岩石学报  2020, Vol. 36 Issue (8): 2331-2343, doi: 10.18654/1000-0569/2020.08.04   PDF    
岩石圈伸展的壳/幔拆离模型(Parallel Extension Tectonics):华北克拉通东部早白垩世岩石圈减薄与破坏机理
刘俊来1, 倪金龙2, 陈小宇1, Craddock JP3, 郑媛媛1, 孙彦琪1, 季雷1     
1. 中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083;
2. 山东科技大学地球科学与工程学院, 青岛 266590;
3. Geology Department, Macalester College, Saint Paul, MN 55105
摘要: 华北克拉通岩石圈减薄和破坏机理长期以来存在争议,基于岩石学、岩石地球的化学分析研究突出强调深部过程的重要性。前人提出了两种重要模式:包括以拆沉作用为代表的top-down tectonics模型和以热-机械侵蚀与化学侵蚀,或地幔置换、交代作用的bottom-up tectonics模型。然而,对于这两种模式而言尚存在许多无法合理解释的问题,比如在此深部过程中,区域性岩石圈伸展有多大的贡献?地壳伸展构造是作为深部过程的响应,还是同为岩石圈伸展的产物?本文基于早白垩世东亚地区(尤其是华北克拉通东部地区)伸展构造与岩浆活动的综合分析,揭示出华北克拉通东部不同地区伸展构造变形与岩浆活动之间的时、空和成因关系有一定的差异。但整体上看,岩石圈伸展起着主导作用,控制着岩浆上侵和就位,在拆离断层下盘侵入形成各种规模的花岗质为主的侵入体,或于上盘喷发形成火山-沉积岩盆地。在伸展构造发育的不同阶段,可以有伸展早期、伸展期及伸展期后的岩浆活动。岩浆活动的强度及岩浆源区特点有显著的时空变化。一方面,在同一地区不同演化阶段其源区有很大的差异。表现为主体上是早期以古老下地壳源为主,随着壳/幔伸展作用演化,逐渐向混合源或独立幔源的演化。同时,不同地区岩浆源区的变化规律也显著不同。以胶辽地区为例,胶东整体上是壳幔混合源区对于岩浆演化有重要贡献;而辽东地区具有显著的源区演化特点:从剪切早期古老下地壳源区为主,并伴有幔源物质加入,剪切期古老下地壳为主,到剪切晚期和剪切期后以新生下地壳为主。本文认为岩石圈伸展的壳/幔拆离模型(Parallel Extension Tectonics),可以合理地解释华北克拉通及邻区早白垩世构造-岩浆活动性。在该模型中,遭受伸展的华北克拉通岩石圈发生壳-幔拆离作用。在岩石圈伸展作用期间,地壳层次的拆离作用与岩石圈地幔层次上的拆离作用可以是耦合的或者是解耦的,从而导致华北克拉通岩石圈减薄过程中在地壳尺度上的拆离作用与变质核杂岩的剥露有三种不同的类型:同岩浆活动型伸展(C型:Co-magmatism mode extension)、无岩浆活动型伸展(A型:Amagmatism mode extension)和多阶段混合型(M型:Multi-mode extension)。
关键词: 岩石圈不均匀伸展    壳幔拆离    同伸展岩浆作用    岩石圈伸展的壳幔拆离模型    华北克拉通    
Parallel Extension Tectonics: Mechanism of Early Cretaceous thinning and destruction of the lithosphere of the North China Craton
LIU JunLai1, NI JinLong2, CHEN XiaoYu1, CRADDOCK JP3, ZHENG YuanYuan1, SUN YanQi1, JI Lei1     
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. College of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
3. Geology Department, Macalester College, Saint Paul, MN 55105, USA
Abstract: The mechanism of lithosphere thinning and destruction of the North China Craton has long been controversial. Two popularly discussed models, i.e., the top-down tectonics model and the bottom-up model, based on petrological and geochemical studies that stress the importance of deep processes. The former is exemplified by delamination and foundering of thickened lithospheric root, while the later is represented by processes involving thermo-mechanical and chemical erosions, mantle replacement or metasomatism. How the regional lithospheric extension contributed to thinning of the lithosphere remains not well-understood, although tectonic stresses are generally accepted to be one of the major driving forces during cratonic evolution. It is also debatable if the crustal extension is a response to deep processes or both are parallel products of lithospheric extension. This paper demonstrates, based on comprehensive analysis of Early Cretaceous extensional and magmatic activities in East Asia that there are obvious differences in temporal, spatial and genetic relationships between extensional tectonic deformation and magmatic activities in different area, especially in the eastern part of the North China Craton. Extensional tectonic activities predominted over the generation, up-welling and emplacement of syntectonic magmas. At different stages of the tectonic extension, there are early syn-extensional, syn-extensional and post-extensional magmatic activities. The characteristics of magmatic activities and their source attributes vary significantly with time at different tectonic domains. Meanwhile, there are obvious differences in magmatic sources at different stages of tectonic extension in a specific tectonic domain, in spite of a general tendency from mixed sources with dominant ancient crust contributions to separate mantle or crustal sources. Further more, different tectonic domains may have different tendencies of source region variations. Taking the Jiaodong and Liaodong peninsulas at the southeastern North China Craton as an example, mixed sources of ancient crust, juvenile crust and lithospheric mantle have important contributions to magma evolution in the Jiaodong area, but evolving magma sources played key roles in the generation of magmas in the Liaodong Peninsula. The present study suggests that the Early Cretaceous tectono-magmatic activities in the North China Craton and adjacent areas can be reasonably explained by Parallel Extension Tectonics (PET). In the PET model, both crust and mantle detachment occurs in response to regional lithosphere extension. Detachment faulting in the crust and in the lithospheric mantle can be either coupled or decoupled, which may have different tectono-magmatic responses. Three different modes of crustal detachment and exhumation of metamorphic core complexes are shown to have occurred during the Early Cretaceous tectonic extension of the North China Craton: co-magmatim (hot) mode extension, amagmatism (cold) mode extension and multi-mode extension.
Key words: Inhomogeneous tectonic extension    crustal and mantle detachment faulting    syn-extensional magmatic activities    Parallel Extension Tectonics    North China Craton    
1 早白垩世华北克拉通岩石减薄与克拉通破坏:由上而下(Top-down Tectonics), 由下而上(Bottom-up Tectonics)还是壳幔耦合伸展(Parallel Extension Tectonics)?

克拉通位于大陆的中部,也是大陆岩石圈板块的主体。一般都有一个前寒武纪变质岩组成的基底,组成岩石年龄可达42亿年,常为具有复杂变形-变质-岩浆活动演化的深变质岩系构成,因此也常称为前寒武纪克拉通。现今保存完好的克拉通包括北美克拉通、西伯利亚克拉通、南非克拉通、西澳克拉通等(Moores and Twiss, 1995)。典型的克拉通往往拥有近250km的巨厚岩石圈,因而也是大陆中最稳定的部分。它们自从克拉通形成(克拉通化)后,一直保持其稳定性而主体上不被后期热-动力学事件的扰动(Carlson et al., 2005)。

华北克拉通是我国最古老、规模最大的克拉通,保留了大约38亿年的早前寒武纪地壳演化记录(Liu et al., 1992; Wu et al., 2008)。它是几个主要太古宙地块在经历了大约25亿年前的初始克拉通化之后,在大约18~19亿年间沿着中部造山带、胶辽吉造山带和孔兹岩带造山、拼贴后形成的一个早前寒武纪克拉通(Zhao et al., 2005)。与世界上典型克拉通相似,华北克拉通在其长期地质演化历史中保持其相对稳定性,早前寒武纪结晶基底上覆有从寒武纪-二叠纪时期稳定的盖层沉积。但是,地球物理探测揭示出,现今华北克拉通东部局部地区岩石圈厚度小于80km。早期大地构造分析突出强调由早前寒武纪结晶基底与显生宙沉积盖层构成的典型二元结构,以及由此显示出的早期活动性和晚期稳定性(Huang,1980),并认识到华北克拉通在早前寒武纪晚期克拉通化后经历了后期区域性改造(陈国达,1959Huang, 1980)。

20世纪90年代后,尤其是21世纪以来的研究发现,华北克拉通在显生宙的活动性,不仅仅局限于地壳层次,而是伴随着深部地球动力环境的变化(邓晋福等,1994吴福元等, 2000)。地质学研究、地球物理探测与岩石地球化学分析揭示出,华北克拉通自早前寒武纪晚期完成克拉通化之后,经历了中、新元古代的裂陷、古生代和早中生代时期克拉通边缘的再造,特别是到晚中生代时期发生了大规模的区域性地壳运动(燕山运动时期的改造,赵越等,2004),同时发生了岩石圈减薄导致巨量岩石圈厚度改变(池际尚,1988Griffin et al., 1992陈国达等,1992),甚至克拉通破坏而导致岩石圈地幔的地球化学属性发生改变(岩石圈地幔的化学成分转型,吴福元等,2008)。越来越多的区域构造-岩浆活动性分析结果支持华北克拉通岩石圈减薄和破坏峰期发生在早白垩世时期(125±10Ma,Wu et al., 2005Zhu et al., 2011)。在此期间尤其是克拉通东部地区遭受了强烈改造,地壳尺度上发育大量伸展构造(Liu et al., 2006; Lin et al., 2008; Wang et al., 2011a),伴随着以壳源为主且常常伴有幔源组分加入的大规模岩浆活动性。普遍认为这些事件的发生导致了岩石圈地幔的不均匀减薄与化学成分的转型(Yang et al., 2004, 2010b, 2012)。

华北克拉通岩石圈减薄和克拉通破坏的机制长期以来饱受争议,并建立了多种不同的概念模型,解释从岩石圈减薄到克拉通破坏的物理-化学-动力学过程(Wu et al., 2008, 2019)。早期岩石圈去根模型(邓晋福等,1994),认为早中生代(印支期)中国东部陆块拼合形成巨厚大陆岩石圈根(>150~200km),晚中生代以来地幔热柱的上升导致新生代东部地区大量幔源玄武质岩浆的喷发。同时,邓晋福等(1994)还强调岩石圈的拆沉作用与香肠化是机械去根作用的有效机理,期间的热-动力学过程诱发不同圈层之间的能量与物质交换,并同时驱动浅表盆地发育、构造活动、岩浆作用及成矿演化。近年来,对于华北克拉通岩石圈减薄与克拉通破坏机制的讨论,主要围绕两类广泛接受的模型:即自上而下top-down模型和自下而上的bottom-up模型(Xu, 2001; Zhang et al., 2002; Gao et al., 2004; Wu et al., 2005; Zheng, 2009Windley et al., 2010)。前者(top-down模型)以拆沉作用为代表,强调由于前期的造山和加厚使得下部地壳转变成榴辉岩并因重力失稳与下伏的岩石圈地幔一并进入软流圈地幔拆沉作用或发生在侏罗纪(Gao et al., 2004), 或主要发生在早白垩世(Wu et al., 2005)。这样的一种过程往往发生在较短时期内,是一次灾变型事件。随着拆沉作用的发生,岩石圈根部突然丢失致使岩石圈厚度迅速减小,伴随着软流圈迅速上涌及地热增温率快速增加(图 1a)。后者(bottom-up模型)的解释认为岩石圈减薄与成分转型的作用是一个漫长的均变过程,可以持续长达100Myr以上(Menzies et al., 2007), 相伴岩石圈升温缓慢(图 1b)。对于这种机制模型,包括几种不同的解释:热-机械侵蚀作用(Xu,2001)、地幔置换作用(Zheng, 2009)或者橄榄岩-熔体交代作用(Zhang et al., 2002)。

图 1 华北克拉通岩石圈减薄与克拉通破坏的top-down与bottom-up模型 (a)由上而下(top-down):拆沉作用-去根作用; (b)由下而上(bottom-up):侵蚀-置换-交代. LAB-岩石圈-软流圈界面 Fig. 1 The top-down and bottom-up models for lithospheric thinning and destruction of the North China Craton

上述对于华北克拉通岩石圈减薄与破坏机制与模型的建立,主要是基于壳-幔源岩浆岩岩石地球化学分析结果实现的。对于浅部地壳在岩石圈减薄或克拉通破坏中的表现(地表的隆升、地壳拆离、沉积盆地发育、岩浆侵入与火山喷发以及成矿作用等),常常视为深部过程在浅部的响应。尽管这些地壳尺度的构造对于上述模型提供了部分支持,但仍有很多特点难以给予合理的解释(吴福元等,2008)。本文重点基于华北克拉通及邻区早白垩世伸展构造组合与构造-岩浆活动关系的资料总结与分析,阐明区域性岩石圈伸展作用对于华北克拉通岩石圈减薄及破坏的关键性控制地位,基于被动裂谷作用建立的壳幔耦合伸展模型(Parallel Extension Tectonics, PET,图 2刘俊来等,2009Liu et al., 2013; Ji et al., 2015; Ni et al., 2016),强调地壳层次伸展构造发育与地幔尺度上岩石圈的伸展作用同步发生,强调区域伸展作用对于岩石圈地幔与地壳减薄以及岩石圈根部破坏的意义,强调深部(岩石圈地幔)-浅部(地壳)同步演化,提出岩石圈壳/幔伸展构造发育、岩石圈减薄、软流圈上涌、不同层次物源岩浆的活动性等为同一次事件在不同方面的表现。

图 2 华北克拉通晚中生代岩石圈减薄的岩石圈伸展与壳-幔拆离作用模型(据刘俊来等,2009) Fig. 2 The Parallel Extension Tectonics and crust-mantle detachment model for the lithospheric thinning in the North China Craton (after Liu et al., 2009)
2 华北克拉通及邻区主要早白垩世伸展构造

华北克拉通岩石圈减薄或破坏最主要特点之一表现为深部(岩石圈地幔)与浅部(地壳)之间耦合性,并直接体现在中上地壳层次上变形构造的发育及变化。华北克拉通及邻区早白垩世地壳尺度上的伸展构造主要有三种不同的表现形式,包括拆离断层、断陷盆地、伸展片麻岩穹隆和变质核杂岩构造(刘俊来等,2009)。它们广泛分布于欧亚大陆东部(图 3),从贝加尔湖畔-俄罗斯远东(Zorin, 1999; Donskaya et al., 2008; Daoudene et al., 2009, 2013)、中国东北(松辽变质核杂岩, 张晓东等,2000;英巴拆离断层, Zhou et al., 2012; Yin et al., 2017; 辽西阜新盆地,张宏等,2005; 松辽盆地与外围盆地群, 杨建国等,2006)、华北克拉通区(亚干,郑亚东,1999; 郑亚东和王涛,2005; 呼和浩特, Davis et al., 2002; 云蒙山, Davis et al., 1996; Liu et al., 2005, 2006;医巫闾山, 马寅生等,1999; Darby et al., 2004)、苏鲁造山带(桐柏-大别伸展穹隆,Liu et al., 2018; 五莲变质核杂岩,Ni et al., 2013, 2016)和华南地区(武功山伸展穹隆, Shu et al., 1998)。这些伸展构造尽管类型、特点有所差异,但却具有广泛意义上的相似性(Liu et al., 2006)。

图 3 华北克拉通东部区晚中生代-新生代构造-岩浆概况(底图据张岳桥等,2007) Fig. 3 An outline of distribution of Late Mesozoic to Cenozoic structures and magmatic rocks in eastern North China Craton (base map revised after Zhang et al., 2007)

在对于辽南变质核杂岩开展了深入研究的基础上(Liu et al., 2005),刘俊来等(2006)Liu et al.(2006)首先系统总结了华北地区主要变质核杂岩构造的主要特点,发现:1)它们不均匀分布且不具有显著的分带性,但在几何学、运动学和形成时间上普遍具有一致性;2)它们运动学规律的统一性,则表现在运动方向以NWW-SEE为主,不同变质核杂岩拉伸线理的统计平均方向以130°~310°为主,充分说明伸展构造是在同一应力场中形成的;3)变质核杂岩具有对称或不对称结构型式,反映了单剪作用对于单一变质核杂岩剥露的重要意义,但其组合规律却为纯剪力学环境的存在提供了重要依据;4)相伴发育的许多沉积盆地常常为一些箕状盆地,边缘断裂表现出铲状特点;5)依据现有伸展拆离断层糜棱岩、伴生侵入岩与早期变质岩的测年资料分析,主体变质核杂岩的形成时间介于130~120Ma之间。基于上述主要特点,可以发现岩石圈伸展对于变质核杂岩发育的贡献。华北克拉通岩石圈在晚中生代时期的破坏是一个渐进过程,是由很多微小(次级)过程的发生、发展到最终积累并使得岩石圈整体上在短时间内突然性爆发的一个量变到质变的过程(Liu et al., 2006)。

对于华北克拉通及邻区早白垩世伸展构造组合的进一步工作,前人开展了区域发育规律与特点的总结(Lin et al., 2008; 朱光等,2008Wang et al., 2011a, 2012; 林伟等, 2013, 2019杨谦等,2019),并将其划分为泛贝加尔-鄂霍次克带、华北西部带、华北东部带、华北南缘及秦岭-大别带和华南内陆等晚中生代伸展构造带, 他们同时将伸展穹隆作为一种共生的伸展构造型式。研究认为先期构造(如岩石圈薄弱带,林伟等,2013;或先期的造山带,Wang et al., 2011a)制约着部分地区伸展构造的发育。Lin et al. (2008)林伟等(2013)朱光等(2008)将伸展构造归咎于克拉通破坏时期岩石圈尺度上的拆沉作用(或逐渐拆沉作用)的结果,是深部岩石圈拆沉作用的浅部响应。Wang et al.(2011a, 2012)、杨谦等(2019)则从两个方面阐述了不同构造域伸展构造的发育机制,强调贝加尔及邻区伸展构造与华北东部地区伸展构造运动学极性差异,提出前者归咎于蒙古-鄂霍茨克洋关闭后的造山带垮塌,而后者则与太平洋板块俯冲诱发的远程伸展效应密切相关。Zhu et al.(2012, 2018)则提出俯冲的古太平洋(Izanagi)板块弧后伸展作用为华北克拉通东部早白垩世伸展构造发育提供了动力学环境。

随着区域性调查工作的不断开展,近年来在东亚地区发现了越来越多的伸展构造并开展了深入的个例研究。新近先后发现了大营子拆离断层(Shen et al., 2011;申亮等,2011)、万福变质核杂岩(关会梅等,2010Liu et al., 2013)、五莲变质核杂岩(Ni et al., 2013, 2016)、鹊山变质核杂岩(Xia et al., 2016)、喀喇沁穹隆(Han et al., 2001; Darby et al., 2004; 王新社和郑亚东,2005)、英巴穹隆(Zhou et al., 2012)、洪镇穹隆(朱光等,2007Zhu et al., 2010),以及对于北大别穹隆(Wang et al., 2011a冀文斌等,2011)、桐柏穹隆(Ratschbacher et al., 2000Liu et al., 2010)、小秦岭变质核杂岩(张进江等,1998)并开展了进一步深入的研究工作。贝加尔湖畔的Ulan-Ude、Buteel、Zagan、Yablonovy、Ereendavaa、Nartyn和Altanshiree等变质核杂岩构造也得到了深入研究(Donskaya et al., 2008; Daoudene et al., 2009, 2013)。同期对于早白垩世伸展断陷盆地的研究也取得了长足进展,研究显示区域性大规模伸展构造,往往为一系列次级规模伸展构造的组合。大多数盆地都以宽裂谷型式发育,由许多次级盆地组成盆地群(如内蒙银根盆地群, 图 4a,Meng, 2003; 图 4b,辽东半岛盆地群, Liu et al., 2011, 2020)。多数地区盆地(群)的发育是一个递进过程,不同的盆地是在岩石圈(地壳)伸展过程中在不同位置上控盆断裂成核与扩展的结果。由于应变弥散在不同的部位,而使得每一个盆地规模并不很大。但在以胶莱盆地为代表的另外一个极端情况下,窄裂谷型式发育有大型盆地构造(图 4c张岳桥等,2008)。一个单独的大规模盆地从初始小型盆地形成后,随着岩石圈应变递进过程,控盆断裂继续扩展并最终形成区域性的大型断陷盆地。

图 4 宽裂谷式(a,据Meng, 2003; b,据Liu et al., 2011, 2020)与窄裂谷式(c, 据张岳桥等,2008)盆地格局 LEP-辽东伸展构造省;JEP-胶东伸展构造省 Fig. 4 Wide rift (a, after Meng, 2003; b, after Liu et al., 2011, 2020) and narrow rift (after Zhang et al., 2008) distribution patterns of extensional basins
3 早白垩世伸展作用与构造-岩浆关系

早白垩世时期华北克拉通岩石圈伸展构造的发育伴随着剧烈的区域性岩浆活动性,尤其是大规模的区域性侵入岩就位和伴随断陷盆地形成的(基性-酸性)火山岩喷发。整体上看,早白垩世的岩浆活动以酸性为主,基性岩浆活动性相对微弱,Wu et al. (2005)将华北-东北地区的大规模花岗质岩浆活动性称为巨型岩浆作用。在华北克拉通东部,早白垩世花岗质-闪长质侵入岩广泛分布,河北张家口(130~127Ma,李创举和包志伟,2012)、崇礼马营(144~136Ma, 刘胤等,2010)、围场(138Ma)、千层背(140~133Ma,123~115Ma,刘宏磊,2018)、后石湖山(121~119Ma,文霞等,2013)、石山(124Ma,李刚等,2016),辽东饮马湾山(129Ma, 郭春丽等,2004Ji et al., 2015)、赵屯(129Ma, Wu et al., 2005), (125Ma, 关康等,1998)、艾山(116Ma, Goss et al., 2010)、蚌埠杂岩(130~110Ma, Yang et al., 2010a),小秦岭地区(142~131Ma, 张进江等,1998)。同时,在冀北-辽西地区(Wang et al., 2006)、胶莱盆地-鲁西地区青山群(Qiu et al., 2001; Huang et al., 2006; Tong, 2007; Fu et al., 2014; 彭楠等, 2015)和合肥盆地及辽东地区断陷盆地群中普遍发育了不同时期(135~105Ma)的火山岩组合。

整体上来讲,同伸展作用岩浆活动均来自复杂的源区, 并具有不同源区随时间演变的特点。以辽南变质核杂岩为例,Yang et al.(2004)对位于辽南变质核杂岩下盘的古道岭岩体进行了岩石地球化学及Sr-Nd同位素研究,认为该岩体来源于三个端元,即低初始87Sr/86Sr比值(0.7058~0.7073)、负εNd(t)值(-7.2)的富集岩石圈地幔(闪长岩);高初始87Sr/86Sr比值(0.7118~0.7120)、负εNd(t)值(-13.2 to -18.1)的伴有古老下地壳贡献的富集岩石圈地幔源区(石英闪长岩);以及低初始87Sr/86Sr比值(0.7052~0.7086)、负εNd(t)值(-18.5~-20.9)的新生下地壳(二长花岗岩);并且指出古道岭花岗岩的形成经历了复杂的多阶段混合作用,包括幔源、壳源岩浆及一些相伴随的岩浆过程(分离结晶、地壳混染、地壳深熔作用)(Yang et al., 2004)。对饮马湾山岩体进行的研究结果也指示其中花岗质岩石自岩石圈地幔、下地壳岩浆经过分离结晶、岩浆混合、地壳混染作用形成(郭春丽等,2004)。精细的构造-岩浆分析揭示出伸展作用不同阶段岩浆活动的物源变化特点。根据花岗质岩石在露头和显微尺度的构造特点分析,揭示出岩基、岩株或岩脉状侵入的花岗质岩石可划分为构造前、构造期(包括剪切早期和剪切晚期)和构造后的侵入体。借助于构造-岩浆岩构造关系判别可以推断,在露头尺度上伸展变形事件起始时间早于岩浆活动性。地壳尺度的拆离作用诱发区域性岩体就位,并在拆离断层带内长期发育有不同阶段就位的花岗质岩脉。拆离断层带中的岩浆活动性经常持续到伸展活动末期,甚至到拆离断层作用停止活动即使岩石圈伸展过程已经停止,深部的岩浆活动依然在进行。Ji et al.(2015)的精细构造-岩浆关系解析表明,随着金州拆离断层拆离作用的进行岩浆源区也发生变化。赵屯岩体是剪切早期同构造岩体的代表,其Sr-Nd同位素特征指示明显的幔源特征(约130Ma,87Sr/86Sr:0.7072;εNd(t):-0.3),而且赵屯岩体中也发现有太古代年龄的继承锆石,所以判断赵屯岩体主要来源于古老下地壳的熔融,并有大量富集地幔物质的贡献。剪切晚期的岩体包括七星台岩体、洼子店岩体、饮马湾山岩体的内部以及上叠盆地中的火山岩。它们的Sr-Nd同位素特征指示在较早期(火山岩:123Ma,87Sr/86Sr:0.7086~0.7090;εNd(t):-18.4~-18.6;二长花岗岩:120Ma, 87Sr/86Sr:0.7112~0.7123;εNd(t):-19.0~-19.6)岩浆源区以新生下地壳为主。在晚期或剪切期后岩浆源区(赵房岩体花岗斑岩脉:约113Ma,87Sr/86Sr:0.7062;εNd(t):-19.4)以新生下地壳为主。

同时,伸展相关的盆地,无论是变质核杂岩或拆离断层的上叠盆地还是断陷盆地,其中的火山岩普遍认为是与岩石圈伸展作用密切相关,或者说是岩石圈伸展作用的结果。以胶莱盆地为例,盆地的发育是作为三个变质核杂岩(五莲, Ni et al., 2016; 鹊山, Xia et al., 2016; 玲珑, Charles et al., 2011)共享的上叠盆地出现,早期伸展作用形成的盆地堆积(即莱阳群)最早从约135Ma开始,且沉积巨厚、规模巨大(厚度最大大于8000m)。尽管其内部局部发育有火山岩夹层,但巨量的火山活动性却是发生在大约122Ma之后的青山期,此时诱发变质核杂岩剥露的地壳伸展已经结束。在冀北-辽西地区,伸展断陷盆地的发育时间上有所差别,可能始自晚侏罗世约156Ma。盆地仍然以接受巨厚的陆相沉积岩石组合开始,发育了厚达4400m以上(土城子组,Davis et al., 2005; 万晓樵等,2020)的内陆湖相沉积岩为主的岩石组合,并继之以大量壳-幔源区的火山岩。火山喷发范围远远大于早期沉积盆地覆盖范围,并且,与之相伴的花岗岩体切过主拆离断层,暗示区域性伸展作用结束晚期或后期大规模岩浆作用发生。当然,对于辽东地区瓦房店盆地、桂云花盆地、大营子盆地和通远堡盆地(Liu et al., 2020),以及辽西阜新-义县盆地等的火山-沉积组合分析却揭示出,盆地底部堆积均以剧烈的火山活动为起始,并随之覆盖陆相沉积岩石组合(Zhang et al., 2005)。

对华北克拉通不同地区早白垩世同伸展岩浆活动性分析揭示出,岩浆活动具有面状分布但不均匀活动特点,受局部地壳层次的伸展构造(断陷盆地和变质核杂岩)的发育控制。火山活动与断陷盆地的发育具有密切成因联系,在辽西-冀北(北部)、胶莱盆地及合肥盆地(南缘),其岩浆(尤其是花岗质岩浆)活动常常发育于盆地基底内,局部地区也有报道较晚的岩体侵入到盆地沉积-火山岩中(Yang et al., 2005; Liu et al., 2020)。同时,不同地区岩浆活动的时间有显著差异。从克拉通北部辽西-冀北地区、中部太行到南部鲁西-徐淮-蚌埠以及辽东半岛、小秦岭地区,广泛分布着144~120Ma的深成和火山活动性,并伴随着华北克拉通主要变质核杂岩的剥露。而在胶东-苏鲁造山带,在120~105Ma间发育大量构造-岩浆活动(Wang et al., 2015),同期岩浆活动在辽东半岛、辽西北票、义县范家沟等地区存在。此外,同一地区岩浆源区随着时间的变化趋势也有显著差异。李创举和包志伟(2012)对冀西北张家口东坪地区的北栅子碱性花岗岩(130.5±1.5Ma)与张家口组粗面质火山岩(127.8±3.9Ma)的地球化学分析及锆石Hf同位素分析提出花岗岩岩浆主要源于经历过强烈改造的前寒武纪下地壳部分熔融, 粗面质火山岩的源区可能含有相对较多的年轻地幔物质, 两者可能存在源区混合作用。辽西阜新-义县盆地下白垩统下部层位的义县组(125~122Ma)粗面玄武岩和玄武质粗安岩具有中等偏低的(87Sr/86Sr)i值(~0.706)与低的εHf(t)值,结合其地球化学特点, 杨蔚(2007)认为它们是地幔源区混染了拆离下地壳熔融形成的富硅熔体的结果,而同期且具有相近的Sr-Nd同位素特点的粗面安山岩岩浆源区可能是拆离的克拉通下地壳。对于同一地区年轻的张老公屯组玄武岩(~106Ma)获得了低的(87Sr/86Sr)i值(< 0.704)和高的εHf(t)值(>4),被认为是软流圈地幔来源岩浆结晶的结果。辽东半岛地区,早期岩浆具有多源混合特点,表现为以古老下地壳源区为主并伴有幔源物质加入,同时发生底垫新生下地壳岩浆房的出现,而深部岩浆过程包括了岩浆混合、结晶分异、围岩同化等多种作用,随着时间演变,独立源区的新生下地壳和幔源源区物质成分对于上侵岩浆的贡献占据着越来越重要的位置。

此外,尽管华北克拉通不同地区总演化趋势以从早期古老下地壳为主的源区向以新生下地壳或幔源为主的源区的演变,但不同地区的源区演化趋势存在着差异。以胶东和辽东为例,近期的研究揭示出,辽东地区岩浆源区有着显著的演化趋势,但胶东地区却表现出从早到晚混合源区的重要贡献。近期Liu et al. (2020)对于胶辽地区早白垩世伸展构造活动相伴发育的岩浆活动性综合分析显示出辽东半岛与胶东半岛地区的构造-岩浆活动性具有显著的不均匀性(匡永生等,2012; Cai et al., 2013; Ma et al., 2014; Dai et al., 2016; Liu et al., 2020)。从时间轴上,地壳的伸展作用起始于约135Ma并持续到约120Ma。在辽东地区,自约135Ma开始面状发育伸展构造组合为特点,主要伸展构造包括辽南-万福变质核杂岩对(瓦房店和桂云花盆地)、大营子拆离断层带(大营子和黄花店盆地)、本溪盆地、通远堡盆地和丹东盆地等。如上述,这些面状分布的小型盆地发育之初,首先伴随着不同规模的火山喷发,随之发育内陆湖相沉积岩石组合。在胶东地区,同期发育了五莲、鹊山和玲珑变质核杂岩,它们共享巨大的胶莱盆地,而盆地中首先沉积的是巨厚的内陆湖相沉积岩系。大约在122~120Ma开始,胶辽地块的演化进入新的阶段,这一时间点恰好与京西、冀北、辽西地区燕山运动的C幕时间对应(孟庆任,2017)。在辽东地区,此后万福变质核杂岩形成、丹东盆地继续活动。但在胶东地区,三个主要变质核杂岩(尤其是五莲变质核杂岩)的剥露变得缓慢甚至停止,代之以大规模的区域岩浆活动性,包括盆地火山活动性和拆离后的花岗质岩浆活动性,反映深部壳幔活动性的增强。

4 岩石圈伸展的壳/幔拆离模型(PET)

对于华北克拉通及邻区广泛发育的早白垩世伸展构造活动性分析揭示出,欧亚大陆早白垩世伸展作用从西向东有一定变化,比如,变质核杂岩的剥露在西部呼和浩特地区可能始自148Ma(Wang et al., 2012),在东部辽南和胶东约135Ma,而在冀北-辽西地区却可以追溯到晚侏罗世(156Ma,万晓樵等,2020)。同时,在这些地区还有一些新生的伸展构造(如辽东地区的丹东断陷盆地)。对于各个地区伸展构造(组合)开展的精细构造-岩浆关系分析结果显示,早期地壳尺度上的伸展作用是诱发岩浆活动的主要因素。而在伸展构造活动的各阶段发育的具有不同源区活动特点的岩浆岩,则暗示了相继发生了深部构造-岩浆过程的响应。

基于伸展构造发育特点,结合构造-岩浆活动性分析,强调岩石圈伸展事件与深部岩浆事件(软流圈上涌)之间的时、空、成因演化关系,Liu et al.(2013, 2020)、Ji et al. (2015)Ni et al. (2016)综合阐释了岩石圈伸展体制下壳幔拆离与岩浆演化过程,提出岩石圈伸展的壳/幔拆离模型(PET)是华北克拉通早白垩世岩石圈减薄、破坏,周边地区(东北、华南及俄罗斯远东等)岩石圈伸展的主要机制。

PET模型强调岩石圈伸展同时作用于浅部地壳与岩石圈地幔,岩石圈伸展作用是地壳伸展、深部壳幔岩浆过程及成矿作用演化的主要控制因素。克拉通岩石圈遭受区域性伸展,同时或相继发生地壳与地幔拆离作用,伴随深部岩浆作用发生,并诱发局部岩石圈深部拆沉作用、热-化学侵蚀或地幔置换与交代作用。期间,流体相的广泛存在对于促进岩石圈的应变局部化(水解弱化)、壳-幔部分熔融作用发生及地幔交代与置换作用可能有重要贡献。

在PET模型中,岩石圈的拆离表现出强烈的不均匀性,地壳的拆离与岩石圈地幔的拆离或是耦合的、或是解耦的。因而,在岩石圈伸展的不同阶段,拆离作用可以发生在地壳层次、岩石圈地幔层次或是同时发生。以胶辽地区为例,在岩石圈伸展早期阶段(图 5a),辽东半岛地区壳幔耦合伸展和拆离,岩石圈微弱减薄,弥散状拆离断层构造发育。辽南变质核杂岩下盘开始缓慢剥露,断陷盆地的火山作用(金州、大营子-黄花甸和通远堡),并随之于断陷盆地中接受内陆湖相沉积。胶东地区的拆离作用限于地壳层次,发育窄裂谷,三个变质核杂岩(五莲、鹊山和玲珑)开始快速剥露,接受巨厚的莱阳群沉积。在岩石圈伸展作用主期阶段(图 5b),辽东半岛壳幔耦合拆离作用进一步发展,岩石圈巨量减薄,发育新的伸展构造(本溪、丹东和桂云花)的同时,辽南变质核杂岩下盘持续缓慢剥露,并伴有大规模同构造岩浆活动,并在拆离断层下盘就位巨量花岗岩。与此同时,胶东半岛在强烈地壳拆离基础上,发生微弱(局部)岩石圈地幔拆离。三个变质核杂岩持续快速剥露,胶莱盆地继续接受沉积。少量同构造花岗质侵入体就位于五莲变质核杂岩下盘。在岩石圈伸展晚期阶段(图 5c),辽东半岛岩石圈地幔拆离作用变得微弱,在地壳尺度上依然表现显著。辽南变质核杂岩进入快速剥露阶段,但主要断陷盆地火山活动减弱或消失,持续接受内陆湖相沉积。同时,变质核杂岩下盘少量构造晚期或期后花岗岩就位。在胶东地区,地壳尺度的拆离作用已近消失,岩石圈地幔尺度上的拆离却主导着岩浆演化,并可能导致岩石圈巨量减薄。以五莲变质核杂岩为代表的核杂岩下盘开始慢速剥露,但巨量的岩浆活动形成大规模的火山岩(青山群)和构造后的花岗质侵入岩。

图 5 华北克拉通东部胶辽地区岩石圈伸展与地壳拆离模型(据Liu et al., 2020) Fig. 5 Tectonic models for the lithospheric extension and crustal detachment in the Jiaodong and Liaodong peninsulas in eastern North China Craton (after Liu et al., 2020)

PET应用到华北克拉通不同地区岩石圈伸展与壳幔拆离耦合/解耦关系,可以识别出三种不同类型的岩石圈伸展过程:

(1) 辽东地区早白垩世岩石圈伸展称为同岩浆活动型伸展(C型:Co-magmatim mode extension)。在此环境中,地壳拆离作用与地幔拆离作用同时发生,大约自135 Ma开始,形成了广泛发育的断陷盆地、辽南变质核杂岩,并可能伴随地幔核杂岩的发育。同时伴随岩石圈地幔部分熔融,产生幔源岩浆,并在滑脱的Moho面底垫就位产生新生下地壳。与此同时,以下地壳部分熔融为主并伴有少量幔源物质加入的岩浆活动发生(剪切早期岩浆作用),喷发到断陷盆地(或上叠盆地)或侵入到拆离断层下盘。地壳(岩石圈)递进伸展作用过程中(从约120Ma开始),新的断陷盆地形成、万福变质核杂岩发育,新生下地壳源区的岩浆活动性(剪切期岩浆作用)逐渐加强。

(2) 胶东地区早白垩世岩石圈伸展称为无岩浆活动型伸展(A型:Amagmatism mode extension)。在此环境中,首先诱发的是强烈的地壳尺度拆离作用,形成了大规模的断陷盆地,伴随少量(或无)火山活动的内陆湖相沉积组合(莱阳群),同时或相继发生的地壳拆离作用在一些地区使得深部地壳岩石剥露形成无(或少量)岩浆变质核杂岩构造(五莲、玲珑和鹊山变质核杂岩)。尽管自从约122Ma开始地壳尺度伸展作用减弱,变质核杂岩主拆离断层停止活动,但地幔拆离活动强烈并发生巨量的壳-幔源岩浆活动性,发育巨厚沉积岩系的胶莱盆地青山群火山喷发并沿着苏鲁造山带发育大规模的岩浆活动。

(3) 冀北-辽西地区的岩石圈伸展具有多阶段混合型伸展特点(M型:Multi-mode extension)。岩石圈伸展可能始于更早时期,始自晚侏罗世(156Ma, 邵济安等,2003)开始。伸展作用早期特点与胶东地区早白垩世的岩石圈伸展具有相似性,以发育无(或少量)岩浆活动的断陷盆地发育为特征,盆地内部堆积巨厚的内陆湖相沉积,缺少或仅仅具有较弱的火山活动性。同时,盆地基底内也缺乏同时期的岩浆侵入。但自白垩纪开始,盆地发育进入新的阶段,发育有始自约145~140Ma的盆地火山活动,并且在周边地区有大规模的花岗质岩浆就位。

5 结论

(1) 对于华北克拉通及邻区广泛发育的早白垩世伸展构造开展的构造-岩浆分析揭示出,早白垩世岩石圈伸展过程中,岩石圈伸展作用是地壳/岩石圈地幔伸展、壳/幔拆离、深部壳幔岩浆过程及成矿作用演化的主要控制因素。岩石圈遭受区域性伸展,同时或相继发生地壳与地幔拆离作用,伴随岩浆作用过程发生。

(2) 岩石圈伸展过程中,岩浆活动强度及岩浆源区特点有显著变化,同一地区不同演化阶段岩浆源区有很大的变化,如辽南地区从早期古老下地壳源伴有幔源物质贡献、中期古老与新生下地壳混合源到晚期的新生下地壳源同时。不同地区岩浆源区具有显著差异性,胶东地区以不同阶段相似的混合源区为主与辽南地区形成鲜明的反差。

(3) 岩石圈伸展的壳/幔拆离(PET)模型可以合理地解释华北克拉通及邻区早白垩世构造-岩浆活动性。在岩石圈伸展过程中,岩石圈不同层次的壳/幔耦合或解耦拆离作用诱发三种不同类型的伸展过程:同岩浆活动型伸展(C型)、无岩浆活动型伸展(A型)和多阶段混合型(M型)。

谨以此文祝贺杨振升先生90华诞!

参考文献
Cai YC, Fan HR, Santosh M, Liu X, Hu FF, Yang KF, Lan TG, Yang YH and Liu YS. 2013. Evolution of the lithospheric mantle beneath the southeastern North China Craton:Constraints from mafic dikes in the Jiaobei terrain. Gondwana Research, 24(2): 601-621
Carlson RW, Pearson DG and James DE. 2005. Physical, chemical, and chronological characteristics of continental mantle. Review of Geophysics, 43(1): RG1001
Charles N, Gumiaux C, Augier R, Chen Y, Zhu RX and Lin W. 2011. Metamorphic core complexes vs. synkinematic plutons in continental extension setting:Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences, 40(1): 261-278
Chen GD. 1959. The third type tectonic unit in the crust:Diwa. Chinese Science Bulletin, 4(3): 94-95 (in Chinese)
Chen GD, Fan WM and Yang XY. 1992. Lithospheric thermal erosion:A deep process of post-platform remobilization of eastern Chinese lithosphere. Geotectonica et Metallogenia, 16(1): 76-78 (in Chinese with English abstract)
Chi JS. 1988. The Study of Cenozoic Basalts and Upper Mantle beneath Eastern China. Wuhan: China University of Geosciences Publishing House (in Chinese)
Dai LQ, Zheng YF and Zhao ZF. 2016. Termination time of peak decratonization in North China:Geochemical evidence from mafic igneous rocks. Lithos, 240-243: 327-336
Daoudene Y, Gapais D, Ledru P, Cocherie A, Hocquet S and Donskaya TV. 2009. The Ereendavaa range (north-eastern Mongolia):An additional argument for Mesozoic extension throughout eastern Asia. International Journal of Earth Sciences, 98(6): 1381-1393
Daoudene Y, Ruffet G, Cocherie A, Ledru P and Gapais D. 2013. Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia):U-Pb and 40Ar/39Ar constraints. Journal of Asian Earth Sciences, 62: 98-116
Darby BJ, Davis GA, Zhang XH, Wu FY, Wilde S and Yang JH. 2004. The newly discovered Waziyu metamorphic core complex, Yiwulüshan, western Liaoning Province, Northwest China. Earth Science Frontiers, 11(3): 145-155
Davis GA, Qian X, Zheng Y, Tong HM, Yu H, Wang C, Gehrels GE, Shafiquallah M and Fryxell JE. 1996. Mesozoic deformation and plutonism in the Yunmeng Shan:A metamorphic core complex north of Beijing, China. In:Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. Cambridge:Cambridge University Press, 253-280
Davis GA, Darby BJ, Zheng YD and Spell TL. 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology, 30(11): 1003-1006
Davis GA. 2005. The Late Jurassic "Tuchengzi/Houcheng" Formation of the Yanshan fold-thrust belt:An analysis. Earth Science Frontiers, 12(4): 331-345
Deng JF, Mo XX, Zhao HL, Luo ZH and Du YS. 1994. Lithosphere root/de-rooting and activation of the East China continent. Geoscience (Journal of Graduate School, China University of Geosciences), 8(3):349-356 (in Chinese with English abstract)
Donskaya TV, Windley BF, Mazukabzov AM, Kröner A, Sklyarov EV, Gladkochub DP, Ponomarchuk VA, Badarch G, Reichow MK and Hegner E. 2008. Age and evolution of Late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia. Journal of the Geological Society, 165(1): 405-421 DOI:10.1144/0016-76492006-162
Fu WZ, Yang FJ, Zhou YX, Mao GZ, Jin AW, Chen Q, Jiang N and Guo BJ. 2014. Geochemical characteristics of volcanic rocks in Cretaceous Qingshan Group from southern margin of Jiaolai basin, Shandong Province. Acta Geologica Sinica, 88(6): 1106-1119 (in Chinese with English abstract)
Gao S, Rudnick R L, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892-897
Goss SC, Wilde SA, Wu FY and Yang JH. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309-326
Griffin WL, O'Reilly SY and Ryan CC. 1992. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China:Proton microprobe studies. Abstract of the International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and its Environs. Beijing, 65-66
Guan HM, Liu JL, Ji M, Zhao SJ, Hu L and Davis GA. 2010. Discovery of the Wanfu metamorphic core complex in southern Liaoning and its regional tectonic implication. Earth Science Frontiers, 15(3): 199-208 (in Chinese with English abstract)
Guan K, Luo ZK, Miao LC and Huang JZ. 1998. SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye district. Scientia Geologica Sinica, 33(3): 318-328 (in Chinese with English abstract)
Guo CL, Wu FY, Yang JH, Lin JQ and Sun DY. 2004. The extensional setting of the Early Cretaceous magmatism in eastern China:Example from the Yinmawanshan pluton in southern Liaodong Peninsula. Acta Petrologica Sinica, 20(5): 1193-1204 (in Chinese with English abstract)
Han BF, Zheng YD, Gan JW and Chang ZS. 2001. The Louzidian normal fault near Chifeng, Inner Mongolia:Master fault of a quasi-metamorphic core complex. International Geology Review, 43(3): 254-264
Huang J, Zheng YF, Zhao ZF, Wu YB, Zhou JB and Liu XM. 2006. Melting of subducted continent:Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology, 229(4): 227-256
Huang TK. 1980. On the polycyclic evolution of geosynclinal fold belts. Acta Scientia Sinica, 23(4): 475-491
Jackson J. 2002. Strength of the continental lithosphere:Time to abondon the jelly sandwitchi?. GSA Today, 12: 4-10
Ji M, Liu JL, Hu L, Shen L and Guan HM. 2015. Evolving magma sources during continental lithospheric extension:Insights from the Liaonan metamorphic core complex, eastern North China Craton. Tectonophysics, 647648: 48-62
Ji WB, Lin W, Shi YH, Wang QC and Chu Y. 2011. Structure and evolution of the Early Cretaceous Dabieshan metamorphic core complex. Chinese Journal of Geology, 46(1): 161-180 (in Chinese with English abstract)
Kuang YS, Pang CJ, Luo ZY, Hong LB, Zhong YT, Qiu HN and Xu YG. 2012. 40Ar-39Ar geochronology and geochemistry of mafic rocks from Qingshan Group, Jiaodong area:Implications for the destruction of the North China Craton. Acta Petrologica Sinica, 28(4): 1073-1091 (in Chinese with English abstract)
Li CJ and Bao ZW. 2012. Geochemical characteristics and geodynamic implications of the Early Cretaceous magmatisms in Zhangjiakou region, Northwest Hebei Province, China. Geochimica, 41(4): 343-358 (in Chinese with English abstract)
Li G, Liu ZH, Cui WL and Bai XD. 2016. Emplacement of Early Cretaceous syn-extension granitic in Yiwulüshan area, North China. Acta Petrologica Sinica, 32(9): 2677-2689 (in Chinese with English abstract)
Lin W, Faure M, Monié P, Schärer U and Panis D. 2008. Mesozoic extensional tectonics in Eastern Asia:The South Liaodong Peninsula metamorphic core complex (NE China). The Journal of Geology, 116(2): 134-154
Lin W, Wang J, Liu F, Ji WB and Wang QC. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics. Acta Petrologica Sinica, 29(5): 1791-1810 (in Chinese with English abstract)
Lin W, Xu DR, Hou QL, Li SJ, Meng LT, Ren ZH, Qiu HB and Chu Y. 2019. Early Cretaceous extensional dome and related polymetallic mineralization in the Central and Eastern China. Geotectonica et Metallogenia, 43(3): 409-430 (in Chinese with English abstract)
Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342
Liu H, Lin SF and Song CZ. 2018. A uniform orogen-parallel extension system of the shear zones in the Tongbai-Dabie orogenic belt, Central China. Acta Geologica Sinica, 92(2): 556-567
Liu HL. 2018. The geological characteristics and tectonic setting of Qiancengbei porphyry molybdenum deposits in Chengde, North Hebei. Master Degree Thesis. Shijiazhuang:Hebei GEO University
Liu JL, Davis GA, Lin ZY and Wu FY. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2): 65-80
Liu JL, Guan HM, Ji M and Hu L. 2006. Late Mesozoic metamorphic core complexes:New constraints on lithosphere thinning in North China. Progress in Natural Science, 16(6): 633-638
Liu JL, Ji M, Xia HR, Liu ZH, Zhou YS, Yu XQ, Zhang HY and Cheng SH. 2009. Crustal-mantle detachment of the North China Craton in Late Mesozoic:Rheological constraints. Acta Petrologica Sinica, 25(8): 1819-1829 (in Chinese with English abstract)
Liu JL, Ji M, Shen L, Guan HM and Davis GA. 2011. Early Cretaceous extensional structures in the Liaodong Peninsula:Structural associations, geochronological constraints and regional tectonic implications. Science China (Earth Sciences), 54(6): 823-842
Liu JL, Shen L, Ji M, Guan HM, Zhang ZC and Zhao ZD. 2013. The Liaonan/Wanfu metamorphic core complexes in the Liaodong Peninsula:Two stages of exhumation and constraints on the destruction of the North China Craton. Tectonics, 32(5): 1121-1141
Liu JL, Ji M, Ni JL, Shen L, Zheng YY, Chen XY and Craddock JP. 2020. Inhomogeneous thinning of a cratonic lithospheric keel by tectonic extension:The Early Cretaceous Jiaodong Peninsula-Liaodong Peninsula extensional provinces, eastern North China craton. GSA Bulletin DOI:10.1130/B35470.1
Liu XC, Jahn BM, Cui JJ, Li SZ, Wu YB and Li XH. 2010. Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China:Implications for the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos, 119(3-4): 211-237
Liu Y, Ni ZY, Zhai MG, Shi YR, Yan G and Lu JS. 2010. Zircon SHRIMP U-Pb dating of granite in Chicheng County, northern Hebei Province and its geological implications. Journal of Mineralogy and Petrology, 30(2): 38-44 (in Chinese with English abstract)
Ma L, Jiang SY, Hofmann AW, Dai BZ, Hou ML, Zhao KD, Chen LH, Li JW and Jiang YH. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula:A consequence of rapid lithospheric thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250-271
Ma YS, Cui SQ, Wu GG, Wu ZH, Zhu DG, Li X and Feng XY. 1999. The structural features of metamorphic core complex in Yiwulvshan mountains, West Liaoning. Acta Geoscientia Sinica, 20(4): 385-391 (in Chinese with English abstract)
Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369(3-4): 155-174
Meng QR. 2017. Development of sedimentary basins in eastern China during the Yanshanian Period. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 567-569 (in Chinese with English abstract)
Menzies M, Xu YG, Zhang HF and Fan WM. 2007. Integration of geology, geophysics and geochemistry:A key to understanding the North China Craton. Lithos, 96: 1-21
Moores EM and Twiss RJ. 1995. Tectonics. New York: W. H. Freeman and Company
Ni JL, Liu JL, Tang XL, Yang HB, Xia ZM and Guo QJ. 2013. The Wulian metamorphic core complex:A newly discovered metamorphic core complex along the Sulu orogenic belt, eastern China. Journal of Earth Science, 24(3): 297-313
Ni JL, Liu JL, Tang XL, Yang HB, Xia ZM and Zhang TT. 2016. Early Cretaceous exhumation of the Sulu orogenic belt as a consequence of the eastern Eurasian tectonic extension:Insights from the newly discovered Wulian metamorphic core complex, eastern China. Journal of the Geological Society, 173(3): 531-549
Peng N, Liu YQ, Kuang HW, Xu H, Zhang P, Chen J, An W and Wang NS. 2015. Provenance of Early Cretaceous Laiyang Group in Jiaolai basin and its significance. Geology in China, 42(6): 1793-1810 (in Chinese with English abstract)
Qiu JS, Wang DZ, Luo QH and Liu H. 2001. 40Ar-39Ar dating for volcanic rocks of Qingshan Formation in Jiaolai Basin, Eastern Shandong Province:A case study of the Fenlingshan volcanic apparatus in Wulian County. Geological Journal of China Universities, 7(3): 351-355 (in Chinese with English abstract)
Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong SW, Calvert A, Chateigner D and Wenk HR. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China:Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research:Solid Earth, 105(B6): 13303-13338
Shao JA, Meng QR, Wei HQ, Zhang LQ and Wang PY. 2003. Nature and tectonic environment of Late Jurassic volcanic-sedimentary basins in northwestern Hebei Province. Geological Bulletin of China, 22(10): 751-761 (in Chinese with English abstract)
Shen L, Liu JL, Hu L, Ji M, Guan HM and Davis GA. 2011. The Dayingzi detachment fault system in Liaodong Peninsula and its regional tectonic significance. Science China (Earth Sciences), 54(10): 1469-1483
Shu LS, Sun Y, Wang DZ, Faure M, Monie P and Charvet J. 1998. Mesozoic doming extensional tectonics of Wugongshan, South China. Science in China (Series D), 41(6): 601-608
Tong YM. 2007. Tectonic evolution of Jiaolai basin. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English summary)
Wan XQ, Sun LX and Li W. 2020. Terrestrial fossil assemblages of Tuchengzi Formation and Jurassic-Cretaceous boundary chronostratigraphy in Yanliao area. Acta Palaeontologica Sinica, 59(1): 1-12 (in Chinese with English abstract)
Wang J, Chang SC, Wang KL, Lu HB and Zhang HC. 2015. Geochronology and geochemistry of Early Cretaceous igneous units from the central Sulu orogenic belt:Evidence for crustal delamination during a shift in the regional tectonic regime. Journal of Asian Earth Sciences, 112: 49-59
Wang T, Zheng YD, Zhang JJ, Zeng LS, Donskaya T, Guo L and Li JB. 2011a. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes. Tectonics, 30(6): TC6007 DOI:10.1029/2011TC002896
Wang T, Guo L, Zheng YD, Donskaya T, Gladkochub D, Zeng LS, Li JB, Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315-345
Wang XR, Gao S, Liu XM, Yuan HL, Hu ZC, Zhang H and Wang XC. 2006. Geochemistry of high-Mg andesites from the Early Cretaceous Yixian Formation, western Liaoning:Implications for lower crustal delamination and Sr/Y variations. Science in China (Series D), 49(9): 904-914
Wang XS and Zheng YD. 2005. 40Ar/39Ar age constraints on the ductile deformation of the detachment system of the Louzidian core complex, southern Chifeng, China. Geological Review, 51(5): 574-582 (in Chinese with English abstract)
Wang YS, Xiang BW, Zhu G and Jiang DZ. 2011b. Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China. Journal of Structural Geology, 33(3): 362-380
Wen X, Ma CQ, Sang LK, Mason R, She ZB and Xiong FH. 2013. The origin and evolution of the Houshihushan alkaline ring complex in the Yanshan orogenic belt. Earth Science (Journal of China University of Geosciences), 38(4): 689-714 (in Chinese with English abstract)
Windley BF, Maruyama S and Xiao WJ. 2010. Delamination/thinning of sub-continental lithospheric mantle under Eastern China:The role of water and multiple subduction. American Journal of Sciences, 310(10): 1250-1293
Wu FY, Sun DY, Zhang GL and Ren XW. 2000. Deep geodynamics of Yanshan movement. Geological Journal of China Universities, 6(3): 379-388 (in Chinese with English abstract)
Wu FY, Lin JQ, Wilde SA, Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119
Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362
Wu FY, Xu YG, Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract)
Wu FY, Yang JH, Xu YG, Wilde SA and Walker RJ. 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173-195
Xia ZM, Liu JL, Ni JL, Zhang TT, Shi XM and Wu Y. 2016. Structure, evolution and regional tectonic implications of the Queshan metamorphic core complex in eastern Jiaodong Peninsula of China. Science China (Earth Sciences), 59(5): 997-1013
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):747-757
Yang DB, Xu WL, Wang QH and Pei FP. 2010a. Chronology and geochemistry of Mesozoic granitoids in the Bengbu area, central China:Constraints on the tectonic evolution of the eastern North China Craton. Lithos, 114(1-2): 200-216
Yang JG, Wu HY and Liu JL. 2006. Stratigraphic correlation of the Mesozoic and Cenozoic in the outer basins of the Daqing exploration area, Heilongjiang, China. Geological Bulletin of China, 25(9-10): 1088-1093 (in Chinese with English abstract)
Yang JH, Wu FY, Chung SL, Wilde AS and Chu MF. 2004. Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, Northeast China. Geochimica et Cosmochimica Acta, 68(21): 4469-4483
Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF, Lo CH and Song B. 2005. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, East China and their relationship to lithospheric thinning. Chemical Geology, 222(3-4): 200-231
Yang JH, O'Reilly S, Walker RJ, Griffin W, Wu FY, Zhang M and Pearson N. 2010b. Diachronous decratonization of the Sino-Korean craton:Geochemistry of mantle xenoliths from North Korea. Geology, 38(9): 799-802
Yang KF, Fan HR, Santosh M, Hu FF, Wilde SA, Lan TG, Lu LN and Liu YS. 2012. Reactivation of the Archean lower crust:Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127
Yang Q, Shi W and Hou GT. 2019. Late Mesozoic extensional detachment structures in eastern China and adjacent areas:Overview and new insight. Acta Geoscientica Sinica, 40(4): 511-544 (in Chinese with English abstract)
Yang W. 2007. Geochronology and geochemistry of the Mesozoic volcanic rocks in western Liaoning:Constraints on mechanism for the lithospheric thinning in the North China Craton. Ph. D. Dissertation. Hefei:University of Science and Technology of China (in Chinese with English summary)
Yin CY, Zhang B, Han BF, Zhang JJ, Wang Y and Ai S. 2017. Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China Craton, NE Asia. Journal of Structural Geology, 94: 195-212
Zhang H, Liu XM, Li ZT, Yang FL and Wang XR. 2005. Early Cretaceous large-scale crustal thinning in the Fuxin-Yixian basin and adjacent area in Western Liaoning. Geological Review, 51(4): 360-372 (in Chinese with English abstract)
Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG and Yin JF. 2002. Mesozoic lithosphere destruction beneath the North China Craton:Evidence from major-, trace- element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254
Zhang JJ, Zheng YD and Liu SW. 1998. Xiao Qinling Metamorphic Core Complex:Structure, Genetic Mechanism and Evolution. Beijing:Ocean Press, 1-120 (in Chinese with English abstract)
Zhang XD, Yu Q, Chen FJ and Wang XW. 2000. Structural characteristics, origin and evolution of metamorphic core complex in central basement uplift and Xujiaweizi faulted depression in Songliao basin, Northeast China. Earth Science Frontiers, 7(4): 411-419 (in Chinese with English abstract)
Zhang YQ, Dong SW, Zhao Y and Zhang T. 2007. Jurassic tectonics of North China:A synthetic view. Acta Geologica Sinica, 81(11): 1462-1480 (in Chinese with English abstract)
Zhang YQ, Li JL, Zhang T, Dong SW and Yuan JY. 2008. Cretaceous to Paleocene tectono-sedimentary evolution of the Jiaolai basin and the contiguous areas of the Shandong Peninsula (North China) and its geodynamic implications. Acta Geologica Sinica, 82(9): 1229-1257 (in Chinese with English abstract)
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited. Precambrian Research, 136(2): 177-202
Zhao Y, Xu G, Zhang SH, Yang ZY, Zhang YQ and Hu JM. 2004. Yanshanian movement and conversion of tectonic regimes in East Asia. Earth Science Frontiers, 11(3): 319-328 (in Chinese with English abstract)
Zheng JP. 2009. Comparison of mantle-derived materials from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton. Chinese Science Bulletin, 54(19): 3397-3416
Zheng YD. 1999. Kinematic vorticity number and shear type related to the Yagan metamorphic core complex on Sino-Mongolian border. Scientia Geologica Sinica, 34(3): 273-280 (in Chinese with English abstract)
Zheng YD and Wang T. 2005. Kinematics and dynamics of the Mesozoic orogeny and late-orogenic extensional collapse in the Sino-Mongolian border areas. Science in China (Series D), 48(7): 849-862
Zhou YS and He CR. 2003. Rheological parameters of crustal rocks and crustal rheology of North China. Seismology and Geology, 25(1): 109-122 (in Chinese with English abstract)
Zhou YZ, Han BF, Zhang B, Xu Z, Ren R, Li XW and Su L. 2012. The Yingba shear zone on the Sino-Mongolian border:Southwestern extension of the Zuunbayan Fault from Mongolia to China and implications for Late Mesozoic intracontinental extension in Eastern Asia. Tectonophysics, 574-575: 118-132
Zhu G, Xie CL, Xiang BW, Hu ZQ, Wang YS and Li X. 2007. Genesis of the Hongzhen metamorphic core complex and its tectonic implications. Science in China (Series D), 50(5): 649-659
Zhu G, Hu ZQ, Chen Y, Niu ML and Xie CL. 2008. Evolution of Early Cretaceous extensional basins in the eastern North China Craton and its implication for the craton destruction. Geological Bulletin of China, 27(10): 1594-1604 (in Chinese with English abstract)
Zhu G, Xie CL, Cheney W, Xiang BW and Hu ZQ. 2010. Evolution of the Hongzhen metamorphic core complex:Evidence for Early Cretaceous extension in the eastern Yangtze Craton, eastern China. GSA Bulletin, 122(3-4): 506-516
Zhu G, Jiang DZ, Zhang BL and Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting:Evidence from crustal deformation kinematics. Gondwana Research, 22(1): 86-103
Zhu G, Liu C, Gu CC, Zhang S, Li YJ, Su N and Xiao SY. 2018. Oceanic plate subduction history in the western Pacific Ocean:Constraint from Late Mesozoic evolution of the Tan-Lu Fault Zone. Science China (Earth Sciences), 61(4): 386-405
Zhu RX, Chen L, Wu FY and Liu JL. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China (Earth Sciences), 54(6): 789-797
Zorin YA. 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306(1): 33-56
陈国达. 1959. 地壳的第三基本构造单元——地洼区. 科学通报, 4(3): 94-95.
陈国达, 范蔚茗, 杨心宜. 1992. 地幔的热侵蚀——中国东部大陆壳体后地台活化的一种深部过程. 大地构造与成矿学, 16(1): 76-78.
池际尚. 1988. 中国东部新生代玄武岩及上地幔研究.
邓晋福, 莫宣学, 赵海玲, 罗照华, 杜杨松. 1994. 中国东部岩石圈根/去根作用与大陆"活化"——东亚型大陆动力学模式研究计划. 现代地质, 8(3): 349-356.
付文钊, 杨锋杰, 周新玉, 毛光周, 金爱文, 陈桥, 姜楠, 郭帮杰. 2014. 胶莱盆地南缘白垩系青山群火山岩地球化学特征. 地质学报, 88(6): 1106-1119.
关会梅, 刘俊来, 纪沫, 赵胜金, 胡玲, Davis GA. 2010. 辽宁南部万福变质核杂岩的发现及其区域构造意义. 地学前缘, 15(3): 199-208.
关康, 罗镇宽, 苗来成, 黄佳展. 1998. 胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究. 地质科学, 33(3): 318-328.
郭春丽, 吴福元, 杨进辉, 林景仟, 孙德有. 2004. 中国东部早白垩世岩浆作用的伸展构造性质——以辽东半岛南部饮马湾山岩体为例. 岩石学报, 20(5): 1193-1204.
冀文斌, 林伟, 石永红, 王清晨, 褚杨. 2011. 大别山早白垩世变质核杂岩的结构与演化. 地质科学, 46(1): 161-180.
匡永生, 庞崇进, 洪路兵, 钟玉婷, 徐义刚. 2012. 胶莱盆地晚白垩世玄武岩的年代学和地球化学特征及其对华北岩石圈减薄-增生的制约. 大地构造与成矿学, 36(4): 559-571.
李创举, 包志伟. 2012. 冀西北早白垩世岩浆岩的地球化学特征及其地球动力学背景. 地球化学, 41(4): 343-358.
李刚, 刘正宏, 崔维龙, 白相东. 2016. 医巫闾山地区早白垩世同伸展花岗岩就位机制. 岩石学报, 32(9): 2677-2689.
林伟, 王军, 刘飞, 冀文斌, 王清晨. 2013. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论. 岩石学报, 29(5): 1791-1810.
林伟, 许德如, 侯泉林, 李双建, 孟令通, 任志恒, 邱华标, 褚杨. 2018. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿. 大地构造与成矿, 43(3): 409-430.
刘宏磊. 2018.冀北承德千层背地区斑岩型钼矿床地质特征及构造背景.硕士学位论文.石家庄: 河北地质大学
刘俊来, 关会梅, 纪沫, 胡玲. 2006. 华北晚中生代变质核杂岩构造及其对于岩石圈减薄的约束. 自然科学进展, 16(1): 21-26.
刘俊来, 纪沫, 夏浩然, 刘正宏, 周永胜, 余心起, 张宏远, 程素华. 2009. 华北克拉通晚中生代壳-幔拆离作用:岩石流变学约束. 岩石学报, 25(8): 1819-1829.
刘胤, 倪志耀, 翟明国, 石玉若, 严刚, 卢俊生. 2010. 冀北赤城花岗岩的锆石SHRIMP年龄及其地质意义. 矿物岩石, 30(2): 38-44.
马寅生, 崔盛芹, 吴淦国, 吴珍汉, 朱大岗, 李晓, 冯向阳. 1999. 医巫闾山变质核杂岩构造特征. 地球学报, 20: 385-391.
孟庆任. 2017. 中国东部燕山期沉积盆地演化与资源效应. 矿物岩石地球化学通报, 36(4): 567-569.
彭楠, 柳永清, 旷红伟, 许欢, 章朋, 陈军, 安伟, 王能盛. 2015. 胶莱盆地早白垩世莱阳群沉积物源及地质意义. 中国地质, 42(6): 1793-1810.
邱检生, 王德兹, 罗清华, 刘洪. 2001. 鲁东胶莱盆地青山组火山岩的40Ar-39Ar——以五莲分岭山火山机构为例. 高校地质学报, 7(3): 351-355.
邵济安, 孟庆任, 魏海泉, 张履桥, 王佩瑛. 2003. 冀西北晚侏罗世火山-沉积盆地的性质及构造环境. 地质通报, 22(10): 751-761.
佟彦明. 2007.胶莱盆地构造演化研究.博士学位论文.武汉: 中国地质大学
万晓樵, 孙立新, 李玮. 2020. 燕辽地区土城子组古生物组合与陆相侏罗系-白垩系界线年代地层. 古生物学报, 59(1): 1-12.
王新社, 郑亚东. 2005. 楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束. 地质论评, 51(5): 574-582.
文霞, 马昌前, 桑隆康, Mason R, 佘振兵, 熊富浩. 2013. 燕山造山带后石湖山碱性环状杂岩体的成因与形成过程. 地球科学(中国地质大学学报), 38(4): 689-714.
吴福元, 孙德有, 张广良, 任向文. 2000. 论燕山运动的深部地球动力学本质. 高校地质学报, 6(3): 379-388.
吴福元, 徐义刚, 高山, 郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174.
杨建国, 吴河勇, 刘俊来. 2006. 大庆探区外围盆地中、新生代地层对比及四大勘探层系. 地质通报, 25(9-10): 1088-1093.
杨谦, 施炜, 侯贵廷. 2019. 中国东部及邻区晚中生代伸展拆离构造——综述与新认识. 地球学报, 40(4): 511-544.
杨蔚. 2007.辽西中生代火山岩年代学及地球化学研究:对华北克拉通岩石圈减薄机制的制约.博士学位论文.合肥:中国科技大学, 1-121
张宏, 柳小明, 李之彤, 杨芳林, 王晓蕊. 2005. 辽西阜新-义县盆地及附近地区早白垩世地壳大规模减薄及成因探讨. 地质论评, 51(4): 360-372.
张进江, 郑亚东, 刘树文. 1998.小秦岭变质核杂岩的构造特征、形成机制及构造演化.北京:海洋出版社, 1-120
张晓东, 余青, 陈发景, 汪新文. 2000. 松辽盆地变质核杂岩和伸展断陷的构造特征及成因. 地学前缘, 7(4): 411-419.
张岳桥, 董树文, 赵越, 张田. 2007. 华北侏罗纪大地构造:综评与新认识. 地质学报, 81(11): 1462-1480.
张岳桥, 李金良, 张田, 董树文, 袁嘉音. 2008. 胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史及其区域动力学意义. 地质学报, 82(9): 1229-1257.
赵越, 徐刚, 张拴宏, 杨振宇, 张岳桥, 胡健民. 2004. 燕山运动与东亚构造体制的转变. 地学前缘, 11(3): 319-328.
郑亚东. 1999. 亚干变质核杂岩的运动学涡度与剪切作用类型. 地质科学, 34(3): 273-280.
郑亚东, 王涛. 2005. 中蒙边界区中生代推覆构造与伸展垮塌作用的运动学和动力学分析. 中国科学(D辑), 35(4): 291-303.
周永胜, 何昌荣. 2003. 地壳主要岩石流变参数及华北地壳流变型式研究. 地震地质, 25(1): 109-122.
朱光, 谢成龙, 向必伟, 胡召齐, 王勇生, 李鑫. 2007. 洪镇变质核杂岩的形成机制及其大地构造意义. 中国科学(D辑), 37(5): 584-592.
朱光, 胡召齐, 陈印, 牛漫兰, 谢成龙. 2008. 华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示. 地质通报, 27(10): 1594-1604.