岩石学报  2020, Vol. 36 Issue (8): 2537-2557, doi: 10.18654/1000-0569/2020.08.15   PDF    
克拉通破坏型金矿成矿机制:吉南板庙子金矿床闪长玢岩与重晶石流体包裹体、H-O-S同位素证据
陈煜嵩1, 董晓杰1,2, 刘正宏1, 贾振杨1, 于晓飞3, 吴玉诗4, 王海建4     
1. 吉林大学地球科学学院, 长春 130061;
2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061;
3. 中国地质调查局发展研究中心, 北京 100037;
4. 吉林省第四地质调查所, 通化 134001
摘要: 克拉通破坏对于华北克拉通中生代的成矿作用有着深刻的影响。相对于胶东矿集区,其他克拉通破坏型金矿矿集区的研究程度相对较低,尤其是位于华北克拉通东北部的吉南矿集区更是缺乏典型矿床的研究。本文对华北克拉通东北部吉南矿集区板庙子金矿区出露的闪长玢岩进行了岩相学、年代学及地球化学研究,同时对成矿Ⅲ阶段的重晶石矿物进行了流体包裹体、H-O-S同位素组成分析。通过LA-ICP-MS锆石U-Pb定年,在具有明显振荡环带的岩浆锆石中获得133.3±0.9Ma加权平均年龄,表明闪长玢岩的侵位时代为早白垩世;同时根据锆石CL图像下极弱的阴极发光特征识别出一组加权平均年龄为130.6±1.0Ma的热液锆石,说明岩浆侵位结晶后遭受热液蚀变改造,由此限定了板庙子金矿床的成矿时代为早白垩世。闪长玢岩地球化学特征显示亏损重稀土元素(HREEs)和Y,富集Sr,具有高钾钙碱性,Mg#>60,Na2O/K2O>1,表现埃达克质岩石特征,其岩浆来源于拆沉下地壳部分熔融,并与地幔橄榄岩反应;富集轻稀土元素(LREEs),以及亏损Nb、Ta、P、Ti等高场强元素(HFSEs)。结合区域的岩浆活动资料,表明该闪长玢岩形成于古太平洋板块俯冲作用相关的强烈伸展构造背景。重晶石矿物H-O同位素组成表明成矿流体来源于岩浆水、建造水和变质水的混合;重晶石矿物S同位素表明成矿物质来源于大洋水和海相蒸发岩。综合板庙子金矿成矿时代、成矿构造背景以及成矿流体/物质来源的特点,提出板庙子金矿属于克拉通破坏型金矿,并阐述了古太平洋板块对欧亚大陆的俯冲作用及其在早白垩世引起的拆沉作用是克拉通破坏型金矿成矿机制的关键。
关键词: 早白垩世    克拉通破坏型金矿    吉南白山板庙子金矿    埃达克质闪长玢岩    重晶石    H-O-S同位素组成    
Metallogenic mechanism of decratonic gold deposit: Evidence from diorite porphyrite and fluid inclusions, H-O-S isotope composition of barite in Banmiaozi gold deposit, southern Jilin Province
CHEN YuSong1, DONG XiaoJie1,2, LIU ZhengHong1, JIA ZhenYang1, YU XiaoFei3, WU YuShi4, WANG HaiJian4     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China;
3. Development and Research Center of China Geological Survey, Beijing 100037, China;
4. The Fourth Geological Survey of Jilin Province, Tonghua 134001, China
Abstract: Craton destruction fundamentally influences on the Mesozoic mineralization of the North China Craton (NCC). It is noted in this paper that compared with the Jiaodong district, other districts have relatively less studies on the decratonic gold deposits, especially in the Ji'nan district in the northeastern NCC. This paper reports the petrographic, geochronological and geochemical study of the diorite porphyrite exposed in the Banmiaozi gold deposit, Ji'nan district, the northeastern NCC, and fluid inclusions and the H-O-S isotopic composition analysis of the barite in the Ⅲ stage of mineralization. LA-ICP-MS zircon U-Pb dating shows that the age of magmatic zircon with obvious oscillatory ring is 133.3±0.9Ma, indicating the emplacement age of the diorite porphyry is Early Cretaceous. A group of hydrothermal zircons with a weighted mean age of 130.6±1.0Ma is identified according to the extremely weak cathodoluminescence characteristics of zircon CL images, indicating that the magma underwent a hydrothermal alteration after emplacement and crystallization, which limited the mineralization age of Banmiaozi gold deposit to Early Cretaceous. The geochemical characteristics of diorite porphyry show depletions in HREEs and Y, enrichment in Sr, high-K calc-alkaline, Mg#>60, Na2O/K2O>1, i.e., it belongs to a type of adakitic rocks. The magma comes from partial melting of delaminated lower continental crust and reacts with mantle peridotite. It also shows enrichment in LREEs, and depletion in HFSEs (Nb, Ta, P, Ti). Combining regional magmatism, we can conclude that the diorite porphyry was formed in a strong extensional tectonic setting, related to the subduction of the Paleo-Pacific Plate. The H-O isotopic compositions of barites indicate that the ore-forming fluid comes from the mixture of magmatic water, formation water and metamorphic water; the S isotopic compositions of barites indicate that the ore-forming material comes from ocean water and marine evaporite. According to the metallogenic age, metallogenic tectonic background and ore-forming fluid/material, it can be concluded that Banmiaozi gold deposit belongs to the decratonic gold deposit. The subduction of the Paleo-Pacific Plate to Eurasian Continent and delamination in the Early Cretaceous is the key to the metallogenic mechanism of the decratonic gold deposit.
Key words: Early Cretaceous    Decratonic gold deposit    Banmiaozi gold deposit in Baishan, southern Jilin Province    Adakitic diorite porphyrite    Barite    H-O-S isotope composition    

华北克拉通作为欧亚大陆东部最大的克拉通之一,是地球上少有的地质演化历史可以追溯到3.8Ga以前的地区(Liu et al., 1992; Song et al., 1996; Wan et al., 2015)。华北克拉通自1.85Ga克拉通化后,长期保持稳定状态;但自中生代以后,华北克拉通稳定性质遭到破坏,所谓“克拉通破坏”即克拉通失去稳定性的过程,其表象就是华北克拉通在显生宙期间发生的岩石圈减薄、岩浆活动、构造演化以及成矿作用(吴福元等, 2003, 2008, 2014翟明国等,2005刘俊来等,2009朱日祥等,2011)。古太平洋板块的俯冲作用作为华北克拉通破坏的一级驱动力,有关这一俯冲作用的开始时间一直存在争议,主要有以下三种观点:早-中侏罗世(Yu et al., 2012; 许文良等,2013);晚侏罗世-早白垩世(唐克东等,2011张允平,2011);晚三叠世(Zhou et al., 2009, 2014; Yang et al., 2017)。由于俯冲作用的影响,早白垩世(120~130Ma)成为中国东部岩浆和成矿作用最为强烈的时期(吴福元等,2003翟明国等,2004杨立强等,2014朱日祥等,2015),含水板片释放流体熔融岩石圈地幔产生富水镁铁质岩浆并底侵地壳引起的水致熔融作用在早白垩世大规模的岩浆作用形成过程中发挥了重要作用(Li et al., 2017, 2018a)。华北克拉通金矿床成矿时代与克拉通破坏峰期相一致,呈现爆发性成矿特征(朱日祥等,2015)。

胶东作为我国最重要并且研究程度较高的金矿集区,已探明大型-超大型金矿床数十处,中小型金矿床百余处。根据矿化-蚀变特征,这些矿床主要分为焦家式金矿(破碎带蚀变岩型金矿)和玲珑式金矿(石英脉型金矿)两种类型(Fan et al., 2003Li et al., 2015郭林楠,2016)。针对胶东金矿的成因类型,起初部分学者将其划分为造山型金矿(Zhou and Lü, 2000Goldfarb et al., 2001, 2007),但随着研究工作的不断进行,可以发现尽管胶东金矿在矿化蚀变特征上与造山型金矿相似,但二者在成矿作用和成矿构造背景上存在明显不同(翟明国等,2004杨立强等,2014Li et al., 2015)。作为我国最重要的金成矿省,华北克拉通除胶东金矿集区以外,还存在辽东-吉南-赤峰-朝阳、小秦岭-熊耳山、太行山中段、冀北等多个金矿集区(图 1),并将胶东地区以外并且具有与胶东地区金矿相似的特征和地球动力学环境的金矿命名为“胶东型金矿”(Li et al., 2015)。为了突出其与克拉通破坏的成因联系,后将其称为“克拉通破坏型金矿床”,并指出其形成于强烈伸展构造背景并且成矿流体主要来源于与克拉通破坏相关的岩浆活动,这两个特征是区别于典型造山型金矿的重要标志(朱日祥等,2015)。

图 1 华北克拉通基底构造单元划分及早白垩世主要矿集区分布图(据Zhao et al., 2005, 2012; 朱日祥等,2015修改) Fig. 1 The tectonic division of the NCC and distribution of major gold districts in Early Cretaceous (modified after Zhao et al., 2005, 2012; Zhu et al., 2015)

相对于胶东矿集区,以上其它克拉通破坏型金矿矿集区的研究程度相对较低,尤其位于华北克拉通东北部的吉南矿集区更是缺乏典型矿床的研究。板庙子金矿床位于吉南地区中部(图 2),累计查明金金属量约50t,品位高达4.55×10-6,是吉南地区老岭成矿带内典型的大型金矿床。自1998年发现以来,虽然地质工作者针对其地质学、地球化学以及矿床学特征做了大量研究,但其矿床成因类型仍然存在争议,主要包括以下几种观点:浅成低温热液型金矿(宿晓静和臧兴运,2010);在浅成低温热液型金矿基础上强调与燕山期造山运动有关(张建泽,2015);造山带型金矿(刘文香等,2009);中低温热液型金矿(李敏,2008冯罡等,2016)。针对其成矿时代的不同观点则主要包括:通过矿区西南面出露的花岗闪长斑岩(170.12±0.58Ma)的酸碱度推测其为与成矿有关的岩体,从而限定成矿时代为燕山期(张建泽,2015);通过矿体中矿化蚀变的闪长玢岩角砾及与邻区矿床的对比,推测成矿时代为燕山晚期,但缺乏准确的定年数据支持(刘文香等,2009)。本文通过讨论板庙子金矿区东部出露的闪长玢岩体的岩相学、年代学及地球化学特征来限定板庙子金矿床成矿时代及成矿作用所处的大地构造背景,并结合主成矿期重晶石矿物中流体包裹体的显微特征和H-O-S同位素组成研究判断矿床成因类型,借助对吉南地区典型金矿床成矿模式的研究来讨论克拉通破坏型金矿的成矿机制。

图 2 吉南地区地质构造简图(据Pei et al., 2011a; Chai et al., 2016修改) Fig. 2 Geological sketch map of the southern Jilin Province (modified after Pei et al., 2011a; Chai et al., 2016)
1 区域地质背景

目前关于华北克拉通基底构造单元的划分普遍采用三分法,即包括西部陆块、东部陆块以及二者陆-陆碰撞形成的中部造山带。其中,西部陆块又由阴山地块、鄂尔多斯地块以及东西向展布的孔兹岩带组成;东部陆块于2.2~1.9Ga经历了裂谷作用,并接受了古元古代巨量的陆壳物质沉积,并于~1.9Ga闭合形成胶-辽-吉带(Zhao et al., 2005, 2012; Li et al., 2005)(图 1)。吉南地区位于华北克拉通东北部,地处龙岗地块与胶-辽-吉造山带的交界部位(刘福来等,2015)(图 2)。研究区内出露的龙岗地块主要由太古代TTG片麻岩、表壳岩以及壳源花岗岩组成(Wan et al., 2015李鹏川等, 2016, 2018);胶-辽-吉古元古代造山带在研究区出露的主要为古元古代火山-沉积岩以及辽吉花岗岩(张秋生等,1988Li and Zhao, 2007赵国春,2009);同时区域上还出露新元古代-古生代沉积盖层、中生代断陷盆地以及沿北东向鸭绿江断裂分布的中生代花岗质岩石,其中早白垩世花岗岩分布尤为广泛,岩浆结晶年龄集中在122~130Ma,表明吉南地区早白垩世存在一期较为强烈的岩浆活动(路孝平等,2003孙德有等,2005裴福萍等, 2008, 2009Yu et al., 2009Pei et al., 2011aZhang et al., 2019c)。

区域上沿老岭成矿带已发现的金矿床,除板庙子大型金矿外,还包括天桥金矿床,以及受小四平-南岔“S”型韧性剪切带控制的小四平、荒沟山、大横路、南岔等规模较大的金矿床,具有较好的找矿前景(关键等,2004李宝毅等,2010)。其中南岔金矿属于造山型造山型金矿,并且含金石英脉绢云母40Ar-39Ar定年为170.1±1.9Ma(Chai et al., 2016);荒沟山金矿属于岩浆热液型金矿,通过与成矿作用相关的黑云母花岗岩结晶年龄限定成矿年龄在178Ma左右(秦亚等,2013Wang et al., 2020);总体上,NE-SW向“S”型韧性剪切带相关矿床的成矿时代为早-中侏罗世。

2 矿床地质特征 2.1 矿区地质

板庙子金矿位于吉林省南部白山市老岭成矿带内,矿区出露的地层包括:古元古代老岭群珍珠门组白云质大理岩、新元古代青白口系钓鱼台组石英砂岩及南芬组页岩、泥岩。珍珠门组大理岩出露在矿区的西南部,勘探线26线以西,F102断裂的上盘近断裂带地段;钓鱼台组石英砂岩发育在矿区的中部,与下伏珍珠门组大理岩分别构成F100正断层的上下两盘,二者呈断层接触,同时,在矿区中部钓鱼台组石英砂岩两侧分布有南芬组页岩、泥岩,二者呈整合接触;矿区地层走向总体呈北东向展布。矿区内发育北东向、北西向两组断裂构造,其中北东向断裂占主体,北西向断裂次之,且形成较晚。最主要的两组北东向断裂分别为F102左行斜向走滑断层及F100正断层。矿区东部吊水壶村处可见闪长玢岩体侵入南芬组,该岩体地表出露规模不大,但在7号、10号、14号、16号、30号钻孔深部均可见蚀变的闪长玢岩脉体,说明该岩体深部规模较大,应该为一巨大岩基(图 3a)。

图 3 板庙子金矿区地质图(a)和88号勘探线剖面图(b)(据吉林省第四地质调查所,2015修改) Fig. 3 Geological map of the Banmiaozi gold deposit (a) and geological section along exploration line 88 (b)

① 吉林省第四地质调查所. 2015.吉林省白山市金英金矿资源储量核实报告

2.2 矿化特征

矿体赋存于新元古代青白口系钓鱼台组石英砂岩与古元古代老岭群珍珠门组大理岩的不整合面上的硅化构造角砾岩蚀变带中(图 3b)。目前查明有9条矿体,呈似层状北东向展布。矿石类型以硅化蚀变构造角砾岩为主,角砾成分复杂,并可见闪长玢岩角砾;该套角砾岩分布具有明显分带特征(图 4),在剖面上角砾岩由上到下分别为:砂岩单砾角砾岩、石英复砾角砾岩、混合复砾角砾岩、白云单砾角砾岩,其中混合复砾角砾岩的含金品位最高。矿石矿物主要包括黄铁矿、白铁矿、毒砂、黄铜矿、方铅矿、闪锌矿、赤铁矿、褐铁矿、石英、重晶石等。矿石结构主要以交代结构为主,矿石构造以角砾状构造为主。围岩蚀变主要存在硅化、重晶石化、黄铁矿化和赤铁矿化,上盘围岩赤铁石英砂岩明显发育,下盘围岩主要发育硅化大理岩。

图 4 构造角砾岩岩石类型剖面图 Fig. 4 The section of rock types of tectonic breccia

依据矿石结构、矿物共生组合、矿物生成顺序以及矿脉间的穿切关系将矿床分为4个成矿阶段:(Ⅰ)早期硅化石英-金-烟灰色黄铁矿阶段;(Ⅱ)微细粒硅化石英-金-星散浸染状黄铁矿阶段;(Ⅲ)重晶石、玉髓-金-赤铁矿阶段;(Ⅳ)微含金细粒黄铁矿-白铁矿叠加矿化阶段,其中,其Ⅱ、Ⅲ阶段为金的主要富集成矿阶段(刘文香等,2009宿晓静和臧兴运,2010邢延安等,2012冯罡等,2016门兰静等,2016)。

3 样品与测试方法 3.1 闪长玢岩

在板庙子金矿区东部吊水壶村西北1.1km处采集5块新鲜闪长玢岩进行全岩主、微量元素分析测试, 并选取DN-1(41°59′37″N、126°24′9″E)进行LA-ICP-MS锆石U-Pb测年研究。闪长玢岩手标本风化面灰褐色,新鲜面青灰色,斑状结构,块状构造。斑晶以斜长石(25%)为主,半自形板柱状或粒状,具聚片双晶,环带结构;斑晶中含有少量黑云母(>5%)、普通角闪石(< 5%)和石英(< 5%),其中黑云母和普通角闪石可见绿泥石化。基质为细粒显微晶体结构,由细粒长石显微晶体组成(图 5)。

图 5 闪长玢岩岩心照片(a)及显微镜下照片(b) Q-石英;Pl-斜长石;Hb-普通角闪石;Bi-黑云母 Fig. 5 Core photo (a) and photomicrograph (b) of diorite porphyrite Q-quartz; Pl-plagioclase; Hb-hornblende; Bi-biotite

锆石的挑选在河北廊坊市区域地质调查所进行。样品制靶和CL图像采集在北京燕都中实测试技术有限公司完成。LA-ICP-MS锆石U-Pb定年在北京燕都中实测试技术有限公司和自然资源部东北亚矿产资源评价重点实验室完成,使用GeoLasPro型193nm ArF准分子激光器和Agilent7900型ICP-MS仪器对锆石进行U-Pb测试,锆石91500作为外部锆石年龄标准。样品主、微量元素地球化学分析测试在澳实分析检测(广州)有限公司完成,主、微量元素测试方法分别为ME-XRF26d、ME-MS81。

3.2 流体包裹体显微测温及H-O-S同位素测试

选取矿区260中段、395中段以及299号钻孔中含烟灰色硅质脉的重晶石、含重晶石热液角砾岩、重晶石化赤铁矿化角砾岩以及重晶石岩心柱样品共4件,4件样品根据重晶石矿物的出现划分属于Ⅲ成矿阶段。在吉林大学地球科学学院地质流体实验室对上述样品中的重晶石矿物中发育的流体包裹体进行岩相学及显微测温工作,实验仪器为英国Linkam THMS-600型冷热台,测温精度<31℃时为±0.1℃,>31℃时为±2℃。并且在澳实分析检测(广州)有限公司矿物实验室进行重晶石矿物流体包裹体H-O同位素分析,氢同位素分析采用的实验仪器为Thermo-Finnigan DeltaplusXP连续气流同位素质谱仪,数据基于V-SMOW国际标准水样标准化;氧同位素的测定所采用的仪器为Finnigan MAT 252稳定同位素比质谱仪,数据基于V-SMOW国际标准水样标准化。在自然资源部东北亚矿产资源评价重点实验室进行重晶石矿物流体包裹体S同位素分析。

4 测试结果 4.1 闪长玢岩 4.1.1 年代学

从闪长玢岩锆石CL阴极发光图中我们可以观察出锆石具有明显的分组现象。根据CL图像是否具有阴极发光特征、锆石颗粒的形态以及内部结构可以将闪长玢岩中的锆石分为三组:(1)锆石形状规则,较为自形,板柱状,锆石长宽约为2:1,部分具幔-边结构,边部阴极发光极弱甚至个别锆石整体基本不具阴极发光特征(图 6a),为典型的热液锆石特有的特征(Hoskin and Schaltegger, 2003; 朱永峰和宋彪, 2006),其极弱的阴极发光特征是由于后期成矿热液流体作用的结果,这部分锆石的Th/U比值介于0.05~0.24(多为0.05~0.15, 表 1),虽然部分锆石Th/U比值大于0.1,但结合其极弱的阴极发光特征综合来看该组锆石为热液锆石;(2)锆石形态自形-半自形,长宽比约为2:1,与前组热液锆石相比具有典型的、清晰的振荡环带(图 6b),Th/U比值介于0.06~0.25(多为0.15~0.25, 表 1),大于0.1,综合来看第二组锆石为岩浆成因锆石;(3)锆石形态自形-半自形,锆石内部结构振荡环带较弱(图 6c),同时边部发育不具阴极发光特征的边带,可能为后期热液流体蚀变的结果,Th/U比值介于0.12~1.62,均大于0.1 (表 1),综合来看该组锆石为岩浆锆石,并且受到后期的热液蚀变。在锆石LA-ICP-MS U-Pb年龄谐和图中,样品分布同样表现出分组特征,同时样品年龄分组与锆石CL图分组相一致(图 7a)。样品均投影在谐和线附近,有效测点共计25个;其中6个测点的锆石206Pb/238U年龄值介于130.1~130.9Ma,加权平均年龄为130.6±1.0Ma,为热液锆石年龄(图 7c);10个测点的锆石206Pb/238U年龄值介于132.8~133.9Ma,加权平均年龄为133.3±0.9Ma,为闪长玢岩的结晶年龄,代表吊水壶闪长玢岩的形成时代为早白垩世(图 7d);9个测点的锆石206Pb/238U年龄值介于168.0~170.6Ma,加权平均年龄为169.1±1.7Ma,为捕获锆石或继承锆石重结晶作用形成,说明研究区在该中侏罗世发育岩浆活动,捕获锆石的时代与周边发育的花岗闪长斑岩侵位时代一致(张建泽,2015高天宇等,2019)。

图 6 闪长玢岩锆石CL图像 Fig. 6 Zircon cathodoluminescence (CL) images of diorite porphyrite

表 1 闪长玢岩LA-ICP-MS锆石U-Pb定年数据 Table 1 Diorite porphyrite LA-ICP-MS zircon U-Pb data

图 7 闪长玢岩LA-ICP-MS锆石U-Pb年龄谐和图 Fig. 7 LA-ICP-MS zircon U-Pb concordia diagrams for diorite porphyrite
4.1.2 地球化学

闪长玢岩样品SiO2含量为64.07%~65.02%,Al2O3含量为14.72%~14.99%,Fe2O3含量为3.29%~3.37%,K2O含量为3.01%~3.05%,Na2O含量为3.77%~4.03%,CaO含量为2.76%~3.66%,MgO含量2.58%~3.31%,Mg#=60.48~66.32,铝指数A/CNK=0.90~1.02,属于准过铝质-过铝质系列,全碱(Na2O+K2O)=6.82%~7.05%,Na2O/K2O=1.24~1.33(表 2)。在SiO2-K2O图解中(图 8),样品主要分布在高钾钙碱性系列中。

表 2 闪长玢岩主量元素(wt%)和稀土、微量元素(×10-6)分析结果 Table 2 Compositions of major (wt%), rare earth and trace element (×10-6) for diorite porphyrite

图 8 闪长玢岩SiO2-K2O图解(据Peccerillo and Taylor, 1976) Fig. 8 Plots of SiO2 vs. K2O for diorite porphyrite (after Peccerillo and Taylor, 1976)

从闪长玢岩样品的原始地幔标准化微量元素蛛网图(图 9a)中可以看到样品富集Cs、Ba、K、Sr等大离子亲石元素(LILEs),Sr含量为690×10-6~825×10-6(>400×10-6),显示出明显的高Sr的特征,并且Y含量较低,为6.7×10-6~8.4×10-6(<18×10-6);同时样品亏损Nb、Ta、Ti、P等高场强元素(HFSEs)。球粒陨石标准化稀土元素配分曲线(图 9b)中我们可以看出曲线整体呈现向右陡倾的特征,相对富集轻稀土元素(LREEs)、亏损重稀土元素(HREEs),稀土总量(∑REE)=109.6×10-6~121.5×10-6,LREEs/HREEs=15.42~19.78,(La/Yb)N=26.32~34.57,轻重稀土元素分馏强烈,强烈亏损重稀土元素,δEu=0.83~0.92,具有极为微弱的负Eu异常,重稀土元素Yb含量为0.54×10-6~0.62 ×10-6(<1.9 ×10-6)。

图 9 闪长玢岩原始地幔标准化微量元素蛛网图(a,标准化值据Sun and McDonough, 1989)及球粒陨石标准化稀土元素配分曲线图(b,标准化值据Boynton, 1984) Fig. 9 Primitive mantle-normalized trace element patterns (a, normalization values after Sun and McDonough, 1989) and chondrite-normalized REE distribution patterns (b, normalization values after Boynton, 1984) for diorite porphyrite
4.2 流体包裹体

在流体包裹体显微镜下观察发现所取样品中重晶石矿物所含的流体包裹体性质接近,室温下重晶石矿物中的流体包裹体均为气液两相流体包裹体(图 10),气液比大约在10%~30%,大小在4~20μm之间,其中4~12μm居多,形态呈椭圆、长条、四边形以及不规则形状(表 3)。

图 10 板庙子金矿重晶石流体包裹体显微照片 Fig. 10 Photomicrographs of fluid inclusions in barite from the Banmiaozi gold deposit

表 3 重晶石流体包裹体测试数据 Table 3 Microthermometric data of fluid inclusions in barite

对重晶石矿物中所含的气液两相流体包裹体进行均一测温,测温结果见图 11。由实验结果我们可以得出:Ⅲ成矿阶段重晶石中气液两相流体包裹体的均一温度在105.9~360.5℃之间,根据冰点温度-盐度公式S=1.78θ-0.0442θ2+0.000557θ3(Potter et al., 1978; Hall et al., 1988)计算得出成矿流体的盐度为0.5%~7.3% NaCleqv。

图 11 重晶石流体包裹体均一温度、盐度直方图 Fig. 11 Histograms of homogenization temperatures and salinities of fluid inclusions in barite
4.3 H-O-S同位素

重晶石矿物的H-O同位素的分析测试结果见表 4,根据同位素平衡分馏公式重晶石-水:1000lnαBrt-W=δ18OBrt-δ18Ow=3.00×106T-2-6.79(Friedman and O'Neil, 1977),代入重晶石矿物流体包裹体的均一温度,计算得出平衡水的δ18O值。重晶石矿物中的S同位素分析结果见表 5,实验结果显示δ34S集中在17.61‰~27.27‰之间,平均值为23.52‰。

表 4 板庙子金矿重晶石矿物氢-氧同位素组成 Table 4 The hydrogen, oxygen isotopic data in barite from the Banmiaozi gold deposit

表 5 板庙子金矿重晶石矿物的硫同位素组成 Table 5 The sulfur isotopic data in barite from the Banmiaozi gold deposit
5 讨论 5.1 埃达克质闪长玢岩及其岩浆源区

目前,通常我们所说的埃达克岩主要是指具有埃达克质地球化学特征并且是由于俯冲板片的部分熔融所形成的中酸性火成岩(Defant and Drummond, 1990),除此成因外,其他成因的具有埃达克质地球化学特征的火成岩则被称作埃达克质岩石(许继峰等,2014; Zhang et al., 2019a)。众多学者针对埃达克质岩石的成因模式主要提出以下几种主流观点:(1)玄武质岩浆AFC演化(Castillo et al., 1999);(2)加厚下地壳直接部分熔融(Atherton and Petford, 1993);(3)拆沉下地壳的部分熔融(Xu et al., 2002; Gao et al., 2004);(4)幔源岩浆与壳源岩浆的混合(Guo et al., 2007许继峰等,2014);(5)富集地幔部分熔融同化混染下地壳(谢桂青等,2008)。

从早白垩世早期吊水壶闪长玢岩样品的主、微量元素表现出来的特征来看,其具有典型的埃达克岩的特征即SiO2≥56%,Al2O3的平均含量为14.85%,略小于15%,MgO含量2.58%~3.31%,平均含量为2.95%,强烈亏损重稀土元素和Y,富集Sr。在Sr/Y-Y图解和(La/Yb)N-YbN图解中(图 12),样品也均投影在埃达克岩的区域内。在SiO2-MgO图解中(图 13),显示岩浆来源于俯冲洋壳熔融或者拆沉下地壳的部分熔融,但是本文样品Na2O/K2O=1.24~1.33(>1),K2O含量为3.01%~3.05%,同时表现高钾钙碱性,与典型俯冲板片熔融形成的埃达克岩所具有的贫K的特征明显不同,所以吊水壶闪长玢岩不属于典型的俯冲板块熔融的埃达克岩;同样由于野外地质调查并未发现周边与其共生的基性玄武质岩石,所以排除玄武质岩浆AFC演化成因;同时本文样品具有较高的MgO(2.58%~3.31%)和Cr(130×10-6),以及较为集中的Na2O/K2O,而富集地幔部分熔融同化混染下地壳产生的埃达克质岩石具有较低MgO(0.17%~2.18%)、Cr(15×10-6~49×10-6)以及Na2O/K2O变化较大(谢桂青等,2008),二者明显不同;结合本文样品富Mg(Mg#=60.48~66.32,>50)的特征,可以判断其并非是直接来源于下地壳镁铁质物质部分熔融,而是下地壳下部含角闪石榴辉岩同下伏岩石圈地幔一起拆沉到软流圈中,发生脱水熔融产生初始埃达克质熔体并与地幔橄榄岩反应(Kay et al., 1993; 吴福元等,2003)。

图 12 闪长玢岩Sr/Y-Y图解(a)和(La/Yb)N-YbN图解(b)(底图据Defant and Drummond, 1990) Fig. 12 Sr/Y vs. Y diagram (a) and (La/Yb)N vs. YbN diagram (b) for diorite porphyrite (base map after Defant and Drummond, 1990)

图 13 闪长玢岩SiO2-MgO图解(底图据王强等,2004) Fig. 13 SiO2 vs. MgO diagram for diorite porphyrite (base map after Wang et al., 2004)
5.2 成矿构造背景

埃达克质闪长玢岩Rb-(Y+Nb)和Ta-Yb判别图解中(图 14),样品均落在火山弧花岗岩范围内;同时样品富集轻稀土元素(LREEs),亏损重稀土元素(HREEs)以及Nb、Ta、P、Ti等高场强元素(HFSEs),具有活动大陆边缘弧岩浆岩特征。吉黑东部出露的一系列钙碱性火山岩指示了早白垩世古太平洋板块对欧亚大陆边缘的俯冲作用(Yu et al., 2009),向陆内至松辽盆地-大兴安岭地区则发育一系列双峰式火山岩组合(葛文春等,1999Wang et al., 2006Zhang et al., 2008, 2010裴福萍等,2008许文良等,2013)。同时通化地区三棵榆树组埃达克质火山岩(118.3Ma)同样形成于古太平洋板块俯冲作用下的引张环境(裴福萍等,2009)。同时辽吉地区分布大量早白垩世变质核杂岩与伸展断陷盆地,辽西医巫闾山韧性剪切带构造片岩中白云母40Ar-39Ar年龄为131.6±1.0Ma(李刚等,2012);辽南和万福变质核杂岩、大营子拆离断层以及辽东东部多个伸展断陷盆地通过与伸展构造相关的同构造侵入岩以及伸展断陷盆地火山岩年代学分析证明形成于135~106Ma(刘俊来等,2011);沿鸭绿江断裂带分布的丹东盆地、绿江村盆地以及凉水盆地砂岩中碎屑锆石定年研究同样显示沉积时代为早白垩世,并且通过伸展盆地内火山岩锆石年龄以及最年轻火山岩斜长石40Ar-39Ar年龄限定了鸭绿江断裂带伸展活动的时限为131~100Ma(Zhang et al., 2019b);由此我们可以判断吉南地区早白垩世处于活动大陆边缘弧后伸展的构造背景。Pei et al. (2011a)通过LA-ICP-MS锆石U-Pb定年测得吉南地区沿鸭绿江断裂自东北向西南出露的七处花岗质岩体的形成年龄为122~130Ma,以及区域上出露的镁铁质-超镁铁质杂岩体年龄为129~137Ma (Pei et al., 2011b),说明吉南地区早白垩世发育一期强烈的岩浆活动,这期岩浆活动与古太平洋板块俯冲作用引起的强烈伸展构造环境有关。

图 14 闪长玢岩(Y+Nb)-Rb (a)和Yb-Ta (b)判别图解(底图据Pearce et al., 1984) Fig. 14 Y+Nb vs. Rb (a) and Yb vs. Ta (b) diagrams for diorite porphyrite (base map after Pearce et al., 1984)
5.3 矿床成矿时代限定与成因分析

通过对矿区东部出露的闪长玢岩进行ICP-MS锆石U-Pb测年可知,闪长玢岩锆石中有一组形成年龄略小于闪长玢岩体的侵位结晶年龄(133.3±0.9Ma)的热液锆石(130.6±1.0Ma),表明在闪长玢岩体侵位结晶之后,随即受到热液的蚀变改造,由此,我们可以初步限定板庙子金矿的成矿年龄即在130.6±1.0Ma,与华北克拉通破坏型金矿的成矿爆发期(集中在130~120Ma)相一致(朱日祥等,2015)。

成矿流体的来源可以直接根据保存在矿物流体包裹体中的水的同位素组成来判断(Ohmoto and Rye, 1974; Richardson et al., 1988; 邹灏, 2013)。将板庙子金矿重晶石矿物H-O同位素分析测试结果进行投图(图 15),从图中可以看出板庙子金矿成矿Ⅲ阶段成矿流体来源比较复杂,为岩浆水、变质水和建造水的混合。

图 15 板庙子金矿床成矿流体氢-氧同位素组成(底图据Taylor,1974修改) 华北克拉通东、西金矿带早白垩世金矿及国外造山型金矿成矿流体H-O同位素组成数据转朱日祥等(2015) Fig. 15 Plot of δ18O vs. δD for ore-forming fluids of the Banmiaozi gold deposit (base map after Taylor, 1974) δD and δ18O data of Eastern Belt, Western Belt and foreign orogenic gold deposits from Zhu et al. (2015)

硫作为极其重要的成矿元素,是解决矿床成因问题的重要指示,根据矿石中硫的来源判断矿床成矿物质的来源是矿床学研究中极为重要的手段。对重晶石矿物中的S进行同位素分析结果显示δ34S集中在17.61‰~27.27‰之间,平均值为23.52‰ (表 5),数据较为集中,说明为单一来源S;张建泽(2015)对重晶石S同位素进行分析,δ34S=21.1‰~24.4‰,数据同样比较集中,分布在20‰左右。成矿热液中的总硫同位素不同数值对应不同的S来源也就是不同的成矿物质来源:(1)δ34S∑s=0,代表幔源硫,与岩浆活动有关;(2)δ34S∑s=20‰左右,代表成矿物质来源于大洋水和海相蒸发岩;(3)δ34S∑s为较大的负值,代表成矿物质来源于沉积环境下的还原S。在SO42-占优势的成矿热液环境下,重晶石中的δ34S大致相当于热液的δ34S∑s(Ohmoto, 1972Ohmoto and Rye, 1979; 吴南平等, 2003),所以,板庙子金矿成矿Ⅲ阶段的成矿物质主要来源于大洋水和海相蒸发岩。

通过对板庙子金矿成矿Ⅲ阶段重晶石矿物进行流体包裹体显微均一测温、H-O-S同位素组成研究,我们可以得知:(1)板庙子金矿的成矿温度在105.9~360.5℃之间,表现为中-低温,同时盐度在0.5%~7.3% NaCleqv之间,总体符合华北克拉通破坏型金矿主成矿期成矿流体的显微特征;(2)重晶石H-O同位素分析结果显示成矿流体来源于岩浆水、建造水和变质水的混合,与华北克拉通东、西金矿带早白垩世金矿床H-O同位素组成所表现的投图落点范围基本一致,不同于造山型金矿成矿流体主要来源于变质流体的特征。

华北克拉通破坏型金矿区别于造山型金矿最典型的特征是:前者形成于强烈伸展构造背景,而后者形成于长期挤压构造背景。通过板庙子金矿床成矿作用所处的大地构造背景以及成矿流体特征,我们可以判断板庙子金矿床属于克拉通破坏型金矿。

F102走滑断裂作为板庙子金矿区规模最大的断裂,呈北东向贯穿整个矿区,勘查所设的槽探工程控制断层产状,断层倾向南东,倾角较大,约为67°~76°,断裂带中构造角砾岩可以观察到硅化、褐铁矿化及黄铁矿化蚀变,是板庙子金矿重要的控矿构造。同时依据区域上同样呈NE向展布的驮道沟花岗闪长斑岩(162.3Ma)以及呈顺层侵入北东向展布的南芬组页岩新路花岗闪长斑岩脉(163.3Ma)(高天宇等,2019),我们推测北东向F102走滑断层形成时代为中侏罗世晚期。F100正断层呈北北东向与F102走滑断层于地表处汇聚相交于26号勘探线,F100正断层的倾角约43°~70°,从深部较缓到向F102断裂汇合逐渐变陡,断层上下盘之间的不整合面经早期F100断裂构造演化,形成了层间破碎带,后又经后期F102作用,越靠近F102断裂所受到的叠加改造越强烈,层间破碎带硅化程度加强,构造角砾岩的厚度也变大,形成了物理化学条件更加有利于成矿的更大范围的构造角砾岩带,是板庙子金矿区重要的控矿和容矿构造(图 3b)。

综合板庙子金矿的控矿构造、构造动力学背景以及流体包裹体地球化学特征,我们初步建立板庙子金矿成矿模型(图 16):古元古代老岭群珍珠门组和新元古代青白口系钓鱼台组之间呈角度不整合接触,不整合面上盘钓鱼台组底部发育赤铁石英砂岩,表现为氧化环境;由于地壳运动,太古代基底强烈隆升,导致沿不整合面形成正断层F100,发育破碎的构造角砾岩带,表现为氧化环境,发育赤铁矿化、硅化;中生代早中侏罗世由于古太平洋板块俯冲,形成北东向走滑断层F102,由此导致F100断层活化,与此同时板块俯冲作用致使深部岩浆上涌,由于热的富矿岩浆热液沿断裂空隙流入,致使由氧化环境转变为还原环境,同时改造早期的硅化构造角砾岩,发育明显孔隙,金和金属硫化物沉淀在孔隙中,形成板庙子金矿成矿第Ⅰ、Ⅱ成矿阶段;~130Ma岩浆热液沿断裂再次上涌,与老地层中的建造水、变质水混合,热液温度降低,同时,由于F100断层拉伸运动,致使蚀变带空间扩大,同样导致热液温度降低,由还原环境转换为氧化环境,并且不整合面上盘钓鱼台组底部的赤铁石英砂岩同样起到氧化作用,S2-由于氧化作用,被氧化成S6+,形成重晶石,构成板庙子金矿成矿第Ⅲ成矿阶段,重晶石呈不规则脉状充填、胶结硅化构造角砾岩角砾,附存在角砾岩中的孔洞和裂隙内,边部伴生金属矿物,重晶石与硅化石英之间的裂隙为金矿化提供了良好空间。

图 16 板庙子金矿成矿模式图 Fig. 16 Metallogenic model of Banmiaozi gold deposit
5.4 克拉通破坏型金矿成矿机制讨论

华北克拉通岩石圈减薄与克拉通破坏,及其引发的构造-岩浆-成矿作用一直以来都是国内外学者的研究热点。华北克拉通自1.85Ga克拉通化后,一直保持稳定克拉通状态;但自中生代以后,华北克拉通稳定性质遭到破坏,尤其是东部,经历复杂构造变形和岩浆活动,各种类型盆地广泛发育,为金属矿产和油气资源提供了有利场所(Yang et al., 2003朱日祥等,2011)。随着工作的积累,人们对于华北克拉通破坏的认识也逐渐清晰:(1)借助山东蒙阴和辽宁复县早古生代金伯利岩中的金刚石及其中流体包裹体、新生代玄武岩中的幔源包体我们可以推断中国东部在显生宙期间发生岩石圈减薄百余千米并且岩石圈地幔性质也发生改变(池际尚,1988郑建平等,1999吴福元等,2008),中国东部的埃达克岩同样暗示中国东部燕山中晚期可能是一个高原(张旗等,2001);(2)通过中国东部岩浆活动-成矿作用以及以伸展断陷盆地、变质核杂岩为标志的区域伸展变形限定华北克拉通破坏的峰期为早白垩世(刘俊来等,2011朱日祥等,2012Wang et al., 2012吴福元等,2014);(3)华北克拉通自中生代起,经历了古亚洲洋闭合(Cao et al., 2013Xu et al., 2013刘锦等,2016Guan et al., 2018)、扬子克拉通深俯冲及碰撞(郭敬辉等,2005吴福元等,2005Yang et al., 2007Zhang et al., 2019c)、古太平洋板块向欧亚大陆俯冲(Zhang et al., 2008, 2010裴福萍等,2008许文良等,2013唐杰等,2018)以及蒙古-鄂霍茨克洋的闭合(Zhang et al., 2014Li et al., 2018bGuan et al., 2019)的多重叠加影响,通过不同构造域作用的时间跨度以及影响空间范围的限定,古太平洋板块俯冲作用是华北克拉通破坏的一级外部控制因素和驱动力已经得到多数研究者的认同(吴福元等, 2003, 2008, 2014朱日祥等,2012朱日祥和徐义刚,2019)。

增生杂岩就位时间以及在陆缘分布的弧岩浆作用表明古太平洋板块对欧亚大陆的俯冲作用开始于早侏罗世(朱日祥和徐义刚,2019),吉黑东部钙碱性火山岩组合(许文良等,2013),小兴安岭-张广才岭双峰式火成岩(唐杰等,2011),吉林延边和吉南地区埃达克质花岗质岩石(张超等,2014Zhang et al., 2019c)也为俯冲作用开始于早-中侏罗世提供了有力证据。古太平洋板块对欧亚大陆的俯冲作用分为侏罗纪的俯冲(岩石圈增厚)和白垩纪的拉张(拆沉作用)两个阶段(吴福元等,2008),并且下地壳和岩石圈地幔的整体拆沉作用这一观点也逐渐被大家接受(Gao et al., 1998, 2004吴福元等,2003Xu et al., 2006Yang and Li, 2008)。古太平洋板块俯冲作用的实质是引起上覆地幔的非稳态流动,拆沉作用是地幔对流失稳的表现形式(朱日祥等,2011朱日祥和徐义刚,2019)。

对板庙子金矿区内出露的闪长玢岩岩浆源区和构造背景的研究,说明了拆沉作用(地幔非稳态流动)为其成矿作用提供了必不可少的条件,岩浆水作为板庙子金矿成矿流体的重要组成部分,表明岩浆上涌侵蚀地壳的过程很有可能在主成矿阶段前期为成矿作用提供了成矿物质来源和热量。同时,古太平洋板块俯冲作用引起的断裂构造活化以及强烈伸展构造环境为成矿流体的运移和混合提供了有利通道。因此,古太平洋板块的俯冲作用及其在早白垩世引起的拆沉作用是克拉通破坏型金矿成矿机制的关键(图 17)。

图 17 吉南地区早白垩世克拉通破坏型金矿成矿机制图 Fig. 17 Metallogenic mechanism of Ji'nan district Early Cretaceous decratonic gold deposits
5.5 吉南地区成矿作用

由于受到古太平洋板块对欧亚大陆俯冲作用的影响,吉南地区中生代构造-岩浆-成矿作用十分强烈,总体看来主要存在两期金成矿作用:早中侏罗世与NE-SW向“S”型韧性剪切带相关的金矿床和早白垩世克拉通破坏型金矿床,前者以南岔金矿和荒沟山金矿为代表,后者以板庙子金矿为代表。将板庙子金矿与南岔、荒沟山金矿进行对比(表 6),我们可以发现:(1)成矿作用均受断裂控制,板庙子金矿矿体主要赋存在硅化构造角砾岩蚀变带中,南岔、荒沟山金矿主要受“S”型韧性剪切带控制;(2)赋矿围岩均具有元古代变质火山-沉积岩系;(3)矿区内虽然均发育岩浆活动,但板庙子金矿和荒沟山金矿成矿作用与岩浆活动有关,提供了成矿流体与成矿物质,而南岔金矿成矿作用与岩浆活动无关,成矿流体来源于变质水,成矿物质来源于围岩与成矿变质流体;(4)南岔、荒沟山金矿成矿构造背景为古太平洋板块俯冲欧亚大陆形成的挤压环境,板庙子金矿则与俯冲作用下的强烈伸展环境有关。吉南地区独特而复杂的构造演化表明其必定具有形成大型金矿的潜力,针对吉南地区典型矿床的研究为老岭成矿带金地质找矿提供了重要方向。

表 6 克拉通破坏型金矿、板庙子金矿、南岔金矿以及荒沟山金矿基本特征对比 Table 6 Comparison of basic characteristics of decratonic gold deposits, Banmiaozi gold deposit, Nancha gold deposit and Huanggoushan gold deposit
6 结论

(1) 板庙子金矿区出露的闪长玢岩地球化学特征显示其属于典型的埃达克质岩石,其岩浆来源于拆沉下地壳部分熔融,并与地幔橄榄岩反应,结晶年龄为133.3±0.9Ma,侵位时代为早白垩世,形成于古太平洋板块俯冲相关的强烈伸展构造背景。并且在闪长玢岩锆石中识别出一组与成矿作用相关的热液锆石,表明岩浆侵位结晶后遭受热液蚀变改造,热液锆石U-Pb加权平均年龄为130.6±1.0Ma,以此限定了板庙子金矿的成矿时代为早白垩世。

(2) 板庙子金矿重晶石矿物H-O同位素组成表明成矿流体来源于岩浆水、建造水、变质水的混合;重晶石矿物S同位素表明成矿物质来源于大洋水和海相蒸发岩。

(3) 根据板庙子金矿成矿时代、成矿构造背景以及成矿流体/物质来源判断板庙子金矿属于克拉通破坏型金矿,古太平洋板块对欧亚大陆的俯冲作用及其在早白垩世引起的拆沉作用是克拉通破坏型金矿成矿机制的关键。

(4) 吉南地区中生代成矿作用总体表现为两期:早中侏罗世与NE-SW向“S”型韧性剪切带相关的金矿床和早白垩世克拉通破坏型金矿床,分别与古太平洋板块早中侏罗世的俯冲作用以及早白垩世引起的拆沉作用有关,总体看来古太平洋板块的俯冲作用对于华北克拉通东北部的成矿作用有着深刻的影响。

致谢      感谢两位审稿人对本文提出的宝贵意见!

谨以此文祝贺杨振升先生九十华诞暨从事地质事业七十周年!

参考文献
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Cao HH, Xu WL, Pei FP, Wang ZW, Wang F and Wang ZJ. 2013. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos, 170-171: 191-207 DOI:10.1016/j.lithos.2013.03.006
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134: 33-51 DOI:10.1007/s004100050467
Chai P, Sun JG, Hou ZQ, Xing SW and Wang ZY. 2016. Geological, fluid inclusion, H-O-S-Pb isotope, and Ar-Ar geochronology constraints on the genesis of the Nancha gold deposit, southern Jilin Province, Northeast China. Ore Geology Reviews, 72: 1053-1071 DOI:10.1016/j.oregeorev.2015.09.027
Chi JS. 1988. The Study of Cenozoic Basalts and Upper Mantle beneath Eastern China. Wuhan: China University of Geosciences Publishing House, 1-277 (in Chinese)
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Fan HR, Zhai MG, Xie YH and Yang JH. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 38(6): 739-750 DOI:10.1007/s00126-003-0368-x
Feng G, Zhang M, Gao MZ, Wang YC and Wang KY. 2016. Research on geological characteristics and fluid inclusions of Banmiaozi gold deposit in Jilin Province. Gold, 37(1): 13-17 (in Chinese with English abstract)
Friedman I and O'Neil JR. 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. U.S.: Geological Survey Professional Paper 440-KK, 12
Gao S, Zhang BR, Jin ZM, Kern H, Luo TC and Zhao ZD. 1998. How mafic is the lower continental crust?. Earth and Planetary Science Letters, 161(1-4): 101-117 DOI:10.1016/S0012-821X(98)00140-X
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892-897 DOI:10.1038/nature03162
Gao TY, Liu ZH, Guan QB, Li PC and Chen YS. 2019. LA-ICP-MS zircon U-Pb dating, geochemical characteristics and tectonic significance of Xinlu granodiorite porphyry in Baishan area, Jilin Province. Global Geology, 38(1): 80-93 (in Chinese with English abstract)
Ge WC, Lin Q, Sun DY, Wu FY, Yuan ZK, Li WY, Chen MZ and Yin CX. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling:Evidence of the mantle-crust interaction. Acta Petrologica Sinica, 15(3): 396-407 (in Chinese with English abstract)
Goldfarb RJ, Groves DI and Gardoll S. 2001. Orogenic gold and geologic time:A global synthesis. Ore Geology Review, 18(1-2): 1-75 DOI:10.1016/S0169-1368(01)00016-6
Goldfarb RJ, Hart C, Davis G and Groves DI. 2007. East Asian gold:Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Economic Geology, 102(3): 341-345 DOI:10.2113/gsecongeo.102.3.341
Guan J, Sun FY and Liu HW. 2004. The basic characteristics of ductile shear zones and the significance to precious metal mineralization in the eastern Jilin Province. Geology and Prospecting, 40(2): 7-11 (in Chinese with English abstract)
Guan QB, Liu ZH, Wang B, Wang X, Wang XA, Shi Q and Chen YS. 2018. Middle Jurassic-Early Cretaceous tectonic evolution of the Bayanhushuo area, southern Great Xing'an Range, NE China:Constraints from zircon U-Pb geochronological and geochemical data of volcanic and subvolcanic rocks. International Geology Review, 60(15): 1883-1905 DOI:10.1080/00206814.2017.1396260
Guan QB, Liu ZH, Liu YJ, Liu J, Wang SJ and Tian Y. 2019. Geochemistry and zircon U-Pb geochronology of mafic rocks in the Kaiyuan tectonic mélange of northern Liaoning Province, NE China:Constraints on the tectonic evolution of the Paleo-Asian Ocean. Geological Journal, 54(2): 656-678 DOI:10.1002/gj.3442
Guo F, Nakamuru E, Fan WM, Kobayoshi K and Li CW. 2007. Generation of Palaeocene adakitic andesites by magma mixing:Yanji Area, NE China. Journal of Petrology, 48(4): 661-692 DOI:10.1093/petrology/egl077
Guo JH, Chen FK, Zhang XM, Siebel W and Zhai MG. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, eastern China:Zircon U-Pb geochronology. Acta Petrologica Sinica, 21(4): 1281-1301 (in Chinese with English abstract)
Guo LN. 2016. Metallogenic mechanism of the Jiaodong-type gold deposit, Shandong Province, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Hall DL, Sterner SM and Bodnar RJ. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197-202 DOI:10.2113/gsecongeo.83.1.197
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
Kay SM, Ramos VA and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. Geology, 101(6): 703-714 DOI:10.1086/648269
Li BY, Yang ZY and Wang YF. 2010. Geological characteristics and genesis of Huanggoushan and Banmiaozi gold deposits in Laoling metallogenic belt of southern Jilin. Global Geology, 29(3): 392-399 (in Chinese with English abstract)
Li G, Liu ZH, Liu JL, Li YF, Xu ZY and Dong XJ. 2012. Formation and timing of the extensional ductile shear zones in Yiwulü Mountain area, western Liaoning Province, North China. Science China (Earth Sciences), 55(5): 733-746 DOI:10.1007/s11430-012-4397-0
Li L, Santosh M and Li SR. 2015. The 'Jiaodong type' gold deposits:Characteristics, origin and prospecting. Ore Geology Reviews, 65: 589-611 DOI:10.1016/j.oregeorev.2014.06.021
Li M. 2008. Gold occurrence and discussion on genesis of Jinying gold deposit in Baishan. Master Degree Thesis. Shenyang: Northeastern University (in Chinese with English summary)
Li PC, Guo W, Guan QB and Liu JX. 2016. Late Neoarchean crustal growth in the northeast of the North China Craton:Evidence from the geochronology and Hf isotope composition of Banshigou supracrustal rocks. Acta Petrologica Sinica, 32(9): 2839-2855 (in Chinese with English abstract)
Li PC, Dong XJ, Liu ZH, Zhao QY, Shi Q, Li CH and Li TY. 2018. Petrogenesis and tectonic implication of the mafic dykes and its host TTG gneisses from Tianqiao area in southern Jilin Province. Acta Petrologica Sinica, 34(6): 1581-1598 (in Chinese with English abstract)
Li S, Chung SL, Wang T, Wilde SA, Chu MF and Guo QQ. 2017. Tectonic significance and geodynamic processes of large-scale Early Cretaceous granitoid magmatic events in the southern Great Xing'an Range, North China. Tectonics, 36(4): 615-633 DOI:10.1002/2016TC004422
Li S, Chung SL, Wang T, Wilde SA, Chu MF, Pang CJ and Guo QQ. 2018a. Water-fluxed crustal melting and petrogenesis of large-scale Early Cretaceous intracontinental granitoids in the southern Great Xing'an Range, North China. GSA Bulletin, 130(3-4): 580-597 DOI:10.1130/B31771.1
Li SZ, Zhao GC, Sun M, Han ZZ, Luo Y, Hao DF and Xia XP. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659-674 DOI:10.1016/j.jseaes.2003.11.008
Li SZ and Zhao GC. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16 DOI:10.1016/j.precamres.2007.04.001
Li Y, Xu WL, Tang J, Pei FP, Wang F and Sun CY. 2018b. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China:Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos, 304-307: 57-73 DOI:10.1016/j.lithos.2018.02.001
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342 DOI:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
Liu FL, Liu PH, Wang F, Liu CH and Cai J. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sinica, 31(10): 2816-2846 (in Chinese with English abstract)
Liu J, Liu ZH, Li SC, Zhao C, Wang CJ, Peng YB, Yang ZJ and Dou SY. 2016. Geochronology and geochemistry of Triassic intrusive rocks in Kaiyuan area of the eastern section of the northern margin of North China. Acta Petrologica Sinica, 32(9): 2739-2756 (in Chinese with English abstract)
Liu JL, Ji M, Xia HR, Liu ZH, Zhou YS, Yu XQ, Zhang HY and Cheng SH. 2009. Crustal-mantle detachment of the North China Craton in Late Mesozoic:Rheological constraints. Acta Petrologica Sinica, 25(8): 1819-1829 (in Chinese with English abstract)
Liu JL, Ji M, Shen L, Guan HM and Davis GA. 2011. Early Cretaceous extensional structures in the Liaodong Peninsula:Structural associations, geochronological constraints and regional tectonic implications. Science China (Earth Sciences), 54(6): 823-842 DOI:10.1007/s11430-011-4189-y
Liu WX, Man YL and Wang XC. 2009. Geology and genesis of the Jinying gold deposit in Jilin Province. Geology and Resources, 18(4): 279-283 (in Chinese with English abstract)
Lu XP, Wu FY, Zhao CB and Zhang YB. 2003. Triassic U-Pb age for zircon from granites in the Tonghua area and its response to the Dabie-Sulu ultrahigh-pressure collisional orogenesis. Chinese Science Bulletin, 48(15): 1616-1623 DOI:10.1007/BF03183971
Men LJ, Sun JG, Xu YJ, Chai P and Wang HJ. 2016. The research on ore-forming fluid of Banmiaozi gold deposit in Baishan City in South Jilin Province. Journal of Changchun Institute of Technology (Natural Science Edition), 17(3): 83-88 (in Chinese with English abstract)
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551-578 DOI:10.2113/gsecongeo.67.5.551
Ohmoto H and Rye RO. 1974. Hydrogen and oxygen isotopic compositions of fluid inclusions in the Kuroko deposits, Japan. Economic Geology, 69(6): 947-953 DOI:10.2113/gsecongeo.69.6.947
Ohmoto H and Rye RO. 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 509-567
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Pei FP, Xu WL, Yang DB, Ji WQ, Yu Y and Zhang XZ. 2008. Mesozoic volcanic rocks in the southern Songliao basin:Zircon U-Pb ages and their constraints on the nature of basin basement. Earth Science (Journal of China University of Geosciences), 33(5): 603-617 (in Chinese with English abstract) DOI:10.3799/dqkx.2008.075
Pei FP, Xu WL, Yang DB, Yu Y and Meng E. 2009. Heterogeneity of Late Mesozoic deep lithosphere beneath the northeastern North China Craton:Evidence from elemental and Sr-Nd isotopic geochemistry of Mesozoic volcanic rocks in the southern Jilin Province, China. Acta Petrologica Sinica, 25(8): 1962-1974 (in Chinese with English abstract)
Pei FP, Xu WL, Yang DB, Yu Y, Meng E and Zhao QG. 2011a. Petrogenesis of Late Mesozoic granitoids in southern Jilin Province, northeastern China:Geochronological, geochemical, and Sr-Nd-Pb isotopic evidence. Lithos, 125(1-2): 27-39 DOI:10.1016/j.lithos.2011.01.004
Pei FP, Xu WL, Yang DB, Yu Y, Wang W and Zhao QG. 2011b. Geochronology and geochemistry of Mesozoic mafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NE China:Constraints on the spatial extent of destruction of the North China Craton. Journal of Asian Earth Sciences, 40(2): 636-650 DOI:10.1016/j.jseaes.2010.10.015
Potter RW, Clynne MA and Brown DL. 1978. Freezing point depression of aqueous sodium chloride solutions. Economic Geology, 73(2): 284-285 DOI:10.2113/gsecongeo.73.2.284
Qin Y, Liang YH, Hu ZC and Liu XS. 2013. Geochemical characteristics and tectonic significance of Jurassic granites in Huanggoushan area, south of Jilin, China. Journal of Chengdu University of Technology (Science and Technology Edition), 40(1): 97-105 (in Chinese with English abstract)
Richardson CK, Rye RO and Wasserman MD. 1988. The chemical and thermal evolution of the fluids in the Cave-in-rock fluorspar district, Illinois:Stable isotope systematics at the Deardorff mine. Economic Geology, 83(4): 765-783 DOI:10.2113/gsecongeo.83.4.765
Song B, Nutman AP, Liu DY and Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79-94 DOI:10.1016/0301-9268(95)00070-4
Su XJ and Zang XY. 2010. Geological characteristics and genetic analysis of Banmiaozi gold deposit in Baishan City, Jilin Province. Contributions to Geology and Mineral Resources Research, 25(4): 326-330 (in Chinese with English abstract)
Sun DY, Suzuki K, Wu FY and Lu XP. 2005. CHIME dating and its application for Mesozoic granites of Huanggoushan, Jilin Province. Geochimica, 34(4): 305-314 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tang J, Xu WL, Wang F, Gao FH and Cao HH. 2011. Petrogenesis of bimodal volcanic rocks from Maoershan Formation in Zhangguangcai Range:Evidence from geochronology and geochemistry. Global Geology, 30(4): 508-520 (in Chinese with English abstract)
Tang J, Xu WL, Wang F and Ge WC. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent:Mesozoic-Paleogene magmatic records in Northeast Asia. Science China (Earth Sciences), 61(5): 527-559 DOI:10.1007/s11430-017-9174-1
Tang KD, Shao JA and Li YF. 2011. Songnen Massif and its research significance. Earth Science Frontiers, 18(3): 57-65 (in Chinese with English abstract)
Taylor HP. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6): 843-883 DOI:10.2113/gsecongeo.69.6.843
Wan YS, Liu DY, Dong CY, Xie HQ, Kröner A, Ma MZ, Liu SJ, Xie SW and Ren P. 2015. Formation and evolution of Archean continental crust of the North China Craton. In: Zhai MG (ed.). Precambrian Geology of China. Berlin, Heidelberg: Springer, 59-136
Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY and Zhu RX. 2006. Late Mesozoic volcanism in the Great Xing'an range (NE China):Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198 DOI:10.1016/j.epsl.2006.09.007
Wang Q, Zhao ZH, Xu JF, Bai ZH, Wang JX and Liu CX. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(Delaminated) lower crustal melting and genesis of porphyry copper deposit. Acta Petrologica Sinica, 20(2): 351-360 (in Chinese with English abstract)
Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345 DOI:10.1016/j.lithos.2012.07.020
Wang ZG, Wang KY, Wan D, Konare Y and Liang YH. 2020. Genesis of the Huanggoushan Pb-Zn-Au polymetallic deposit in southern Jilin Province, NE China:Constraints from fluid inclusions and C-H-O-S-Pb isotope systematics. Geological Journal, 55(4): 3112-3138 DOI:10.1002/gj.3586
Wu FY, Ge WC, Sun DY and Guo CL. 2003. Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers, 10(3): 51-60 (in Chinese with English abstract)
Wu FY, Yang JH and Liu XM. 2005. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317 (in Chinese with English abstract)
Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract)
Wu FY, Xu YG, Zhu RX and Zhang GW. 2014. Thinning and destruction of the cratonic lithosphere:A global perspective. Science China (Earth Sciences), 57(12): 2878-2890 DOI:10.1007/s11430-014-4995-0
Wu NP, Jiang SY, Liao QL, Pan JY and Dai BZ. 2003. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin, Yunnan Province. Acta Petrologica Sinica, 19(4): 799-807 (in Chinese with English abstract)
Xie GQ, Li RL, Jiang GH, Zhao CS and Hou KJ. 2008. Geochemistry and petrogenesis of Late Mesozoic granitoids in southeastern Hubei Province and constrains on the timing of lithospheric thinning, Middle-Lower Reaches of the Yangtze River, eastern China. Acta Petrologica Sinica, 24(8): 1703-1714 (in Chinese with English abstract)
Xing YA, Zhu H, Yang J, Li YF, Feng DC and Liu XP. 2012. Metallogenic stages division of Jinying gold deposit. Jilin Geology, 31(1): 33-34 (in Chinese with English abstract)
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114 DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Xu JF, Wu JB, Wang Q, Chen JL and Cao K. 2014. Research advances of adakites and adakitic rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6-13 (in Chinese with English abstract)
Xu WL, Gao S, Wang QH, Wang DY and Liu YS. 2006. Mesozoic crustal thickening of the eastern North China Craton:Evidence from eclogite xenoliths and petrologic implications. Geology, 34(9): 721-724 DOI:10.1130/G22551.1
Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193 DOI:10.1016/j.jseaes.2013.04.003
Xu WL, Wang F, Pei FP, Meng E, Tang J, Xu MJ and Wang W. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract)
Yang DG, Sun DY, Gou J and Hou XG. 2017. U-Pb ages of zircons from Mesozoic intrusive rocks in the Yanbian area, Jilin Province, NE China:Transition of the Paleo-Asian oceanic regime to the circum-Pacific tectonic regime. Journal of Asian Earth Sciences, 143: 171-190 DOI:10.1016/j.jseaes.2017.04.019
Yang JH, Wu FY and Wilde SA. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:An association with lithospheric thinning. Ore Geology Reviews, 23(3-4): 125-152 DOI:10.1016/S0169-1368(03)00033-7
Yang JH, Wu FY, Wilde SA and Liu XM. 2007. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 242(1-2): 155-175 DOI:10.1016/j.chemgeo.2007.03.007
Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC and Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract)
Yang W and Li SG. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in western Liaoning:Implications for lithospheric thinning of the North China Craton. Lithos, 102(1-2): 88-117 DOI:10.1016/j.lithos.2007.09.018
Yu JJ, Wang F, Xu WL, Gao FH and Pei FP. 2012. Early Jurassic mafic magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and its tectonic implications:Constraints from zircon U-Pb chronology and geochemistry. Lithos, 142-143: 256-266 DOI:10.1016/j.lithos.2012.03.016
Yu Y, Xu WL, Pei FP, Yang DB and Zhao QG. 2009. Chronology and geochemistry of Mesozoic volcanic rocks in the Linjiang area, Jilin Province and their tectonic implications. Acta Geologica Sinica, 83(2): 245-257 DOI:10.1111/j.1755-6724.2009.00039.x
Zhai MG, Fan HR, Yang JH and Miao LC. 2004. Large-scale cluster of gold deposits in East Shandong:Anorogenic metallogenesis. Earth Science Frontiers, 11(1): 85-98 (in Chinese with English abstract)
Zhai MG, Fan QC, Zhang HF and Sui JL. 2005. Lower crust processes during the lithosphere thinning in eastern China:Magma underplating, replacement and delamination. Acta Petrologica Sinica, 22(6): 1509-1526 (in Chinese with English abstract)
Zhang C, Guo W, Xu ZY, Liu ZH, Liu YJ and Lei CC. 2014. Study on geochronology, petrogenesis and tectonic implications of monzogranite from the Yanbian area, eastern Jilin Province. Acta Petrologica Sinica, 30(2): 512-526 (in Chinese with English abstract)
Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH and Liu XM. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China. Lithos, 102(1-2): 138-157 DOI:10.1016/j.lithos.2007.08.011
Zhang JH, Gao S, Ge WC, Wu FY, Yang JH, Wilde SA and Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination. Chemical Geology, 276(3-4): 144-165 DOI:10.1016/j.chemgeo.2010.05.013
Zhang JZ. 2015. Study on genesis and geological and geochemical characteristics of Banmiaozi gold deposit in Baishan City, Jilin Province. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Zhang LY, Li SC and Zhao QY. 2019a. A review of research on adakites. International Geology Review DOI:10.1080/00206814.2019.1702592
Zhang Q, Qian Q, Wang EQ, Wang Y, Zhao TP, Hao J and Guo GJ. 2001. An east China plateau in Mid-Late Yanshanian period:Implication from adakites. Chinese Journal of Geology, 36(2): 248-255 (in Chinese with English abstract)
Zhang QS and Yang ZS. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House, 218-450 (in Chinese)
Zhang S, Zhu G, Liu C, Li YJ, Su N and Xiao SY. 2019b. Episodicity of stress state in an overriding plate:Evidence from the Yalu River Fault Zone, East China. Gondwana Research, 71: 150-178 DOI:10.1016/j.gr.2019.01.017
Zhang SH, Zhao Y, Davis GA, Ye H and Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:Implications for lithospheric thinning and decratonization. Earth-Science Reviews, 131: 49-87 DOI:10.1016/j.earscirev.2013.12.004
Zhang XM, Xu WL, Sun CY, Wang F and Yang DB. 2019c. Geochronology and geochemistry of Early Mesozoic magmatism in the northeastern North China Craton:Implications for tectonic evolution. Gondwana Research, 67: 33-45 DOI:10.1016/j.gr.2018.10.013
Zhang YP. 2011. Main characteristics of Late Jurassic-Cretaceous tectonic framework in Northeast Asia. Journal of Jilin University (Earth Science Edition), 41(5): 1267-1284 (in Chinese with English abstract)
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract)
Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223: 55-76 DOI:10.1016/j.precamres.2012.09.016
Zheng JP, Lu FX, O'Reilly SY, Griffin WL and Zhang M. 1999. Comparison between Palaeozoic and Cenozoic lithospheric mantle in the eastern part of the North China block:With a discussion of mantle evolution. Acta Geologica Sinica, 73(1): 47-56 (in Chinese with English abstract) DOI:10.1111/j.1755-6724.1999.tb00811.x
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246 DOI:10.1016/j.tecto.2009.08.009
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion:Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466 DOI:10.1002/2014TC003637
Zhou TH and Lü GX. 2000. Tectonics, granitoids and Mesozoic gold deposits in East Shandong, China. Ore Geology Reviews, 16(1-2): 71-90 DOI:10.1016/S0169-1368(99)00023-2
Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797 DOI:10.1007/s11430-011-4203-4
Zhu RX, Xu YG, Zhu G, Zhang HF, Xia QK and Zheng TY. 2012. Destruction of the North China Craton. Science China (Earth Sciences), 55(10): 1565-1587 DOI:10.1007/s11430-012-4516-y
Zhu RX, Fan HR, Li JW, Meng QR, Li SR and Zeng QD. 2015. Decratonic gold deposits. Science China (Earth Sciences), 58(9): 1523-1537 DOI:10.1007/s11430-015-5139-x
Zhu RX and Xu YG. 2019. The subduction of the West Pacific plate and the destruction of the North China Craton. Science China (Earth Sciences), 62(9): 1340-1350 DOI:10.1007/s11430-018-9356-y
Zhu YF and Song B. 2006. Petrology and SHRIMP chronology of mylonitized Tianger granite, Xinjiang:Also about the dating on hydrothermal zircon rim in granite. Acta Petrologica Sinica, 22(1): 135-144 (in Chinese with English abstract)
Zou H. 2013. Metallogenic regularity and prospecting direction of barite-fluorite deposit in Southeast Sichuan. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
池际尚. 1988. 中国东部新生代玄武岩及上地幔研究. 武汉: 中国地质大学出版社, 1-277.
冯罡, 张淼, 高明珠, 王一存, 王可勇. 2016. 吉林省板庙子金矿床地质特征及流体包裹体研究. 黄金地质, 37(1): 13-17.
高天宇, 刘正宏, 关庆彬, 李鹏川, 陈煜嵩. 2019. 吉林白山新路花岗闪长斑岩LA-ICP-MS锆石U-Pb定年、地球化学特征及构造意义. 世界地质, 38(1): 80-93.
葛文春, 林强, 孙德有, 吴福元, 元钟宽, 李文远, 陈明植, 尹成孝. 1999. 大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据. 岩石学报, 15(3): 396-407.
关键, 孙丰月, 刘洪文. 2004. 吉林省东部韧性剪切带特征及其与金银成矿关系. 地质与勘探, 40(2): 7-11.
郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学. 岩石学报, 21(4): 1281-1301.
郭林楠. 2016.胶东型金矿床成矿机理.博士学位论文.北京: 中国地质大学(北京)
李宝毅, 杨振宇, 王玉芬. 2010. 吉南老岭成矿带荒沟山、板庙子金矿床地质特征与成因. 世界地质, 29(3): 392-399.
李刚, 刘正宏, 刘俊来, 李永飞, 徐仲元, 董晓杰. 2012. 医巫闾山伸展型韧性剪切带的形成过程及年代学证据. 中国科学(地球科学), 42(6): 879-892.
李敏. 2008.白山金英金矿金的赋存状态及矿床成因探讨.硕士学位论文.沈阳: 东北大学
李鹏川, 郭巍, 关庆彬, 刘杰勋. 2016. 华北克拉通东北部新太古代晚期地壳生长:来自板石沟表壳岩年代学和Hf同位素的证据. 岩石学报, 32(9): 2839-2855.
李鹏川, 董晓杰, 刘正宏, 赵庆英, 石强, 李长海, 李天瑜. 2018. 吉南天桥地区基性岩墙与其围岩TTG片麻岩的成因及构造意义. 岩石学报, 34(6): 1581-1598.
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816-2846.
刘锦, 刘正宏, 李世超, 赵辰, 王楚杰, 彭游博, 杨仲杰, 豆世勇. 2016. 华北北缘东段开原地区三叠纪侵入岩年代学及岩石地球化学研究. 岩石学报, 32(9): 2739-2756.
刘俊来, 纪沫, 夏浩然, 刘正宏, 周永胜, 余心起, 张宏远, 程素华. 2009. 华北克拉通晚中生代壳-幔拆离作用:岩石流变学约束. 岩石学报, 25(8): 1819-1829.
刘俊来, 纪沫, 申亮, 关会梅, Davis GA. 2011. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵. 中国科学(地球科学), 41(5): 618-637.
刘文香, 满永路, 王兴昌. 2009. 吉林省白山市金英金矿床地质特征及成因探讨. 地质与资源, 18(4): 279-283.
路孝平, 吴福元, 赵成弼, 张艳斌. 2003. 通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系. 科学通报, 48(8): 843-849.
门兰静, 孙景贵, 徐耀江, 柴鹏, 王好均. 2016. 吉南白山市板庙子金矿床成矿流体研究. 长春工程学院学报(自然科学版), 17(3): 83-88.
裴福萍, 许文良, 杨德彬, 纪伟强, 于洋, 张兴洲. 2008. 松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约. 地球科学(中国地质大学学报), 33(5): 603-617.
裴福萍, 许文良, 杨德彬, 于洋, 孟恩. 2009. 华北克拉通东北缘岩石圈深部物质组成的不均一性:来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据. 岩石学报, 25(8): 1962-1974.
秦亚, 梁一鸿, 胡兆初, 刘雪松. 2013. 吉林南部荒沟山地区侏罗纪花岗岩地球化学特征及构造意义. 成都理工大学学报(自然科学版), 40(1): 97-105.
孙德有, 铃木和博, 吴福元, 路孝平. 2005. 吉林省南部荒沟山地区中生代花岗岩CHIME定年. 地球化学, 34(4): 305-314.
唐杰, 许文良, 王枫, 高福红, 曹花花. 2011. 张广才岭帽儿山组双峰式火山岩成因:年代学与地球化学证据. 世界地质, 30(4): 508-520.
唐杰, 许文良, 王枫, 葛文春. 2018. 古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录. 中国科学(地球科学), 48(5): 549-583.
唐克东, 邵济安, 李永飞. 2011. 松嫩地块及其研究意义. 地学前缘, 18(3): 57-65.
王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004. 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351-360.
吴福元, 葛文春, 孙德有, 郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题. 地学前缘, 10(3): 51-60.
吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, 11(3): 305-317.
吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174.
吴福元, 徐义刚, 朱日祥, 张国伟. 2014. 克拉通岩石圈减薄与破坏. 中国科学(地球科学), 44(11): 2358-2372.
吴南平, 蒋少涌, 廖启林, 潘家永, 戴宝章. 2003. 云南兰坪-思茅盆地脉状铜矿床铅、硫同位素地球化学与成矿物质来源研究. 岩石学报, 19(4): 799-807.
谢桂青, 李瑞玲, 蒋国豪, 赵财胜, 侯可军. 2008. 鄂东南地区晚中生代侵入岩的地球化学和成因及对岩石圈减薄时限的制约. 岩石学报, 24(8): 1703-1714.
邢延安, 朱航, 杨静, 李延峰, 冯德臣, 刘小平. 2012. 金英金矿成矿阶段化分初探. 吉林地质, 31(1): 33-34.
宿晓静, 臧兴运. 2010. 吉林省白山市板庙子金矿床地质特征及成因分析. 地质找矿论丛, 25(4): 326-330.
许继峰, 邬建斌, 王强, 陈建林, 曹康. 2014. 埃达克岩与埃达克质岩在中国的研究进展. 矿物岩石地球化学通报, 33(1): 6-13.
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467.
翟明国, 范宏瑞, 杨进辉, 苗来成. 2004. 非造山带型金矿——胶东型金矿的陆内成矿作用. 地学前缘, 11(1): 85-98.
翟明国, 樊祺诚, 张宏福, 隋建立. 2005. 华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用. 岩石学报, 22(6): 1509-1526.
张超, 郭巍, 徐仲元, 刘正宏, 刘永江, 雷聪聪. 2014. 吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究. 岩石学报, 30(2): 512-526.
张建泽. 2015.吉林省白山市板庙子金矿床地质、地球化学特征及成因研究.硕士学位论文.长春: 吉林大学
张旗, 钱青, 王二七, 王焰, 赵太平, 郝杰, 郭光军. 2001. 燕山中晚期的中国东部高原:埃达克岩的启示. 地质科学, 36(2): 248-255.
张秋生, 杨振升. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社, 218-450.
张允平. 2011. 东北亚地区晚侏罗-白垩纪构造格架主体特点. 吉林大学学报(地球科学版), 41(5): 1267-1284.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
郑建平, 路凤香, O'Reilly SY, Griffin WL, 张明. 1999. 华北地台东部古生代与新生代岩石圈地幔特征及其演化. 地质学报, 73(1): 47-56.
朱日祥, 陈凌, 吴福元, 刘俊来. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学(地球科学), 41(5): 583-592.
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏. 中国科学(地球科学), 42(8): 1135-1159.
朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学(地球科学), 45(8): 1153-1168.
朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学(地球科学), 49(9): 1346-1356.
朱永峰, 宋彪. 2006. 新疆天格尔糜棱岩化花岗岩的岩石学及其SHRIMP年代学研究:兼论花岗岩中热液锆石边的定年. 岩石学报, 22(1): 135-144.
邹灏. 2013.川东南地区重晶石-萤石矿成矿规律与找矿方向.博士学位论文.北京: 中国地质大学(北京)