岩石学报  2020, Vol. 36 Issue (8): 2357-2382, doi: 10.18654/1000-0569/2020.08.06   PDF    
东阿尔卑斯原-古特提斯构造演化
袁四化1, 刘永江2,3, NEUBAUER Franz4, 常瑞虹4, GENSER Johann4, 关庆彬2, 黄倩雯2     
1. 防灾科技学院地球科学学院, 三河 065201;
2. 中国海洋大学海底科学与探测技术教育部重点实验室, 海洋高等研究院, 中国海洋大学海洋地球科学学院, 青岛 266100;
3. 青岛海洋科学与技术国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
4. Department Geography and Geology, University of Salzburg, Salzburg A-5020
摘要: 新生代阿尔卑斯是非洲和欧洲之间的陆陆碰撞造山带。强烈的造山作用使大量前中生代基底出露地表,尽管这些基底被强烈逆冲推覆和走滑叠置,但是仍保留较丰富的前中生代基底演化信息。结合近几年对东阿尔卑斯原-古特提斯的研究,本文梳理和重建了阿尔卑斯前中生代基底的构造格局,认为前阿尔卑斯基底受原特提斯、南华力西洋、古特提斯洋构造体系影响而经历了多期造山过程。新元古代-早古生代的原阿尔卑斯作为环冈瓦纳地块群的组成部分,受原特提斯洋俯冲的制约,是新元古-早古生代环冈瓦纳活动陆缘的组成部分,其中,海尔微-彭尼内基底组成外缘增生系统,包括卡多米期地壳碎片在内的陆缘弧/岛弧以及大量增生楔组成内缘增生系统。早奥陶世瑞亚克洋打开,随后原阿尔卑斯从冈瓦纳陆缘裂离,在泥盆纪-石炭纪受南华力西洋控制,海尔微-彭尼内-中、下奥地利阿尔卑斯从冈瓦纳分离。在早石炭世(维宪期)南阿尔卑斯(或与之相当的冈瓦纳源地块)与北部阿莫里卡地块群拼贴增生于古欧洲大陆南缘,共同组成华力西造山带(广义),华力西期缝合带保留在绍山-科尔山南侧。晚石炭世-早二叠世,阿尔卑斯受古特提斯洋的俯冲影响,在华力西造山带南侧形成安第斯山型活动大陆边缘,古特提斯洋在阿尔卑斯的演化至少持续到早三叠世,消亡遗迹保留在中奥地利阿尔卑斯基底的Plankogel杂岩中。
关键词: 阿尔卑斯    原特提斯洋    古特提斯洋    冈瓦纳    卡多米    加里东    华力西    造山作用    
Tectonic evolution of Proto- and Paleo-Tethyan in the East Alps
YUAN SiHua1, LIU YongJiang2,3, NEUBAUER Franz4, CHANG RuiHong4, GENSER Johann4, GUAN QingBin2, HUANG QianWen2     
1. College of Earth Sciences, Institute of Disaster Prevention, Sanhe 065201, China;
2. Key Lab of Submarine Geoscience and Prospecting Techniques, Frontiers Science Center for Deep Ocean Multispheres and Earth System, MOE, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
3. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
4. Department Geography and Geology, University of Salzburg, Salzburg A-5020, Austria
Abstract: The Cenozoic Alps was stemmed from continent-continent collision between the Africa and the Europe plates. A large number of pre-Mesozoic basements are exposed because of the strong deformation of the Cenozoic orogeny. Although these basements were strongly thrust and/or sliced, the geological history of the pre-Mesozoic basement is well preserved in them. Together with our recent studies for Proto- and Paleo-Tethys in the East Alps, this paper reconstructs a brief tectonic frame of the pre-Mesozoic basements in the Alps. The pre-Alpine basements underwent multiple orogenic processes under the influences of tectonic system of the Proto-Tethys, southern Rheic Ocean and Paleo-Tethys. The Proto-Alps in the Neoproterozoic-Early Paleozoic, as a part of the peri-Gondwana terrane group making up the active continental margin of the mother landmass, was controlled by the subduction of the Proto-Tethys. The Helvetic-Penninic basement, constructing the outmost accretionary system in front of the Proto-Alps, is composed of a series of Cadomian fragments including epicontinental/island arc and abundant accrentionary complexes. The Rheic Ocean opened in the Early Ordovician, then the Proto-Alps was separated and rifted from the Gondwana. From the Devonian to the Carboniferous, the Proto-Alps was controlled by the southern Variscan Ocean, which separated the Helvetic-Penninic-Middle/Lower Austroalpine from the Gondwana. In the Early Carboniferous (Visean), the South Alps (or the equivalent splitted from the Gondwana) and the northern Amorica terrane group docked together on the southern Paleo-Europe, from which the Variscan orogenic belt (senso lato) was built, i.e., the Variscan suture in the Alps is located on the south of Sauaple-Koralpe. In the Late Carboniferous-Early Permian, the Alps was affected by the subduction of the Paleo-Tethys, forming the Andean-type active continental margin on the south wing of the Variscan orogenic belt. The Paleo-Tethys Ocean in the Alps lasted at least to the Early Triassic, and its relics remain in the Plankogel complex of the Middle Austroalpine.
Key words: Alps    Proto-Tethys    Paleo-Tethys    Gondwana    Cadomian    Caledonian    Variscan    Orogeny    

阿尔卑斯造山带被作为典型的大陆碰撞型造山带(Burchfiel, 1980; Trümpy et al., 1980; Pfiffner et al., 1996; Schmid et al., 2004; Handy et al., 2010),通常认为其现今构造格局是新特提斯洋闭合导致非洲和欧洲大陆碰撞造山的结果。阿尔卑斯中生代尤其是侏罗纪以来演化轮廓(Stampfli and Hochard, 2009; Schmid et al., 2020; van Hinsbergen et al., 2020)已非常清楚。但是,对其前中生代基底构造演化的研究相对薄弱,尤其是有关奥地利阿尔卑斯前中生代基底的研究极其薄弱。近年来随着对阿尔卑斯基底研究的不断深入,逐渐揭露了阿尔卑斯造山带从新元古代到新生代具有多期复杂的造山历史(Neubauer, 1991; von Raumer and Neubauer, 1993; von Raumer et al., 2013; Neubauer, 2014; Haas et al., 2020; van Hinsbergen et al., 2020)。

阿尔卑斯造山带最典型的构造样式是推覆构造,所以现今山体是由多个推覆体叠置组成,推覆体构造最早由Ebel(1808)识别出(转引自von Raumer et al., 2013),后来经Desor(1865)归纳并定义了经典的阿尔卑斯大地构造单元(转引自von Raumer et al., 2013),包括海尔微(Helvetic)、彭尼内(Penninic)、奥地利阿尔卑斯(Austroalpine)和南阿尔卑斯(Southalpine)四个构造单元(von Raumer et al., 2013),这些单元之间及其内部都经历了白垩纪以来大规模的推覆(走滑),形成了复杂的叠瓦状构造(Escher et al., 1997; Stampfli, 2001)。很多单个推覆体中同时包括基底和中生代盖层,20世纪90年代以来初步开展了构造复位工作,逐步开始把阿尔卑斯造山带前中生代基底与中生代沉积盖层演化历史区分开来(von Raumer and Neubauer, 1993),并意识到欧洲大陆与卡多米期(Cadomian命名地为法国北部卡昂市,写法为其拉丁语Cadomus;大致相当于泛非期,不同地点结束时间不一致,可能持续到奥陶纪末)基底有成因联系。Ziegler(1984, 1990)较早提出阿尔卑斯基底起源于冈瓦纳大陆的认识,Stampfli (1990)在此基础上进一步工作,并再造了阿尔卑斯基底地块晚古生代以来从冈瓦纳大陆北缘裂解向北(现今地理位置)漂移的演化过程(Ziegler, 1990; Stampfli, 1996)。尽管许多基底被阿尔卑斯期构造叠加,但部分地区影响较小,仍可识别出原岩性质和早期构造形迹。近些年来,以Stampfli和von Raumer为首的研究群体开始对阿尔卑斯前中生代基底开展古地理重建工作(Stampfli and Borel, 2002; Stampfli and Hochard, 2009; Stampfli, 2012; von Raumer et al., 2013),在近期的重建图中,他们提出早古生代包括阿尔卑斯在内的诸多中-南欧地块与东冈瓦纳有很大亲缘性(Stampfli et al., 2013; von Raumer et al., 2013),随后在华力西期乃至中生代这些基底地块之间经历了大规模的走滑错移(von Raumer et al., 2013)。然而,近几年开展的碎屑锆石物源对比分析更倾向于认为在古生代期间这些基底地块处在东非边缘(Sirevaag et al., 2016; Siegesmund et al., 2018; Stephan et al., 2019; Neubauer et al., 2020),反而更支持他们早期提出的古板块重建模型(Stampfli and Borel, 2002)。此外,他们的重建与生物古地理证据也存在矛盾,例如来自中奥陶世鳃足类研究,至少表明中奥陶世这些地块属于西冈瓦纳生物群(Havlíček et al., 1994)。

目前对阿尔卑斯造山带的研究主要集中在中生代特提斯洋打开、阿尔卑斯期的造山过程,对前中生代的构造演化研究仍相对薄弱。尽管前人在基底构造演化方面的研究取得了一些成果,但近些年随着研究工作不断深入,关于这些遭受不同程度变质-变形改造的基底地块的构造属性争议越来越大(Neubauer, 2002; von Raumer et al., 2013; Haas et al., 2020; Neubauer et al., 2020)。本文系统总结了前人在阿尔卑斯造山带开展的前中生代基底研究,并兼顾广义的阿尔卑斯带(从伊比利亚半岛到巴尔干半岛)基底研究,结合近期我们在东阿尔卑斯地区的研究成果,编制了一系列地质构造图,初步总结了阿尔卑斯带前中生代的构造演化,重点强调古特提斯洋在奥地利阿尔卑斯的构造位置和可能的形成模式。理清阿尔卑斯基底构造演化对于阿尔卑斯期碰撞造山过程的一些尚未解决的问题也具有十分重要的意义,如Masson et al.(2008)在小圣伯纳山口的Versoyen地区发现从西阿尔卑斯北部过渡到中阿尔卑斯“瓦莱(Valais)洋”有华力西期的蛇绿岩,从而否定阿尔卑斯期的瓦莱洋(Masson et al., 2008),如何协调这一矛盾还需要进一步对前中生代基底构造深入研究。

1 阿尔卑斯造山带构造格架 1.1 地理和构造单元划分

地理上阿尔卑斯的东边界是维也纳-施蒂利亚盆地,北面是多瑙河(向西为巴伐利亚湖群),南面为波河平原,西为瓦朗斯盆地(图 1a),通常分成西、中、东和南四部分(图 1a中白色虚线)。西阿尔卑斯和中阿尔卑斯的分界从日内瓦湖穿过大圣伯纳德山口到奥斯塔谷地,二者地质特征相似,也合称弧形阿尔卑斯(Neubauer et al., 2000);中阿尔卑斯和东阿尔卑斯分界从康斯坦茨湖经莱茵谷地穿过施普吕根山口到科莫湖,二者的界线为一系列东西向谷地,从西向东包括阿达、普施特、盖尔谷。东阿尔卑斯向东地形逐渐从高海拔的陶恩山过渡为低海拔的潘诺西亚盆地(图 1a)。

图 1 阿尔卑斯地理分区和主要活动断裂(a)、构造划分(b)(据Stüwe and Homberger, 2012)及过东阿尔卑斯横断面(c, TRANSALP Working Group et al., 2002) Fig. 1 Geographical division and main active faults in the Alps (a), tectonic division of the Alps(b)(after Stüwe and Homberger, 2012) and plate tectonic profile cross the East Alps(c, after TRANSALP Working Group et al., 2002)

阿尔卑斯大地构造单元划分主要体现中生代以来构造古地理分区(图 1b, c),阿尔卑斯造山带从西北到东南包括以下主要构造单元(Frisch et al., 1990; Neubauer et al., 2000; Schmid et al., 2004; Handy et al., 2010):

(1) 欧洲大陆岩石圈:阿尔卑斯山北部外围前陆盆地,发育晚始新世到新近纪的磨拉石沉积;瑞士-法国侏罗山是一薄皮褶皱推覆带;欧洲大陆基底出露在阿尔卑斯山北部的波西米亚、黑森林、孚日山和法国中央地块中。

(2) 海尔微(Helvetic)单元(西阿尔卑斯文献中也称Dauphinois单元):为薄皮褶皱-冲断带,包括从欧洲岩石圈拆离的晚石炭世至始新世的盖层和构成前阿尔卑斯期基底岩石的外阿尔卑斯结晶地块(晚石炭世至白垩纪的盖层)。

(3) 瓦莱(Valais)单元:主要代表白垩纪的裂谷沉积,也包括洋壳残留(洋盆规模仍有争议)。

(4) 布里昂松(Briançonnais)单元:代表在瓦莱洋打开期间从稳定的欧洲大陆裂解的微地块。

(5) 皮埃蒙特(Piemontais)单元:位于西阿尔卑斯,为大洋岩石圈残留,古地理单元也常称之为彭尼内(Penninic)洋或者皮埃蒙特-利古里亚(Liguria)洋,通常将瓦莱、布里昂松和皮埃蒙特单元合称为彭尼内单元,也分别称北、中和南彭尼内单元。

(6) 奥地利阿尔卑斯单元:是前亚德里亚(也有文献称阿普利亚)板块的一部分,包括梅里阿塔-哈尔施塔特(Meliata-Hallstatt)洋(文献中常简称梅里阿塔洋)的三叠纪被动大陆边缘和彭尼内洋的侏罗纪被动大陆边缘。梅里阿塔洋在始阿尔卑斯期关闭,奥地利阿尔卑斯向下俯冲,形成多个推覆体,推覆在欧洲板块之上。梅里阿塔洋的遗迹出现在奥地利阿尔卑斯最东端的一些露头上(Melcher and Meisel, 2004)。基底岩石在阿尔卑斯期经历从绿片岩相到角闪岩相的变质,基底之上沉积了二叠纪和中生代的沉积岩,浅海相灰岩十分发育,这些灰岩分布区也被称为北部灰岩阿尔卑斯。

(7) 南阿尔卑斯单元:沿亚德里亚断层与奥地利阿尔卑斯分开,该单元在很大程度上类似于奥地利阿尔卑斯单元,代表亚德里亚海板块的北部大陆边缘,该板块还包括波河平原和相邻的亚德里亚海,是阿尔卑斯向外延伸的弧后造山楔。

1.2 阿尔卑斯期构造旋回

通常认为现今阿尔卑斯造山带的威尔逊旋回开始于卡尼期(图 2图 3),在时间上可与地中海和中东地区的古特提斯洋关闭时间相对应(Kozur, 1999; Stampfli and Borel, 2002; Stampfli et al., 2003),和中大西洋-阿尔卑斯域裂谷开始时间也一致(Froitzheim and Manatschal, 1996; Steiner et al., 1998)。晚中生代以来形成的阿尔卑斯大陆碰撞造山带,主要与梅里阿塔和皮埃蒙特(包括北支瓦莱洋盆)两个洋盆的演化相关(图 3),梅里阿塔洋主要存在于三叠纪至侏罗纪(Mandl, 2000),传统上认为梅里阿塔洋是新特提斯洋的一个分支(图 3),其实与冈瓦纳大陆北缘的新特提斯洋没有直接的地理或地质联系,也有学者提出可能是古特提斯洋的弧后洋盆(Stampfli and Kozur, 2006; Stampfli et al., 2013)。皮埃蒙特洋是从中大西洋延伸到阿尔卑斯-喀尔巴阡一个较长的大洋区域(图 3),也被称为“阿尔卑斯特提斯”(Favre and Stampfli, 1992),所以也有学者把阿尔卑斯特提斯洋视为大西洋分支,而不作为新特提斯洋的一个分支(Bernoulli and Jenkyns, 1974; Schmid et al., 2004; Stampfli and Kozur, 2006)。从这个角度讲,这的确和环冈瓦纳大陆边缘打开的新特提斯洋完全不同,不过这个大洋可能和新特提斯洋分支瓦尔达尔(Vardar)洋连接(图 2)(Schmid et al., 2008)。总之,阿尔卑斯中-新生代构造演化是在华力西期造山带的基础上依次经历了梅里阿塔洋和彭尼内洋(包括瓦莱分支)打开和闭合两个威尔逊旋回的造山过程。


图 3 西特提斯晚三叠以来代表性古地理重建(据Schmid et al., 2004修改) Fig. 3 Representative paleogeographical reconstruction for Late Triassic (a), Late Jurassic (b) and Late Cretaceous times (c)(slightly modified after Schmid et al., 2004)
2 基底构造单元划分和基本特征

早期的研究只认为阿尔卑斯-地中海带内的地块来自非洲,如亚德里亚板块(Channell et al., 1979; Dewey et al., 1989)。后来逐渐认识到欧州加里东和华力西带内卡多米(Cadomian)-阿瓦隆(Avalonia)都是亲冈瓦纳的(Ziegler, 1990; Nance and Murphy, 1994; von Raumer, 1998; Nance et al., 2002),均发育埃迪卡拉纪到寒武纪的火山弧,并且认为与阿拉伯地盾中的同时期火山弧有密切联系(Neubauer, 1991; Stern, 1994),这些地块之间都具有一定的可比性,可以说欧洲的加里东和华力西带中的基底地块(图 4)均是由来自冈瓦纳的地块拼贴而成,但是这些块之间往往被不同时期的蛇绿岩带分隔(图 4),再加上后期构造变动,使得这些地块源自冈瓦纳大陆的具体位置存在很大争议(Stephan et al., 2019; Haas et al., 2020; Neubauer et al., 2020)。此外,尤其对走滑错移(Guillot et al., 2009)考虑较少,尽管阿尔卑斯基底单元可以与其前陆区的华力西期地壳相对比,但大部分基底地块可能并不直接是中央地块、孚日山-黑森林地块或波希米亚地块的南延部分。

图 4 阿尔卑斯及邻区前中生代基底构造要素(底图据Asch,2005;缝合带主要参考Şengör, 1984; Neubauer, 2000; Stampfli and Kozur, 2006; Franke et al., 2017) Fig. 4 Pre-Mesozoic tectonic elements in the Alps and adjacent areas(after Asch, 2005; Şengör, 1984; Neubauer, 2000; Stampfli and Kozur, 2006; Franke et al., 2017)

① Asch K. 2005. 1/5 Million International Geological Map of Europe and Adjacent Areas, BGR (Hannover)

2.1 基底构造单元划分

基底构造单元区划和中新生代构造单元名称一致(Frisch et al., 1990),主要分为海尔微、彭尼内、奥地利阿尔卑斯、南阿尔卑斯四个基底单元(图 5a),其中海尔微基底单元也称为外阿尔卑斯(结晶)地块(von Raumer, 1984),前中生代的基底单元也统称原阿尔卑斯(Proto-Alps)(Schätz et al., 2002)。Schulz et al.(2008)von Raumer et al.(2013)以推覆体单元为基础,基于已有资料对阿尔卑斯基底进行了较详细的构造单元划分(图 5b),并对各基底地块前中生代的主要岩浆-变质事件(图 6)进行了总结。由于阿尔卑斯期强烈的逆冲推覆作用,使得古地理单元发生较大的位移,对这些构造单元中生代之前进行大致的复位(图 7)对于理解前中生代构造演化非常重要。复原图中显示了各构造地层单元的对比,现今看到的上、下叠在一起的构造地层单元在形成的时候相距很远,在后期的构造运动才叠置在一起(对比图 5图 7)。例如,上奥地利阿尔卑斯单元中的浅变质部分和南阿尔卑斯主要由奥陶系-石炭系组成的地层序列具有较好的对比性,与中、下奥地利阿尔卑斯深变质岩明显不同,古地理上长期处于冈瓦纳大陆的被动陆缘(Frisch and Neubauer, 1989; von Raumer et al., 2002),这些单元在古生代地理恢复中也被合称为诺利(Noric)地体(Frisch and Neubauer, 1989)或诺利组合(Neubauer et al., 2000)(对应图 7a蓝色断线以南区域),向东南可以和迪纳里德(Dinarides)造山带的基底相连,也称诺利-波斯尼亚(Bosnian)地体(Flügel, 1990)(对应图 4中紫色断线以南以西区域)。

图 5 阿尔卑斯构造图 (a)基底构造区划图(底图据Frisch et al., 1990; 东Alps按Neubauer et al., 2000修改);(b)基底构造单元(底图据von Raumer et al., 2013; 东Alps按Neubauer et al., 2000修改).缩写代号:海尔微:AG-Aar-Gotthard; AR-Aiguilles Rouges; MB-Mont Blanc; Ar-Argentera; Bel-Belledonne.彭尼内:A-Adula/Cima Lungo; H-Habach-Storz and Stubach Groups; Le-Lepontine nappes with Simano, Maggia, Leventina, Lebendun; Ta-Tambo; ZH-Zone Houillère.奥地利阿尔卑斯:Ca-Campo; DB-Dent Blanche; Gg-Grobgneis complex; Gl-Gleinalm; Gu-Gurktal nappes; GWZ-Greywacke zone; Ko-Koralpe; Ö-Ötztal; P-Plankogel; Sa-Saualpe; Sc-Schladming; Si-Silvretta; SL-Sesia-Lanzo zone; Sp-Speik complex; Ul-Ulten; We-Wechsel.南阿尔卑斯: Iv-Ivrea zone; SC-Strona-Ceneri zone Fig. 5 Tectonic map of the Alps (a) domains in the European Alps(slightly modified after Frisch et al., 1990; Neubauer et al., 2000 for the East Alps); (b) Pre-Mesozoic basement units(slightly modified after von Raumer et al., 2013; Neubauer et al., 2000 for the East Alps)

图 6 阿尔卑斯基底主要岩浆-变质事件(据von Raumer et al., 2013修改) He-海尔微;Pe-彭尼内;AA-奥地利阿尔卑斯;SA-南阿尔卑斯 Fig. 6 Pre-Mesozoic events in the Alpine basements(slightly modified after von Raumer et al., 2013)

图 7 阿尔卑斯前中生代基底单元重建示意图(据von Raumer et al., 1998, 2002补充) Fig. 7 Sketch reconstruction of the Pre-Mesozoic basement in the Alps(modified after von Raumer et al., 1998, 2002)
2.2 海尔微基底

海尔微基底也称为外阿尔卑斯(结晶)地块(von Raumer, 1984),位于阿尔卑斯外侧(新生代造山带前陆方向),因而阿尔卑斯旋回仅经历了低级变质作用,从而较好保存了基底演化记录,是较早尝试对阿尔卑斯带开展基底演化研究的构造带(von Raumer, 1984; von Raumer, 1987)。

海尔微基底由不同类型的变质岩、深成岩和混合岩组成,原岩经历多期变质,以寒武纪至早石炭世的碎屑沉积岩为主,夹碳酸盐岩和基性火山岩,被晚奥陶世和华力西花岗岩侵入(Biino, 1994; Bussy et al., 2011; Bussien Grosjean et al., 2018)。基底被晚石炭世至二叠纪的未变质的沉积-火山岩系和中生代的沉积岩不整合覆盖(Guillot and Ménot, 2009)。

海尔微基底未观察到确切的泛非期基底残留,在变质沉积物中的碎屑锆石有泛非期(620~550Ma)记录(Schaltegger, 1993)。Aigilles-Rouges(图 5b中AR)的变泥质-变杂砂岩系列(von Raumer and Bussy, 2004)夹有酸性火山岩夹层和层状电气石层,与伊比利亚中部新元古界-下寒武统非常相似(Rodríguez Alonso et al., 2004)。

Belletonne地块的最南端包含Chamrousse(-Séchilienne)蛇绿混杂岩(Bodinier et al., 1982)(图 5b中Bel),具有完整的蛇绿岩序列(倒转),全岩Sm-Nd年龄为497Ma(Pin and Carme, 1987),其中的斜长花岗岩锆石U-Pb年龄为496Ma(Ménot et al., 1988)。目前普遍认为Chamrousse蛇绿岩产于弧后盆地环境(Guillot et al., 2002; von Raumer and Stampfli, 2008)。

榴辉岩和超镁铁岩的残留在多处可见(Meisel et al., 1996)。Gotthard和Tavetsch地区(图 5b中AG),包括早奥陶世辉长岩侵入体、高压变质岩、奥陶纪深熔体(Schaltegger, 1993),Aar和Gotthard地块(图 5b中AG)的高压变质峰期年龄为~468Ma(Gebauer, 1990; Schaltegger et al., 2003),可能代表奥陶纪造山旋回(Biino, 1994; Mercolli et al., 1994; Schaltegger et al., 2003)。

泥盆纪以来,海尔微基底经历了强烈的改造,如Belledonne发生推覆叠置(Guillot et al., 1999),晚石炭世又有不同程度变质叠加;Argentera地块(图 5b中Ar)发生石炭纪维宪期(~340Ma)高压变质作用(Ferrando et al., 2008; Rubatto et al., 2010),其最终剥露以石炭纪末斯蒂芬期(Stephanian)沉积不整合(Rubatto et al., 2010)为标志;Aar地块(图 5b中AG)伴随晚石炭世花岗岩的深熔和侵入(Bussien Grosjean et al., 2018; Fréville et al., 2018)发生角闪岩相变质作用(Schaltegger et al., 2003),但总体不发育二叠纪花岗岩(Fréville et al., 2018)。

综上,海尔微基底构造演化主要发生在两个阶段,即早古生代在冈瓦纳活动大陆边缘复杂的演化和晚华力西-后华力西期演化。至少在后一阶段,阿尔卑斯前陆区观察到了类似的演化(von Raumer et al., 2009),所以,海尔微的基底是典型的华力西带一部分,可能与华力西带的莫尔多瑙(Moldanubian)相对应(von Raumer et al., 2009),而且可能位于其东部(现今的波西米亚以东),该带可能通过法国Maures-Tanneron地块一直连续到意大利的科西嘉和萨丁岛(Matte, 2001; Bellot, 2005; Rossi et al., 2009; Casini et al., 2015),如果是这样,那么现今的分布很可能是华力西晚期经右旋错移的结果(Guillot and Ménot, 2009)。

另外,海尔微缺少泛非期的基底,但物源区有泛非期的证据,表明其形成于冈瓦纳大陆边缘,与其它华力西基底组成新元古代-古生代早期陆缘增生带(见图 4中推断的范围),经历了寒武纪-早奥陶世原特提洋弧后打开和关闭过程,而后泥盆纪-早石炭世卷入强烈的华力西造山作用,作为华力山造山带的内带。与现今相邻的彭尼内及其它阿尔卑斯基底(见后文)相比较,表明其可能是彭尼内的增生部分,也可能与彭尼内单元当时并不在一起,直到华力西期才并列在一起。

2.3 彭尼内基底

彭尼内也称内阿尔卑斯基底(“intra-Alpine basement”)(狭义上),相对于外部的海尔微基底,阿尔卑斯山脉的内部区域(即彭尼内)被阿尔卑斯期构造变质作用强烈叠加改造(von Raumer, 1998)。

西彭尼内基底主要出露在布里昂松(Briançonnais)地块,由前寒武纪到早古生代的多期变质基底组成,其中含大量变基性岩(Thélin et al., 1993)。Bussien et al.(2011)在Sambuco和Maggia推覆体(图 5中Le)中一条带状基性杂岩中确定了寒武纪变质闪长岩(锆石U-Pb年龄:533~544Ma)(Bussien et al., 2011);Simano和Leventina(图 5中Le)发育MORB性质的超基岩-基性岩,锆石U-Pb年龄为518±11Ma(Schaltegger et al., 2002),而后被晚寒武世具有非造山裂谷型岩浆侵入,其中花岗斑岩锆石U-Pb年龄为507±9Ma(Guillot et al., 1993),碱性花岗岩锆石U-Pb年龄为500±4Ma(Bussy et al., 1996);在Adula推覆体(图 5中A)北面上寒武统中也发现有双峰式岩浆岩,被认为代表弧后裂谷产物(Cavargna-Sani et al., 2014),这与同期发育的增生杂岩(Schaltegger et al., 2002)联系在一起,表明其处在俯冲带后缘的裂解背景,Loderio-Biasca组合中还有早奥陶世花岗岩(锆石U-Pb年龄:479±4Ma)(Bertrand and Leterrier, 1997)。角闪岩相变质的奥陶纪变质泥质岩(Trescolmen组)中含有丰富的原岩为洋壳的榴辉岩残留体(Cavargna-Sani et al., 2014),这一组合可与现在分布在华力西造山带的萨克森-图林根(Saxo-Thuringian)和莫尔多瑙相对比(Cavargna-Sani et al., 2014),这表明这些地块当时可能是东西并列,并非现在的南北向排列。此外,该带还发育晚石炭到早二叠世(Namurian~Stephanian)的沉积岩和晚石炭世花岗岩(Houillère:锆石U-Pb年龄为324~323Ma;Aiguilles:锆石U-Pb年龄为303~312Ma)(位置分别见图 5b中ZH和AR)(Bertrand et al., 1998Bussien Grosjean et al., 2018)。

东彭尼内基底主要出露在东阿尔卑斯的陶恩(Tauern)构造窗,也称为Venediger推覆系,由三个岩石地层单元组成(Frisch et al., 1993):(1)弧后洋壳中的碎片组成的蛇绿岩(Stubach岩群);(2)可能代表弧后洋壳上岛弧残余的火山岩(Habach-Storz岩群);(3)中央片麻岩。

Stubach岩群由超镁铁质岩(堆晶岩和方辉橄榄岩)、变质辉长岩和变拉斑玄武岩组成,可能形成与俯冲作用相关弧后盆地(Frisch and Raab, 1987; Neubauer et al., 1989),Stubach群中斜长角闪岩锆石U-Pb年龄为539~486Ma,变质年龄均为华力西期(von Quadt, 1992)。Habach-Storz群由大量变质安山岩和钙碱性火山岩、变沉积岩互层组成。Habach群以低钾安山岩为主,Storz群以玄武岩为主。Habach和Storz群可能代表硅镁质洋内弧(Frisch and Raab, 1987; Frisch and Neubauer, 1989)。玄武岩锆石U-Pb SHRIMP年龄为547Ma(Eichhorn et al., 1999)。Habach群角闪岩原岩年龄为657 Ma(锆石U-Pb)和~644Ma(锆石Sm-Nd)(von Quadt, 1992),表明形成于泛非期。

中央片麻岩由大量钙碱性Ⅰ型花岗岩组成,主要为花岗闪长岩至英云闪长岩,明显分为早石炭世维宪期;石炭纪和二叠纪之交,早二叠世三期(Eichhorn et al., 2000; Bussien et al., 2011),第二期早期还发育带有俯冲印迹的基性-超基性堆晶岩(Cesare et al., 2002),此外,第二期还伴随少量长英质和中性火山岩,不整合盖在维宪期花岗岩上,这些后华力西期岩浆作用,部分学者认为是古特提斯洋俯冲形成的陆缘弧(Finger and Steyrer, 1990; Cesare et al., 2002)。

大部分学者认为彭尼内基底可作为莫尔多瑙(Moldanubian)地块的南部延续(Lammerer, 1986; von Raumer, 1998; Neubauer et al., 1999),还有一种设想认为彭尼内基底可能自里阿斯期(晚三叠末-早侏罗世)以来,从更靠西南的伊比利亚迁移到海尔微和奥地利阿尔卑斯之间(Kelts, 1981; Stampfli, 1993)。

彭尼内基底有明确的泛非期基底,表明其为冈瓦纳大陆的组成部分,最明显的特征是,寒武纪-早奥陶世的伸展环境的岩石组合和弧后盆地发育,按现今位置考虑,与海尔微基底一起构成新元古代末-早古生代初的沟-弧-盆体系,彭尼内基底直接与冈瓦纳大陆相连,或者和奥地利阿尔卑斯一起与冈瓦纳大陆相连。华力西期彭尼内基底与海尔微基底同样做为造山带的内带产出,二叠纪岩浆岩更发育。

2.4 奥地利阿尔卑斯基底

奥地利阿尔卑斯的基底主要出露于北部灰岩阿尔卑斯和南阿尔卑斯之间(图 8)。阿尔卑斯期构造使该区基底被不同程度变质作用所叠加,在绍山-科尔山(Saualp-Koralp)(Thöni and Jagoutz, 1992; Miller et al., 2005)和斯洛文尼亚的波霍尔耶山(Pohorje)(Sandmann et al., 2016)地区,始阿尔卑斯期变质作用可达榴辉岩相及随后的角闪岩相退变(Miller and Thöni, 1997; Faryad and Hoinkes, 2003; Schuster and Stüwe, 2008; Herg and Stüwe, 2018)。

图 8 东阿尔卑斯东部构造单元(据Geologische Bundesanstalt,2013编绘) Fig. 8 Tectonic units of the eastern part of the East Alps(simplified from Geologische Bundesanstalt, 2013)

① Geologische Bundesanstalt. 2013. Vergrößerung der Geologischen Vbersichtskarte der Republik Österreich 1/1500000, Geol. B.-A., Wien.

奥地利阿尔卑斯基底由晚奥陶世至早石炭世含化石的、弱变质沉积岩和火山岩、千枚岩(石英千枚岩)和结晶基底组成,结晶基底还有晚前寒武纪的残留体。由于年龄、形成环境和前阿尔卑斯期变质程度的不同,曾按地体观点解释为不同来源的构造拼贴体(Frisch and Neubauer, 1989)。基底单元在阿尔卑斯造山期堆叠,通常在逆冲推覆系之间夹有二叠纪-中生代的盖层(图 9)。

图 9 东奥地利阿尔卑斯构造地层(据Neubauer et al., 2000稍做修改) Fig. 9 Tectonostratigraphy of the Eastern Austroalpine units(slightly modified after Neubauer et al., 2000)
2.4.1 下奥地利阿尔卑斯

下奥地利阿尔卑斯单元分布较少,主要位于东阿尔卑斯的东缘(图 8),进一步分为下部的Wechsel推覆体和上部的Kirchberg-Stuhleck推覆体(图 9)。下奥地利阿尔卑斯单元自下而上包括Wechsel推覆体的Wechsel-Waldbach杂岩(图 5b中We)和Kirchberg-Stuhleck推覆体的“Grobgneiss”杂岩(或Raabalpen杂岩)以及Strallegg杂岩(含混合岩)(图 5b中Ra和Gg)。前人对其岩石组合进行详细描述(Flügel and Neubauer, 1984; Neubauer and Frisch, 1993)(Schuster et al., 2001),但缺少深入研究,尤其没有确切的年代,但其中含有丰富的原特提斯洋演化及华力西期构造信息(Neubauer et al., 2020)。

Wechsel杂岩主要由钠长石变斑晶片麻岩和上覆千枚岩组成(构造接触)。新的锆石U-Pb年龄数据表明该杂岩经历了500~520Ma和550~570Ma两个阶段的岩浆作用,存在大量2.1Ga年的碎屑锆石,表明物源区来自西非和亚马逊地区(Neubauer et al., 2020)。Müller et al.(1999)根据白云母40Ar/39Ar变形年龄(~245Ma),认为该杂岩经历了二叠纪-三叠纪低绿片岩相变质作用。

Waldbach杂岩(年代不确定)底部为千枚状云母片岩、中间为正片麻岩(片麻状角闪岩)、不同类型的斜长角闪岩类,顶部为薄层石榴云母片岩、含硫化物黑色片岩和石英岩以及层状硫化物(Neubauer and Frisch, 1993)。华力西期发生角闪岩相变质作用,晚白垩世绿片岩相变质作用叠加。Wechsel杂岩和Waldbach杂岩这两个单元,均有二叠纪-三叠纪的盖层。

Raabalpen杂岩(Kirchberg-Stuhleck推覆体)主要由“Grobgneiss”组成(图 5b中Gg),是一种粗粒斑状变花岗岩,东西向延伸超过120km,南北向延伸约60km。其围岩为云母片岩和石英千枚岩,以前认为主要为石炭纪,新的数据表明主要为中二叠世(锆石U-Pb年龄:272~267Ma)(Yuan et al., 2020)。Strallegg片麻岩发生混合岩化,局部含铝硅酸盐,富黑云副片麻岩。

2.4.2 中奥地利阿尔卑斯

中奥地利阿尔卑斯是奥地利阿尔卑斯的主体,前中生代的基底类型复杂多样,主要经历两次高级变质作用(Neubauer et al., 2002),第一次在早奥陶世(490~470Ma)(Hoinkes et al., 1997; Klötzli-Chowanetz et al., 1997; Thöni, 1999),之后是460~425Ma之间的花岗岩岩浆作用(Thöni, 1999)。第二次高级变质事件和相关花岗岩岩浆作用发生在360~310Ma之间(Miller and Thöni, 1995; Schermaier et al., 1997; Thöni, 1999)。除Schladming地区,中奥地利阿尔卑斯原岩恢复和构造环境研究程度相对较高,尤其西部的Silvretta和Ötztal单元(图 5b中Si和Ö)。

Silvretta单元为变闪长岩-变玄武岩系列,代表长期(620~480Ma)受俯冲约束的弧岩浆组合(Schaltegger et al., 1997)。陶恩构造窗南的中奥地利阿尔卑斯结晶基底表现出类似的组合(Schulz et al., 2004; Siegesmund et al., 2018)。

Ötztal-Stubai杂岩是奥地利阿尔卑斯基底多期(~450Ma, ~320Ma,~90Ma)(Kaindl et al., 1999)变质区的典型代表,由大量副片麻岩和云母片岩组成,发育丰富的变花岗岩(420~490Ma)(Thöni and Miller, 2004)和变基性岩、大理岩,基性岩包含MORB型大洋壳组分(530~521Ma)(Miller and Thöni, 1995)。

Silvretta和Ötztal都含有350Ma的榴辉岩(Thöni, 2006);Meran南部的Nonsberg-Ulten地区(图 5b中Ul),榴辉岩形成于336Ma(Tumiati et al., 2003, 2007)。

东部的中奥地利阿尔卑斯主要由Muriden(图 5b中Gl和Sc)和Koriden(图 5b中Sa和Ko)杂岩组成。Muriden杂岩自下而上包括“核杂岩”、Speik杂岩和云母片岩-大理岩杂岩。

“核杂岩”由大量高级变质的斜长片麻岩组成,这些片麻岩夹斜长角闪岩(片麻状斜长角闪岩),它们的原岩可能与俯冲有关,包括玄武岩和安山岩,还有大量的英安岩和流纹岩及其深海沉积(Frisch et al., 1987)。对酸性较强的组分研究表明,可能代表活动大陆边缘或硅铝质岛弧(Frisch and Neubauer, 1989)。Schladming“核杂岩”发育有丰富的早-中奥陶世I-S型花岗岩(Huang et al., 待刊数据)。

Speik杂岩在构造上位于“核杂岩”之上(图 10),由各种蛇纹石化超镁铁质岩、斜长角闪岩(变辉长岩)、含石榴石和带状斜长角闪岩(变基性岩)、局部出露的榴辉岩组成(Faryad et al., 2002)。Speik杂岩被确认为东阿尔卑斯保存的最古老的洋壳,Kraubath辉石岩的Re-Os同位素误差等时线年龄为550±17Ma;辉石岩和辉长岩全岩Sm-Nd等时线年龄为554±37Ma,方辉橄榄岩误差等时线年龄为745±45Ma(Melcher and Meisel, 2004)。但仍缺少高精度的年代学数据,目前比较一致认为Speik杂岩具有弧后洋壳特征(Frisch et al., 1984Neubauer,1988Melcher et al., 2002Melcher and Meisel, 2004)。

图 10 Speik杂岩及邻区地质简图(据Neubauer, 1988Melcher and Meisel, 2004) Fig. 10 Generalized geological map of the Speik complex and adjacent areas(after Neubauer, 1988; Melcher and Meisel, 2004)

云母片岩-大理岩杂岩分布较广,为中级变质岩,原岩主要为晚奥陶世和志留纪的碎屑岩夹火山岩,其中火山岩反映出由基性亚碱质、酸性钙碱质向基性碱质演化的趋势,晚志留世至中泥盆世地层包含台地相碳酸岩、远洋灰岩和含板内玄武岩的碎屑岩,晚泥盆世碳酸盐台地沉降过渡到远洋沉积(Heinisch, 1988)。石炭纪造山作用主要表现为复理石沉积和造山变形变质作用,晚石炭世威斯特伐利亚(Westphalian)-斯蒂芬期为陆相磨拉石堆积。

Koriden杂岩的主体也称榴辉岩单元,典型特征是含有辉长岩原岩的榴辉岩和含锰燧石透镜体的副片麻岩,厚度大且层序单调,具有复理石原岩的特点,被推断为增生楔,榴辉岩原岩获得了大量二叠-三叠纪年龄(Miller and Thöni, 1997; Thöni and Miller, 2000; Schulz, 2017)。始阿尔卑斯期经历榴辉岩相变质(Miller and Thöni, 1997; Herg and Stüwe, 2018)后再伸展拆离(Schorn and Stüwe, 2016)上来。

Plankogel杂岩(图 8中绍山南)构造堆叠在Koriden杂岩上,由粗粒石榴云母片岩和富含斜长石的黑云母片岩组成,其中含有大小不等的大理岩透镜体、含锰铝榴石石英岩、斜长角闪岩和超镁铁质岩,富锰石英岩被解释为硅质深海沉积物,斜长角闪岩具有N-MORB地球化学特征(Neubauer et al., 1989),早期观点认为Plankogel杂岩代表华力西期蛇绿混杂岩(Neubauer and Frisch, 1993)。最新获得的斜长角闪岩原岩年龄为两组,其中一组为414~418Ma(Guan et al., 待刊数据),表明存在华力西期蛇绿岩。但还有一组主要为中二叠世-早三叠世((249~266Ma),可能代表古特提斯洋消亡的遗迹(Liu et al., 2019)。所以原定的Plankogel杂岩需要进一步分解,极有可能代表两个不同时期洋盆的蛇绿岩经后期构造叠置在一起,较老的一组代表南华力西洋,本文暂称南绍山蛇绿岩。

陶恩构造窗以南的变质沉积岩都具有早奥陶世前的沉积地层,根据碎屑锆石数据和岩浆岩的地质年代学推断陶恩窗以南的大多数阿尔卑斯基底单元为晚埃迪卡拉世-早古生代沉积,被早-中奥陶世花岗岩侵入(Schulz and Bombach, 2003; Siegesmund et al., 2007, 2018; Schulz et al., 2008; Heinrichs et al., 2012)。

2.4.3 上奥地利阿尔卑斯

上奥地利阿尔卑斯主要发育奥陶纪至泥盆纪沉积,奥陶系中含有酸性火山岩(Schönlaub, 1997),志留系和泥盆系发育基性火山岩(Loeschke and Heinisch, 1993),被认为是冈瓦纳被动大陆边缘裂解的产物(Flügel and Neubauer, 1984; Neubauer and Frisch, 1993),这些地层仅发生极低级至低级变质作用(Schönlaub, 1992)。

著名的上奥地利阿尔卑斯推覆体有灰瓦克带(杂砂岩带)(图 5b中GWZ)的诺利(Noric)推覆体,Veitsch推覆体,Gurktal逆冲系统的Stolzalp推覆体(图 5b中Gu)和格拉茨逆冲系统的Rannach-Hochlantsch-Laufnitz-Dorf推覆体(图 5b中GP)等。

杂砂岩带的最西部发育Wildschönau“蛇绿岩”,其中变辉长岩的锆石U-Pb SHRIMP年龄为477±9Ma,与冈瓦纳大陆解体时的大陆裂谷环境有关(Loth et al., 2001)。

Noric推覆体发育从晚奥陶世到中石炭世的盖层序列,其中晚奥陶世和志留纪的碎屑沉积物夹钙碱-碱性火山岩,泥盆纪发育台地型碳酸盐岩。沉积在一个稳定的陆架上,表现出持续沉积特点(Frisch and Neubauer, 1989),向东南与南阿尔卑斯和波斯尼亚具有很好的对比性(Neubauer and von Raumer, 1993)。

Veitsch推覆体的石炭系为磨拉石堆积,被认为是华力西造山事件的沉积响应(Ratschbacher, 1984; Neubauer and Handler, 2000)。白云母40Ar/39Ar和Rb/Sr年龄仅记录了华力西期事件(375~270Ma)(Müller et al., 1999)。

2.5 南阿尔卑斯基底

南阿尔卑斯和奥地利阿尔卑斯以环亚德里亚构造线分开,但在前阿尔卑斯期变质基底、古生代层序和中生代盖层序列表现出许多相似之处,广泛存在泛非期到卡多米期造山事件(Neubauer et al., 2007)。

南阿尔卑斯基底区域变质从西部的麻粒岩带(Ivrea-Verbano带)(图 5b中Iv)逐渐降低到东部的极低级变质带,在泥盆纪-石炭纪华力西造山运动期间,南阿尔卑斯基底经历了高温-中高压到低温-低压变质作用(Sassi and Spiess, 1993; Benciolini et al., 2006)。

另一个变质基底带是西部的Strona-Ceneri带(图 5b中SC),早古生代变沉积岩和变质岩原岩可能为增生楔,反映了典型的突厥(增生)型造山(Franz and Romer, 2007; Zurbriggen, 2015, 2017),碎屑物源对比表明古生代早-中期南阿尔卑斯物源主要来自于撒哈拉准克拉通和阿拉伯-努比亚地盾(Arboit et al., 2019)。

早奥陶世(十字石U-Pb年龄:~480Ma)经历角闪石相热变质事件(Romer and Franz, 1998),被奥陶纪花岗岩侵入(锆石U-Pb年龄:457±9Ma)(Zurbriggen et al., 1997),榴辉岩锆石U-Pb和金红石U-Pb年龄分别为457±5Ma和443±19Ma,代表变质年龄(Franz and Romer, 2007)。这些榴辉岩的形成表明发生奥陶纪的俯冲作用(Zurbriggen et al., 1997; Handy et al., 1999; Zurbriggen, 2017)。

南阿尔卑斯的卡尔尼克山(图 5b)有几乎连续的晚奥陶世到二叠纪沉积记录(Schönlaub, 1992),奥陶系厚层杂砂岩、页岩夹火山岩、砂岩,志留纪浅海相灰岩(有些地方相变更深的黑色粘土岩),泥盆纪发育典型碳酸盐岩台地沉积,到早石炭世维宪期突变为复理石沉积(Vai and Cocozza, 1986; Flügel, 1990),一直持续到谢尔普霍夫期/纳缪尔期(Schónlaub, 1992)。石炭纪发育向南的推覆构造(Läufer et al., 2001),反映了华力西期构造。

南阿尔卑斯晚石炭世到早二叠世主要以河湖相和钙碱性中-酸性火山沉积为主,其上被晚二叠世的红色河流相沉积(不含火山岩)角度不整合覆盖(Cassinis et al., 2012),逐渐过渡到三叠纪的细碎屑岩到碳酸盐岩。与奥地利阿尔卑斯显著不同的是三叠纪发育大量岩浆岩(Casetta et al., 2018),尤其是火山碎屑岩在南阿尔卑斯广泛分布(Brack and Rieber, 1993; Brack et al., 2007; Stockar et al., 2012),主要为高钾钙碱性到钾玄质火山岩(Cassinis et al., 2008),很早就有学者提出三叠纪岩浆作用的构造背景为岩浆弧(Garzanti, 1985),现认为可能与古特提斯洋俯冲有关(Zanetti et al., 2013)。

南阿尔卑斯西部有与海尔微、彭尼内基底相似的增生型基底,东部晚奥陶世到二叠纪连续的沉积记录和上奥地利阿尔卑斯非常相似,代表冈瓦纳被动大陆边缘,甚至中生代盖层都可以对比,南阿尔卑斯比较发育三叠纪的弧岩浆岩。总体上阿尔卑斯带自北而南,二叠纪到三叠纪岩浆作用逐渐增强。

3 前中生代基底大地构造演化

阿尔卑斯及邻区前中生代基底重建的主要困难是这些小地块的起源,因为这些地块在拼合过程或后期改造都可能发生较大位移。经典的中-南欧复位(Franke, 2000; Matte, 2001)主要侧重大型板块间漂移,总体对华力西洋的最终关闭是正确的,但并未考虑大多数小型地块或外来地体的增生拼贴(Stampfli and Borel, 2002)。传统的华力西模型认为早石炭世冈瓦纳大陆整体与欧洲大陆发生陆陆碰撞,忽略了古特提斯洋伸进中欧甚至西欧的可能性。随着基底年龄的积累,尤其是奥地利阿尔卑斯古特提斯洋残留的发现,需要重新考虑基底构造演化,本文将阿尔卑斯基底演化分为以下5个阶段。

3.1 新元古代-奥陶纪

新元古代-早古生代(巴西-)泛非造山运动导致冈瓦纳大陆在约650~550Ma聚集(Veevers, 2004),其北部(现今位置)外围环冈瓦纳大洋为原特提斯洋(广义上)(Stampfli and Borel, 2002),在约600~590Ma原特提斯洋开始俯冲(Oriolo et al., 2017; Zurbriggen, 2017),可能一直持续到奥陶纪(Zurbriggen, 2017; Siegesmund et al., 2018),环冈瓦纳大陆边缘记录泛非事件的地质体,现在主要保存在欧洲加里东和华力西造山带的基底中(图 4),在描述欧洲“泛非期”时欧洲学者多倾向用卡多米期(Cadomian)这一术语(Neubauer, 2002; Linnemann et al., 2014)。而“泛非”更多用于冈瓦纳大陆内部陆陆碰撞造山作用,卡多米多用于近乎同时期环冈瓦纳的陆缘造山,但结束时间比泛非晚。环冈瓦纳的大洋盆地统称原特提斯洋(广义上),自西向东分别为伊阿珀托斯洋(Iapetus,源自希腊神话中泰坦神)、Tornquist洋(名称源自瑞典磁学家A. J. H.Tornquist,他和波兰地质学家W. Teisseyre发现的重要断裂带,也称Tornquist-Teisseyre断裂带/缝合带,文献中也常称横贯欧洲缝合带——Trans-European Suture Zone)和狭义的原特提斯洋(亚洲)(Stampfli and Borel, 2002; von Raumer and Stampfli, 2008)。

Frisch and Neubauer(1989)首先提出了彭尼内和奥地利阿尔卑斯基底新元古代-早古生代处于活动大陆边缘的概念(Frisch and Neubauer, 1989)。现在基本公认在新元古代-寒武纪(奥陶纪)阿尔卑斯基底形成于冈瓦纳北缘的活动陆缘(图 7):新元古代-寒武纪弧主要发育在彭尼内的Ticino推覆体(Schaltegger et al., 2002)和Sambuco、Maggia推覆体(Bussien et al., 2011),中奥地利阿尔卑斯的Silvretta单元(Schaltegger et al., 1997)和陶恩窗以南(Schulz et al., 2004)以及下奥地利阿尔卑斯的Wechsel杂岩(Neubauer et al., 2020)。

目前争议很大的是这些基底形成时的具体位置,比如是靠近东冈瓦纳(Stampfli et al., 2013; Haas et al., 2020)还是西冈瓦纳(Torsvik and Cocks, 2013; Siegesmund et al., 2018; Neubauer et al., 2020)。目前开展比较多的工作是碎屑锆石U-Pb年龄(Neubauer, 2002; Linnemann et al., 2004, 2008; Nance et al., 2008, 2014; Şahin et al., 2014; Neubauer et al., 2020)和碎屑白云母40Ar/39Ar年龄(Neubauer et al., 2007),从这些年龄的物源分析更支持华力西造山带和阿尔卑斯造山带基底亲西冈瓦纳,中-晚寒武世生物古地理同样支持这一认识(Atnisha et al., 2017)。关于这一时期加里东和华力西基底的复原重建,目前看Torsvik and Cocks(2013)的大陆重建更合理,即原阿尔卑斯更接近于东非北部(图 11)。

图 11 早寒武世全球古地理(据Torsvik and Cocks, 2013稍做修改) Fig. 11 Global palaeogeography in the Early Cambrian(slightly modified after Torsvik and Cocks, 2013)

新元古代-寒武纪变基性岩和超基性岩沿彭尼内-中奥地利阿尔卑斯带呈线性分布,向外(北)是寒武纪-奥陶纪的变基性岩-超基性岩,奥陶纪榴辉岩主要沿海尔微呈线性带状分布,奥陶纪花岗岩类在所有阿尔卑斯构造带呈带状分布(图 12)。整体上看,阿尔卑斯基底明显含有大量的基性岩-超基性岩组合,且有向北变年轻的趋势,暗示原特斯洋一直在北面向环冈瓦纳地块群俯冲,环冈瓦纳大陆不断向外增生。

图 12 阿尔卑斯晚前寒武纪-奥陶纪构造环境重建示意图(据von Raumer, 1998补充修改) 单元名称和图 7一致 Fig. 12 Alpine basement areas with information about plate tectonic evolution from the Late Precambrian to Ordovician(modified after von Raumer, 1998)

原特提斯洋从北向南(按现今位置)俯冲,弧后经历了一系列复杂的演化过程(Schulz and Bombach, 2003; Schulz et al., 2008; Siegesmund et al., 2018),目前的研究程度尚难恢复全貌。Schulz et al. (2003)基于陶恩窗南的奥地利阿尔卑斯基底岩浆岩的岩石地球化学研究提出一个奥地利阿尔卑斯基底形成模型,自新元古代至奥陶纪奥地利阿尔卑斯经历了逐渐成熟的活动大陆边缘演化过程,早奥陶世曾打开过原瑞亚克洋(Crypto-Rhiec),或者把该洋盆看作原特提斯洋的弧后洋盆,在中奥陶世闭合(von Raumer and Stampfli, 2008)。

区域上,环冈瓦纳西段的阿瓦隆地块群在早奥陶世(Tait et al., 1997; Nysæther et al., 2002)或稍早(Torsvik and Cocks, 2013)从冈瓦纳大陆分裂出来,瑞亚克洋(Rheic名称源自希腊神话女神瑞亚Rhea)打开,分隔开阿瓦隆与阿莫里卡地块群(或者称卡多米地块群),阿瓦隆东部在晚奥陶世/早志留世与波罗的大陆碰撞(Tornquest洋关闭)(Cocks and Torsvik, 2002; Robardet, 2003; Winchester et al., 2006),早古生代末阿瓦隆与北美和波罗的碰撞最终关闭欧美原特提斯洋(Iapetus)。而东部亚洲原特提斯洋则可能是环冈瓦纳地块之间的准原地开合(Li et al., 2018; Zhao et al., 2018),东西原特提斯洋闭合方式的差异使得东西原特提斯空间对比出现困难。

3.2 晚奥陶世-志留纪裂解漂移

关于奥陶纪以后中-东南欧的板块模型,也开始由原来一个洋(Robardet et al., 1990)或两个洋模型(Matte, 1986)向多岛洋模型(Franke et al., 2017)(图 13)转变,这也可由残留在造山带的多条蛇绿岩带(图 4)体现出来。晚奥陶世-志留纪冈瓦纳大陆北缘伸展(Linnemann et al., 2008; von Raumer and Stampfli, 2008; Nance et al., 2010; Gaggero et al., 2012),在彭尼内基底的Aiguilles Rouges获得大量晚奥陶-早志留世(~440Ma)的变质事件(Schulz and von Raumer, 2011),在中奥地利阿尔卑斯Ötztal杂岩的局部深熔热事件(450~430Ma)(Thöny et al., 2008; Rode et al., 2012),是阿尔卑斯地壳深部层次伸展的表现。上奥地利阿尔卑斯的沉积演化记录了地壳浅部层次的伸展(Schönlaub, 1997; Neubauer et al., 2007)。格拉茨变基性岩(志留纪)(Fritz and Neubauer, 1988)和陶恩窗南部的中奥地利阿尔卑斯基底的板内玄武岩(430Ma)(Schulz et al., 2004),也被归因于晚奥陶世-志留纪地壳伸展。

图 13 瑞亚克洋和华力西地块早志留世重建示意图(据Nance et al., 2012; Franke et al., 2017修改) Fig. 13 Early Silurian reconstruction of the Rheic Ocean and adjacent areas(modified after Nance et al., 2012; Franke et al., 2017)

来自南阿尔卑斯的卡尔尼克地区晚奥陶世钾质斑脱岩层(Schönlaub et al., 2011)可能具有类似的意义,然而,卡尔尼克阿尔卑斯的钾质斑脱岩层为几毫米,最大到2~3cm,这表明火山源区相当远(Histon et al., 2007)。表明与奥地利阿尔卑斯间可能通过一个宽度未知的开阔海域分开,本文推断可能是Plankogel杂岩较老一组蛇绿岩代表的华力西期洋盆,由于露头主要分布在绍山(Saualpe)南,本文暂称南绍山洋。

除阿尔卑斯带外,从西班牙到中欧华力西带都有伸展的证据,如比利牛斯山(晚奥陶世-志留纪)(Casas et al., 2010; Navidad et al., 2018),Barrandian(波西米亚地块内)(可能持续到中泥盆)(Chlupaĉ et al., 1998),萨克森-图林根(von Raumer and Stampfli, 2008)。

总体上,在晚奥陶世-志留纪期间,阿尔卑斯地区基底中的火成岩活动相对变弱(图 6),这个时期地块以向北漂移为主,形成多岛洋格局(图 13)。除南阿尔卑斯与奥地利阿尔卑斯是分开的,奥地利阿尔卑斯与阿莫里卡地块群也有洋域分隔开(Schätz et al., 2002)(图 13)。关于这些小洋盆的规模研究程度仍然较低。志留纪末(~420Ma)古特提斯洋打开(Stampfli and Borel, 2002; Schulz et al., 2004; Torsvik and Cocks, 2004; von Raumer and Stampfli, 2008; Arboit et al., 2019),标志所有原阿尔卑斯地块脱离冈瓦纳大陆。

3.3 泥盆纪-石炭纪地块拼贴

早泥盆世瑞亚克洋开始双向俯冲消亡(von Raumer and Stampfli, 2008; Nance et al., 2012; Franke et al., 2017),华力西旋回分为多个构造变质和岩浆阶段(Matte, 2001; Stampfli et al., 2013),主要因为欧洲华力西带的演化涉及多个洋盆的消亡(图 13图 14),晚泥盆纪时古地理格局相对明确,在已拼贴的阿莫里卡地块群(华力西内带)南北两侧都存在洋盆(华力西外带)尚未关闭(图 14),北面为瑞亚克洋闭合后又在其北侧重新打开的莱茵-华力西洋(von Raumer and Stampfli, 2008; Franke et al., 2017),南侧为南绍山洋,向东可能与西喀尔巴阡山的北Gemeric蛇绿岩(Radvanec et al., 2017)相连(图 4)。

图 14 中欧华力西带板块演化示意图(据Franke, 2017修改) Fig. 14 Cartoon of the plate-tectonic evolution in the central European segment of the Variscides during the Latest Silurian through to Late Carboniferous(modified after Franke, 2017)

海尔微Aiguilles Rouges地块(von Raumer, 1984)和中央地块、孚日山和黑森林(Wickert, 1988; Eisbacher et al., 1989)晚泥盆世-早石炭世的沉积序列基本可以对比,这些沉积物主要是夹钙碱性火山岩的杂砂岩和页岩,火山岩具有弧性质(Eisbacher et al., 1989),波西米亚地块中也存在晚泥盆世至早石炭世弧(Lardeaux et al., 2012)。海尔微基底和陶恩窗发育中泥盆世、早石炭世与俯冲相关的弧花岗岩(von Raumer, 1998; Eichhorn et al., 2000),这些火山岩浆作用可能与南绍山洋向北俯冲相关。另外,在土耳其北部萨克尔亚地块也发现了泥盆纪俯冲相关花岗岩类(Aysal et al., 2012)。

华力西外带与内带的沉积差异非常明显,南阿尔卑斯泥盆纪浅水相碳酸盐岩沉积(Flügel, 1990),包括远洋灰岩,之后是早石炭世维宪期复理石沉积。Nötsch-Veitsch带早石炭世的硅质碎屑岩浅水沉积和礁灰岩沉积,碎屑岩40Ar/39Ar年龄多显示为华力西变质岩(Handler et al., 1997),可能代表了海沟充填(Neubauer et al., 2007)。晚石炭世为陆相砾岩,为同碰撞环境产物(Neubauer, 1988; Läufer et al., 1993),即南绍山洋的关闭。在北面外带莱茵-华力西、撒克逊-图林根、莫拉瓦-西里西亚带也发育维宪期复理石(Läufer et al., 2001),表明南北华力西洋闭合时间基本一致。

区域上维宪期复理石序列从Montagne Noire的南部边缘经撒丁岛延伸到南阿尔卑斯(包括上奥地利阿尔卑斯),进入潘诺西亚盆地,迪纳里德和希腊也广泛存在维宪期复理石,所有这些复理石序列可能是统一泛盆地的一部分(Flügel, 1990),这条石炭纪复理石带形成了冈瓦纳附近华力西内带的南部外边界。这一边界基本和中生代瓦尔达尔缝合带位置相当,代表了南绍山洋向东延伸的华力西期缝合带。Grubić (1995)根据在Kopaonik的闪光片岩(schistes lustres)研究认为在中生代瓦尔达洋的位置上曾经还存在过晚泥盆世到中石炭世的洋盆,完全关闭发生在晚石炭世。最近,巴尔干半岛基底的研究(Antić et al., 2016),得出同样认识,所以奥地利阿尔卑斯和南阿尔卑斯之间的洋盆可以连到塞尔维亚-马其顿地块以西或者可能位于更东的巴尔干和色雷斯之间缝合带(Yanev, 2000)。

晚石炭世出现统一盖层是一个重要的标志,其沉积历史在莫尔多瑙和阿尔卑斯地区显示出极大的相似性(von Raumer, 1998),大部分地区为河流相沉积,但南阿尔卑斯卡尔尼克地区有海相沉积,可能代表古特提斯沉积的北部边界(Schönlaub, 1997)。

3.4 晚石炭世-早二叠世活动陆缘

早晚石炭世之交(~320Ma)劳亚和冈瓦纳大陆合并形成了潘吉亚泛大陆(图 15图 16)(Stampfli and Borel, 2002; Gutiérrez-Alonso et al., 2008; Stampfli et al., 2013)。西冈瓦纳大陆与北美克拉通穿时碰撞,发生在晚石炭世-早二叠世(Hatcher, 2002; Nance et al., 2012)。

图 15 晚石炭世重建示意图(复位图据Torsvik and Cocks, 2016修改;缝合带据Simancas, 2005Murphy,2006Torsvik and Cocks, 2013) Fig. 15 Global palaeogeography in the Late Caboniferous (modified after Torsvik and Cocks, 2016; Simancas, 2005; Murphy, 2006; Torsvik and Cocks, 2013)

图 16 潘吉亚大陆拼合时间流程图 Fig. 16 Flow chart showing the Pangean amalgamation from the Neoproterzoic to Triassic

中-东南欧的华力西期造山运动发生在环冈瓦纳源的地块和阿瓦隆(-波罗的)之间(Stampfli and Borel, 2002; Stampfli and Kozur, 2006),主要为地块增生造山,并不是南北两大陆之间的陆陆碰撞造山。此时,向东开口的大洋为经典定义中的古特提洋(Şengör, 1984),在华力西造山形成过程中古特提斯由被动陆缘转换成活动陆缘(Stampfli and Borel, 2002; Stampfli and Kozur, 2006)。

基于对陶恩构造窗晚华力西期花岗岩的分析,Finger and Steyrer (1990)首先提出阿尔卑斯陆缘弧的概念。后来,Stampfli(1996)发现除了阿尔卑斯地区,从西班牙半岛的加泰罗尼亚、比利牛斯和意大利的卡拉布里亚、撒丁岛、科西嘉岛,法国的普罗旺斯、托斯卡纳推覆体、布赖恩·昂纳尼斯地区、到整个东、南阿尔卑斯都存在同期类似性质的岩浆岩(Stampfli, 1996)。除深成岩浆作用,早二叠世钙碱性安山质火山岩普遍出现(Bonin, 1990; Benek et al., 1996), 如阿尔卑斯前陆带的钻孔(瑞士北部Weiach)(Schaltegger, 1997)),海尔微带的Aar地块(Schaltegger and Corfu, 1995),Aigulles Rouges地块(Niklaus and Wetzel, 1996; Capuzzo and Wetzel, 2004)。彭尼内带也有石炭纪末/二叠纪火山岩(Bussy et al., 1996)。Stampfli(2001)提出了这些岩浆岩与古特提斯洋俯冲有关(Reischmann et al., 2001; Stampfli et al., 2001; Anders et al., 2006),这一活动的陆缘岩浆弧最西边可能到伊比利亚半岛(Gutiérrez-Alonso et al., 2011; Neiva et al., 2012; Pereira et al., 2014),该弧向东延伸与丝路弧(Natal'in and Şengör, 2005)相连。

但是关于古特提斯洋俯冲极性仍然存在争议,Şengör(1979)最早提出古特提斯洋向南俯冲并得到部分学者支持(Okay et al., 1996; Romano et al., 2006; Xypolias et al., 2006),但多数学者强调向北俯冲(Stampfli and Borel, 2002; Eren et al., 2004; Gutiérrez-Alonso et al., 2008; Torsvik and Cocks, 2016; Wan et al., 2019),这也是上述许多学者将华力西造山带南缘的晚石炭-早二叠世陆缘钙碱性岩浆岩归因于古特提斯洋俯冲的原因,也有学者提出古特提斯洋从早石炭世开始双向俯冲(Candan et al., 2016)。需要强调的是,不论俯冲方向如何,华力西造山带的垮塌作用(Bonin et al., 1993; Ziegler, 1993)与古特提斯洋陆缘作用在时间上是重合的,俯冲和造山带垮塌对岩浆作用的贡献孰轻孰重现在还很难分辨。

另一个重要的问题是,古特提斯洋向西到底伸到哪里,Şengör et al. (1984)最早提出古特提斯洋可以延到东喀尔巴阡,越来越多的证据表明维宪期古特提斯洋可能伸进伊比利亚半岛(Pastor-Galán et al., 2013; Pereira et al., 2015; Edel et al., 2018),这可能促进了从伊比利亚到阿莫里卡山弯构造的形成(Gutiérrez-Alonso et al., 2008; Pastor-Galán et al., 2011; Pereira et al., 2014)。但是目前主要依据岩浆岩属性,还未发现有明确的蛇绿岩。

3.5 二叠-三叠纪大陆裂谷和弧后伸展

阿尔卑斯普遍发育二叠纪岩浆作用(图 17)和高温低压变质作用,被称为“二叠纪事件”(Schuster and Stüwe, 2008; Thöni and Miller, 2009),但是关于其构造背景争议很大,主要有大陆裂谷和弧后伸展两种观点:前一种观点认为从二叠纪一直持续到中三叠世梅里阿塔洋经历了从大陆裂谷到大洋打开的连续过程(Kozur, 1991; Neubauer et al., 2000);后一种观点认为古特提斯洋斜向俯冲在华力西带南缘引起了弧后伸展作用(Finger and Steyrer, 1990; Stampfli and Kozur, 2006; Cassinis et al., 2012)或至少与俯冲带后退密切相关(Spiess et al., 2010)。

图 17 二叠纪古地理示意(据von Raumer, 1998; Haas et al., 2020修改) Fig. 17 Sketch map of Middle Permian paleogeography(modified after von Raumer 1998; Haas et al., 2020)

奥地利阿尔卑斯离俯冲带较远,二叠-三叠纪沉积盆地主要表现为裂谷特征(Neubauer, 2016),三叠纪以后与南阿尔卑斯隔梅里阿塔洋,其火山岩浆作用不一定与古特提斯洋俯冲相关,似乎可以和北面欧洲大陆腹地广泛大陆裂谷(Ziegler, 1986; Nikishin et al., 2002)为同一背景。而南阿尔卑斯火山岩明显具有大陆弧特点(Storck et al., 2019),这与早期的研究结果一致(Castellarin et al., 1988)。东南欧不同地块中也广泛分布二叠纪-三叠纪弧岩浆岩(Aysal et al., 2018)。产生这些岩浆作用用古特提斯洋的俯冲解释(Stampfli and Kozur, 2006; Cassinis et al., 2008; Aysal et al., 2018)比较合理。按现今的地理考虑,这似乎表明古特提斯洋俯冲带在南阿尔卑斯以南(图 18图 19)。

图 18 阿尔卑斯前中生代基底二叠纪重建示意图(据Von Raumer et al., 2013简化修改) Fig. 18 Pre-Mesozoic basement areas of the Alps in their Permian reconstruction(modified after Von Raumer et al., 2013)

图 19 阿尔卑斯晚二叠-晚三叠世板块演化示意图 Fig. 19 Cartoon of the plate-tectonic evolution in the Alps during the Late Permian to the Late Triassic

到三叠纪卡尼期,古特提斯洋沿欧亚南缘俯冲后退触发了一系列弧后洋盆(如梅里阿塔)的打开(Vavassis et al., 2000; Stampfli and Kozur, 2006),随后在侏罗纪打开瓦尔达洋(Stampfli and Borel, 2004)。阿尔卑斯旋回同样开始于卡尼期,这一时期对应于古特提斯洋的最后关闭(Kozur, 1999; Stampfli and Kozur, 2006)和中大西洋-阿尔卑斯域裂谷的开始(图 7)。

由于Plankogel蛇绿岩年龄的确定,表明古特提斯洋至少伸入奥地利阿尔卑斯,但是蛇绿岩最终如何就位还不好解释,我们初步提两个模型来解释Plankogel蛇绿岩的形成:1)二叠纪时南阿尔卑斯与奥地利阿尔卑斯相距较远(Stampfli and Kozur, 2006; Stampfli et al., 2013),Plankogel蛇绿岩可能从西面错移过来(图 18中模型1);2)按现在位置来考虑,二叠纪时南阿尔卑斯与奥地利阿尔卑斯接近(图 18中模型2),Plankogel蛇绿岩在南阿尔卑斯以南的某个位置逆冲推覆到现今位置。基于模型2,我们提出Plankogel蛇绿岩所代表古特提斯洋向南阿尔卑斯下俯冲,南阿尔卑斯相当于岩浆弧,奥地利阿尔卑斯为弧后区(图 19)。

4 总结和问题

阿尔卑斯四个基底单元组成各具特色,海尔微和南阿尔卑斯西部基底主体由俯冲增生杂岩构成,中、下奥地利阿尔卑斯是在泛非期基底上形成增生弧,彭尼内基底主体相当于弧后盆地组合,上奥地利阿尔卑斯现今作为无根的推覆体,华力西造山前一直根置于冈瓦纳大陆的被动大陆陆缘。中奥地利阿尔卑斯的基底最复杂,但是基底阶段的地质记录最全,是研究从原特提斯到古特提斯演化的关键区域。

依据目前的资料和最新研究进展,本文将东阿尔卑斯基底构造演化归纳如下:前中生代原阿尔卑斯起源于冈瓦纳大陆边缘,北面受原特提斯洋俯冲制约,原阿尔卑斯孕育于新元古代-早古生代不断进化中的岛弧(陆缘增生弧),长期的俯冲增生造就阿尔卑斯结晶基底,主要分布在奥地利阿尔卑斯和彭尼内基底中。古生代中期原阿尔卑斯从冈瓦纳向欧洲大陆漂移,游离于华力西多岛洋中,北面为瑞亚克洋,南面为南绍山洋。泥盆纪南阿尔卑斯裂解打开古特提洋,于石炭纪维宪期阿尔卑斯各基底地块拼贴增生于古欧洲大陆南缘,南面受古特提斯洋俯冲制约,南阿尔卑斯转换成欧洲大陆的南部活动大陆边缘,俯冲作用叠加在华力西期造山带之上。

关于其演化过程仍有几个关键问题还有待于深入研究:

(1) 起源于冈瓦纳陆缘的四个阿尔卑斯基底单元位置还有很大的不确定性,是集中分布在非洲边缘?还是分散在冈瓦纳北缘的不同位置,后来归并在一起?再加上华力西期和阿尔卑斯期造山运动的影响,这进一步增加了冈瓦纳大陆陆缘地块复位的困难。尤其是Stampfli et al. (2013)von Raumer et al. (2013)提出的巨大阿尔卑斯造山拼贴体很可能与中国的西部构造单元有密切的关系,仍然值得思考;

(2) 阿尔卑斯从南到北转化过程,如何从原特提斯洋向瑞亚克洋过渡再向古特提斯洋转换,这进一步涉及东西原-古特提斯对比;

(3) 经典的华力西碰撞造山带从阿尔卑斯如何通过喀尔巴阡、巴尔干半岛向东延伸;

(4) 南阿尔卑斯和奥地利阿尔卑斯之间的Plankogel杂岩所代表的两期蛇绿岩,尤其是晚二叠世-早三叠世蛇绿岩对于解决古特提斯洋西延是至关重要的。

致谢      感谢中国地质大学(北京)刘俊来教授和中国地质科学院地质研究所翟庆国研究员对本文认真而细致的评审,他们提出的宝贵建议大大提升了本文质量。

谨以此文祝贺杨振升先生九十华诞暨从事地质事业七十年。

参考文献
Anders B, Reischmann T, Kostopoulos D and Poller U. 2006. The oldest rocks of Greece:First evidence for a Precambrian terrane within the Pelagonian Zone. Geological Magazine, 143(1): 41-58 DOI:10.1017/S0016756805001111
Antić M, Peytcheva I, von Quadt A, Kounov A, Trivić B, Serafimovski T, Tasev G, Gerdjikov I and Wetzel A. 2016. Pre-Alpine evolution of a segment of the North-Gondwanan margin:Geochronological and geochemical evidence from the central Serbo-Macedonian Massif. Gondwana Research, 36: 523-544 DOI:10.1016/j.gr.2015.07.020
Arboit F, Chew D, Visoná D, Massironi M, Sciascia F, Benedetti G and Rodani S. 2019. The geodynamic evolution of the Italian South Alpine basement from the Ediacaran to the Carboniferous:Was the South Alpine terrane part of the peri-Gondwana arc-forming terranes?. Gondwana Research, 65: 17-30 DOI:10.1016/j.gr.2018.08.005
Atnisha A, Fatka O and Elicki O. 2017. First evidence of Middle to Late Cambrian deposition by first palynological data from the Torgau-Doberlug Syncline (subsurface Central Germany, Mediterranean shelf of Gondwana). Journal of Iberian Geology, 43(4): 601-614 DOI:10.1007/s41513-017-0041-3
Aysal N, Ustaömer T, Öngen S, Keskin M, Köksal S, Peytcheva I and Fanning M. 2012. Origin of the Early-Middle Devonian magmatism in the Sakarya Zone, NW Turkey:Geochronology, geochemistry and isotope systematics. Journal of Asian Earth Sciences, 45: 201-222 DOI:10.1016/j.jseaes.2011.10.011
Aysal N, Şahin SY, Güngör Y, Peytcheva I and Öngen S. 2018. Middle Permian-Early Triassic magmatism in the Western Pontides, NW Turkey:Geodynamic significance for the evolution of the Paleo-Tethys. Journal of Asian Earth Sciences, 164: 83-103 DOI:10.1016/j.jseaes.2018.06.026
Bellot JP. 2005. The Palaeozoic evolution of the Maures massif (France) and its potential correlation with others areas of the Variscan belt:A review. Journal of the Virtual Explorer, 19(4): 4
Benciolini L, Poli ME, Visonà D and Zanferrari A. 2006. Looking inside Late Variscan tectonics:Structural and metamorphic heterogeneity of the eastern South Alpine Basement (NE Italy). Geodinamica Acta, 19(1): 17-32 DOI:10.3166/ga.19.17-32
Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Korich D, Huebscher HD and Bayer U. 1996. Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics, 266(1-4): 379-404 DOI:10.1016/S0040-1951(96)00199-0
Bernoulli D and Jenkyns HC. 1974. Alpine, Mediterranean, and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In: Doott Jr RH and Shaver PH (eds.). Modern and Ancient Geosynclinal Sedimentation. Tulsa: Society of Economic Paleontologists and Mineralogists, SEPM Society for Sedimentary Geology, 19: 129-160
Bertrand JM and Leterrier J. 1997. Granitoïdes d'age Paléozoïque inférieur dans le socle de Vanoise méridionale:Géochronologie U-Pb du métagranite de l'Arpont (Alpes de Savoie, France). Comptes Rendus de l'Académie des Sciences (Series ⅡA):Earth and Planetary Science, 325(11): 839-844
Bertrand JM, Guillot F, Leterrier J, Perruchot MP, Aillères L and Macaudière J. 1998. Granitoïdes de la zone houillère briançonnaise en Savoie et en Val d'Aoste (Alpes occidentales):Géologie et géochronologie U-Pb sur zircon. Geodinamica Acta, 11(1): 33-49
Biino GG. 1994. The pre-Late Ordovician metamorphic evolution of the Gotthard-Tavetsch massifs (Central Alps):From Lawsonite to kyanite eclogite to granulite retrogression. Schweizerische Mineralogische und Petrographische Mitteilungen, 74: 87-104
Bodinier JL, Dupuy C, Dostal J and Carme F. 1982. Geochemistry of ophiolites from the Chamrousse complex (Belledonne Massif, Alps). Contributions to Mineralogy and Petrology, 78(4): 379-388 DOI:10.1007/BF00375200
Bonin B. 1990. From orogenic to anorogenic settings:Evolution of granitoid suites after a major orogenesis. Geological Journal, 25(3-4): 261-270 DOI:10.1002/gj.3350250309
Bonin B, Brändlein P, Bussy F, Desmons J, Eggenberger U, Finger F, Graf K, Marro C, Mercolli I, Oberhänsli R, Ploquin A, von Quadt A, von Raumer J, Schaltegger U, Steyrer HP, Visonà D and Vivier G. 1993. Late Variscan magmatic evolution of the Alpine basement. In: Von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Berlin, Heidelberg: Springer
Brack P and Rieber H. 1993. Towards a better definition of the Anisian/Ladinian boundary:New biostratigraphic data and correlations of boundary sections from the Southern Alps. Eclogae Geologicae Helvetiae, 86(2): 415-527
Brack P, Rieber H, Mundil R, Blendinger W and Maurer F. 2007. Geometry and chronology of growth and drowning of Middle Triassic carbonate platforms (Cernera and Bivera/Clapsavon) in the Southern Alps (northern Italy). Swiss Journal of Geosciences, 100(3): 327-348 DOI:10.1007/s00015-007-1229-x
Burchfiel BC. 1980. Eastern European Alpine system and the Carpathian orocline as an example of collision tectonics. Tectonophysics, 63(1-4): 31-61 DOI:10.1016/0040-1951(80)90106-7
Bussien D, Bussy F, Magna T and Masson H. 2011. Timing of Palaeozoic magmatism in the Maggia and Sambuco nappes and paleogeographic implications (Central Lepontine Alps). Swiss Journal of Geosciences, 104(1): 1-29 DOI:10.1007/s00015-010-0049-6
Bussien Grosjean D, Meisser N, May-Leresche S, Ulianov A and Vonlanthen P. 2018. The Morcles microgranite (Aiguilles Rouges, Swiss Alps):Geochronological and geochemical evidences for a common origin with the Vallorcine intrusion. Swiss Journal of Geosciences, 111(1): 35-49
Bussy F, Sartori M and Thélin P. 1996. U-Pb zircon dating in the Middle Penninic basement of the western Alps (Valais, Switzerland). Schweizerische Mineralogische und Petrographische Mitteilungen, 76(1): 81-84
Bussy F, Péronnet V, Ulianov A, Epard JL and von Raumer JF. 2011. Ordovician magmatism in the external French Alps: Witness of a peri-Gondwanan active continental margin. In: Gutiérrez-Marco JC, Rábano I and García-Bellido D (eds.). The Ordovician of the World. Madrid: Instituto Geológico y Minero de España, Cuadernos del Museo Geominero, 14: 75-82
Candan O, Akal C, Koralay OE, Okay AI, Oberhänsli R, Prelević D and Mertz-Kraus R. 2016. Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey:Evidence for southward subduction of Paleotethys. Tectonophysics, 683: 349-366 DOI:10.1016/j.tecto.2016.06.030
Capuzzo N and Wetzel A. 2004. Facies and basin architecture of the Late Carboniferous Salvan-Dorénaz continental basin (Western Alps, Switzerland/France). Sedimentology, 51(4): 675-697 DOI:10.1111/j.1365-3091.2004.00642.x
Casas JM, Castiñeiras P, Navidad M, Liesa M and Carreras J. 2010. New insights into the Late Ordovician magmatism in the Eastern Pyrenees:U-Pb SHRIMP zircon data from the Canigó massif. Gondwana Research, 17(2-3): 317-324 DOI:10.1016/j.gr.2009.10.006
Casetta F, Coltorti M and Marrocchino E. 2018. Petrological evolution of the middle Triassic Predazzo intrusive complex, Italian Alps. International Geology Review, 60(8): 977-997 DOI:10.1080/00206814.2017.1363676
Casini L, Cuccuru S, Puccini A, Oggiano G and Rossi P. 2015. Evolution of the Corsica-Sardinia batholith and late-orogenic shearing of the Variscides. Tectonophysics, 646: 65-78 DOI:10.1016/j.tecto.2015.01.017
Cassinis G, Cortesogno L, Gaggero L, Perotti CR and Buzzi L. 2008. Permian to Triassic geodynamic and magmatic evolution of the Brescian Prealps (eastern Lombardy, Italy). Italian Journal of Geosciences, 127(3): 501-518
Cassinis G, Perotti CR and Ronchi A. 2012. Permian continental basins in the Southern Alps (Italy) and peri-mediterranean correlations. International Journal of Earth Sciences, 101(1): 129-157 DOI:10.1007/s00531-011-0642-6
Castellarin A, Lucchini F, Rossi PL, Selli L and Simboli G. 1988. The Middle Triassic magmatic-tectonic arc development in the Southern Alps. Tectonophysics, 146(1-4): 79-89 DOI:10.1016/0040-1951(88)90083-2
Cavargna-Sani M, Epard JL, Bussy F and Ulianov A. 2014. Basement lithostratigraphy of the Adula nappe:Implications for Palaeozoic evolution and Alpine kinematics. International Journal of Earth Sciences, 103(1): 61-82 DOI:10.1007/s00531-013-0941-1
Cesare B, Rubatto D, Hermann J and Barzi L. 2002. Evidence for Late Carboniferous subduction-type magmatism in mafic-ultramafic cumulates of the SW Tauern window (Eastern Alps). Contributions to Mineralogy and Petrology, 142(4): 449-464 DOI:10.1007/s004100100302
Channell JET, D'Argenio B and Horváth F. 1979. Adria, the African promontory, in Mesozoic Mediterranean palaeogeography. Earth-Science Reviews, 15(3): 213-292 DOI:10.1016/0012-8252(79)90083-7
Chlupaĉ I, Havliĉek V, Kŕíž J, Kukal Z and Štorch P. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). Prague: Czech Geological Survey, 1-183
Cocks LRM and Torsvik TH. 2002. Earth geography from 500 to 400 million years ago:A faunal and palaeomagnetic review. Journal of the Geological Society, 159(6): 631-644 DOI:10.1144/0016-764901-118
Dewey JF, Helman ML, Knott SD, Turco E and Hutton DHW. 1989. Kinematics of the western Mediterranean. In: Coward MP, Dietrich D and Park RG (eds.). Alpine Tectonics. Geological Society, London, Special Publications, 45(1): 265-283
Edel JB, Schulmann K, Lexa O and Lardeaux JM. 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Science Reviews, 177: 589-612 DOI:10.1016/j.earscirev.2017.12.007
Eichhorn R, Höll R, Loth G and Kennedy A. 1999. Implications of U-Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria). International Journal of Earth Sciences, 88(3): 496-512 DOI:10.1007/s005310050281
Eichhorn R, Loth G, Höll R, Finger F, Schermaier A and Kennedy A. 2000. Multistage Variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contributions to Mineralogy and Petrology, 139(4): 418-435 DOI:10.1007/s004100000145
Eisbacher GH, Lüschen E and Wickert F. 1989. Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics, 8(1): 1-21 DOI:10.1029/TC008i001p00001
Eren YŞ, Kurt H, Rosselet F and Stampfli GM. 2004. Palaeozoic deformation and magmatism in the northern area of the Anatolide block (Konya), witness of the Palaeotethys active margin. Eclogae Geologicae Helvetiae, 97(2): 293-306 DOI:10.1007/s00015-003-1131-8
Escher A, Hunziker J, Masson H, Sartori M and Steck A. 1997. Geologic framework and structural evolution of the Western Swiss Italian Alps. In: Pfiffner OA, Lehner P, Heitzmann P, Müller S and Steck A (eds.). Deep Structure of the Swiss Alps: Results of the NRP20. Basel: Birkhäuser, 205-221
Faryad SW, Melcher F, Hoinkes G, Puhl J, Meisel T and Frank W. 2002. Relics of eclogite facies metamorphism in the Austroalpine basement, Hochgrössen (Speik complex), Austria. Mineralogy and Petrology, 74(1): 49-73
Faryad SW and Hoinkes G. 2003. P-T gradient of Eo-Alpine metamorphism within the Austroalpine basement units east of the Tauern Window (Austria). Mineralogy and Petrology, 77(1): 129-159
Favre P and Stampfli GM. 1992. From rifting to passive margin:The examples of the Red Sea, Central Atlantic and Alpine Tethys. Tectonophysics, 215(1-2): 69-97 DOI:10.1016/0040-1951(92)90075-H
Ferrando S, Lombardo B and Compagnoni R. 2008. Metamorphic history of HP mafic granulites from the Gesso-Stura Terrain (Argentera Massif, Western Alps, Italy). European Journal of Mineralogy, 20(5): 777-790 DOI:10.1127/0935-1221/2008/0020-1891
Finger F and Steyrer HP. 1990. I-type granitoids as indicators of a Late Paleozoic convergent ocean-continent margin along the southern flank of the central European Variscan orogen. Geology, 18(12): 1207-1210 DOI:10.1130/0091-7613(1990)018<1207:ITGAIO>2.3.CO;2
Flügel HW and Neubauer F. 1984. Steiermark: Erläuterungen zur geologischen karte der steiermark 1/200000. In: Geologie der Österreichischen Bundesländer in kurzgefassten Darstellungen-Steiermark. Vienna, Austria: Geologische Bundesanstalt, 1-127
Flügel HW. 1990. Das voralpine basement im alpin-mediterranen belt:überblick und Problematik. Jahrbuch der Geologischen Bundesanstalt, 133: 181-221
Franke W. 2000. The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O and Tanner D (eds.). Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publications, 179(1): 35-61
Franke W, Cocks LRM and Torsvik TH. 2017. The Palaeozoic Variscan oceans revisited. Gondwana Research, 48: 257-284 DOI:10.1016/j.gr.2017.03.005
Franz L and Romer RL. 2007. Caledonian high-pressure metamorphism in the Strona-Ceneri Zone (Southern Alps of southern Switzerland and northern Italy). Swiss Journal of Geosciences, 100(3): 457-467 DOI:10.1007/s00015-007-1232-2
Fréville K, Trap P, Faure M, Melleton J, Li XH, Lin W, Blein O, Bruguier O and Poujol M. 2018. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France). Tectonophysics, 726: 14-42 DOI:10.1016/j.tecto.2018.01.017
Frisch W, Neubauer F and Satir M. 1984. Concepts of the evolution of the Austroalpine basement complex (Eastern Alps) during the Caledonian-Variscan cycle. Geologische Rundschau, 73: 47-68 DOI:10.1007/BF01820360
Frisch W and Raab D. 1987. Early Paleozoic back-arc and island-arc settings in greenstone sequences of the Central Tauern Window (Eastern Alps). Jahrbuch der Geologischen Bundesanstalt, 129: 545-566
Frisch W, Neubauer F, Broecker M, Brückmann W and Haiss N. 1987. Interpretation of geochemical data from the Caledonian basement within the Austroalpine basement complex. In: Flügel HW, Sassi FP and Grecula P (eds.). Pre-Variscan and Variscan events in the Alpine-Mediterranean Mountain Belts. Bratislava: Alfa Publishers, 209-226
Frisch W and Neubauer F. 1989. Pre-Alpine terranes and tectonic zoning in the eastern Alps. In: Dallmeyer RD (ed.). Terranes in the Circum-Atlantic Paleozoic Orogens Special Paper. Geological Society of America, 230: 91-100
Frisch W, Ménot RP and Neubauer F. 1990. Correlation and evolution of the Alpine basement. Schweizerische Mineralogische und Petrographische Mitteilungen, 70(1): 265-285
Frisch W, Vavra G and Winkler M. 1993. Evolution of the Penninic basement of the eastern Alps. In: Von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Berlin, Heidelberg: Springer, 349-360
Fritz H and Neubauer F. 1988. Geodynamic aspects of the Silurian and Early Devonian sedimentation in the Paleozoic of Graz (Eastern Alps). Schweizerische Mineralogische und Petrographische Mitteilungen, 68: 359-367
Froitzheim N and Manatschal G. 1996. Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (Eastern Switzerland). GSA Bulletin, 108(9): 1120-1133 DOI:10.1130/0016-7606(1996)108<1120:KOJRME>2.3.CO;2
Gaggero L, Oggiano G, Funedda A and Buzzi L. 2012. Rifting and arc-related Early Paleozoic volcanism along the North Gondwana Margin:Geochemical and geological evidence from Sardinia (Italy). The Journal of Geology, 120(3): 273-292 DOI:10.1086/664776
Garzanti E. 1985. The sandstone memory of the evolution of a Triassic volcanic arc in the southern Alps, Italy. Sedimentology, 32(3): 423-433 DOI:10.1111/j.1365-3091.1985.tb00521.x
Gebauer D. 1990. Isotope geology in eclogites. In: Carswell DA (ed.). Eclogite Facies Rocks. New York: Blackie, 141-159
Grubić A. 1995. Schistes lustres in the Kopaonik area. In: Geology and Metallogeny of Kopaonik Mt. Belgrade: 159-168
Guillot F, Desmons J and Ploquin A. 1993. Lithostratigraphy and geochemical composition of the Mt. Pourri volcanic basement, Middle Penninic W-Alpine zone, France. Schweizerische Mineralogische und Petrographische Mitteilungen, 73: 319-334
Guillot F, Schaltegger U, Bertrand JM, Deloule é and Baudin T. 2002. Zircon U-Pb geochronology of Ordovician magmatism in the polycyclic Ruitor Massif (Internal W Alps). International Journal of Earth Sciences, 91(6): 964-978 DOI:10.1007/s00531-002-0280-0
Guillot S, Ménot RP and Caron JM. 1999. Nappe stacking and first evidence of Late Variscan extension in the Belledonne Massif (External Crystalline Massifs, French Alps). Geodinamica Acta, 12(2): 97-111 DOI:10.1080/09853111.1999.11105334
Guillot S and Ménot RP. 2009. Paleozoic evolution of the External Crystalline Massifs of the western Alps. Comptes Rendus Geoscience, 341(2-3): 253-265 DOI:10.1016/j.crte.2008.11.010
Guillot S, di Paola S, Ménot RP, Ledru P, Spalla MI, Gosso G and Schwartz S. 2009. Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the western Alps. Bulletin de la Société Géologique de France, 180(6): 483-500 DOI:10.2113/gssgfbull.180.6.483
Gutiérrez-Alonso G, Fernández-Suárez J, Weil AB, Brendan Murphy J, Damian Nance R, Corfú F and Johnston ST. 2008. Self-subduction of the Pangaean global plate. Nature Geoscience, 1(8): 549-553 DOI:10.1038/ngeo250
Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Johnston ST, Pastor-Galán D, Murphy JB, Franco MP and Gonzalo JC. 2011. Diachronous post-orogenic magmatism within a developing orocline in Iberia, European Variscides. Tectonics, 30(5): TC5008
Haas I, Eichinger S, Haller D, Fritz H, Nievoll J, Mandl M, Hippler D and Hauzenberger C. 2020. Gondwana fragments in the eastern Alps:A travel story from U-Pb zircon data. Gondwana Research, 77: 204-222 DOI:10.1016/j.gr.2019.07.015
Handler R, Dallmeyer RD and Neubauer F. 1997. 40Ar/39Ar ages of detrital white mica from Upper Austroalpine units in the Eastern Alps, Austria:Evidence for Cadomian and contrasting Variscan sources. Geologische Rundschau, 86(1): 69-80 DOI:10.1007/s005310050122
Handy MR, Franz L, Heller F, Janott B and Zurbriggen R. 1999. Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics, 18(6): 1154-1177 DOI:10.1029/1999TC900034
Handy MR, Schmid SM, Bousquet R, Kissling E and Bernoulli D. 2010. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Reviews, 102(3-4): 121-158 DOI:10.1016/j.earscirev.2010.06.002
Hatcher Jr RD. 2002. Alleghanian (Appalachian) orogeny, a product of zipper tectonics: Rotational transpressive continent-continent collision and closing of ancient oceans along irregular margins. In: Martinez Catalan JR, Hatcher RD, Arenas R and Diaz Garcia F (eds.). Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement. Geological Society of America, 364: 199-208
Havlíček V, Vaněk J and Fatka O. 1994. Perunica microcontinent in the ordovician (its position within the mediterranean province, series division, benthic and pelagic associations). Sborník geologickych Věd, Geologie, 46: 23-56
Heinisch H. 1988. Hinweise auf die Existenz eines passiven Kontinentalrandes im Altpaläozoikum der Nördlichen grauwackenzone:Ostalpen. Schweizerische Mineralogische und Petrographische Mitteilungen, 68: 407-418
Heinrichs T, Siegesmund S, Frei D, Drobe M and Schulz B. 2012. Provenance signatures from whole-rock geochemistry and detrital zircon ages of metasediments from the Austroalpine Basement South of the Tauern Window (Eastern Tyrol, Austria). Geo Alp, 9: 156-185
Herg A and Stüwe K. 2018. Tectonic interpretation of the metamorphic field gradient south of the Koralpe in the Eastern Alps. Austrian Journal of Earth Sciences, 111(2): 155-170 DOI:10.17738/ajes.2018.0010
Histon K, Klein P, Schönlaub HP and Huff W. 2007. Lower Palaeozoic K-bentonites from the Carnic Alps, Austria. Austrian Journal of Earth Sciences, 100: 26-42
Hoinkes G, Thöni M, Lichem C, Berhard F, Kaindl R, Schweigl J, Tropper P and Cosca M. 1997. Metagranitoids and associated metasediments as indicators for the pre-Alpine magmatic and metamorphic evolution of the western Austroalpine Ötztal Basement (Kaunertal, Tirol). Schweizerische Mineralogische und Petrographische Mitteilungen, 77(3): 299-314
Kaindl R, Hoinkes G, Knoll P and Abart R. 1999. Fluid inclusions related to Variscan and Alpine metamorphism in the Austroalpine Ötztal Basement, Eastern Alps. Mineralogy and Petrology, 65(1): 29-49
Kelts K. 1981. A comparison of some aspects of sedimentation and translational tectonics from the Gulf of California and the Mesozoic Tethys, northern Penninic margin. Eclogae Geologicae Helvetiae, 74(2): 317-338
Klötzli-Chowanetz E, Klötzli U and Koller F. 1997. Lower Ordovician migmatisation in the Ötztal crystalline basement (Eastern Alps, Austria):Linking U-Pb and Pb-Pb dating with zircon morphology. Schweizerische Mineralogische und Petrographische Mitteilungen, 77(3): 315-324
Kozur H. 1991. The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1-4): 109-135 DOI:10.1016/0031-0182(91)90132-B
Kozur H. 1999. Permian development in the western Tethys. In: Ratanasthien B and Rieb SL (eds.). Proceedings of the International Symposium on Shallow Tethys (ST) 5. Chiang Mai: Department of Geological Science, Chiang Mai University
Lammerer B. 1986. Das Autochthon im westlichen Tauernfenster. Jahrbuch der Geologischen Bundesanstalt, 129(1): 51-67
Lardeaux JM, Schulmann K, Faure M, Lexa O, Janoušek V, Edel JB and Štípská P. 2012. Variscan orogeny in Bohemian Massif and French Massif Central, differences and similarities. Géologie de la France, (1): 136-137
Läufer A, Hubich D and Loeschke J. 2001. Variscan geodynamic evolution of the Carnic Alps (Austria/Italy). International Journal of Earth Sciences, 90(4): 855-870 DOI:10.1007/s005310100194
Läufer AL, Loeschke J and Vianden B. 1993. Die dimon-serie der karnischen Alpen (Italien):Stratigraphie, petrographie und geodynamische interpretation. Jahrbuch der Geologischen Bundesanstalt, 136: 137-162
Li SZ, Zhao SJ, Liu X, Cao HH, Yu S, Li XY, Somerville I, Yu SY and Suo YH. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37-75 DOI:10.1016/j.earscirev.2017.01.011
Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K and Tonk C. 2004. West African provenance for Saxo-Thuringia (Bohemian Massif):Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. International Journal of Earth Sciences, 93(5): 683-705 DOI:10.1007/s00531-004-0413-8
Linnemann U, Pereira F, Jeffries TE, Drost K and Gerdes A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean:The diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics, 461(1-4): 21-43 DOI:10.1016/j.tecto.2008.05.002
Linnemann U, Gerdes A, Hofmann M and Marko L. 2014. The Cadomian Orogen:Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton:Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Research, 244: 236-278 DOI:10.1016/j.precamres.2013.08.007
Liu Y, Neubauer F, Yuan S, Yu S, Genser J, Bernroider M, Guan Q, Jin W, Chang R and Huang Q. 2019. The Plankogel complex within the Austroalpine nappe complex of Eastern Alps: A Paleotethyan suture? Emile Argand Conference on Alpine Geological Studies 2019. Sion, Switzerland, 44
Loeschke J and Heinisch H. 1993. Palaeozoic volcanism of the eastern Alps and its palaeotectonic significance. In: Von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Berlin Heidelberg: Springer, 441-455
Loth G, Eichhorn R, Höll R, Kennedy A, Schauder P and Söllner F. 2001. Cambro-Ordovician age of a metagabbro from the Wildschoönau ophiolite complex, Greywacke Supergroup (Eastern Alps, Austria):A U-Pb SHRIMP study. European Journal of Mineralogy, 13(1): 57-66 DOI:10.1127/0935-1221/01/0013-0057
Mandl G. 2000. The Alpine sector of the Tethyan shelf:Examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcereous Alps. Mitteilungen der Österreichen Geologischen Gesellschaft, 92: 61-77
Masson H, Bussy F, Eichenberger M, Giroud N, Meilhac C and Presniakov S. 2008. Early Carboniferous age of the Versoyen ophiolites and consequences:Non-existence of a "Valais ocean" (Lower Penninic, western Alps). Bulletin de la Société Géologique de France, 179(4): 337-355 DOI:10.2113/gssgfbull.179.4.337
Matte P. 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics, 126(2-4): 329-332, 335-344, 347-374
Matte P. 2001. The Variscan collage and orogeny (480~290Ma) and the tectonic definition of the Armorica microplate:A review. Terra Nova, 13(2): 122-128 DOI:10.1046/j.1365-3121.2001.00327.x
Meisel T, Biino GG and Nägler TF. 1996. Re-Os, Sm-Nd, and rare earth element evidence for Proterozoic oceanic and possible subcontinental lithosphere in tectonized ultramafic lenses from the Swiss Alps. Geochimica et Cosmochimica Acta, 60(14): 2583-2593 DOI:10.1016/0016-7037(96)00107-X
Melcher F, Meisel T, Puhl J and Koller F. 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps:Constraints from geochemistry. Lithos, 65(1): 69-112
Melcher F and Meisel T. 2004. A metamorphosed Early Cambrian crust-mantle transition in the Eastern Alps, Austria. Journal of Petrology, 45(8): 1689-1723 DOI:10.1093/petrology/egh030
Ménot RP, Peucat JJ, Scarenzi D and Piboule M. 1988. 496 My age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps):Evidence of a Lower Paleozoic oceanization. Earth and Planetary Science Letters, 88(1-2): 82-92 DOI:10.1016/0012-821X(88)90048-9
Mercolli I, Biino GG and Abrecht J. 1994. The lithostratigraphy of the pre-Mesozoic basement of the Gotthard massif:A review. Schweizerische Mineralogische und Petrographische Mitteilungen, 74: 29-40
Miller C and Thöni M. 1995. Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria):Geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. Chemical Geology, 122(1-4): 199-225 DOI:10.1016/0009-2541(95)00033-I
Miller C and Thöni M. 1997. Eo-alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria):New geochronological, geochemical and petrological data. Chemical Geology, 137(3-4): 283-310 DOI:10.1016/S0009-2541(96)00165-9
Miller C, Thöni M, Konzett J, Kurz W and Schuster R. 2005. Eclogites from the Koralpe and Saualpe type-localities, Eastern Alps, Austria. Mitt Ges Geol Bergbaustud Österr, 150: 227-263
Müller W, Dallmeyer RD, Neubauer F and Thöni M. 1999. Deformation-induced resetting of Rb/Sr and 40Ar/39Ar mineral systems in a low-grade, polymetamorphic terrane (Eastern Alps, Austria). Journal of the Geological Society, 156(2): 261-278 DOI:10.1144/gsjgs.156.2.0261
Murphy JB, Gutierrez-Alonso G, Nance RD, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA and Dostal J. 2006. Origin of the Rheic Ocean:Rifting along a Neoproterozoic suture?. Geology, 34(5): 325-328 DOI:10.1130/G22068.1
Nance RD and Murphy JB. 1994. Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens:Example from the Neoproterozoic Avalonian-Cadomian belt. Geology, 22(7): 617-620 DOI:10.1130/0091-7613(1994)022<0617:CBISAT>2.3.CO;2
Nance RD, Murphy JB and Keppie JD. 2002. A Cordilleran model for the evolution of Avalonia. Tectonophysics, 352(1-2): 11-31 DOI:10.1016/S0040-1951(02)00187-7
Nance RD, Murphy JB, Strachan RA, Keppie JD, Gutiérrez-Alonso G, Fernández-Suárez J, Quesada C, Linnemann U, D'lemos R and Pisarevsky SA. 2008. Neoproterozoic-Early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes:Amazonian vs. West African connections. In:Ennih N and Liégeois JP (eds.). The Boundaries of the West African Craton. Geological Society, London, Special Publications, 297(1):345-383
Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA and Woodcock NH. 2010. Evolution of the Rheic Ocean. Gondwana Research, 17(2-3): 194-222 DOI:10.1016/j.gr.2009.08.001
Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA and Woodcock NH. 2012. A brief history of the Rheic Ocean. Geoscience Frontiers, 3(2): 125-135
Nance RD, Murphy JB and Santosh M. 2014. The supercontinent cycle:A retrospective essay. Gondwana Research, 25(1): 4-29 DOI:10.1016/j.gr.2012.12.026
Natal'in BA and Şengör AMC. 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms:The pre-history of the Palaeo-Tethyan closure. Tectonophysics, 404(3-4): 175-202 DOI:10.1016/j.tecto.2005.04.011
Navidad M, Castiñeiras P, Casas JM, Liesa M, Belousova E, Proenza J and Aiglsperger T. 2018. Ordovician magmatism in the Eastern Pyrenees:Implications for the geodynamic evolution of northern Gondwana. Lithos, 314-315: 479-496 DOI:10.1016/j.lithos.2018.06.019
Neiva AMR, Williams IS, Lima SM and Teixeira RJS. 2012. U-Pb and 39Ar/40Ar data constraining the ages of the source, emplacement and recrystallization/cooling events from late- to post-D3 Variscan granites of the Gouveia area, central Portugal. Lithos, 153: 72-83 DOI:10.1016/j.lithos.2012.02.012
Neubauer F. 1988. The Variscan orogeny in the Austroalpine and Southalpine domains of the Eastern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 68: 339-349
Neubauer F, Frisch W, Schmerold R and Schlöser H. 1989. Metamorphosed and dismembered ophiolite suites in the basement units of the Eastern Alps. Tectonophysics, 164(1): 49-62 DOI:10.1016/0040-1951(89)90233-3
Neubauer F. 1991. Late Proterozoic and Early Paleozoic tectonothermal evolution of the Eastern Alps. In: Dallmeyer RD and Lecorche JP (eds.). The West African Orogens and Circum-Atlantic Correlatives. Berlin: Springer, 307-314
Neubauer F and Frisch W. 1993. The Austro-Alpine metamorphic basement east of the Tauern window. In: Von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Heidelberg: Springer, 515-536
Neubauer F, Hoinkes G, Sassi FP, Handler R, Höck V, Koller F and Frank W. 1999. Pre-alpine metamorphism of the Eastern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 79: 41-62
Neubauer F and Handler R. 2000. Variscan orogeny in the Eastern Alps and Bohemian Massif:How do these units correlate?. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92: 35-59
Neubauer F, Genser J and Handler R. 2000. The Eastern Alps:Result of a two-stage collision process. Mitteilungen der Österreichischen Geologischen Gesellschaft, 92: 117-134
Neubauer F. 2002. Evolution of Late Neoproterozoic to Early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts:Review and synthesis. Tectonophysics, 352(1-2): 87-103 DOI:10.1016/S0040-1951(02)00190-7
Neubauer F, Friedl G, Genser J, Handler R, Mader D and Schneider D. 2007. Origin and tectonic evolution of the Eastern Alps deduced from dating of detrital white mica:A review. Austrian Journal of Earth Sciences, 100: 8-23
Neubauer F. 2014. Gondwana-land goes Europe. Austrian Journal of Earth Sciences, 107(1): 147-155
Neubauer F. 2016. Permian and Triassic Meliata-related rift and drift processes in Eastern Alps: Middle and lower crust and its potential correlation with sedimentary units. In: EGU General Assembly 2016. Vienna Austria: EGU
Neubauer F, Liu YJ, Yuan S, Yu SH, Genser J, Liu BR and Guan QB. 2020. The Wechsel Gneiss Complex of Eastern Alps: A Cambrian continental arc and its Early Proterozoic hinterland. Swiss Journal of Geosciences, 37-38
Nikishin AM, Ziegler PA, Abbott D, Brunet MF and Cloetingh S. 2002. Permo-Triassic intraplate magmatism and rifting in Eurasia:Implications for mantle plumes and mantle dynamics. Tectonophysics, 351(1-2): 3-39 DOI:10.1016/S0040-1951(02)00123-3
Niklaus PA and Wetzel A. 1996. Faziesanalyse und Ablagerungsmilieu der fluviatilen Sedimentfüllung des Karbontroges von Salvan-Dorénaz. Eclogae Geologicae Helvetiae, 89: 427-437
Nysæther E, Torsvik TH, Feist R, Walderhaug HJ and Eide EA. 2002. Ordovician palaeogeography with new palaeomagnetic data from the Montagne Noire (Southern France). Earth and Planetary Science Letters, 203(1): 329-341 DOI:10.1016/S0012-821X(02)00847-6
Okay AI, Satır M, Maluski H, Siyako M, Monie P, Metzger R and Akyüz S. 1996. Paleo- and Neo-Tethyan events in northwestern Turkey: Geologic and geochronologic constraints. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 420-441
Oriolo S, Oyhantçabal P, Wemmer K and Siegesmund S. 2017. Contemporaneous assembly of Western Gondwana and final Rodinia break-up:Implications for the supercontinent cycle. Geoscience Frontiers, 8(6): 1431-1445 DOI:10.1016/j.gsf.2017.01.009
Pastor-Galán D, Gutiérrez-Alonso G and Weil AB. 2011. Orocline timing through joint analysis:Insights from the Ibero-Armorican Arc. Tectonophysics, 507(1-4): 31-46 DOI:10.1016/j.tecto.2011.05.005
Pastor-Galán D, Gutiérrez-Alonso G, Murphy JB, Fernández-Suárez J, Hofmann M and Linnemann U. 2013. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia:Passive margin to Variscan collision and orocline development. Gondwana Research, 23(3): 1089-1103 DOI:10.1016/j.gr.2012.06.015
Pereira MF, Castro A, Chichorro M, Fernández C, Díaz-Alvarado J, Martí J and Rodríguez C. 2014. Chronological link between deep-seated processes in magma chambers and eruptions:Permo-Carboniferous magmatism in the core of Pangaea (southern Pyrenees). Gondwana Research, 25(1): 290-308 DOI:10.1016/j.gr.2013.03.009
Pereira MF, Castro A and Fernández C. 2015. The inception of a Paleotethyan magmatic arc in Iberia. Geoscience Frontiers, 6(2): 297-306 DOI:10.1016/j.gsf.2014.02.006
Pfiffner OA, Lehner P, Heitzmann P, Mueller S and Steck A. 1996. Deep Structure of Switzerland- Results from the National Research Program. Basel: Birkhauser
Pin C and Carme F. 1987. A Sm-Nd isotopic study of 500Ma old oceanic crust in the Variscan belt of western Europe: The Chamrousse ophiolite complex, Western Alps (France). Contributions to Mineralogy and Petrology, 96(3): 406-413 DOI:10.1007/BF00371258
Radvanec M, Nemeth Z, Král J and Pramuka S. 2017. Variscan dismembered metaophiolite suite fragments of Paleo-Tethys in Gemeric unit, western Carpathians. Mineralia Slovaca, 49: 1-48
Ratschbacher L. 1984. Beitrag zur Neugliederung der Veitscher Decke (Grauwackenzone) in Ihrem Westabschnitt (Obersteiermark, Österreich). Jahrbuch der Geologischen Bundesanstalt, 127(3): 423-453
Reischmann T, Kostopoulos DK, Loos S, Anders B, Avgerinas A and Sklavounos SA. 2001. Late Palaeozoic magmatism in the basement rocks Southwest of Mt. Olympos, Central Pelagonian zone, Greece: Remnants of a Permo-Carboniferous magmatic arc. Bulletin of the Geological Society of Greece, 34(3): 985-993 DOI:10.12681/bgsg.17134
Robardet M, Paris F and Racheboeuf PR. 1990. Palaeogeographic evolution of southwestern Europe during Early Palaeozoic times. In: McKerrow WS and Scotese CR (eds.). Palaeozoic Palaeogeography and Biogeography. Geological Society, London, Memoirs, 12(1): 411-419
Robardet M. 2003. The Armorica 'microplate': Fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeography, Palaeoclimatology, Palaeoecology, 195(1-2): 125-148 DOI:10.1016/S0031-0182(03)00305-5
Rode S, Rösel D and Schulz B. 2012. Constraints on the Variscan P-T evolution by EMP Th-U-Pb monazite dating in the polymetamorphic Austroalpine Oetztal-Stubai basement (Eastern Alps). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163(1): 43-67 DOI:10.1127/1860-1804/2012/0163-0043
Rodríguez Alonso MD, Peinado M, López-Plaza M, Franco P, Carnicero A and Gonzalo JC. 2004. Neoproterozoic-Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): Geology, petrology and geodynamic significance. International Journal of Earth Sciences, 93(5): 897-920 DOI:10.1007/s00531-004-0425-4
Romano SS, Brix MR, Dörr W, Fiala J, Krenn E and Zulauf G. 2006. The Carboniferous to Jurassic evolution of the pre-Alpine basement of Crete: Constraints from U-Pb and U-(Th)-Pb dating of orthogneiss, fission-track dating of zircon, structural and petrological data. In: Robertson AHF and Mountrakis D (eds.). Geological Society, London, Special Publications, 260(1): 69-90
Romer RL and Franz L. 1998. Ordovician Barrow-type metamorphism in the Strona-Ceneri Zone (Northern Italy) dated by U-Pb on staurolite. Schweizerische Mineralogische und Petrographische Mitteilungen, 78(3): 383-395
Rossi P, Oggiano G and Cocherie A. 2009. A restored section of the "southern Variscan realm" across the Corsica-Sardinia microcontinent. Comptes Rendus Geoscience, 341(2-3): 224-238 DOI:10.1016/j.crte.2008.12.005
Rubatto D, Ferrando S, Compagnoni R and Lombardo B. 2010. Carboniferous high-pressure metamorphism of Ordovician protoliths in the Argentera Massif (Italy), southern European Variscan belt. Lithos, 116(1-2): 65-76 DOI:10.1016/j.lithos.2009.12.013
Şahin SY, Aysal N, Güngör Y, Peytcheva I and Neubauer F. 2014. Geochemistry and U-Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: Implications for the geodynamic evolution of Cadomian orogeny. Gondwana Research, 26(2): 755-771 DOI:10.1016/j.gr.2013.07.011
Sandmann S, Herwartz D, Kirst F, Froitzheim N, Nagel TJ, Fonseca ROC, Münker C and Janák M. 2016. Timing of eclogite-facies metamorphism of mafic and ultramafic rocks from the Pohorje Mountains (Eastern Alps, Slovenia) based on Lu-Hf garnet geochronometry. Lithos, 262: 576-585 DOI:10.1016/j.lithos.2016.08.002
Sassi FP and Spiess R. 1993. The South-Alpine metamorphic basement in the Eastern Alps. In: von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Berlin, Heidelberg: Springer, 599-607
Schaltegger U. 1993. The evolution of the polymetamorphic basement in the Central Alps unravelled by precise U-Pb zircon dating. Contributions to Mineralogy and Petrology, 113(4): 466-478 DOI:10.1007/BF00698316
Schaltegger U and Corfu F. 1995. Late Variscan "Basin and Range" magmatism and tectonics in the Central Alps: Evidence from U-Pb geochronology. Geodinamica Acta, 8(2): 82-98 DOI:10.1080/09853111.1995.11105276
Schaltegger U. 1997. The age of an Upper Carboniferous/Lower Permian sedimentary basin and its hinterland as constrained by U-Pb dating of volcanic and detrital zircons (northern Switzerland). Schweizerische Mineralogische und Petrographische Mitteilungen, 77(1): 101-111
Schaltegger U, Nägler TN, Corfu F, Maggetti M, Galetti G and Stosch HG. 1997. A Cambrian island arc in the Silvretta nappe: Constraints from geochemistry and geochronology. Schweizerische Mineralogische und Petrographische Mitteilungen, 77(3): 337-350
Schaltegger U, Gebauer D and von Quadt A. 2002. The mafic-ultramafic rock association of Loderio-Biasca (Lower Pennine Nappes, Ticino, Switzerland): Cambrian oceanic magmatism and its bearing on Early Paleozoic paleogeography. Chemical Geology, 186(3-4): 265-279 DOI:10.1016/S0009-2541(02)00005-0
Schaltegger U, Abrecht J and Corfu F. 2003. The Ordovician orogeny in the Alpine basement: Constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen, 83(2): 183-195
Schätz M, Tait J, Bachtadse V, Heinisch H and Soffel H. 2002. Palaeozoic geography of the Alpine realm, new palaeomagnetic data from the Northern Greywacke Zone, Eastern Alps. International Journal of Earth Sciences, 91(6): 979-992 DOI:10.1007/s00531-002-0289-4
Schermaier A, Haunschmid B and Finger F. 1997. Distribution of Variscan I- and S-type granites in the Eastern Alps: A possible clue to unravel pre-Alpine basement structures. Tectonophysics, 272(2-4): 315-333 DOI:10.1016/S0040-1951(96)00265-X
Schmid SM, Fügenschuh B, Kissling E and Schuster R. 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1): 93-117 DOI:10.1007/s00015-004-1113-x
Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M and Ustaszewski K. 2008. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101(1): 139-183 DOI:10.1007/s00015-008-1247-3
Schmid SM, Fügenschuh B, Kounov A, Matenco L, Nievergelt P, Oberhänsli R, Pleuger J, Schefer S, Schuster R, Tomljenovic' B and Ustaszewski K and van Hinsbergen DJJ. 2020. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78: 308-374 DOI:10.1016/j.gr.2019.07.005
Schönlaub HP. 1992. Stratigraphy, biogeography and paleoclimatology of the Alpine Paleozoic and its implications for plate movements. Jahrbuch der Geologischen Bundesanstalt, 135(1): 381-418
Schönlaub HP. 1997. The biogeographic relationships of Ordovician strata and fossils of Austria. Berichte Geologische Bundesanstalt, 40: 6-19
Schönlaub HP, Ferretti A, Gaggero L, Hammarlund E, Harper DAT, Histon K, Priewalder H, Spötl C and Štorch P. 2011. The Late Ordovician glacial event in the Carnic Alps (Austria). In: Gutiérrez-Marco JC, Rábano I and García-Bellido D (eds.). Ordovician of the World. Madrid: Instituto Geológico y Minero de España, 515-526
Schorn S and Stüwe K. 2016. The Plankogel detachment of the Eastern Alps: Petrological evidence for an orogen-scale extraction fault. Journal of Metamorphic Geology, 34(2): 147-166 DOI:10.1111/jmg.12176
Schulz B and Bombach K. 2003. Single zircon Pb-Pb geochronology of the Early-Palaeozoic magmatic evolution in the Austroalpine basement to the South of the Tauern window. Jahrbuch der Geologischen Bundesanstalt, 143(2): 303-321
Schulz B, Bombach K, Pawlig S and Brätz H. 2004. Neoproterozoic to Early-Palaeozoic magmatic evolution in the Gondwana-derived Austroalpine basement to the south of the Tauern Window (Eastern Alps). International Journal of Earth Sciences, 93(5): 824-843 DOI:10.1007/s00531-004-0421-8
Schulz B, Steenken A and Siegesmund S. 2008. Geodynamic evolution of an Alpine terrane: The Austroalpine basement to the south of the Tauern Window as a part of the Adriatic Plate (eastern Alps). In: Siegesmund S, Fügenschuh B and Froitzheim N (eds.). Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geological Society, London, Special Publications, 298(1): 5-44
Schulz B and von Raumer JF. 2011. Discovery of Ordovician-Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif. Swiss Journal of Geosciences, 104(1): 67-79 DOI:10.1007/s00015-010-0048-7
Schulz B. 2017. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP-Th-U-Pb monazite dating. Journal of Metamorphic Geology, 35(2): 141-163 DOI:10.1111/jmg.12224
Schuster K, Berka R, Draganits E, Frank W and Schuster R. 2001. Lithologien, Metamorphosegeschichte und tektonischer Bau der kristallinen Einheiten am Alpenostrand. In: Geologische Bundesanstalt Arbeitstagung 2001. Neuberg an der Mürz, Beiträge, 29-56
Schuster R and Stüwe K. 2008. Permian metamorphic event in the Alps. Geology, 36(8): 603-606 DOI:10.1130/G24703A.1
Şengör AMC. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590-593 DOI:10.1038/279590a0
Şengör AMC. 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America, 195: 1-82
Şengör AMC, Yılmaz Y and Sungurlu O. 1984. Tectonics of the Mediterranean Cimmerides: Nature and evolution of the western termination of Palaeo-Tethys. In: Dixon JE and Robertson AHF (eds.). Geological Society, London, Special Publications, 17(1): 77-112
Siegesmund S, Heinrichs T, Romer RL and Doman D. 2007. Age constraints on the evolution of the Austroalpine basement to the south of the Tauern Window. International Journal of Earth Sciences, 96(3): 415-432 DOI:10.1007/s00531-006-0115-5
Siegesmund S, Oriolo S, Heinrichs T, Basei MAS, Nolte N, Hüttenrauch F and Schulz B. 2018. Provenance of Austroalpine basement metasediments: Tightening up Early Palaeozoic connections between peri-Gondwanan domains of central Europe and Northern Africa. International Journal of Earth Sciences, 107(6): 2293-2315 DOI:10.1007/s00531-018-1599-5
Simancas JF, Tahiri A, Azor A, Lodeiro FG and Martínez Poyatos DJ and El Hadi H. 2005. The tectonic frame of the Variscan-Alleghanian orogen in Southern Europe and Northern Africa. Tectonophysics, 398(3): 181-198
Sirevaag H, Jacobs J, Ksienzyk AK, Rocchi S, Paoli G, Jørgensen H and Košler J. 2016. From Gondwana to Europe: The journey of Elba Island (Italy) as recorded by U-Pb detrital zircon ages of Paleozoic metasedimentary rocks. Gondwana Research, 38: 273-288 DOI:10.1016/j.gr.2015.12.006
Spiess R, Cesare B, Mazzoli C, Sassi R and Sassi FP. 2010. The crystalline basement of the Adria microplate in the eastern Alps: A review of the palaeostructural evolution from the Neoproterozoic to the Cenozoic. Rendiconti Lincei, 21(1): 31-50
Stampfli GM. 1993. Le Briançonnais, terrain exotique dans les Alpes?. Eclogae Geologicae Helvetiae, 86(1): 33-35
Stampfli GM. 1996. The Intra-Alpine terrain: A Paleotethyan remnant in the Alpine Variscides. Eclogae Geologicae Helvetiae, 89(1): 13-42
Stampfli GM. 2001. Geology of the Western Swiss Alps: A Guide-Book. Lausanne: Mémoires de Géologie, 36: 1-195
Stampfli GM, Mosar J, Favre P, Pillevuit A and Vanney JC. 2001. Permo-Mesozoic evolution of the western Tethyan realm: The Neotethys/East-Mediterranean connection. In: Ziegler PA, Cavazza W, Robertson AHF and Crasquin-Soleau S (eds.). Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Paris: Memoires du Museum National d'Historie Naturelle
Stampfli GM and Borel GD. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17-33 DOI:10.1016/S0012-821X(01)00588-X
Stampfli GM, Vavassis I, De Bono A, Rosselet F, Matti B and Bellini M. 2003. Remnants of the Paleotethys oceanic suture-zone in the western Tethyan area. Bolletino della Societa'Geologica Italiana, 2: 1-23
Stampfli GM and Borel GD. 2004. The TRANSMED transects in space and time: Constraints on the Paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM and Ziegler PA (eds.). The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle: Geological and Geophysical Framework of the Mediterranean and the Surrounding Areas. Berlin, Heidelberg: Springer, 53-80
Stamfli GM and Kozur HW. 2006. Europe from the Variscan to the Alpine cycles. In: Gee DG and Stephenson RA (eds.). European Lithosphere Dynamics. Geological Society, London, Memoirs, 32(1): 57-82
Stampfli GM and Hochard C. 2009. Plate tectonics of the Alpine realm. In: Murphy JB, Keppie JD and Hynes AJ (eds.). Ancient Orogens and Modern Analogues. Geological Society, London, Special publications, 327(1): 89-111
Stampfli GM. 2012. The geodynamics of Pangea formation. Géologie de la France, 1: 208-211
Stampfli GM, Hochard C, Vérard C, Wilhem C and von Raumer J. 2013. The formation of Pangea. Tectonophysics, 593: 1-19 DOI:10.1016/j.tecto.2013.02.037
Steiner C, Hobson A, Favre P, Stampfli GM and Hernandez J. 1998. Mesozoic sequence of Fuerteventura (Canary Islands): Witness of Early Jurassic sea-floor spreading in the central Atlantic. GSA Bulletin, 110(10): 1304-1317 DOI:10.1130/0016-7606(1998)110<1304:MSOFCI>2.3.CO;2
Stephan T, Kroner U and Romer RL. 2019. The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geological Magazine, 156(2): 281-307 DOI:10.1017/S0016756818000031
Stern RJ. 1994. Arc assembly and continental collision in the Neoproterozoic East African orogen: Implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22: 319-351 DOI:10.1146/annurev.ea.22.050194.001535
Stockar R, Baumgartner PO and Condon D. 2012. Integrated Ladinian bio-chronostratigraphy and geochrononology of Monte San Giorgio (Southern Alps, Switzerland). Swiss Journal of Geosciences, 105(1): 85-108 DOI:10.1007/s00015-012-0093-5
Storck JC, Brack P, Wotzlaw JF and Ulmer P. 2019. Timing and evolution of Middle Triassic magmatism in the Southern Alps (northern Italy). Journal of the Geological Society, 176(2): 253-268 DOI:10.1144/jgs2018-123
Stüwe K and Homberger R. 2012. High Above the Alps: A Bird's Eye View of Geology. Weishaupt
Tait JA, Bachtadse V, Franke W and Soffel HC. 1997. Geodynamic evolution of the European Variscan fold belt: Palaeomagnetic and geological constraints. Geologische Rundschau, 86(3): 585-598 DOI:10.1007/s005310050165
Thélin P, Sartori M, Burri M, Gouffon Y and Chessex R. 1993. The pre-Alpine basement of the Briançonnais (Wallis, Switzerland). In: Von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Heidelberg: Springer, 297-315
Thöni M and Jagoutz E. 1992. Some new aspects of dating eclogites in orogenic belts: Sm-Nd, Rb-Sr, and Pb-Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria). Geochimica et Cosmochimica Acta, 56(1): 347-368 DOI:10.1016/0016-7037(92)90138-9
Thöni M. 1999. A review of geochronological data from the Eastern Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 79(1): 209-230
Thöni M and Miller C. 2000. Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: Age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotope data. Schweizerische Mineralogische und Petrographische Mitteilungen, 80(2): 169-186
Thöni M and Miller C. 2004. Ordovician meta-pegmatite garnet (N-W Ötztal basement, Tyrol, Eastern Alps): Preservation of magmatic garnet chemistry and Sm-Nd age during mylonitization. Chemical Geology, 209(1-2): 1-26 DOI:10.1016/j.chemgeo.2004.03.006
Thöni M. 2006. Dating eclogite-facies metamorphism in the Eastern Alps: Approaches, results, interpretations: A review. Mineralogy and Petrology, 88(1): 123-148
Thöni M and Miller C. 2009. The "Permian event" in the Eastern European Alps: Sm-Nd and P-T data recorded by multi-stage garnet from the Plankogel unit. Chemical Geology, 260(1-2): 20-36 DOI:10.1016/j.chemgeo.2008.11.017
Thöny WF, Tropper P, Schennach F, Krenn E, Finger F, Kaindl R, Bernhard F and Hoinkes G. 2008. The metamorphic evolution of migmatites from the Ötztal Complex (Tyrol, Austria) and constraints on the timing of the pre-Variscan high-T event in the Eastern Alps. In: Froitzheim N and Schmid SM (eds.). Orogenic Processes in the Alpine Collision Zone. Basel: Birkhäuser, S111-S126
Torsvik TH and Cocks LRM. 2004. Earth geography from 400 to 250Ma: A palaeomagnetic, faunal and facies review. Journal of the Geological Society, 161(4): 555-572 DOI:10.1144/0016-764903-098
Torsvik TH and Cocks LRM. 2013. Gondwana from top to base in space and time. Gondwana Research, 24(3-4): 999-1030 DOI:10.1016/j.gr.2013.06.012
Torsvik TH and Cocks LRM. 2016. Earth History and Palaeogeography. Cambridge: Cambridge University Press
TRANSALP Working Group, Gebrande H, Lüschen E, Bopp M, Bleibinhaus F, Lammerer B, Oncken O, Stiller M, Kummerow J, Kind R, Millahn K, Grassl H, Neubauer F, Bertelli L, Borrini D, Fantoni R, Pessina C, Sella M, Castellarin A, Nicolich R, Mazzotti A and Bernabini M. 2002. First deep seismic reflection images of the Eastern Alps reveal giant crustal wedges and transcrustal ramps. Geophysical Research Letters, 29(10): 92-1
Trümpy R, Bernoulli D, Grünenfelder M, Képpel V, Müller S and Trommsdorf V. 1980. Geology of Switzerland: A Guide Book. Wepf, Basel, 104
Tumiati S, Thöni M, Nimis P, Martin S and Mair V. 2003. Mantle-crust interactions during Variscan subduction in the Eastern Alps (Nonsberg-Ulten zone): Geochronology and new petrological constraints. Earth and Planetary Science Letters, 210(3-4): 509-526 DOI:10.1016/S0012-821X(03)00161-4
Tumiati S, Godard G, Martin S, Klötzli U and Monticelli D. 2007. Fluid-controlled crustal metasomatism within a high-pressure subducted mélange (Mt. Hochwart, Eastern Italian Alps). Lithos, 94(1-4): 148-167 DOI:10.1016/j.lithos.2006.06.009
Vai GB and Cocozza T. 1986. Tentative schematic zonation of the Hercynian chain in Italy. Bulletin de la Société Géologique de France, 8(2): 95-114
van Hinsbergen DJJ, Torsvik TH, Schmid SM, Matenco LC, Maffione M, Vissers RLM, Gürer D and Spakman W. 2020. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81: 79-229 DOI:10.1016/j.gr.2019.07.009
Vavassis I, Stampfli G, de Bono A, Giorgis D, Valloton A and Amelin Y. 2000. U-Pb and Ar-Ar geochronological data from the Pelagonian basement in Evia (Greece): Geodynamic implications for the evolution of Paleotethys. Schweizerische Mineralogische und Petrographische Mitteilungen, 80(1): 21-43
Veevers JJ. 2004. Gondwanaland from 650~500Ma assembly through 320Ma merger in Pangea to 185~100Ma breakup: Supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews, 68(1-2): 1-132 DOI:10.1016/j.earscirev.2004.05.002
von Quadt A. 1992. U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contributions to Mineralogy and Petrology, 110(1): 57-67 DOI:10.1007/BF00310882
von Raumer JF. 1984. The External massifs, relics of Variscan basement in the Alps. Geologische Rundschau, 73(1): 1-31 DOI:10.1007/BF01820358
von Raumer JF. 1987. Les massifs du Mont Blanc et des Aiguilles Rouges: Témoins de la formation de croûte varisque dans les Alpes occidentales. Géologie Alpine, 63: 7-24
von Raumer JF and Neubauer F. 1993. Pre-Mesozoic Geology in the Alps. Heidelberg, Germany: Springer
von Raumer JF. 1998. The Palaeozoic evolution in the Alps: From Gondwana to Pangea. Geologische Rundschau, 87(3): 407-435
von Raumer JF, Stampfli G, Borel G and Bussy F. 2002. Organization of pre-Variscan basement areas at the North-Gondwanan margin. International Journal of Earth Sciences, 91(1): 35-52 DOI:10.1007/s005310100200
von Raumer JF and Bussy F. 2004. Mont-Blanc and Aiguilles-Rouges: Geology of their polymetamorphic basement (External massifs, France-Switzerland). Mémoires de Géologie of Lausanne, 42: 1-203
von Raumer JF and Stampfli GM. 2008. The birth of the Rheic Ocean: Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461(1-4): 9-20 DOI:10.1016/j.tecto.2008.04.012
von Raumer JF, Bussy F and Stampfli GM. 2009. The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. Comptes Rendus Geoscience, 341(2-3): 239-252 DOI:10.1016/j.crte.2008.11.007
von Raumer JF, Bussy F, Schaltegger U, Schulz B and Stampfli GM. 2013. Pre-Mesozoic Alpine basements: Their place in the European Paleozoic framework. GSA Bulletin, 125(1-2): 89-108 DOI:10.1130/B30654.1
Wan B, Wu FY, Chen L, Zhao L, Liang XF, Xiao WJ and Zhu RX. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China (Earth Sciences), 62(12): 2005-2016 DOI:10.1007/s11430-019-9393-4
Wickert F. 1988. Paleozoic evolution of continental crust in the Beaujolais-Lyonnais area, northeastern part of the Massif Central, France. Geologische Rundschau, 77(2): 467-482 DOI:10.1007/BF01832392
Winchester JA, Pharaoh TC, Verniers J, Ioane D and Seghedi A. 2006. Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: Recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG and Stephenson RA (eds.). European Lithosphere Dynamics. Geological Society, London, Memoirs, 32(1): 323-332
Xypolias P, Dörr W and Zulauf G. 2006. Late Carboniferous plutonism within the pre-Alpine basement of the External Hellenides (Kithira, Greece): Evidence from U-Pb zircon dating. Journal of the Geological Society, 163(3): 539-547 DOI:10.1144/0016-764904-114
Yanev S. 2000. Palaeozoic terranes of the Balkan Peninsula in the framework of Pangea assembly. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(1-2): 151-177 DOI:10.1016/S0031-0182(00)00121-8
Yuan S, Neubauer F, Liu Y, Genser J, Liu B, Yu S, Chang R and Guan Q. 2020. Widespread Permian granite magmatism in Lower Austroalpine units: Significance for Permian rifting in the East Alps. Swiss Journal of Geosciences, submitted
Zanetti A, Mazzucchelli M, Sinigoi S, Giovanardi T, Peressini G and Fanning M. 2013. SHRIMP U-Pb zircon Triassic intrusion age of the Finero Mafic Complex (Ivrea-Verbano Zone, Western Alps) and its geodynamic implications. Journal of Petrology, 54(11): 2235-2265 DOI:10.1093/petrology/egt046
Zhao GC, Wang YJ, Huang BC, Dong YP, Li SZ, Zhang GW and Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262-286 DOI:10.1016/j.earscirev.2018.10.003
Ziegler PA. 1984. Caledonian and Hercynian crustal consolidation of western and central Europe: A working hypothesis. Geologie en Mijnbouw, 63(1): 93-108
Ziegler PA. 1986. Geodynamic model for the Palaeozoic crustal consolidation of Western and Central Europe. Tectonophysics, 126(2-4): 303-328 DOI:10.1016/0040-1951(86)90236-2
Ziegler PA. 1990. Geological Atlas of Western and Central Europe. 2nd Edition. Hague: Shell Internationale Petroleum Maatschapij BV, 256
Ziegler PA. 1993. Late Palaeozoic-Early Mesozoic plate reorganization: Evolution and demise of the Variscan fold belt. In: Von Raumer JF and Neubauer F (eds.). Pre-Mesozoic Geology in the Alps. Heidelberg: Springer, 203-216
Zurbriggen R, Franz L and Handy MR. 1997. Pre-Variscan deformation, metamorphism and magmatism in the Strona-Ceneri zone (southern Alps of northern Italy and southern Switzerland). Schweizerische Mineralogische und Petrographische Mitteilungen, 77(3): 361-380
Zurbriggen R. 2015. Ordovician orogeny in the Alps: A reappraisal. International Journal of Earth Sciences, 104(2): 335-350 DOI:10.1007/s00531-014-1090-x
Zurbriggen R. 2017. The Cenerian orogeny (Early Paleozoic) from the perspective of the Alpine region. International Journal of Earth Sciences, 106(2): 517-529 DOI:10.1007/s00531-016-1438-5