岩石学报  2020, Vol. 36 Issue (8): 2447-2462, doi: 10.18654/1000-0569/2020.08.11   PDF    
中亚造山带东段晚三叠世伸展构造及岩浆事件:来自40Ar/39Ar和锆石U-Pb同位素年代学的制约
王兴安1, 李世超2     
1. 东北师范大学地理科学学院, 长春 130024;
2. 吉林大学地球科学学院, 长春 130061
摘要: 通过对中亚造山带东段南缘发育的解放营子韧性剪切带的构造学研究,揭示出该地区岩石圈减薄后发生了一期强烈的伸展变形事件。野外观测和岩相学分析显示该韧性剪切带呈北东-南西走向,变形带内发育有大量的A型褶皱,矿物和砾石拉伸线理以及同构造花岗质岩墙。S-C组构、σ型角闪石残斑、压力影构造、斜长石书斜构造以及云母鱼等显微构造,指示该韧性剪切带为右旋剪切。多晶石英的波状消光、晶粒边界迁移重结晶、多晶石英条带等显微变形组构表现出中温(300~500℃)的变形条件。动态重结晶颗粒的粒径统计分析和岩石有限应变分析显示该韧性剪切带形成于一个地壳中等层次的伸展变形环境。剪切带内同构造白云母40Ar/39Ar阶段加热同位素年代学分析以及同构造花岗岩的锆石U-Pb同位素年代学测试显示,该韧性剪切带的伸展变形时代为晚三叠世(219~227Ma)。该期伸展变形事件在华北板块北缘和中亚造山带形成了低硅型和高硅型两种花岗质岩浆的侵入。其中中亚造山带内发育的低硅型岩石的岩浆源区为亏损型地幔岩石圈,并进一步演化出高硅型岩石;而华北板块北缘发育的低硅型岩浆起源于富集型岩石圈地幔,同时混入了亏损的软流圈地幔组分。
关键词: 中亚造山带    晚三叠世    韧性剪切带    40Ar/39Ar年代学    高硅/低硅侵入岩    伸展构造    
Late Triassic extensional deformation and magmatism in the eastern part of the Central Asian Orogenic Belt: Constraint from 40Ar/39Ar and zircon U-Pb geochronology
WANG XingAn1, LI ShiChao2     
1. School of Geographical Sciences, Northeast Normal University, Changchun 130024, China;
2. College of Earth Sciences, Jilin University, Changchun 130061, China
Abstract: Structural studies of the Jiefangyingzi ductile shear zone in the southern part of eastern Central Asian Orogenic Belt (CAOB) reveal distinct extensional deformation event postdating Late Triassic lithospheric thinning. Field observation and petrographic analyses indicate that the ductile shear zone is a NE-SW trending belt within which A-type folds, stretching lineations and synkinematic granitic dikes are developed. The S-C fabric, sigma-type amphibole porphyroclasts, pressure shadow structures, bookshelf structure of plagioclase and mica fish structures are also developed in this shear zone, which suggest a dextral shearing. From microstructure studying, the undulatrory extinction, grain boundary migration recrystallization, banded structures of polycrystalline quartz of the shear zone reveal it was formed under a medium temperature (300~500℃) deformation condition. Analyses of dynamic recrystallization grains and strain ellipsoid show that the ductile shear zone was formed in the shallow-middle crust. 40Ar/39Ar step-heating analyses of synkinematic muscovite samples and zircon U-Pb isotopic data of synkinematic granite reveal that the timing of deformation happened in Late Triassic (219~227Ma). The Late Triassic extensional event generated the low-Si type and high-Si type granitic rocks in the CAOB and North China Crtaon (NCC). The low-Si type rocks from the CAOB were derived from the depleted mantle, and further evolved high-Si type rocks; The low-Si type rocks from the NCC were derived from the enriched lithospheric mantle, with mixture of depleted asthenospheric mantle components.
Key words: Central Asian Orogenic Belt    Late Triassic    Ductile shear zone    40Ar/39Ar geochronology    High/Low-Si intrusive rocks    Extension    

起始于陆内裂谷并终结于陆-陆碰撞的威尔逊造山旋回有助于深入理解全球板块构造活动的历史(Bonin et al., 1998)。作为造山作用最后的后碰撞阶段,往往会形成与板块边缘平行分布的剪切带,并伴随着大量的高钾钙碱性和碱性岩浆活动(Pearce et al., 1984; Black and Liégeois, 1993; Bonin et al., 1998)。中亚造山带(CAOB)是一个介于西伯利亚板块、塔里木板块和华北板块之间的近东西向展布的巨型增生造山带,具有多阶段的演化过程、强烈的构造-岩浆活动、复杂的构造变形和丰富的矿产资源等特征(Xiao et al., 2003, 2009; Windley et al., 2007; Jian et al., 2008; 李锦轶等, 2009; Xu et al., 2013; Li et al., 2014; Wang et al., 2016)。近年来的研究认为西伯利亚板块和华北板块之间的古亚洲洋最终闭合发生在索伦缝合带(Xiao et al., 2003; Zhang et al., 2009, 2012; Xu et al., 2013; Eizenhöfer et al., 2014; Wilde, 2015; Liu et al., 2017)。然而,对于古亚洲洋的闭合时间仍然存在不同的认识:部分学者认为古亚洲洋的闭合时间为晚泥盆世(Xu et al., 2013; Zhao et al., 2013, 2017);另一种观点认为古亚洲洋的最终闭合发生于晚二叠世到早三叠世,并随后发生了强烈的后碰撞/后造山伸展作用(Xiao et al., 2003; 张拴宏等, 2010; Zhang et al., 2012; Eizenhöfer et al., 2014)。

岩石圈减薄和克拉通破坏作为华北板块演化过程中十分重要的地质事件,其起始时间和形成机制仍然存在争议(吴福元等, 2008; Xu et al., 2010; Zhang et al., 2012)。近年来,一些学者认为华北板块东部和北部边缘由于后碰撞/后造山岩石圈增厚,在早中生代期间就已经发生岩石圈的伸展减薄(韩宝福等, 2004; Yang and Wu, 2009; Zhang et al., 2009, 2012)。广泛分布于中亚造山带内的早中生代岩浆岩被认为是中亚造山带与华北板块最终碰撞增生的结果(张拴宏等, 2010; Zhang et al., 2012)。同时,华北板块北部出露一套呈带状分布的中、晚三叠世碱性杂岩和镁铁质岩石,岩石地球化学及同位素研究显示其岩浆起源于亏损的岩石圈地幔,暗示了华北板块北缘岩石圈的减薄和破坏(张拴宏等, 2010; Zhang et al., 2012, 2014b)。

形成于碰撞造山后伸展构造环境下的韧性剪切带可以为我们提供大量的构造变形信息,有助于我们理解碰撞造山的动力学过程与机制(Tapponnier et al., 1982; Webb et al., 2010)。Zhao et al. (2015)在中亚造山带东段西拉木伦河断裂带附近识别出两期晚三叠世(227~209Ma)韧性变形事件:第一期变形以东西向展布褶皱为主,形成于早古生代期间华北板块与松辽-浑善达克地块的碰撞;第二期变形以陡倾面理和近水平的东西向拉伸线理为主,代表了一期右旋走滑剪切作用。古地磁证据显示晚三叠世NNW-SSE向挤压作用是形成了这二期韧性变形事件的动力来源(Zhao et al., 2013, 2015)。

解放营子韧性剪切带位于华北板块北缘中段解放营子地区,地理位置上位于西拉木伦河断裂以南约70km,构造属性上属于白乃庙岛弧岩浆活动带,其运动学特征以及成因能够为中亚造山带的构造演化历史提供新的证据。此外,前人依据野外变形特征和接触关系认为该韧性剪切带属于伸展型韧性剪切带,其变形时代为志留纪末期(辽宁省地质调查局第二区域地质调查队,1970),但缺乏精确的年代学证据。本文通过显微构造分析和新的同位素年代学数据,确定该韧性剪切带的变形特征和变形时代,并结合区域晚三叠世侵入岩的岩石地球化学特征,探讨华北板块北缘和中亚造山带中晚三叠世伸展构造岩浆作用的成因及构造意义。

① 辽宁省地质调查局第二区域地质调查队(辽宁第二区调队). 1970.敖汉旗1:20万区域地质调查报告(K-50-XVIII)

1 区域地质概况

中亚造山带以蛇绿岩组合、微陆块、岛弧、洋岛以及块体碰撞增生为基本构造格架(Khain et al., 2003; Windley et al., 2007; Xiao et al., 2009; Xu et al., 2013; Zhang et al., 2014a)。前人研究将中亚造山带自北向南划分为贺根山蛇绿混杂岩带、宝力道弧增生杂岩带、索伦缝合带、温都尔庙俯冲-增生杂岩带以及白乃庙岛弧带多个构造单元(Xiao et al., 2003, 2009; Jian et al., 2008; Zhang et al., 2014a)。古生代期间古亚洲洋板块的双向俯冲导致了强烈的构造岩浆活动。

解放营子地区位于赤峰市东北部约50km,构造属性上属于中亚造山带南缘白乃庙岛弧带(图 1),以出露新太古代基底岩石和韧性剪切带的发育为特征。解放营子韧性剪切带由于区域覆盖较强,可识别的出露范围有限,从西部哈拉道口镇延伸至东部桥头镇附近,延伸约50km,南北向宽约20km。解放营子新太古代杂岩体的主要岩石类型以石英闪长岩和斜长角闪岩为主,被认为是华北板块新太古代基底岩石的一部分(Wang et al., 2016, 2020a, b)。该新太古代杂岩体的走向受韧性剪切带的控制(图 2)。区域内发育的地层主要为下泥盆统巴当山组火山岩,上石炭统晒勿苏组、四道帐篷组变质碎屑岩,以及上侏罗统玛尼吐组火山岩。下泥盆统巴当山组为一套英安质-流纹质火山岩和火山碎屑岩,局部发育有灰岩夹层,并受到韧性剪切带强烈的变形改造。上石炭统晒勿苏组岩石类型以灰岩为主,同时发育有石英片岩和云母石英片岩,受剪切带改造强烈,片理、线理构造十分发育。上石炭统四道帐篷组为一套以砾岩、砂岩为主的碎屑岩,受剪切带改造砾石具有明显的拉长变形,同时褶皱、线理等构造形迹十分发育。上侏罗统玛尼吐组为一套中酸性火山岩和火山碎屑岩,无构造变形形迹发育。研究区发育有泥盆纪和三叠纪两个时期的花岗质侵入岩,其中泥盆纪花岗质岩石为一套具有伸展构造背景的碱性岩石(Wang et al., 2020b)。研究区三叠纪花岗质侵入岩(爱林沟岩体)主体岩性为中细粒花岗岩、花岗闪长岩,岩体边部见有大小不等的闪长岩捕掳体。区域上,华北板块北缘和中亚造山带内晚三叠世侵入岩分布广泛,近东-西向展布(图 1),岩石类型包括中基性岩石(辉长岩、辉绿岩、闪长岩、石英闪长岩)、碱性岩石(辉石正长岩、霞石正长岩、正长岩)以及花岗质岩石(花岗岩、花岗闪长岩、正长花岗岩)(表 1)。

图 1 中亚造山带中-东段构造单元简图(据Xiao et al., 2003; Jian et al., 2008修编) 年龄数据来源:Wang et al., 2004; 石玉若等, 2007; Liu et al., 2012; Zhang et al., 2012; 张万益等, 2012; Zhang et al., 2014b; 杨俊泉等, 2016 Fig. 1 Schematic tectonic map of the Central Asian Orogenic Belt in Central-Eastern Asia (modified after Xiao et al., 2003; Jian et al., 2008) Isotopic age data sources: Wang et al., 2004; Shi et al., 2007; Liu et al., 2012; Zhang et al., 2012; Zhang et al., 2012, 2014b; Yang et al., 2016

图 2 解放营子地区地质概况简图(据辽宁第二区调队,1970修编) Fig. 2 Geological map of the Jiefangyingzi area

表 1 中亚造山带和华北板块晚三叠世侵入岩锆石U-Pb年龄一览表 Table 1 Summary of the zircon U-Pb data of Late Triassic magmatic rocks from the Central Asian Orogenic Belt and North China Craton
2 分析方法 2.1 锆石U-Pb同位素年代学

锆石样品的挑选在河北省廊坊市区域地质调查研究所进行。先将粉碎后的样品进行淘洗并用电磁方法进行分离,在双目镜下将锆石粘贴在树脂表面并打磨抛光,随后进行透反射光以及阴极发光(CL)图像的采集。锆石的制靶以及U-Pb同位素年代学分析在西北大学大陆动力学国家重点实验室完成。采用Agilent7500型ICP-MS,以直径30μm的激光束击打锆石颗粒,样品剥蚀深度为20~40μm。锆石年龄采用国际标准锆石91500作为外标标准物质,元素含量采用NIST SRM610作为外标,29Si作为内标。实验测得数据采用Andersen(2002)的方法进行同位素比值的校正以去除普通Pb的影响,利用Isoplot3.0完成谐和图的绘制(Ludwing, 2001)。

2.2 白云母40Ar/39Ar同位素年代学

挑选出韧性剪切带中构造片岩样品中的同构造白云母,利用40Ar/39Ar阶段加热技术对其进行测年分析。样品的测试在核工业北京地质研究院分析测试研究中心实验室完成,具体流程如下:首先将白云母样品送往中国原子能科学研究院进行中子照射,中子流密度约为6×1012n·cm-2·s-1,照射时间在3000分钟以上,标准样品为ZHB-25黑云母,标准年龄132.7Ma,w(K)为7.6%(Huang et al., 2007);其次利用MM-1200B型质谱仪进行K、Ar同位素分析。37Ar经过放射性衰变校正,46K衰变常数为5.543×1010y-1,坪年龄误差2σ(卫晓峰等, 2019)。

2.3 全岩主量元素与痕量元素分析

样品的全岩主量元素和痕量元素分析在自然资源部国家地质测试中心完成。主量元素数据采用X射线荧光光谱仪(PANalytical Axios Advanced PW4400 XRF)分析,分析误差小于0.5%;痕量元素数据的获取利用等离子质谱仪(ICP- MS; Thermo Fisher Scientific X-series)完成。丰度大于1×10-6的元素分析误差为1%~5%;丰度小于1×10-6的元素分析误差为5%~10%(席永清等,2005)。

3 解放营子韧性剪切带 3.1 变形特征

解放营子韧性剪切带呈北东-南西走向,长约50km,宽约20km。剪切带内晚古生代地质体构造变形强烈,显微构造形迹十分发育。目前在该构造带能够识别出两期主要的变形事件:早期变形事件主要影响和改造了新太古代基底岩石和晚古生代地层;晚期变形叠加在早期变形之上,同时影响了早中生代侵入岩。

在早期构造变形作用下,新太古代杂岩体和晚古生代地层中发育低角度片理和糜棱面理,但大部分构造形迹被晚期构造变形所改造或置换,仅在一些软弱岩层和接触界面有所残留。顺层劈理大多数发育在厚层大理岩或变质砂砾岩中的薄层泥灰岩、板岩、千枚岩和片岩夹层中(图 3a),这些密集发育的透入性面理彻底置换了层理构造。此外,在上石炭统四道帐篷组地层中见有沿着白云母石英片岩和大理岩界面发育的顺层滑脱断层(图 3b),宽2~10m,倾向310°~335°,岩层中白云母和石英具有明显的定向性。晚期构造变形是该研究区韧性剪切带中最主要的变形作用,发育有多种构造形迹:A型褶皱、矿物拉伸线理以及同构造花岗质岩墙等。晚期变形基本上彻底置换和改造了早期变形,显微尺度上碎屑颗粒和新生矿物沿S1定向排列,具有塑性流动的特征和重结晶现象,反映了晚期变形是基于早期变形的再活化现象。非能干层中沿着层理S0发育不对称流动褶皱,其转折端S0与S1直交或高角度斜交,翼部S0被S1彻底置换,枢纽产状稳定并与拉伸线理平行,具有典型的A型褶皱特征(图 3c, d)。剪切带内砾岩中砾石拉伸线理十分发育,倾伏向一般在230°~260°之间,部分为50°~70°;倾伏角较缓,一般为5°~15°,局部可达30°~40°(图 2)。L构造岩和L>S构造岩在剪切带内分布广泛,原岩类型为碎屑沉积岩、火山岩和花岗质岩石,原岩中砾石、碎屑颗粒和斑晶具有明显的定向拉长(图 3e, f)。此外,晚期构造变形作用还伴随着强烈的热液和岩浆活动,在晚古生代地层中发育有一系列与韧性剪切带走向一致的同构造花岗质岩墙(图 2图 3g)。同时,晚三叠世花岗质侵入岩(爱林沟岩体)岩体中普遍发育有不同程度的岩浆流动线理,表现为角闪石和斜长石的定向排列,倾伏向为225°~240°,倾伏角10°~20°,与韧性剪切带作用方向一致,在岩体边部尤为发育且特征明显。此外,该岩体中发育有大量的闪长岩捕掳体,彼此平行定向排列,方向与韧性剪切带一致,表现出面状流动构造特征(图 3h, i)。因此我们认为该期侵入岩是一期同构造侵入岩,岩浆侵位过程中同时受到韧性剪切带的作用。

图 3 解放营子韧性剪切带野外照片 (a、b)能干层(大理岩)间非能干层(片岩)夹层中发育的顺层叶理;(c、d) A型褶皱和拉伸线理;(e、f) L构造岩中强烈的砾石拉长;(g)同构造花岗质岩墙;(h、i)同构造侵入岩(爱林沟岩体)中闪长岩捕掳体彼此平行定向排列表现出的平面流动构造 Fig. 3 Field photographs of the Jiefangyingzi ductile shear zone (a, b) bedding-parallel foliation in the weak layers (schist) in between of the intensified layers (marble); (c, d) A-type folds and stretching lineations; (e, f) L tectonites showing strong stretching of the pebbles; (g) synkinematic granitic dike; (h, i) synkinematic pluton (Ailingou pluton) showing planar flow structure defined by directional and parallel diorite xenolithes

解放营子韧性剪切带中岩石表现出多种显微构造形迹。L构造岩中XZ方向薄片显示出石英矿物沿着线理方向具有强烈的定向(图 4a)。显微镜下剪切带内岩石中的S-C组构以及角闪石σ型残斑表现出右旋剪切变形的特征(图 4b, c)。在上石炭统变质碎屑岩中发育有两种不同类型的压力影组构:一种以斜长石为核心,黑云母组成压力影(图 4d);另一种为黄铁矿构成核心,石英和黑云母组成压力影(图 4e)。二者都表现出了右旋剪切变形的特征。此外,斜长石书斜构造以及云母鱼组构也揭示了该韧性剪切带具有右旋剪切变形的特征(图 4f图 5a, b)。在剪切带内变质石英砂岩薄片中,发育有由黑云母和绿泥石组成的压溶叶理以及石英的压溶组构(图 5c),反映了受到一定的挤压变形作用。石英闪长质糜棱岩中的核幔结构显示出膨凸重结晶作用的发生:核部角闪石颗粒内部发育有岛状石英颗粒及显微裂隙,幔部重结晶角闪石颗粒表现出强烈的与线理方向平行的定向排列(图 5d)。石英的显微构造变形行为能够在一定程度上指示构造变形过程中的温度条件。在解放营子韧性剪切带中观测到多种石英的显微组构,例如波状消光、颗粒边界迁移重结晶、多晶石英条带(图 5e, f),反映出一个中等温度的变形条件。此外,韧性变形带内岩石薄片中动态重结晶颗粒的粒径统计显示,动态重结晶颗粒的粒径峰值约为6mm,平均值为8.96mm(图 6a)。金属和矿物的变形实验表明,差异应力与重结晶颗粒大小呈反比,即σ1-σ3=AD-m。本文采用Twiss(1977)给出的参数A=6.1,m=0.68,对其古应力差值进行估算,D取平均值得出其古应力差值为31.45MPa,D取峰值得出其古应力差值为41.32MPa。利用长短轴法对岩石有限应变进行测量,分别统计XZ方向和YZ方向切片中变形颗粒的长短轴,测得其应变椭球三轴比为X:Y:Z= 1:0.694:0.551,算得K值约为1.8(图 6b),表明应变类型为拉长型应变。综上所述,我们认为该韧性剪切带形成于一个中浅层次、中等温度(300~500℃)的伸展变形环境。

图 4 解放营子韧性剪切带显微照片(Ⅰ) (a) L构造岩;(b) S-C组构;(c) σ型角闪石残斑;(d)斜长石压力影;(e)黄铁矿压力影;(f)书斜构造. Qtz-石英;Am-角闪石;Pl-斜长石;Bt-黑云母;Py-黄铁矿 Fig. 4 Photomicrographs of the Jiefangyingzi ductile shear zone (Ⅰ) (a) L tectonite; (b) S-C fabric; (c) Sigma-type amphibole porphyroclasts; (d) plagioclase pressure shadow; (e) pyrite pressure shadow; (f) bookshelf structure. Qtz-quartz; Am-amphibole; Pl-plagioclase; Bt-biotite; Py-pyrite

图 5 解放营子韧性剪切带显微构造照片(Ⅱ) (a、b)云母鱼;(c)压溶叶理;(d)角闪石核幔构造;(e)石英颗粒边界迁移重结晶;(f)多晶石英条带.Ms-白云母 Fig. 5 Photomicrographs of the Jiefangyingzi ductile shear zone (Ⅱ) (a, b) mica fish; (c) pressure solution foliation; (d) amphibole core-mantle structure; (e) quartz grain boundary migration recrystallization; (f) banded structures of polycrystalline quartz. Ms-muscovite

图 6 韧性剪切带内变形岩石动态重结晶颗粒粒径(D值)统计直方图(a)及应变椭球形态弗林图解(b) Fig. 6 Histogram of particle diameters of dynamic recrystallization grains in the ductile shear zone (a) and Flynn diagram of strain ellipsoid analysis (b)
3.2 变形时代

为了确定该韧性剪切带的构造变形时代,选取1个同构造花岗质侵入岩样品进行锆石U-Pb同位素定年,样品岩性为中粗粒花岗闪长岩(样品C11-3,42°31′58″N、119°03′22″E);同时选取上石炭统晒勿苏组下段2个糜棱岩中白云母样品进行40Ar/39Ar热年代学测试(CFX-1,42°38′32″N、119°16′44″E; CFX-2,42°38′03″N、119°17′37″)。

3.2.1 同构造花岗闪长岩锆石U-Pb定年

同构造花岗闪长岩锆石U-Pb同位素定年数据见表 2。样品中锆石颗粒大小在200~400μm之间,自形柱状,长宽比为2:1~4:1,CL图像显示出清晰的岩浆振荡生长环带(图 7)。总计24颗锆石进行了U-Pb同位素测试,谐和度在91%至98%之间。锆石样品中Th含量为39×10-6~278×10-6,U含量248×10-6~716×10-6,Th/U比值为0.06~0.42(平均0.33),为岩浆成因锆石(Corfu et al., 2003)。测试获得的锆石206Pb/238U年龄范围在227±2Ma至231±2Ma之间,谐和年龄为227±1Ma(MSWD=6.6)(图 7a),加权平均年龄为229.7±0.8Ma(MSWD=0.32)(图 7b),表明其岩浆结晶时代为晚三叠世。

表 2 解放营子地区同构造侵入体LA-ICP-MS锆石U-Pb同位素测年结果 Table 2 LA-ICP-MS zircon U-Pb dating results for synkinematic pluton in Jiefangyingzi area

图 7 同构造花岗闪长岩中代表锆石CL图像和U-Pb谐和图(a)及加权平均年龄图(b) Fig. 7 Representative zircon CL images, U-Pb concordia (a) and weighted average diagrams (b) for synkinematic granodiorite
3.2.2 白云母40Ar/39Ar定年

韧性剪切带中2个白云母样品(CFX-1、CFX-2)的40Ar/39Ar定年结果见表 3。对样品CFX-1进行阶段加热,得到了170Ma的最小表现年龄和219.1±1.4Ma的坪年龄(图 8a)。样品CFX-2进行阶段加热,得到了157Ma的最小表现年龄和219.9±1.3Ma的坪年龄(图 8b)。因此,该韧性剪切带变形时代的上限为晚三叠世。结合同构造侵入体的结晶年龄,可以确定解放营子韧性剪切带活跃于晚三叠世期间,至少经历了约8Myr的活动时间。

表 3 同构造白云母样品40Ar/39Ar年龄数据 Table 3 40Ar/39Ar data for muscovite samples

图 8 同构造白云母40Ar/39Ar同位素坪年龄谐和图 Fig. 8 Complied apparent 40Ar/39Ar age spectra of synkinematic muscovite
4 晚三叠世伸展岩浆事件 4.1 岩石地球化学特征

华北板块北缘和中亚造山带中晚三叠世侵入岩分布广泛(图 1),岩石类型包括花岗岩、正长花岗岩、正长岩和石英闪长岩等(表 1)。锆石U-Pb同位素年代学研究表明这些岩石的结晶年龄为221Ma至233Ma(Wang et al., 2004; 石玉若等, 2007; Liu et al., 2012; Zhang et al., 2012, 2014b; 张万益等, 2012; 杨俊泉等, 2016)。解放营子地区晚三叠世侵入岩岩石类型主要为花岗闪长岩和二长花岗岩,岩石地球化学数据(表 4)显示其SiO2含量为65.89%~69.29%,K2O含量为3.39%~3.71%,明显富集轻稀土元素((La/Sm)N=3.17~4.57),表现出一定程度的负Eu异常(δEu=0.49~0.56)。通过与区域上晚三叠世侵入岩的岩石地球化学数据进行对比,可将华北板块北缘和中亚造山带晚三叠世侵入岩划分为高硅和低硅两种类型,解放营子地区发育的晚三叠世侵入岩属于低硅型岩石。低硅型岩石的SiO2含量在52%~69%之间,K2O含量为3.1%~9.1%。球粒陨石标准化稀土元素配分图显示(图 9a),低硅型岩石表现出明显的富集轻稀土元素((La/Sm)N为2.5~17.5,平均5.3),亏损重稀土元素((Gd/Yb)N为1.6~7.7,平均2.8),大部分具有轻微的负铕异常(δEu=0.5~1.2,平均0.8)。原始地幔标准化微量元素蛛网图显示(图 9b),低硅型岩石表现出强烈的Nb、Ti负异常。高硅型岩石具有较高的SiO2(>70%)和K2O(3.9%~5.6%)含量,球粒陨石标准化稀土元素配分图显示(图 9c),高硅型岩石明显的富集轻稀土元素((La/Sm)N=2~22,平均8),重稀土元素无分异((Gd/Yb)N为0.8~1.8,平均1.1)或明显的富集重稀土元素((Gd/Yb)N为0.1~0.7,平均0.3)。原始地幔标准化微量元素蛛网图显示出较强的Ba、Sr、Ti负异常(图 9d)。

表 4 解放营子晚三叠世侵入岩主量元素(wt%)和痕量元素(×10-6)组成 Table 4 Major (wt%) and trace (×10-6) elementa data of the Late Triassic pluton in Jiefangyingzi area

图 9 中亚造山带和华北板块中晚三叠世侵入岩球粒陨石标准化稀土元素配分图(a、c)和原始地幔标准化微量元素蛛网图(b、d) 低硅型岩石数据源自:Wang et al., 2004; Liu et al., 2012张万益等,2012Zhang et al., 2012, 2014b.高硅型岩石数据源自:石玉若等,2007杨俊泉等,2016 Fig. 9 Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized spidergrams (b, d) for Late Triassic intrusive rocks from the CAOB and NCC Data of Low-Si type rocks from Wang et al., 2004; Liu et al., 2012; Zhang et al., 2012, 2014b; Zhang et al., 2012. Data of high-Si type rocks from Shi et al., 2007; Yang et al., 2016
4.2 岩石成因

华北板块北缘和中亚造山带中晚三叠世花岗质岩石普遍具有高钾和碱性的岩石地球化学特征,可能为下地壳部分熔融的产物(Smith et al., 1988; Tchameni et al., 2001; Zhang et al., 2012)。然而,在华北板块北缘发育的低硅型岩石普遍伴生有镁铁质侵入岩(如辉石岩),表明岩石圈地幔部分熔融的岩浆源区特征(Foland et al., 1993; Bonin, 1998; 牟保磊等, 2001; Zhang et al., 2005; 田伟等, 2007; He et al., 2010)。这些镁铁质岩石的地球化学和同位素特征表明其母岩岩浆起源于交代的富集型岩石圈地幔,同时这些低硅型岩石形成于该期镁铁质岩浆的分离结晶作用(Zhang et al., 2012)。高硅型岩石具有较高的Ga含量,强烈的负Eu异常和Ba、Sr负异常(图 9c, d),表现出碱性的A型花岗岩的岩石成因特征(Whalen et al., 1987; Anderson and Bender, 1989; Eby, 1992; 苏玉平和唐红峰, 2005; 周宇章, 2011)。相比于低硅型岩石,高硅型岩石较低的Ba、Sr含量,可能代表了钾长石与斜长石的源区残留,而较高的Rb含量和Rb/Sr比值暗示其经历了更强的分离结晶作用(图 10)。同时,年代学数据显示中亚造山带内高硅型岩石与低硅型岩石的年龄在误差范围内相近或略年轻,因此,我们推测中亚造山带内的高硅型岩石很可能起源于低硅型岩浆的分离结晶作用。前人Nd-Hf同位素数据显示(Wang et al., 2004; 韩宝福等, 2004; Liu et al., 2012; Zhang et al., 2012; 张万益等, 2012),对比分布于华北板块北缘的低硅型岩石,分布于中亚造山带中的低硅型岩石具有更高的εNd(t)和εHf(t)值(图 11)。较高的εNd(t)和正的εHf(t)值暗示了中亚造山带中的低硅型岩石起源于亏损的地幔。而分布于华北板块北缘的低硅型岩石表现出更低的εNd(t)和负的εHf(t)值,表明其岩浆源区可能为亏损的岩石圈地幔受到地壳物质的混入,或者为富集的岩石圈地幔与亏损软流圈地幔物质的混合(田伟等, 2007; Zhang et al., 2012)。Zhang et al.(2012)对华北板块北缘晚三叠世侵入岩的研究显示,其εNd(t)值随着SiO2的增加和MgO的降低并无明显的变化,表明其形成过程中未受到明显的地壳同化作用,而是形成于富集的岩石圈地幔并混入了一定量的亏损的软流圈物质。

图 10 中亚造山带和华北板块中晚三叠世侵入岩Ba、Sr、Rb/Sr、Rb对SiO2图解 数据源自Wang et al., 2004; 石玉若等, 2007; Liu et al., 2012; Zhang et al., 2012, 2014b; 张万益等, 2012; 杨俊泉等, 2016 Fig. 10 Ba, Sr, Rb/Sr and Rb vs. SiO2 diagrams for Late Triassic intrusive rocks from the CAOB and NCC Data from Wang et al., 2004; Shi et al., 2007; Liu et al., 2012; Zhang et al., 2012, 2014b; Zhang et al., 2012; Yang et al., 2016

图 11 中亚造山带和华北板块中晚三叠世低硅型岩石的εNd(t) (a) and εHf(t) (b)对U-Pb年龄图解 数据源自韩宝福等, 2004; Wang et al., 2004; Liu et al., 2012; Zhang et al., 2012, 2014b; 张万益等, 2012 Fig. 11 εNd(t) (a) and εHf(t) (b) vs. U-Pb age diagrams of Late Triassic Low-Si Type rocks from the CAOB and NCC Data from Han et al., 2004; Wang et al., 2004; Liu et al., 2012; Zhang et al., 2012, 2014b; Zhang et al., 2012
5 构造意义

华北板块北缘和中亚造山带中发育的晚三叠世侵入岩包括碱性杂岩(低硅型岩石和镁铁质岩石)和A型花岗岩(高硅型岩石),暗示了一期明显的伸展构造事件。这些不同类型的岩石都表现出一个普遍的岩浆源区,即后碰撞或板内伸展的构造环境下岩石圈地幔的部分熔融(Whalen et al., 1987; Sylvester, 1989; Nédélec et al., 1995; Mushkin et al., 2003)。值得注意的是高硅型岩石仅分布于中亚造山带中,在华北板块北缘未见报道。而低硅型岩石在中亚造山带和华北板块北缘皆有分布,但是原始岩浆组分却有所差异,暗示了不同的构造属性。晚三叠世期间,强烈的伸展作用形成了软流圈地幔的大规模上涌,在岩浆侵位过程中,镁铁质岩浆的一系列分离结晶作用形成了低硅型岩浆,并在中亚造山带中进一步演化成高硅型岩浆;在华北板块北缘,由于早期古亚洲洋板块的俯冲,地壳物质再循环进入地幔之中,伸展作用下的软流圈上涌导致富集型岩石圈部分熔融,形成了具有较低εNd(t)和εHf(t)值的低硅型岩浆。晚三叠世伸展事件对中亚造山带和华北板块北缘产生了显著的影响,形成了广泛分布于中亚造山带和华北板块北缘具有伸展构造背景的岩浆活动,同时在中亚造山带发育的晚三叠世伸展型韧性剪切带为该期伸展作用在地壳中部层位的表现。古亚洲洋板块长期以来不断的俯冲于华北板块和西伯利亚板块之下,导致了华北板块地壳和岩石圈的显著增厚现象(Xiao et al., 2003, 2009; Jian et al., 2008; Zhang et al., 2012; Li et al., 2017)。在晚三叠世期间,华北板块北缘发生了强烈的岩石圈伸展减薄,而中亚造山带在经历了古亚洲洋消减后与华北板块的碰撞增生后,也遭受到强烈的伸展构造影响,形成了大规模伸展构造背景的岩浆活动以及伸展型韧性剪切带。

6 结论

(1) 解放营子伸展型韧性剪切带呈北东-南西走向,宽约20km,长50km,发育在新太古代基底岩石、古生代地层与侵入岩中。剪切带内糜棱岩、构造片岩、L和L-S构造岩十分发育。显微构造组构显示,该韧性剪切带为一伸展型韧性剪切带,具有右旋剪切特征和中低温的变形条件。

(2) 同构造花岗闪长岩的锆石U-Pb同位素以及白云母40Ar/39Ar同位素测年结果显示,该伸展型韧性剪切带形成于晚三叠世。

(3) 晚三叠世期间软流圈地幔大规模上涌,形成了低硅型和高硅型两类岩石:中亚造山带中低硅型岩石起源于亏损地幔,且岩浆进一步演化形成高硅型岩石;华北板块北缘低硅型岩石的岩浆源区为富集型岩石圈地幔,并有一定量的亏损型软流圈地幔物质混入。

(4) 古生代期间古亚洲洋板块的俯冲消减导致了华北板块北缘显著的地壳增厚,在晚三叠世期间发生了强烈的岩石圈伸展减薄作用,形成了近东西向展布的碱性杂岩体;同时中亚造山带受到伸展事件的影响,形成了具有伸展构造背景的岩浆活动和伸展型韧性剪切带。

致谢      感谢蒋孝君硕士、朱凯博士在野外工作和锆石U-Pb同位素测试工作中的帮助;感谢徐仲元教授在显微构造方面的指导。同时感谢Chad Deering副教授在论文撰写过程中提出的宝贵建议;特别感谢审稿人和本刊主编提出的宝贵意见,对本文的提升起到了十分重要的作用。

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Anderson JL and Bender EE. 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos, 23(1-2): 19-52 DOI:10.1016/0024-4937(89)90021-2
Black R and Liégeois JP. 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle:The Pan-African testimony. Journal of the Geological Society, 150(1): 89-98 DOI:10.1144/gsjgs.150.1.0088
Bonin B, Azzouni-Sekkal A, Bussy F and Ferrag S. 1998. Alkali-calcic and alkaline Post-Orogenic (PO) granite magmatism:Petrologic constraints and geodynamic settings. Lithos, 45(1-4): 45-70 DOI:10.1016/S0024-4937(98)00025-5
Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500 DOI:10.2113/0530469
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology, 20(7): 641-644
Eizenhöfer PR, Zhao GC, Zhang J and Sun M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone:Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33(4): 441-463 DOI:10.1002/2013TC003357
Foland KA, Landoll JD, Henderson CMB and Chen JF. 1993. Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta, 57(3): 697-704 DOI:10.1016/0016-7037(93)90380-F
Han BF, Kagami H and Li HM. 2004. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei Province, China:Implications for Early Mesozoic crust-mantle interaction in North China Block. Acta Petrologica Sinica, 20(6): 1375-1388 (in Chinese with English abstract)
He ZY, Xu XS and Niu YL. 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos, 119(3-4): 621-641 DOI:10.1016/j.lithos.2010.08.016
Huang XL, Xu YG, Luo CH, Wang RC and Lin GY. 2007. Exsolution lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt, Leizhou Peninsula, South China:Petrography and chemical evolution. Contributions to Mineralogy and Petrology, 154(6): 691-705 DOI:10.1007/s00410-007-0218-4
Jian P, Liu DY, Kröner A, Windley BF, Shi YR, Zhang FQ, Shi GH, Miao LC, Zhang W, Zhang Q, Zhang LQ and Ren JS. 2008. Time scale of an Early to Mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth. Lithos, 101(3-4): 233-259 DOI:10.1016/j.lithos.2007.07.005
Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE and Fedotova AA. 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122(1-4): 329-358 DOI:10.1016/S0301-9268(02)00218-8
Li JY, Zhang J, Yang TN, Li YP, Sun GH, Zhu ZX and Wang LJ. 2009. Crustal tectonic division and evolution of the Southern part of the North Asian Orogenic Region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract)
Li S, Chung SL, Wilde SA, Jahn BM, Xiao WJ, Wang T and Guo QQ. 2017. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt:Implications for ocean closure in accretionary orogens. Journal of Geophysical Research:Solid Earth, 122(3): 2291-2309
Li YL, Zhou HW, Brouwer FM, Xiao WJ, Wijbrans JR and Zhong ZQ. 2014. Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt:Insights from zircon U-Pb dating of ductile shear zones in central Inner Mongolia, China. Lithos, 205: 84-111 DOI:10.1016/j.lithos.2014.06.017
Liu JF, Li JY, Chi XG, Zhao Z, Hu ZC and Feng QW. 2012. Petrogenesis of Middle Triassic post-collisional granite from Jiefangyingzi area, Southeast Inner Mongolia:Constraint on the Triassic tectonic evolution of the north margin of the Sino-Korean paleoplate. Journal of Asian Earth Sciences, 60: 147-159 DOI:10.1016/j.jseaes.2012.08.012
Liu Q, Zhao GC, Han YG, Eizenhöfer PR, Zhu YL, Hou WZ and Zhang XR. 2017. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane:Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos, 274-275: 19-30 DOI:10.1016/j.lithos.2016.12.029
Ludwing KR. 2001. Users Manual for Isoplot/EX Rev. 2.49: A Geochronological Toolkit for Microsoft Excel. Rerkdey: Berkeley Geochronology Center Special Publication, 1-55
Mu BL, Shao JA, Chu ZY, Yan GH and Qiao GS. 2001. Sm-Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica, 17(3): 358-365 (in Chinese with English abstract)
Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology, 44(5): 815-832 DOI:10.1093/petrology/44.5.815
Nédélec A, Stephens EW and Fallick AE. 1995. The Panafrican stratoid granites of Madagascar:Alkaline magmatism in a post-collisional extensional setting. Journal of Petrology, 36(5): 1367-1391 DOI:10.1093/petrology/36.5.1367
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC and Zhang LQ. 2007. SHPIMP U-Pb zircon dating of Triassic A-type granites in Sonid Zuoqi, central Inner Mongolia, China and its tectonic implications. Geological Bulletin of China, 26(2): 183-189 (in Chinese with English abstract)
Smith IEM, White AJR, Chappel BW and Eggleton RA. 1988. Fractionation in a zoned monzonite pluton:Mount Dromedary, southeastern Australia. Geological Magazine, 125(3): 273-284 DOI:10.1017/S0016756800010219
Su YP and Tang HF. 2005. Trace element geochemistry of A-type granites. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3): 245-251 (in Chinese with English abstract)
Sylvester PJ. 1989. Post-collisional alkaline granites. The Journal of Geology, 97(3): 261-280
Tapponnier R, Peltzer G, Le Dain AY, Armijo R and Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine. Geology, 10(12): 611-616 DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tchameni R, Mezger K, Nsifa NE and Pouclet A. 2001. Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57(1): 23-42
Tian W, Chen B, Liu CQ and Zhang HF. 2007. Zircon U-Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei. Acta Petrologica Sinica, 23(3): 583-590 (in Chinese with English abstract)
Twiss RJ. 1977. Theory and applicability of a recrystallized grain size paleopiezometer. Pure and Applied Geophysics, 115(1): 227-244
Wang T, Zheng YD, Li TB and Gao YJ. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5): 715-729 DOI:10.1016/S1367-9120(03)00133-0
Wang XA, Li SC, Xu ZY and Zhu K. 2016. Neoarchaean quartz diorites in the Jiefangyingzi area, Central Asian Orogenic Belt:Geological and tectonic significance. International Geology Review, 58(3): 358-370 DOI:10.1080/00206814.2015.1077480
Wang XA, Deering C, Liu ZH, Dong XJ, Li SC and Xu ZY. 2020a. Petrogenesis and tectonic regime of two types of Neoarchaean amphibolites in the northern margin of the North China Craton. International Geology Review, doi: 10.1080/00206814.2020.1731855
Wang XA, Liu ZH, Li SC and Jiang XJ. 2020b. Characteristics of Devonian extensional magmatic activity in the Jiefangyingzi area, northern margin of the North China Plate. Geological Journal, 55(2): 1262-1282 DOI:10.1002/gj.3492
Webb LE, Johnson CL and Minjin C. 2010. Late Triassic sinistral shear in the East Gobi Fault Zone, Mongolia. Tectonophysics, 495(3-4): 246-255 DOI:10.1016/j.tecto.2010.09.033
Wei XF, Pan D, Yin YJ, Liao Z, Lü XQ, Shan LH and Ding RF. 2019. Zircon U-Pb age of biotite granite and 39Ar/40Ar age of sericite from Aketasi gold deposit in Xinjiang, and their geological significance. Mineral Deposits, 38(2): 251-260 (in Chinese with English abstract)
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific Plate subduction:A review of the evidence. Tectonophysics, 662: 345-362 DOI:10.1016/j.tecto.2015.05.006
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022
Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract)
Xi YQ, Qiu HO, Li JL, Yang M and Li SZ. 2005. Simultaneous determination of Zr, Hf, Sc, Th in geological samples by inductively coupled plasma atomic emission spectrometry. Chinese Journal of Analysis Laboratory, 24(9): 40-43 (in Chinese with English abstract)
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217 DOI:10.1007/s00531-008-0407-z
Xu B, Charvet J, Chen Y, Zhao P and Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China):Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364 DOI:10.1016/j.gr.2012.05.015
Xu WL, Yang DB, Gao S, Pei FP and Yu Y. 2010. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton:The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chemical Geology, 270(1-4): 257-273 DOI:10.1016/j.chemgeo.2009.12.006
Yang JH and Wu FY. 2009. Triassic magmatism and its relation to decratonization in the eastern North China Craton. Science in China (Series D), 52(9): 1319-1330 DOI:10.1007/s11430-009-0137-5
Yang JQ, Liu YS, Zhang SR, Yang YH, Zhang F and Rong H. 2016. Two Triassic magmatic activities in Binbalechagan area of Dong Ujimqin Banner, Inner Mongolia:Geochronologic record, petrogenesis and tectonic settings. Geology in China, 43(6): 1913-1931 (in Chinese with English abstract)
Zhang HF, Sun M, Zhou XH and Ying JF. 2005. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos, 81(1-4): 297-317 DOI:10.1016/j.lithos.2004.12.015
Zhang SH, Zhao Y, Liu XC, Liu DY, Chen FK, Xie LW and Chen HH. 2009. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block:Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110(1-4): 229-246 DOI:10.1016/j.lithos.2009.01.008
Zhang SH, Zhao Y, Liu JM, Hu JM, Song B, Liu J and Wu H. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block:A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824-842 (in Chinese with English abstract)
Zhang SH, Zhao Y, Ye H, Hou KJ and Li CF. 2012. Early Mesozoic alkaline complexes in the northern North China Craton:Implications for cratonic lithospheric destruction. Lithos, 155: 1-18 DOI:10.1016/j.lithos.2012.08.009
Zhang SH, Zhao Y, Ye H, Liu JM and Hu ZC. 2014a. Origin and evolution of the Bainaimiao arc belt:Implications for crustal growth in the southern Central Asian Orogenic Belt. GSA Bulletin, 126(9-10): 1275-1200 DOI:10.1130/B31042.1
Zhang WY, Nie FJ, Gao YG and Liu Y. 2012. Geochemical characteristics and genesis of Triassic Chagan Obo alkaline quartz diorites in Inner Mongolia. Acta Petrologica Sinica, 28(2): 525-534 (in Chinese with English abstract)
Zhang Z, Zhang HF, Shao JA, Ying JF, Yang YH and Santosh M. 2014b. Mantle upwelling during Permian to Triassic in the northern margin of the North China Craton:Constraints from southern Inner Mongolia. Journal of Asian Earth Sciences, 79: 112-129 DOI:10.1016/j.jseaes.2013.09.015
Zhao P, Chen Y, Xu B, Faure M, Shi GZ and Choulet F. 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China. Journal of Geophysical Research:Solid Earth, 118(5): 1873-1894 DOI:10.1002/jgrb.50198
Zhao P, Faure M, Chen Y, Shi GZ and Xu B. 2015. A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia:Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China). Earth and Planetary Science Letters, 426: 46-57 DOI:10.1016/j.epsl.2015.06.011
Zhao P, Xu B and Zhang CH. 2017. A rift system in southeastern Central Asian Orogenic Belt:Constraint from sedimentological, geochronological and geochemical investigations of the Late Carboniferous-Early Permian strata in northern Inner Mongolia (China). Gondwana Research, 47: 342-357 DOI:10.1016/j.gr.2016.06.013
Zhou YZ. 2011. Progress made in A-type granite study and discussion on some issues. Geology of Anhui, 21(3): 169-175 (in Chinese with English abstract)
韩宝福, 加加美宽雄, 李惠民. 2004. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义. 岩石学报, 20(6): 1375-1388.
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605.
牟保磊, 邵济安, 储著银, 阎国翰, 乔广生. 2001. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr-Nd同位素特征. 岩石学报, 17(3): 358-365.
石玉若, 刘敦一, 张旗, 简平, 张福勤, 苗来成, 张履桥. 2007. 内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义. 地质通报, 26(2): 183-189.
苏玉平, 唐红峰. 2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245-251.
田伟, 陈斌, 刘超群, 张华锋. 2007. 冀北小张家口超基性岩体的锆石U-Pb年龄和Hf同位素组成. 岩石学报, 23(3): 583-590.
卫晓峰, 潘东, 阴元军, 廖震, 吕晓强, 单立华, 丁汝福. 2019. 新疆阿克塔斯金矿床黑云母花岗岩锆石U-Pb和绢云母39Ar/40Ar测年及地质意义. 矿床地质, 38(2): 251-260.
吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174.
席永清, 邱海鸥, 李金莲, 杨明, 李素芝. 2005. 电感耦合等离子体原子发射光谱法同时测定地质样品中的Zr、Hf、Sc、Th. 分析试验室, 24(9): 40-43.
杨俊泉, 刘永顺, 张素荣, 杨永恒, 张锋, 戎合. 2016. 内蒙古东乌旗宾巴勒查干三叠纪两次岩浆活动:年代学记录、岩石成因及构造背景. 中国地质, 43(6): 1913-1931.
张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842.
张万益, 聂凤军, 高延光, 刘妍. 2012. 内蒙古查干敖包三叠纪碱性石英闪长岩的地球化学特征及成因. 岩石学报, 28(2): 525-534.
周宇章. 2011. A型花岗岩研究进展与问题讨论. 安徽地质, 21(3): 169-175.