metamorphism of the Larsemann Hills and its adjacent regions (modified after Liu, 2018; Chen et al., 2018)
7 结论

通过对拉斯曼丘陵西部斯图尔内斯半岛及邻区片麻岩进行综合研究得到如下认识:

(1) 斯图尔内斯半岛及邻区片麻岩经历了中低压高温麻粒岩相变质作用。峰期温度应大于860℃,压力应不低于6kbar,可能达到8.5kbar或更高。之后经历以降温为主的降温降压退变过程。

(2) 片麻岩目前的矿物组合主要记录了泛非期的构造热事件,这一事件可能持续了较长的时间(ca.540~510Ma)。

(3) 片麻岩的温压条件及变质P-T轨迹可能反映了造山作用后期的抬升与伸展。

致谢      感谢中国极地考察办公室、中国极地研究中心以及南极科学考察队队员对南极野外地质考察提供的帮助。感谢审稿人提出的宝贵修改意见。

参考文献
Boger SD, Wilson CJL and Fanning CM. 2001. Early Paleozoic tectonism within the East Antarctic craton:The final suture between east and west Gondwana?. Geology, 29(5): 463-466 DOI:10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2
Carson CJ, Dirks PGHM, Hand M, Sims JP and Wilson CJL. 1995. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 132(2): 151-170 DOI:10.1017/S0016756800011729
Carson CJ, Powell R, Wilson CJL and Dirks PHGM. 1997. Partial melting during tectonic exhumation of a granulite terrane:An example from the Larsemann Hills, East Antarctica. Journal of Metamorphic Geology, 15(1): 105-126 DOI:10.1111/j.1525-1314.1997.00059.x
Chen LY, Wang W, Liu XC and Zhao Y. 2018. Metamorphism and zircon U-Pb dating of high-pressure pelitic granulites from glacial moraines in the Grove Mountains, East Antarctica. Advances in Polar Science, 29(2): 118-134
Dirks PHGM and Wilson CJL. 1995. Crustal evolution of the East Antarctic mobile belt in Prydz Bay:Continental collision at 500Ma?. Precambrian Research, 75(3-4): 189-207 DOI:10.1016/0301-9268(95)80006-4
Fitzsimons ICW. 1997. The Brattstrand paragneiss and the Søstrene orthogneiss: A review of Pan-African metamorphism and Grenville relics in southern Prydz Bay. In: Ricci CA (ed.). The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antarctica Publication, 121-130
Fitzsimons ICW, Kinny PD and Harley SL. 1997. Two stages of zircon and monazite growth in anatectic leucogneiss:SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 9(1): 47-51 DOI:10.1046/j.1365-3121.1997.d01-8.x
Fitzsimons ICW. 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. Journal of African Earth Sciences, 31(1): 3-23
Fitzsimons ICW. 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. In: Yoshida M, Windley BE and Dasgupta S (eds.). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 93-130
Grew ES, Carson CJ, Christy AG, Maas R, Yaxley GM, Boger SD and Fanning CM. 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica. Precambrian Research, 206-207: 87-108 DOI:10.1016/j.precamres.2012.02.016
Grew ES, Carson CJ, Christy AG and Boger SD. 2013. Boron-and phosphate-rich rocks in the Larsemann Hills, Prydz Bay, East Antarctica: Tectonic implications. In: Harley SL, Fitzsimons ICW and Zhao Y (eds.). Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 383(1): 73-94
Halpin JA, Daczko NR, Milan LA and Clarke GL. 2012. Decoding near-concordant U-Pb zircon ages spanning several hundred million years:Recrystallisation, metamictisation or diffusion?. Contributions to Mineralogy and Petrology, 163(1): 67-85 DOI:10.1007/s00410-011-0659-7
Halpin JA, Daczko NR, Direen NG, Mulder JA, Murphy RC and Ishihara T. 2020. Provenance of rifted continental crust at the nexus of East Gondwana breakup. Lithos, 354-355: 105363 DOI:10.1016/j.lithos.2019.105363
Hensen BJ and Zhou B. 1995. Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism:Implications for the Sm-Nd closure temperature. Geology, 23(3): 225-228 DOI:10.1130/0091-7613(1995)023<0225:ROIMIG>2.3.CO;2
Hensen BJ and Zhou B. 1997. East Gondwana amalgamation by Pan-African collision? Evidence from Prydz Bay, East Antarctica. In: Ricci CA (ed.). The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antarctica Publication, 115-119
Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343
Holland TJB and Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333-383 DOI:10.1111/j.1525-1314.2010.00923.x
Hu ZC, Liu YS, Chen L, Zhou LA, Li M, Zong KQ, Zhu LY and Gao S. 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425-430 DOI:10.1039/C0JA00145G
Kelsey DE, Hand M, Clark C and Wilson CJL. 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, East Antarctica. Journal of the Geological Society, 164(3): 667-683 DOI:10.1144/0016-76492006-013
Kelsey DE, Clark C and Hand M. 2008a. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems:Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26(2): 199-212 DOI:10.1111/j.1525-1314.2007.00757.x
Kelsey DE, Wade BP, Collins AS, Hand M, Sealing CR and Netting A. 2008b. Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Research, 161(3-4): 355-388 DOI:10.1016/j.precamres.2007.09.003
Li XW and Wei CJ. 2016. Phase equilibria modelling and zircon age dating of pelitic granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595-615 DOI:10.1111/jmg.12195
Liu XC, Zhao Y, Zhao GC, Jian P and Xu G. 2007. Petrology and geochronology of Granulites from the McKaskle Hills, eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt. Journal of Petrology, 48(8): 1443-1470 DOI:10.1093/petrology/egm024
Liu XC. 2009. Polymetamorphism of the Prydz Belt, East Antarctica:Implications for the reconstruction of the Rodinia and Gondwana supercontinents. Acta Petrologica Sinica, 25(8): 1808-1818 (in Chinese with English abstract)
Liu XC, Zhao Y, Song B, Liu J and Cui J. 2009a. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica:Constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly. Gondwana Research, 16(2): 342-361 DOI:10.1016/j.gr.2009.02.003
Liu XC, Hu JM, Zhao Y, Lou YX, Wei CJ and Liu XH. 2009b. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, East Antarctica:P-T-t path, collisional orogeny and implications for assembly of East Gondwana. Precambrian Research, 174(1-2): 181-199 DOI:10.1016/j.precamres.2009.07.001
Liu XC, Wang W, Zhao Y, Liu J and Song B. 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, East Antarctica. Journal of Metamorphic Geology, 32(9): 1041-1062 DOI:10.1111/jmg.12106
Liu XC. 2018. Deciphering multiple metamorphic events in high-grade metamorphic terranes:A case from the Amery area of East Antarctica. Acta Petrologica Sinica, 34(4): 925-939 (in Chinese with English abstract)
Liu XH, Tong LX, Li JL, Zhao Y, Ren LD and Wang YB. 1995. Tectonic evolution of East Antarctica shield during Mesoproterozoic and Early Palaeozoic. In: Program and Extended Abstracts, Conference on Geology across Taiwan Strait. 2: 165-169 (in Chinese)
Liu XH, Zhao Y, Liu XC and Yu LJ. 2003. Geology of the Grove Mountains in East Antarctica:New evidence for the final suture of Gondwana Land. Science in China (Series D), 46(4): 305-319
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ren LD, Zhao Y, Chen TY, Li ZL and Liu XH. 1992. Re-understanding of the metamorphic geology of the Larsemann Hills, East Antarctica. Bulletin of Institute of Geology, Chinese Academy of Geological Sciences, 25: 62-76 (in Chinese)
Ren LD and Liu XH. 1995. Age of the metamorphic event of the garnet-pyroxene granulite from the Søstrene Island, Prydz Bay, East Antarctica and its relation to the neighbouring area. Antarctic Research, 7(3): 19-23 (in Chinese with English abstract)
Ren LD, Xiong M, Grew ES and Wang YB. 2004. Petrology significance of the new polymorphite (wagnerite-Ma5bc) in the metamorphic rocks of Larsemann Hills in Antarctica. Progress in Natural Science, 14(10): 1128-1134 (in Chinese)
Ren LD, Wang YB and Zhao Y. 2007. Formation Process of sapphirine and related mineral association in the high-grade region of the Larsemann Hills, East Antarctica. Journal of Jilin University (Earth Science Edition), 37(5): 848-855 (in Chinese with English abstract)
Stevens G, Clemens JD and Droop GTR. 1997. Melt production during granulite-facies anatexis:Experimental data from "primitive" metasedimentary protoliths. Contributions to Mineralogy and Petrology, 128(4): 352-370 DOI:10.1007/s004100050314
Stüwe K, Braun HM and Peer H. 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Australian Journal of Earth Sciences, 36(2): 219-241 DOI:10.1080/08120098908729483
Tong LX, Liu XH, Zhang LS, Chen HH, Ren LD, Wang YB and Zhao Y. 1997. Characteristics of the early remnant mineral associations in granulite-facies rocks from the Larsemann Hills, East Antarctica and their metamorphic conditions. Acta Petrologica Sinica, 13(2): 127-138 (in Chinese with English abstract)
Tong LX, Liu XH, Zhang LS, Chen HH, Chen FK, Wang YB and Ren LD. 1998. The 40Ar-39Ar ages of hornblendes in Grt-Pl-bearing amphibolite from the Larsemann Hills, East Antarctica and their geological implications. Chinese Journal of Polar Research, 10(3): 167-171 (in Chinese with English abstract)
Tong LX, Wilson CJL and Liu XH. 2002. A high-grade event of ~1000Ma preserved within the ~500Ma mobile belt of the Larsemann Hills, East Antarctica:Further evidence from 40Ar/39Ar dating. Terra Antarctica, 9(2): 73-86
Tong LX, Liu XH, Wang YB and Wilson CJL. 2012. Metamorphism evolution of pelitic granulites from the Larsemann Hills, East Antarctica. Acta Geologica Sinica, 86(8): 1273-1290 (in Chinese with English abstract)
Tong LX, Liu XH, Wang YB and Liang XR. 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica. Lithos, 192-195: 102-115 DOI:10.1016/j.lithos.2014.01.013
Tong LX, Jahn BM, Liu XH, Liang XR, Xu YG and Ionov D. 2017. Ultramafic to mafic granulites from the Larsemann Hills, East Antarctica:Geochemistry and tectonic implications. Journal of Asian Earth Sciences, 145: 679-690 DOI:10.1016/j.jseaes.2017.06.012
Tong LX, Liu Z, Li ZX, Liu XH and Zhou X. 2019. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica:P-T path, U-Pb ages and tectonic implications. Precambrian Research, 326: 385-398 DOI:10.1016/j.precamres.2017.12.045
Wang W, Dunkley E, Clarke GL and Daczko NR. 2014. The evolution of zircon during low-P partial melting of metapelitic rocks:Theoretical predictions and a case study from Mt Stafford, central Australia. Journal of Metamorphic Geology, 32(8): 791-808 DOI:10.1111/jmg.12091
Wang YB, Zhao Y, Ren LD, Chen TY, Liu XH and Tong LX. 1994. Geochemical characteristics and medium pressure granulite facies metamophism of mafic granulite rocks from the Larsemann Hills, East Antarctica. Antarctic Research, 6(3): 1-11 (in Chinese with English abstract)
Wang YB, Liu DY, Chung SL, Tong LX and Ren LD. 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectono-thermal event in East Antarctica. American Journal of Science, 308(4): 573-617 DOI:10.2475/04.2008.07
Wei CJ and Zhu WP. 2016. Granulite facies metamorphism and petrogenesis of granite (Ⅰ):Metamorphic phase equilibria for HT-UHT metapelites/greywackes. Acta Petrologica Sinica, 32(6): 1611-1624 (in Chinese with English abstract)
White RW, Powell R, Holland TJB, Johnson TE and Green ECR. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261-286 DOI:10.1111/jmg.12071
Wilson CJL, Quinn C, Tong LX and Phillips D. 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermochronology. Antarctic Science, 19(3): 339-353 DOI:10.1017/S0954102007000478
Yoshida M. 1995. Cambrian orogenic belt in East Antarctica and Sri Lanka:Implications for Gondwana assembly:A discussion. The Journal of Geology, 103(4): 467-468 DOI:10.1086/629766
Yoshida M. 2007. Geochronological data evaluation:Implications for the Proterozoic tectonics of East Gondwana. Gondwana Research, 12(3): 228-241 DOI:10.1016/j.gr.2006.10.013
Yu LJ, Liu XH, Zhao Y, Ju YT and Liu XC. 2002. Metamorphism of mafic granulites in the Grove Mountains, East Antarctica. Acta Petrologica Sinica, 18(4): 501-516 (in Chinese with English abstract)
Zhao Y, Song B, Wang YB, Ren LD, Li JL and Chen TY. 1991. Geochronological study of the metamorphic and igneous rocks of the Larsemann Hills, East Antarctica. In: Proceedings of 6th ISAES. Tokyo, Japan: National Institute for Polar Research, 662-663
Zhao Y, Song B, Wang Y, Ren L, Li J and Chen T. 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Yoshida Y, Kaminuma K and Shiraishi K (eds.). Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing, 155-161
Zhao Y, Liu XH, Song B, Zhang ZQ, Li JL, Yao YP and Wang YB. 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica:Possible implications for Neoproterozoic tectonics. Precambrian Research, 75(3-4): 175-188 DOI:10.1016/0301-9268(95)00038-0
Zhao Y, Liu XH, Liu XC and Song B. 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics. In: Yoshida M, Windley BE and Dasgupta S (eds.). Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 231-245
Zhou X, Tong LX, Liu XH, Wang YB and Chen YB. 2014. Metamorphism evolution of mafic granulite from the Larsemann Hills, East Antarctica. Acta Petrologica Sinica, 30(6): 1731-1747 (in Chinese with English abstract)
Zong S, Ren LD and Wu MQ. 2020. Grenville-age metamorphism in the Larsemann Hills:P-T evolution of the felsic orthogneiss in the Broknes Peninsula, East Antarctica. International Geology Review DOI:10.1080/00206814.2020.1734973
刘晓春. 2009. 东南极普里兹带多期变质作用及其对罗迪尼亚和冈瓦纳超大陆重建的启示. 岩石学报, 25(8): 1808-1818.
刘晓春. 2018. 高级变质地体中多期变质事件的甄别:以东南极埃默里地区为例. 岩石学报, 34(4): 925-939.
刘小汉, 赵越, 刘晓春, 俞良军. 2002. 东南极格罗夫山地质特征——冈瓦纳最终缝合带的新证据. 中国科学(D辑), 32(6): 457-468.
任留东, 赵越, 陈廷愚, 厉子龙, 刘小汉. 1992. 东南极拉兹曼丘陵变质地质的再认识. 中国地质科学院地质研究所文集, 25: 62-76.
任留东, 刘小汉. 1995. 东南极普里兹湾Søstrene岛麻粒岩变质年代及其与邻区的关系. 极地研究, 7(3): 19-23.
任留东, 熊明, Grew ES, 王彦斌. 2004. 南极拉斯曼丘陵变质岩中氟磷镁石新多型(wagnerite-Ma5bc)的岩石学意义. 自然科学进展, 14(10): 1128-1134.
任留东, 王彦斌, 赵越. 2007. 南极拉斯曼丘陵高级区假蓝宝石及有关矿物组合的形成过程. 吉林大学学报(地球科学版), 37(5): 848-855.
仝来喜, 刘小汉, 张连生, 陈海泓, 任留东, 王彦斌, 赵越. 1997. 东南极拉斯曼丘陵麻粒岩相岩石中早期残留矿物组合的特征及其变质作用条件. 岩石学报, 13(2): 127-138.
仝来喜, 刘小汉, 张连生, 陈海泓, 陈福坤, 王彦斌, 任留东. 1998. 东南极拉斯曼丘陵石榴斜长角闪岩中角闪石的40Ar-39Ar年龄及其地质意义. 极地研究, 10(3): 167-171.
仝来喜, 刘小汉, 王彦斌, Wilson CJL. 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化. 地质学报, 86(8): 1273-1290.
王彦斌, 赵越, 任留东, 陈廷愚, 刘小汉, 仝来喜. 1994. 东南极拉斯曼丘陵镁铁质麻粒岩的地球化学特征及其中压变质作用. 南极研究, 6(3): 1-11.
魏春景, 朱文萍. 2016. 麻粒岩相变质作用与花岗岩成因-Ⅰ:变质泥质岩/杂砂岩高温-超高温变质相平衡. 岩石学报, 32(6): 1611-1624.
俞良军, 刘小汉, 赵越, 琚宜太, 刘晓春. 2002. 东南极格罗夫山镁铁质麻粒岩的变质作用. 岩石学报, 18(4): 501-516.
周信, 仝来喜, 刘小汉, 王彦斌, 陈义兵. 2014. 东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化. 岩石学报, 30(6): 1731-1747.