岩石学报  2020, Vol. 36 Issue (8): 2276-2312, doi: 10.18654/1000-0569/2020.08.02   PDF    
华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义
耿元生, 旷红伟, 杜利林, 柳永清     
中国地质科学院地质研究所, 北京 100037
摘要: 我国三个主要的古老陆块(华北、华南和塔里木陆块)都发育中-新元古代岩浆岩。根据大量的同位素年代学资料,华北陆块中-新元古代岩浆事件可以分为7个阶段,其中1.78Ga和1.32Ga两期影响范围较大,可以构成大火成岩省。华北陆块中-新元古代的岩浆岩均形成于大陆地壳伸展的构造背景,意味着华北并未介入Rodinia超大陆的聚合过程。华南陆块中-新元古代岩浆事件可以分为8个阶段,从1.78Ga到1.5Ga的四期岩浆事件形成于大陆地壳伸展的构造背景,1.4Ga左右的一期岩浆-构造事件分布局限,可能形成于局部的构造拼合背景。1.0Ga左右的岩浆事件,在华南陆块的不同部位表现形式不同,意味着发生过不同地块的拼合。从0.95Ga到0.82Ga的岩浆事件主要分布在江南造山带和扬子地块北缘,这一阶段的岩浆事件导致扬子地块和华夏地块拼接成一体,形成华南陆块。之后从0.78Ga到0.72Ga的岩浆事件几乎遍布华南陆块,反映了陆块形成后的伸展过程。塔里木陆块中-新元古代的岩浆事件可以分为8个阶段,1.78Ga和1.5Ga的岩浆事件仅在局部有反映,它们形成于拉伸的构造背景。1.4Ga的岩浆事件在塔里木陆块的北缘和西南缘表现形式不同,北缘钙碱性岩浆岩形成于大陆弧构造背景,而西南缘A2型花岗岩则形成于拉伸的构造背景。0.96~0.88Ga期间,塔里木东南缘和北缘的花岗岩以I型和S型为特点,形成于活动大陆边缘,而在塔里木陆块的西南缘该时期则形成了塞拉加兹塔格群中双峰式火山岩,形成于陆内裂谷环境。0.88~0.82Ga期间,在北缘的库鲁克塔格地区形成了与俯冲增生相关的岩浆岩组合,而在东南缘则形成了与拉张构造环境有关的双峰式火山岩。塔里木陆块不同部位,不同阶段岩浆岩组合的差异意味着塔里木陆块原来并不是一个统一的陆块,很可能是在不同时期由不同块体拼合而成的。华北、华南和塔里木三个陆块中-新元古代岩浆岩的差异演化,揭示了它们各自形成陆块的过程和方式及相互关系。
关键词: 中-新元古代岩浆作用    华北陆块    华南陆块    塔里木陆块    差异演化    构造背景    
The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation
GENG YuanSheng, KUANG HongWei, DU LiLin, LIU YongQing     
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Meso-Neoproterozoic magmatic rocks widely occur in three Chinese blocks of China (North China, South China and Tarim blocks). Based on a large number of geochronologic data, the Meso-Neoproterozoic magmatic events in the North China Block can be divided into seven stages (1.78Ga, 1.70Ga, 1.63Ga, 1.32Ga, 1.23Ga, 0.93Ga and 0.83Ga), in which 1.78Ga and 1.32Ga magmas have a large influence range and form the large igneous provinces, respectively. The Meso-Neoproterozoic magmatic rocks in the North China Block formed in the intracontinental extensional environment indcating that North China Block was not involved in the assembly process of the Rodinia supercontinent. The Meso-Neoproterozoic magmatic events in the South China Block can be divided into eight stages (1.78Ga, 1.72Ga, 1.67Ga, 1.5Ga, 1.42Ga, 1.0Ga, 0.84Ga and 0.77Ga), the four stages of magmatic events from 1.78Ga to 1.5Ga were formed in extensional environment. The sporadic 1.4Ga magmatic rocks likely formed in an assembly setting in local area. The magmatic stages around 1.0Ga performed differently in different parts of the South China Block, indicating the different blocks have been aggregated together. Magmatic events from 0.95Ga to 0.82Ga, mainly distributed in the Jiangnan Orogen and the northern margin of the Yangtze massif, led to the coherent Yangtze massif (or Yangtze Block) and Cathaysia massif (or Cathaysia Block) into the South China Block. Subsequently, magmatic events from 0.78Ga to 0.72Ga were almost all over the South China Block, reflecting the extensional process after the formation of the entire continental block. The Meso-Neoproterozoic magmatic events in the Tarim block can be subdivided into eight stages (1.78Ga, 1.5Ga, 1.43Ga, 1.1Ga, 0.92Ga, 0.83Ga, 0.74Ga and 0.65Ga). The magmatic events of 1.78Ga and 1.5Ga are only locally distributed, and they formed in the extensional setting. 1.4Ga magmatic events performed differently in the northern and southwestern margins of the Tarim Block. Calc-alkaline magmatic rocks in the northern margin emplaced in the continental arc setting, while A2 type granites in the southwestern margin were formed in the tensional setting. During the period of 0.96~0.88Ga, the granites in the southeastern and northern margins of Tarim Block are dominated by I-type and S-type and formed in the active continental margin, while in the southwestern margin of Tarim Block, bimodal volcanic rocks in the Sailajiazitage Group formed in the intra-continental rift environment. During 0.88~0.82Ga, magmatic sequences, related to subduction and accretion, were formed in Kuruktagh area on the northern margin, while bimodal volcanic rocks related to extensional tectonic setting were formed on the southeastern margin. The difference of magmatic rock assemblages in different locations and stages of the Tarim Block denotes that the Tarim Block originally is not originally a unified block, but likey assembled by different massifs in different periods. The differential evolutions of the Meso-Neoproterozoic magmatic rocks reveal their independent processes in the North China, South China and Tarim blocks in this period.
Key words: Meso-Neoproterozoic magmatism    North China Block    South China Block    Tarim Block    Differential evolution    Tectonic setting    

1.8~0.8Ga是地球历史上一个非常特殊的发展阶段。该阶段的初期,地球经历了哥伦比亚超大陆的裂解,晚期地球经历了罗迪尼亚超大陆的形成。但是,这一阶段大气和海洋的成分相对平稳,地球上的生物进展缓慢,所以有的学者将这一阶段称为地球中年期(Evans and Mitchell, 2011; Zhai et al., 2015)、地球历史上无聊的十亿年(boring billion)(Holland, 2006; Roberts, 2013; Mukherjee et al., 2018)、或最不活跃的时期(dullest period)(Young, 2013)、“哥伦比亚纪”(Van Kranendonk, 2012)。

尽管这一阶段大气和海洋的成分相对平稳,但是岩浆活动并未停止。从全球看,在中元古代早期(1.8~1.5Ga),劳伦古陆、圣弗兰西斯科-刚果克拉通、澳大利亚北部、乌克兰地盾、印度克拉通都存在较强烈的岩浆活动,从中-基性火山岩到花岗质侵入岩,从广泛分布的基性岩墙群到斜长岩-辉长岩-纹长二长岩组合,岩石组合多样,大多形成于拉伸裂解的构造背景(Peterson et al., 2015; Jackson et al., 2000; Neumann et al., 2006; Danderfer et al., 2009, 2015; Mccourt et al., 2004; Shumlyanskyy et al., 2016; Shankar et al., 2018; Kaur et al., 2017)。中元古代晚期(1.32~1.27Ga),华北陆块、澳大利亚等地发育大量的基性岩床,构成了大火成岩省(Zhang et al., 2017; Goldberg, 2010; Pirajno and Hoatson, 2012; 张拴宏和赵越, 2018),北美地区也广泛分布有1.27Ga的麦卡基岩墙群(Ernst et al., 2008; Ernst, 2014)。新元古代早期,伴随罗迪尼亚超大陆的形成在很多古老大陆的边缘发育了大量的火山岩和与岛弧有关的岩浆岩(Boger et al., 2000; Fitzsimons, 2000; Kelly et al., 2002; Wang et al., 2015a; Chen et al., 2009a, b)。从我国中-新元古代岩浆岩的分布可以看出,不论是华北、华南和塔里木陆块,还是一些显生宙造山带中的老地块都存在中-新元古代的岩浆活动,其产物既有火山岩也有大量的侵入岩。从岩浆活动的角度看,1.8~0.8Ga并不是一个无聊的十亿年。中-新元古代的岩浆岩与超大陆的裂解和聚合紧密相关,而不同陆块由于位于超大陆的不同部位,其岩浆演化受到外围环境制约,具有差异演化的特点。本文以华北陆块、华南陆块、塔里木陆块中-新元古代的岩浆岩为出发点,通过三大陆块中-新元古代岩浆岩的演化及差异探讨三大陆块的演化过程及可能的相互关系。

1 区域地质背景

中国大陆由几个古老陆块并通过年轻造山带(曾称褶皱带)拼接到一起的。其中华北、华南和塔里木是三个最重要的陆块。

1.1 华北陆块(华北克拉通)

华北陆块的变质基底主要由太古宙-古元古代片麻岩和变质地层组成,有的研究者认为太古宙的变质基底形成了一些古老的陆核,新太古代晚期的绿岩带、岩浆岩带将这些陆核结合到一起,形成了初始的华北克拉通(白瑾等, 1993; 伍家善等, 1998; Zhai, 2011),后经过古元古代的裂解和拼合,在古元古代末完成最终的克拉通化。也有的学者认为,古元古代晚期的造山带把华北太古宙的东部陆块、西部陆块、阴山陆块拼合到一起,形成华北克拉通(Zhao et al., 2002a, 2005; 赵国春, 2009)。在华北陆块早前寒武纪变质基底广泛出露,中-新元古代地层(盖层)主要出露在华北陆块南缘的熊耳裂陷槽和北部的燕辽裂陷槽,在西北缘、东部的辽东半岛及徐淮地区也有零星出露(图 1)。

图 1 华北陆块中-新元古代地层及岩浆岩分布及年龄 图中不同颜色的年龄数据代表不同时代的岩浆岩, 图中的资料来源:1-裴福萍等, 2013; 2-Wang et al., 2015b; 3-Zhang et al., 2016; 4-Zhang et al., 2012a; 5-Zhang et al., 2017; 6-Wang et al., 2014a; 7-相振群, 2014; 8-Wang et al., 2013; 9-Liu et al., 2011; 10-赵太平等, 2004; 11-Zhang et al., 2007a; 12-任康绪等, 2006; 13-郁建华等, 1996; 14-Mo et al., 1997; 15-Zhang et al., 2012a; 16-王惠初等, 2012; 17-Yang et al., 2011; 18-彭润民等, 2010; 19-耿元生和周喜文, 2010; 20-彭澎等, 2018; 21-Yang et al., 2019; 22-徐勇航等, 2007; 23-Wang et al., 2014b; 24-韩宝福等, 2007; 25-王冲等, 2016; 26-李江海等, 2001; 27-Peng, 2015; 28-Peng et al., 2012a; 29-Rämö et al., 1995; 30-杨进辉等, 2005; 31-高维等, 2008; 32-Lu et al., 2008a; 33-高林志等, 2008; 34-Wang et al., 2015c; 35-陆松年等, 2008; 36-相振群等, 2012; 37-Peng et al., 2013; 38-Liu et al., 2006; 39-蔡逸涛等, 2018; 40-胡国辉等, 2010; 41-Zhao and Zhou, 2009a; 42-师江朋等, 2017; 43-Zhang et al., 2013a; 44-Zhao et al., 2004a; 45-He et al., 2009; 46-Wang et al., 2010; 47-Bao et al., 2008; 48-Chen et al., 2006; 49-崔敏利等, 2010; 50-陆松年等, 2003a; 51-包志伟等, 2009; 52-Li et al., 2016a; 52-柳晓艳等, 2011; 53-王涛等, 1998; 54-陆松年等, 2003b; 55-陈志宏等, 2004; 56-邓小芹等, 2015 Fig. 1 Distribution and ages of the Meso-Neoproterozoic strata and magmatic rocks in the North China Block The color-coded age data in the figure represent the different stages of the magmatism. Geochronologic data in the figure come from: 1-Pei et al., 2013; 2-Wang et al., 2015b; 3-Zhang et al., 2016; 4-Zhang et al., 2012a; 5-Zhang et al., 2017; 6-Wang et al., 2014a; 7-Xiang, 2014; 8-Wang et al., 2013; 9-Liu et al., 2011; 10-Zhao et al., 2004; 11-Zhang et al., 2007a; 12-Ren et al., 2006; 13-Yu et al., 1996; 14-Mo et al., 1997; 15-Zhang et al., 2012a; 16-Wang et al., 2012; 17-Yang et al., 2011; 18-Peng et al., 2010; 19-Geng and Zhou, 2010; 20-Peng et al., 2018; 21-Yang et al., 2019; 22-Xu et al., 2007; 23-Wang et al., 2014b; 24-Han et al., 2007; 25-Wang et al., 2016; 26-Li et al., 2001; 27-Peng, 2015; 28-Peng et al., 2012; 29-Rämö et al., 1995; 30-Yang et al., 2005; 31-Gao et al., 2008; 32-Lu et al., 2008a; 33-Gao et al., 2008; 34-Wang et al., 2015c; 35-Lu et al., 2008; 36-Xiang et al., 2012; 37-Peng et al., 2013; 38-Liu et al., 2006; 39-Cai et al., 2018; 40-Hu et al., 2010; 41-Zhao and Zhou, 2009a; 42-Shi et al., 2017; 43-Zhang et al., 2013a; 44-Zhao et al., 2004a; 45-He et al., 2009; 46-Wang et al., 2010; 47-Bao et al., 2008; 48-Chen et al., 2006; 49-Cui et al., 2010; 50-Lu et al., 2003a; 51-Bao et al., 2009; 52-Li et al., 2016a; 52-Liu et al., 2011; 53-Wang et al., 1998; 54-Lu et al., 2003b; 55-Chen et al., 2004; 56-Deng et al., 2015

华北自1.8Ga完成克拉通化后,开始进入全新的演化过程。在华北陆块的南缘和北缘先后形成了熊耳裂陷槽和燕辽裂陷槽(Zhai, 2013)。在熊耳裂陷槽先后沉积了熊耳群、汝阳群、洛峪群等。其中熊耳群除底部少量的碎屑沉积岩之外,主要由玄武安山岩、安山岩、安山流纹岩等组成,并伴有流纹斑岩的侵入,大量的年代学研究表明熊耳群主要形成于1.8~1.75Ga(图 1; Zhao et al., 2002b, 2004a)。与此同时,在太行-吕梁-晋冀蒙交界地区发育了大量北西走向的基性岩墙(图 1; Peng, 2015; 王冲等, 2016)。这期火山岩和基性岩墙群代表了华北克拉通化之后早期的拉张裂解作用(耿元生等, 2019)。熊耳群火山岩喷发后在熊耳裂陷槽沉积了陆缘碎屑岩和浅海碳酸盐为主的汝阳群和洛峪群。洛峪群顶部洛峪口组上部和顶部的凝灰岩中获得了1.64~1.61Ga的年龄数据(苏文博等, 2012; 李承东等, 2017; 彭楠等, 2018),可以限定熊耳群、汝阳群和洛峪群形成于1.8~1.6Ga,属于我国地层表中的长城纪。在华北南缘,1.8~1.5Ga发育了碱性花岗岩,包括~1.8Ga的摩天寨花岗岩、石秤花岗闪长岩,1.6Ga的麻坪正长岩、龙王碱性花岗岩,1.52Ga的张家坪二长花岗岩,1.47Ga的潘河正长岩, 地球化学上它们属于A型花岗岩(Zhao and Zhou, 2009a; Zhao and Deng, 2016; 师江朋等, 2017),反映了从1.8Ga到1.5Ga的多期拉伸事件。

华北陆块北部的密云-承德-建平一带在1.75~1.68Ga期间形成了代表拉伸环境的斜长岩、纹长花岗岩、碱长花岗岩、环斑花岗岩系列(Rämö et al., 1995;杨进辉等, 2005; 任康绪等, 2006; Zhang et al., 2007a; Zhao et al., 2009b; Wang et al., 2013),在密云-冀东和五台山北台并伴有1.73Ga的基性岩墙侵位(Peng et al., 2012a; Peng, 2015),代表华北陆块北部早期的裂解。目前的资料表明,燕辽裂陷槽早期沉积的长城群的底界在在1.68Ga左右(李怀坤等, 2011; 和政军等, 2011a, b)。长城群以碎屑岩为主,上部的团山子组和大红峪组发育富钾的火山岩(图 1),形成于裂谷环境(张健等, 2015; Wang et al., 2015c)。1.6~1.4Ga在燕辽裂陷槽沉积了以碳酸盐岩、砂岩、页岩为主的蓟县群,其中夹有流纹质凝灰岩和钾质斑脱岩(Su et al., 2010; 李怀坤等, 2014)。1.40~1.37Ga在燕辽裂谷带沉积了以砂岩和页岩为主的下马岭组,1.37~1.30Ga期间形成了大量的具有大陆玄武岩特点的基性岩床(Su et al., 2008, Gao et al., 2008; Zhang et al., 2009a, 2012a)。之后在1.2Ga左右在吉林通化、山东沂水等地有基性岩脉的侵入(图 1)。到新元古代时期,在华北陆块的东北部、东南部、南部及西北部沉积有细河群、淮北群、栾川群大红口组及狼山群等地层,其中辽东半岛、徐淮地区的新元古代地层中发育大量的0.9Ga左右的基性岩床或岩墙(图 1)(Zhang et al., 2016; Liu et al., 2006; Wang et al., 2012a),在南缘的栾川群大红口组中发育有0.84Ga左右的碱性火山岩(胡国辉等, 2019),在西北缘狼山群中发育有0.82Ga左右的酸性火山岩(彭润民等, 2010; Hu et al., 2014)。

这些沉积岩和火成岩都显示,华北陆块从1.78Ga开始到新元古代经历了多期裂谷事件,一直处于拉张的构造环境(翟明国等, 2014)。

1.2 华南陆块

华南陆块是指秦岭-大别山以南、川西高原和横断山脉以东的地区。一般认为它由扬子地块、华夏古陆由江南造山带在新元古代拼贴而成(图 2)。华南陆块的演化与Rodinia超大陆的聚合裂解密切相关(Li et al., 2002a, 2008a; Wang et al., 2016a)。华南陆块的变质基底出露非常局限,仅在湖北的黄陵、浙西南的八都、扬子西北缘的后河、云南的撮科等地有零星出露。中-新元古代地层和岩浆岩主要分布在江南造山带、扬子北缘和扬子西缘,在海南岛有零星出露(图 2)。

图 2 华南陆块中-新元古代地层及岩浆岩分布及年龄 图中不同颜色的年龄数据代表不同时代的岩浆岩, 图中的资料来源:1-刘贻灿等, 2010; 2-Liu et al., 2017; 3-曹正琦等, 2017; 4-胡正祥等, 2015; 5-Deng et al., 2013; 6-Shi et al., 2007; 7-Xu et al., 2016a; 8-陆松年等, 2003b; 9-祝禧艳等, 2008; 10-Ling et al., 2008, 11-Wang et al., 2017a; 12-邓乾忠等, 2016; 13-刘仁燕等, 2011; 14-牛宝贵等, 2006; 15-夏林圻等, 2009; 16-Ling et al., 2003; 17-Zhou et al., 2002a; 18-Dong et al., 2011; 19-Zhao et al., 2010a; 20-Dong et al., 2012; 21-Luo et al., 2018; 22-赵凤清等, 2006; 23-Zhao and Zhou, 2009b; 24-Wang et al., 2016b; 25-凌文黎等, 2006; 26-Li, 2010; 27-Yan et al., 2004; 28-赖绍聪等, 2007; 29-Xiao et al., 2007; 30-裴先治等, 2009; 31-Li et al., 2018; 32-Meng et al., 2015; 33-耿元生等, 2008; 34-Zhou et al., 2002b; 35-Li et al., 2003a; 36-刘树文等, 2009; 37-Hu et al., 2017; 38-Lin et al., 2007; 39-林广春, 2010; 40-李献华等, 2001a; 41-卓皆文等, 2015; 42-Huang et al., 2008; 43-Chen et al., 2005; 44-Li et al., 2003b; 45-Du et al., 2014; 46-Li et al., 2002a; 47-杨崇辉等, 2009; 48-杜利林等, 2009; 49-Zhou et al., 2006a; 50-Li and Zhao, 2018; 51-Zhao and Zhou, 2007; 52-Li et al., 2009a; 53-Chen et al., 2014; 54-Chen et al., 2018; 55-金廷福等, 2017; 56-Zhao and Zhou, 2011; 57-杨红等, 2012; 58-耿元生等, 2007a; 59-郭春丽等, 2007; 60-Fan et al., 2013; 61-王冬兵等, 2013; 62-Lu et al., 2019; 63-Geng et al., 2020; 64-周家云等, 2011; 65-于文佳等, 2017; 66-耿元生等, 2017; 67-王冬兵等, 2012; 68-王子正等, 2013; 69-杨斌等, 2015; 70-郭阳等, 2014; 71-李怀坤等, 2013; 72-凌文黎等, 2006; 73-Zhao et al., 2013b; 74-Peng et al., 2012b; 75-Deng et al., 2012; 76-Deng et al., 2017; 77-高维和张传恒, 2009; 78-Wei et al., 2012; 79-Wang et al., 2006; 80-王孝磊等, 2006; 81-Li, 1999; 82-李献华, 1999; 83-Yao et al., 2014; 84-Li et al., 1999; 85-Lin et al., 2016; 86-Wang et al., 2012b; 87-李献华等, 1996; 88-Wang et al., 2014d; 89-Zhou et al., 2007; 90-孙海清等, 2013; 91-柏道远等, 2010; 92-张传恒等, 2014; 93-Zhao et al., 2011; 94-Zhou et al., 2009; 95-王敏等, 2016; 96-薛怀民等, 2012; 97-王敏等, 2011; 98-Zhao and Zhou, 2013; 99-高林志等, 2012; 100-Zhang et al., 2015a; 101-马铁球等, 2009; 102-Xin et al., 2017; 103-Zhang and Wang, 2016; 104-Zhang et al., 2013b; 105-Xin et al., 2017; 106-Li et al., 2003c; 107-李献华等, 2001b; 108-Li et al., 2013; 109-高林志等, 2013a; 110-张恒等, 2015; 111-Wang et al., 2018; 112-Zhang et al., 2015b; 113-李源等, 2017; 114-王存智等, 2015; 115-Gao et al., 2009; 116-蒋幸福等, 2017; 117-Wang et al., 2015a; 118-李献华等, 1994; 119-Li et al., 2008a; 120-薛怀民等, 2010; 121-吴荣新等, 2005; 122-邓奇等, 2016; 123-Xia et al., 2015; 124-Liu et al., 2015; 125-姜杨等, 2015; 126-Wu et al., 2006; 127-李献华等, 2002; 128-Zhang et al., 2013c; 129-Cui et al., 2017; 130-Yin et al., 2013; 131-张彦杰等, 2010; 132-丁炳华等, 2008; 133-Chen et al., 2009a; 134-陈辉等, 2016; 135-高林志等, 2014; 136-Chen et al., 2009b; 137-Ye et al., 2007; 138-王磊等, 2015; 139-Zhang et al., 2012b; 140-许德如等, 2006; 141-覃小锋等, 2006; 142-Zhang et al., 2012b; 143-Chen et al., 2017a; 144-李献华等, 1998 Fig. 2 Distribution and ages of the Meso-Neoproterozoic strata and magmatic rocks in the South China Block The color-coded age data in the figure represent the different stages of the magmatism. Geochronologic data in the figure come from: 1-Liu et al., 2010; 2-Liu et al., 2017; 3-Cao et al., 2017; 4-Hu et al., 2015; 5-Deng et al., 2013; 6-Shi et al., 2007; 7-Xu et al., 2016a; 8-Lu et al., 2003b; 9-Zhu et al., 2008; 10-Ling et al., 2008, 11-Wang et al., 2017a; 12-Deng et al., 2016; 13-Liu et al., 2011; 14-Niu et al., 2006; 15-Xia et al., 2009; 16-Ling et al., 2003; 17-Zhou et al., 2002a; 18-Dong et al., 2011; 19-Zhao et al., 2010a; 20-Dong et al., 2012; 21-Luo et al., 2018; 22-Zhao et al., 2006; 23-Zhao and Zhou, 2009b; 24-Wang et al., 2016b; 25-Ling et al., 2006; 26-Li, 2010; 27-Yan et al., 2004; 28-Lai et al., 2007; 29-Xiao et al., 2007; 30-Pei et al., 2009; 31-Li et al., 2018; 32-Meng et al., 2015; 33-Geng et al., 2008; 34-Zhou et al., 2002b; 35-Li et al., 2003a; 36-Liu et al., 2009; 37-Hu et al., 2007; 38-Lin et al., 2007; 39-Lin, 2010; 40-Li et al., 2001a; 41-Zhuo et al., 2015; 42-Huang et al., 2008; 43-Chen et al., 2005; 44-Li et al., 2003b; 45-Du et al., 2014; 46-Li et al., 2002a; 47-Yang et al., 2009; 48-Du et al., 2009; 49-Zhou et al., 2006a; 50-Li and Zhao, 2018; 51-Zhao and Zhou, 2007; 52-Li et al., 2009a; 53-Chen et al., 2014; 54-Chen et al., 2018; 55-Jin et al., 2017; 56-Zhao and Zhou, 2011; 57-Yang et al., 2012; 58-Geng et al., 2007a; 59-Guo et al., 2007; 60-Fan et al., 2013; 61-Wang et al., 2013; 62-Lu et al., 2019; 63-Geng et al., 2020; 64-Zhou et al., 2011; 65-Yu et al., 2017; 66-Geng et al., 2017; 67-Wang et al., 2012; 68-Wang et al., 2013; 69-Yang et al., 2015; 70-Guo et al., 2014; 71-Li et al., 2013; 72-Ling et al., 2006; 73-Zhao et al., 2013b; 74-Peng et al., 2012b; 75-Deng et al., 2012; 76-Deng et al., 2017; 77-Gao and Zhang, 2009; 78-Wei et al., 2012; 79-Wang et al., 2006; 80-Wang et al., 2006; 81-Li, 1999; 82-Li, 1999; 83-Yao et al., 2014; 84-Li et al., 1999; 85-Lin et al., 2016; 86-Wang et al., 2012b; 87-Li et al., 1996; 88-Wang et al., 2014d; 89-Zhou et al., 2007; 90-Sun et al., 2013; 91-Bai et al., 2010; 92-Zhang et al., 2014; 93-Zhao et al., 2011; 94-Zhou et al., 2009; 95-Wang et al., 2016; 96-Xue et al., 2012; 97-Wang et al., 2011; 98-Zhao and Zhou, 2013; 99-Gao et al., 2012; 100-Zhang et al., 2015a; 101-Ma et al., 2009; 102-Xin et al., 2017; 103-Zhang and Wang, 2016; 104-Zhang et al., 2013b; 105-Xin et al., 2017; 106-Li et al., 2003c; 107-Li et al., 2001b; 108-Li et al., 2013; 109-Gao et al., 2013a; 110-Zhang et al., 2015; 111-Wang et al., 2018; 112-Zhang et al., 2015b; 113-Li et al., 2017; 114-Wang et al., 2015; 115-Gao et al., 2009; 116-Jiang et al., 2017; 117-Wang et al., 2015a; 118-Li et al., 1994; 119-Li et al., 2008a; 120-Xue et al., 2010; 121-Wu et al., 2005; 122-Deng et al., 2016; 123-Xia et al., 2015; 124-Liu et al., 2015; 125-Jiang et al., 2015; 126-Wu et al., 2006; 127-Li et al., 2002; 128-Zhang et al., 2013c; 129-Cui et al., 2017; 130-Yin et al., 2013; 131-Zhang et al., 2010; 132-Ding et al., 2008; 133-Chen et al., 2009a; 134-Chen et al., 2016; 135-Gao et al., 2014; 136-Chen et al., 2009b; 137-Ye et al., 2007; 138-Wang et al., 2015; 139-Zhang et al., 2012b; 140-Xu et al., 2006; 141-Qin et al., 2006; 142-Zhang et al., 2012b; 143-Chen et al., 2017a; 144-Li et al., 1998

华南陆块中元古代地层和岩浆岩主要出露在扬子西南缘的云南大红山到川西南的会理一带,在扬子北缘、海南岛抱板地区也有零星出露(图 2)。中元古代早期的岩浆事件记录在福建武夷山、云南武定和四川会理地区。在夷山地区仅零星出露。在武定和会理地区表现为双峰式的岩浆岩组合,形成时代为1.76~1.70Ga(杨斌等, 2015; Geng et al., 2020)。中元古代早期的沉积记录以云南大红山地区出露的大红山群、云南东川-武定地区出露的东川群、四川西南部河口地区出露的河口群及会理地区出露的通安组中下部为代表(耿元生等, 2017, 2019)。其中大红山群自下而上划分为老厂河组、曼岗河组、红山组、肥味河组和坡头组,属于碎屑+火山+碳酸盐岩建造,其中火山岩主要形成于1.72~1.65Ga(Greentree and Li, 2008; Zhao and Zhou, 2011; 杨红等, 2012; 金廷福等, 2017)。在这一阶段,形成了大红山铁铜矿床、东川铜矿以及河口铜矿床。王伟等(Wang and Zhou, 2014; Wang et al., 2014c)研究了东川群及相关岩群的沉积岩组合和沉积构造特征,把该区裂谷盆地划分为四个演化阶段,表明中元古代早期扬子西南缘处于拉伸裂解环境。中元古代中期(~1.4Ga)的变质地层和岩浆岩目前仅在海南岛有所发现,称为抱板群,自下而上划分为戈枕村组和峨文岭组(马大铨等, 1997)。是遭受中级变质的碎屑建造组合,锆石SHRIMP U-Pb定年结果表明戈枕村组的片麻岩(可能为变形的花岗岩)形成于1.45~1.43Ga(Li et al., 2002a; 许德如等, 2006; 张立敏等, 2017)。这期构造岩浆热事件影响的范围和形成的构造背景尚需进一步研究。

华南陆块内存在一期1.1~0.96Ga的岩浆事件。赣东北蛇绿混杂岩中的辉长岩获得了大量的1.0Ga左右的锆石U-Pb年龄数据(图 2, Zhang et al., 2015b; 王存智等, 2015; Gao et al., 2009; Wang et al., 2015a)。湖北宜昌黄陵地区庙湾蛇绿岩中的辉长岩形成于1118~974Ma期间(图 2, Peng et al., 2012b; Deng et al., 2012, 2017)。扬子地块西缘石棉蛇绿岩中辉绿岩也获得了1066Ma和937Ma的年龄数据(Hu et al., 2017)。这几处蛇绿岩位于华南陆块的不同构造部位(图 2),它们是否为同一构造背景下的产物尚需更深入的研究。除此之外,在扬子西南缘四川会理分布的会理群、云南元谋分布的苴林群、扬子西北缘的通木梁群中都有1.0Ga左右的火山岩(耿元生等, 2007a; Zhu et al., 2016; Chen et al., 2014, 2018; Li et al., 2018)出露。在扬子西南缘还发育有1.0Ga左右的花岗岩(Li et al., 2002a; 杨崇辉等, 2009; Chen et al., 2018)。1.0Ga左右的火山沉积岩系及相应的岩浆岩在岩石组成、地球化学特征、反映的构造环境等方面均有明显差异。

华南陆块的新元古代地层和岩浆岩出露较广,特别是在江南造山带、扬子北缘和扬子西缘有广泛的出露(图 2)。江南造山带的新元古代主要由三部分组成,新元古代早期(1.0~0.82Ga)主要由绿片岩相变质的火山沉积岩系(如广西的四堡群、贵州的梵净山群、湖南的冷家溪群、江西的双桥山群、皖南的溪口群、浙西的双溪坞群等)及相伴的S型花岗岩组成,新元古代中期(0.82~0.72Ga)主要由低绿片岩相变质的沉积地层(如广西的丹洲群、贵州的下江群、湖南的板溪群、江西的修水群、皖浙赣交界的历口群、河上镇群等)和同时代的未变形花岗岩组成,新元古代晚期(0.72~0.54Ga)主要由冰水沉积的南华系和广泛海侵的碳酸盐建造为主的震旦系组成(各主要岩群的组合特征可见Geng, 2015)。在江南造山带的中-西段早期的火山沉积岩系与中期的浅变质地层之间存在不整合接触关系。在早期的火山沉积岩系中夹有较多的火山岩层,以中基性火山岩为主,多与岛弧和弧后的构造环境有关。从新元古代中期开始,沉积地层中火山岩逐渐减少。

在扬子北缘的新元古代主要由碧口群、火地垭群和西乡群以及大量的岩浆岩组成。碧口群(本文的碧口群仅包括原碧口群中浅变质的火山岩系)主要由基性到中性熔岩和火山碎屑岩组成,包括细碧岩、玄武岩、安山岩、角斑岩、少量流纹岩及各类火山碎屑岩。碧口群形成时代大致在0.89~0.83Ga(Yan et al., 2004; Xiao et al., 2007),局部的火山岩可能延续到0.8Ga左右(Yan et al., 2004)。火地垭群自下而上分为上两组、麻窝子组和铁船山组,其中上两组和麻窝子组是变质沉积岩组合;铁船山组是火山建造,主要由红色碱性流纹岩、英安流纹岩、拉班玄武岩、熔结凝灰岩、火山碎屑岩等组成。在铁船山组流纹岩中获得的颗粒锆石TIMS年龄为817±5Ma(Ling et al., 2003),形成于新元古代中期。西乡群是一套火山沉积组合,下部由低钾玄武岩和玄武安山岩组成,夹变质沉积岩;上部由钙碱性到碱性的玄武安山岩、英安岩、流纹岩组成,夹少量碱性玄武岩。其上为磨拉石建造(Ling et al., 2003)。西乡群大致形成于830~770Ma期间(徐学义等, 2010; 夏林圻等, 2009)。在汉南地区除了新元古代的火地垭群和西乡群之外,还分布有大量的新元古代早中期的岩浆杂岩,包括碑坝基性侵入杂岩、天平河花岗闪长岩、杨家河花岗闪长岩、铁船山霓石花岗岩、望江山基性杂岩体、汉南杂岩体等,大量的同位素年代学资料表明它们主要形成于850~750Ma期间(图 2)。这些岩浆杂岩具有从南向北迁移的特征,南部米仓山地区与弧有关的岩浆活动发生在870~820Ma期间,到中部的惠家坝与弧有关的岩浆活动发生在840~820Ma期间,到北部的汉南地区与弧有关的岩浆活动发生在825~706Ma期间,这种时空上的迁移支持了扬子北缘是大陆边缘弧增生造山的构造模式(Dong et al., 2012)。

扬子地块西缘新元古代早期的火山沉积岩系以盐边群为代表。其下部是以火山岩为主的荒田组,中上部的渔门组、小坪组和乍古组则主要由砂岩、各类板岩、泥灰岩、砂质灰岩、白云质灰岩等组成。侵入小坪组的关刀山花岗闪长岩的锆石U-Pb年龄为857Ma(Li et al., 2003b; Du et al., 2014),盐边群大体形成于877~831Ma。该地区新元古代中期的火山沉积地层以苏雄组和开建桥组为代表。苏雄组主要由巨厚的酸性火山岩组成,其中夹有少量的基性火山岩和火山碎屑岩。开建桥组主要由酸性火山碎屑岩和凝灰质砂岩组成。形成于806~803Ma(李献华等, 2001a; 卓皆文等, 2015)。由于苏雄组酸性火山岩中夹有基性火山岩,李献华等(2001a)认为属于双峰式火山岩,形成于拉伸构造环境。在扬子地块西缘还有大量的新元古代早-中期的岩浆岩(图 2),包括辉长岩、英云闪长岩、花岗闪长岩、花岗岩等,成分变化比较大。形成于746~864Ma,主要集中在840~780Ma期间(图 2)。

1.3 塔里木陆块(塔里木克拉通)

塔里木陆块位于我国的西北部,呈菱形夹持于北侧的天山造山带、西南侧的昆仑造山带和东南侧的阿尔金造山带之间。由于塔克拉玛干沙漠的覆盖,塔里木陆块的前寒武纪地层和岩石主要出露于塔里木陆块的东北缘、东南缘和西南缘(图 3)。另外,在天山造山带中带从星星峡经巴伦台到阿拉塔格地区存在一些前寒武纪的小地块,对于这些地块的归属尚有不同认识,本文认为它们可能来自塔里木陆块,因此将这几个地区的前寒武纪岩层归于塔里木陆块的北缘。

图 3 塔里木陆块中-新元古代地层及岩浆岩分布及年龄 图中的资料来源:1-Fu et al., 2015; 2-Xu et al., 2016b; 3-张建新等, 2011; 4-Yu et al., 2013; 5-王玉玺等, 2017; 6-胡霭琴等, 2006; 7-Huang et al., 2015; 8-胡霭琴等, 2010; 9-Wang et al., 2014e; 10-施文翔等, 2010; 11-Huang et al., 2014; 12-彭明兴等, 2012; 13-Cao et al., 2011; 14-Cao et al., 2010; 15-徐备等, 2008; 16-Xu et al., 2009; 17-Ge et al., 2014; 18-Long et al., 2011b; 19-罗新荣等, 2007; 20-Zhang et al., 2007b; 21-Shu et al., 2011; 22-Zhang et al., 2012c; 23-Cao et al., 2014; 24-Tang et al., 2016; 25-Chen et al., 2017b; 26-秦切等, 2012; 27-He et al., 2014; 28-张健等, 2018; 29-Wu et al., 2014; 30-Wang et al., 2017c; 31-张传林等, 2014; 32-Zhu et al., 2011; 33-Yang et al., 2008; 34-王飞等, 2010; 35-Zhang et al., 2012d; 36-Xu et al., 2013; 37-张健等, 2014; 38-Zhang et al., 2009b; 39-Zhan et al., 2007; 40-Chen et al., 2004; 41-Zhang et al., 2019; 42-Ye et al., 2016; 43-黄建国等, 2012; 44-张传林等, 2003; 45-Zhang et al., 2006; 46-Wang et al., 2015d; 47-Wang et al., 2015e Fig. 3 Distribution and ages of the Meso-Neoproterozoic strata and magmatic rocks in the Tarim Block Geochronologic data in the figure come from: 1-Fu et al., 2015; 2-Xu et al., 2016b; 3-Zhang et al., 2011; 4-Yu et al., 2013; 5-Wang et al., 2017; 6-Hu et al., 2006; 7-Huang et al., 2015; 8-Hu et al., 2010; 9-Wang et al., 2014e; 10-Shi et al., 2010; 11-Huang et al., 2014; 12-Peng et al., 2012; 13-Cao et al., 2011; 14-Cao et al., 2010; 15-Xu et al., 2008; 16-Xu et al., 2009; 17-Ge et al., 2014; 18-Long et al., 2011b; 19-Luo et al., 2007; 20-Zhang et al., 2007b; 21-Shu et al., 2011; 22-Zhang et al., 2012c; 23-Cao et al., 2014; 24-Tang et al., 2016; 25-Chen et al., 2017b; 26-Qin et al., 2012; 27-He et al., 2014; 28-Zhang et al., 2018; 29-Wu et al., 2014; 30-Wang et al., 2017c; 31-Zhang et al., 2014; 32-Zhu et al., 2011; 33-Yang et al., 2008; 34-Wang et al., 2010; 35-Zhang et al., 2012d; 36-Xu et al., 2013; 37-Zhang et al., 2014; 38-Zhang et al., 2009b; 39-Zhan et al., 2007; 40-Chen et al., 2004; 41-Zhang et al., 2019; 42-Ye et al., 2016; 43-Huang et al., 2012; 44-Zhang et al., 2003; 45-Zhang et al., 2006; 46-Wang et al., 2015d; 47-Wang et al., 2015e

塔里木陆块东北缘的库鲁克塔格地区出露有太古宙-古元古代的变质基底,包括太古宙的托格拉克布拉克杂岩以及古元古代的兴地塔格群。托格拉克布拉克杂岩以TTG片麻岩为主,主要形成于新太古代(胡霭琴和韦刚健, 2006; Long et al., 2010, 2011a)。古元古代的兴地塔格群,是一套含有十字石、石榴石、蓝晶石、夕线石的云母石英片岩,夹少量大理岩的变质表壳岩系,目前还缺少可靠的同位素年龄数据。同时还有一些古元古代的深成侵入体(郭召杰等, 2003; Zhang et al., 2012e; Cai et al., 2018)。在塔里木东南缘变质基底主要由太古宙的阿克塔什塔格杂岩和米兰岩群及古元古代的变质深成岩和具有孔兹岩特征的敦煌岩群组成(Lu et al., 2008b; Long et al., 2014; 辛后田等, 2011, 2013)。它们多经历了古元古代晚期的变质改造。塔里木西南缘的变质基底以赫罗斯坦杂岩为代表,其形成时代主要为古元古代(Wang et al., 2014f)。

塔里木陆块东北缘出露的中元古代地层包括长城系的杨吉布拉克群、波瓦姆群和蓟县系的爱尔基干群。杨吉布拉克群主要由变质砂岩、变质长石砂岩、变质粉砂岩、绢云千枚岩等组成,属于轻微变质的浅海相碎屑岩建造。波瓦姆群主要由石英岩、绿帘黑云片岩、二云片岩及少量大理岩组成。关于这两个岩群是上下叠置关系还是相变关系还存在不同认识。蓟县系的爱尔基干群,主要由灰岩、白云岩、白云质大理岩、石英岩等组成,属于富含硅镁质的浅海相碳酸盐岩建造。塔里木陆块东北缘中元古代的岩浆岩包括侵入到古元古代兴地塔格群兴地河组大理岩中的1.5Ga的辉绿岩床及中天山造山带中星星峡和阿拉塔格地区侵入到星星峡群的1.4Ga的变形花岗岩(图 3)。

塔里木陆块东南缘的中元古代地层包括长城系巴什库尔干群和蓟县系的塔昔达坂群。巴什库尔干群主要分布在阿尔金山北坡且末、若羌、皮山一带,以白云石英片岩、绢云绿泥石英片岩、绿泥二云石英片岩、石英砂岩为主,夹有大理岩、千枚岩。塔昔达坂群主要分布于阿尔金山的安南坝、塔昔达坂南坡及若羌一带,下部以碎屑岩为主,上部以碳酸盐岩为主。这两个群目前都缺少可靠的同位素年龄限制。该地区目前发现的中元古代的岩浆岩很少,只有位于柴达木北缘大柴旦西北鹰峰地区的环斑花岗岩,形成于中元古代的早期(Xiao et al., 2004; Chen et al., 2013a)。

塔里木陆块西南缘的中元古代地层主要为桑株塔格群。该群主要由碎屑岩、大理岩和少量石英岩组成,被1.4Ga的花岗岩所侵入,碎屑锆石的峰值在1.5Ga左右(Zhang et al., 2019),表明其形成于中元古代。塞拉加兹塔格群也曾被认为属于中元古代,该群火山岩夹层中有1525Ma(Zhang et al., 2019)和881Ma(Wang et al., 2015d)两种年龄相差较大的锆石,其时代归属还需进一步研究。该区中元古代的岩浆岩包括侵入到侵入赫罗斯坦杂岩中1.78Ga的辉长岩(Zhang et al., 2019)、喀拉喀什群中1.5Ga左右的火山岩、1.4Ga左右的阿孜巴勒迪尔岩体(黄建国等, 2012; Ye et al., 2016)以及1.11Ga左右侵入桑株塔格群的花岗闪长岩和淡色花岗岩等(Zhang et al., 2019)。

塔里木东北缘的库鲁克塔格地区新元古代地层分布较广,属于青白口系的地层包括塞纳尔塔格组和北塞纳尔塔格组。前者以浅变质的碎屑建造为主,后者以含叠层石的碳酸盐岩建造为主。其上是库鲁克塔格群,该群自下而上包括贝义西组、照壁山组、阿勒通沟组、特瑞爱肯组、扎摩克提组、育肯沟组、水泉组和汉格尔乔克组等八个组。尽管对于这套地层的时代归属尚存异议,但多数研究者认为这套组合中包含了四个冰期的产物,即贝义西冰期大致与国际上的Kaigas冰期相当,阿勒通沟冰期大致与国际上的Sturtian冰期相当,特瑞爱肯冰期大致与国际上的Marinoan冰期相当,而最上部的汉格尔乔克冰期大致与国际上的Gaskiers冰期相当(高林志等, 2013b; 姜海健等, 2017)。贝义西组火山岩的定年表明该组形成于740~725Ma(Xu et al., 2009),表明贝义西组可以属于国际地层表中的拉伸纪。在塔里木盆地的西北缘阿克苏地区,新元古时期的地层大致可与库鲁克塔格地区的地层对比,其上部大致与扎摩克提组和育肯沟组相当的苏盖特布拉克组中火山岩夹层中获得了615Ma的年龄结果(Xu et al., 2013),表明扎摩克提组至汉格尔乔克组属于埃迪卡拉纪。在库鲁克塔格地区新元古代岩浆岩非常发育,尤以新元古代中晚期(0.82~0.60Ga)的岩浆显著(图 3),该时期的二长花岗岩、正长花岗岩、花岗岩、基性侵入岩、基性岩脉在该区广泛分布。此外,新元古代早期(0.96~0.88Ga)片理化花岗岩在库鲁克塔格地区有零星分布(Shu et al., 2011),而在北侧中天山造山带的几个小地块中则有较多分布。0.84~0.82Ga的岩浆活动并不十分强烈,仅在库鲁克塔格分布少量的含角闪石花岗闪长岩、石榴-白云母花岗岩等。

塔里木陆块东南缘阿尔金山北坡新元古代地层仅出露有大致相当于青白口纪的索尔库里群,主要分布在巴什考贡、拉配泉、库木塔什里克等地。该岩群主要由厚层大理岩、钙质片岩、板岩、千枚岩及黑云母石英片岩等组成。该群与下伏的塔昔达坂群之间为不整合接触。该区新元古代的岩浆岩以新元古代早期(0.93~0.83Ga)的花岗岩类岩石为主(图 3)。

塔里木陆块西南缘新元古代早期地层的沉积时代一直存在争议,Zhang et al. (2019)认为,塞拉加兹塔格群和埃连卡特群均为新元古代早期地层。塞拉加兹塔格群主要由玄武岩、流纹岩、含凝灰质的碎屑岩、粉砂岩和少量砂岩组成,形成于850~840Ma(Zhang et al., 2019)。埃连卡特群主要由绢云绿泥片岩、粉砂岩、长石石英砂岩等组成,形成于840~800Ma(Zhang et al., 2019)。丝路群下部是厚层砾岩,上部是细粒的碎屑岩。该群不整合在埃连卡特群之上,形成时代可能为800~750Ma(Zhang et al., 2019)。恰克马克力克群主要由陆缘碎屑建造组成,其中夹有两层(波龙组、雨塘组)火山岩和冰碛砾岩、冰水沉积碎屑岩。这两套冰碛砾岩如何与库鲁克塔格地区的冰碛砾岩对比尚有不同认识,形成时代大致相当于成冰纪。其上为库尔卡克组和克孜苏胡木组,前者以粉砂岩、粉砂质页岩、页岩为主,后者以白云岩和钙质砂岩为主。大致相当于震旦系,但目前尚无精确的年龄资料约束。该区新元古代的岩浆岩主要为880~815Ma的火山岩和花岗岩(图 3),限于自然地理条件,该区高精度的同位素年龄资料相对较少。

总之,塔里木陆块不同地区的中-新元古代不论在沉积建造还是岩浆岩组合方面都有较明显的区别。

2 三大陆块中-新元古代的岩浆事件序列

华北、华南和塔里木陆块内中-新元古代岩浆岩发育较为广泛,但分布不均匀。图 4为三大陆块中-新元古代岩浆岩同位素年龄(锆石U-Pb年龄)的统计,数据来自公开发表的文献,统计的数据多于图 1-图 3所表示的数据。从统计结果可以看出,820~840Ma的岩浆活动最为强烈, 另外在~1780Ma、~1320Ma、~920Ma和~640Ma也有小的年龄峰值(图 4)。但是各期岩浆事件在不同陆块表现强度和形式并不相同,如全部数据中最突出的~830Ma年龄峰,在华北基本没有表现,主要表现在华南和塔里木陆块(图 4)。因此,本节分别就华北、华南、塔里木三大陆块中-新元古代的岩浆事件序列进行讨论。

图 4 华北、华南及塔里木三大陆块中-新元古代岩浆事件年龄直方图 Fig. 4 Geochronologic data histograms of Meso-Neoproterozoic magmatic events in North China, South China and Tarim blocks
2.1 华北陆块中-新元古代的岩浆事件序列

华北陆块中-新元古代的岩浆岩分布较广,但规模都较小。主体以岩体或岩墙的形式产出,仅有少量火山岩。据现有的资料,华北陆块中-新元古代岩浆事件可划分为七期。

第一期(1.80~1.75Ga)。该期岩浆岩以华北陆块南缘出露的熊耳群火山岩和太行-五台地区出露的基性岩墙群为代表。目前对于熊耳群火山岩的形成环境还有大陆边缘裂谷(Zhao et al., 2002b, 2004a; Wang et al., 2010; Cui et al., 2011, 2013; 柳晓艳等, 2011)和大陆边缘弧(Zhao et al., 2009a; He et al., 2009)的争议。但考虑到华北陆块内广泛分布的放射状镁铁质岩墙与熊耳群火山岩形成时代基本一致,因此我们认为该期岩浆事件主要形成于地幔柱导致的大陆拉伸-裂谷构造环境(图 5; Hou et al., 2008; 耿元生等, 2019)。在华北陆块中-新元古代岩浆岩年龄直方图上,该期岩浆事件呈现出最大的年龄峰值,表明这期岩浆事件在华北陆块影响广泛,其最大峰值在1.78Ga左右(图 4)。

图 5 华北陆块中-新元古代岩浆演化示意图 1-太古宙-古元古代变质基底;2-砾岩;3-碎屑沉积岩;4-碳酸盐岩;5-中-基性火山岩;6-中-酸性火山岩;7-基性岩床;8-1.78Ga的太行岩墙群;9-晚期的基性岩墙;10-大庙斜长岩+纹长二长岩+辉长岩组合;11-花岗岩类;12-辉长岩;13-不整合界线;14-地层缺失 Fig. 5 Schematic diagram of Meso-Neoproterozoic magmatic evolution in the North China Block 1-Archean-Paleoproterozoic metamorphic basement; 2-conglomerate; 3-clastic rocks; 4-carbonate rocks; 5-intermediate-mafic volcanic rocks; 6-intermediate-acid volcanic rocks; 7-mafic sills; 8-1.78Ga mafic dyke swarms in Taihangshan; 9-later mafic dykes; 10-anorthosite+mangerite+gabbro; 11-granitoids; 12-gabbro; 13-unconformity boundary; 14-stratigraphic break

第二期(1.72~1.67Ga)。该期岩浆岩以华北陆块北缘出露较广的AGRS组合(Anorthosite+Gabbro+Rapakivi granite+Syenite)为主,代表性岩体有承德大庙斜长岩+纹长二长岩+辉长岩,蓝营正长岩,河北建平石英正长岩+二长岩等。该期岩浆岩大体沿平泉北-大庙-汤河口-赤城-尚义一线近东西向长400km,宽约100km(王惠初等, 2012)。这套岩石组合为典型的非造山岩浆活动的产物,可与北美、格陵兰、波罗的、南美等地的AGMS(斜长岩-辉长岩-纹长二长岩-正长岩)组合和AMCG(斜长岩-纹长二长岩-紫苏花岗岩-奥长环斑花岗岩)组合对比,与陆内裂陷或初始裂谷有关(Windley, 1989; Corrigan and Hanmer, 1997; Bogdanova et al., 2013)。由于该组合中有大量的斜长岩和辉长岩,它们可能来源于岩石圈地幔的部分熔融(图 5)。该期岩浆事件的年龄峰较大,表明在华北陆块具有较强的响应,其年龄的峰值在1.70Ga左右(图 4b)。

第三期(1.64~1.60Ga)。在燕辽裂谷的团山子组和大红峪组中发育有1.65~1.62Ga的高钾火山岩(高林志等, 2008; Lu et al., 2008a; Wang et al., 2015c; 张健等, 2015),除火山岩之外还有侵入串岭沟组年龄为1.62~1.63Ga的基性岩脉(张拴宏等, 2013; 张健等, 2015)。华北陆块南缘东西向近400km长碱性岩带中的龙王碱性花岗岩(1.60~1.63Ga)、麻坪碱性花岗岩(~1.60Ga)等(图 5; 陆松年等, 2003a; 包志伟等, 2009; 邓小芹等, 2015)以及鲁西红门1.62Ga的辉绿玢岩(相振群等, 2012)等。火山岩的产出背景、侵入岩的岩石组合及地球化学等都表明这期岩浆事件发生在大陆地壳的拉伸阶段。该期岩浆事件可以从1640Ma延续到1580Ma,其峰值年龄为1630Ma(图 4b)。

第四期(1.33~1.30Ga)。该期的岩浆岩以燕辽裂谷带广泛发育的基性岩床和冀北出露的康保-化德二长花岗岩、花岗岩为代表。其中基性岩床(图 5)主要侵位于下马岭组、雾迷山组、高于庄组及铁岭组,在串岭沟组及团山子组内也见有少量分布,单个岩床厚从几米到近200米,根据40余条剖面的统计,不同地区辉绿岩床的累积厚度从50m到1800m(Zhang et al., 2017),其分布范围超过12万平方千米,构成一个大火成岩省(Zhang et al., 2017; 张拴宏和赵越, 2018)。大量锆石和斜锆石的定年结果表明这些岩床主要形成于1.31~1.33Ga(Zhang et al., 2012a, 2017)。冀北商都花岗岩出露20~30km2,主要由二长花岗岩和正长花岗岩所组成,形成于~1.33Ga。同时代的基性岩床和碱性花岗岩构成双峰式岩浆岩(Zhang et al., 2012a)。这期岩浆事件从1.34Ga延续到1.30Ga,峰值年龄为1.32Ga(图 4b)。

第五期(1.24~1.20Ga)。这期岩浆事件以在华北陆块零星分布的基性岩墙为代表(图 5),如吉林南部通化地区出露的基性岩墙(裴福萍等, 2013)、河北建平地区侵入到建平杂岩中的基性岩墙(Wang et al., 2015b)、山东沂水地区侵入到古老片麻岩中的基性岩墙(Peng et al., 2013)、冀东青龙和滦南司家营的基性岩墙(Wang et al., 2015b; 李怀坤等, 2019)有的研究者把这些基性岩墙联系起来,认为可以构成一个大火成岩省,与新元古代晚期的地幔柱事件有关(Wang et al., 2015b)。在华北陆块中-新元古代岩浆岩年龄直方图中只有一个较小的峰,其峰值年龄为1.23Ga(图 4b)。

① 李怀坤, 张健, 田辉, 钟炎, 刘欢, 周红英, 相振群, 涂家润. 2019.中国及邻区中、新元古代地层格架和大地构造研究.中国地质调查项目研究报告, 中国地质调查局天津地质调查中心原作者(Wu et al., 2014)采用206Pb/238U加权平均年龄1470±9Ma,考虑到中元古代的特点,本文采用207Pb/206Pb的加权平均年龄)。

第六期(0.89~0.94Ga)。该期岩浆事件在华北陆块以辽东半岛出露的基性岩床(Zhang et al., 2016)、恒山大石沟地区出露的辉绿岩墙(Peng et al., 2011)和徐淮地区出露的基性岩床和岩墙(Liu et al., 2006; Wang et al., 2012a; 蔡逸涛等, 2018; Zhu et al., 2019; Su et al., 2020)为代表(图 5);在华北陆块西部阿拉善地区以强变形的花岗岩为代表(耿元生和周喜文, 2010)。华北陆块东部该阶段的基性岩墙主要形成于大陆的拉张环境(Wang et al., 2012a),阿拉善地区的花岗岩形成于拉张环境,但是,属于造山晚期的拉张还是后造山的拉张环境不明确(耿元生和周喜文, 2010, 2011)。这期岩浆事件从0.94Ga延续到0.89Ga,峰值年龄在0.93Ga左右(图 4)。

第七期(0.85~0.80Ga)。该期岩浆事件在华北南缘表现为栾川群大红口组粗面岩的喷发(胡国辉等, 2019)和栾川地区辉长岩的侵位(Wang et al., 2011; Ling et al., 2015);在华北陆块西北缘狼山地区表现为酸性火山岩的喷发(彭润民等, 2010)以及千里山地区基性岩墙的侵位(彭澎等, 2018)。一些研究者认为,高硅富钾的粗面岩与侵位的辉长岩构成双峰式火山岩,形成于大陆裂解环境(胡国辉等, 2019)。狼山地区的酸性火山岩也形成于张性裂谷盆地环境(彭润民等, 2010)。目前的年代学研究表明,华北陆块南缘该期的岩浆事件形成较早(849~830Ma),而狼山地区和千里山地区的岩浆活动则稍晚(817~805Ma)。

2.2 扬子陆块中-新元古代的岩浆事件序列

扬子陆块中-新元古代的岩浆岩分布较为广泛,中元古代的岩浆岩主要分布在扬子西缘和北缘,新元古代的岩浆岩分布广泛,特别是在江南造山带和扬子北缘分布较多。根据岩浆岩的形成时代,扬子陆块中-新元古代的岩浆岩可以分为八期。

第一期(1.8~1.76Ga)。该期岩浆事件只在华夏地块仅有零星出露,如福建武夷山地区侵入麻源群大金山组的片麻状花岗岩,形成年龄为1796Ma和1795Ma(Chen et al., 2017a);福建建宁麻源群天井坪组中的斜长角闪岩,形成年龄为1766Ma(李献华等, 1998)。有限的资料表明,这一阶段的片麻状花岗岩属于A型花岗岩,形成于板内拉伸构造环境(Chen et al., 2017a)。天井坪组中的斜长角闪岩的地球化学特征揭示它们类似于现代的板内玄武岩(李献华等, 1998, 1999),形成于板内的拉张环境。但是这一阶段的岩浆岩出露过于局限,其影响范围,区域构造背景还有待深入研究。

第二期(1.76~1.70Ga)。该期岩浆事件主要表现为扬子地块西南缘出露的双峰式岩浆岩。如云南武定地区出露的辉绿岩和花岗斑岩(王子正等, 2013; 郭阳等, 2014; 杨斌等, 2015)、会理皎平渡辉长岩和会东菜园子花岗岩(Geng et al., 2020),以及一些基性岩脉。目前的年代学结果表明,这期岩浆事件从1765Ma(杨斌等, 2015)一直延续到1694Ma(王冬兵等, 2013),在华南陆块年龄直方图上在1.72Ga有一个小的峰值。但是作为双峰式岩浆岩似乎不应延续较长时间。值得注意的是,武定地区的同一个花岗斑岩岩株获得的年龄分别为1764Ma(杨斌等, 2015)和1730Ma(王子正等, 2013);皎平渡辉长岩有的作者获得的年龄为1694Ma(王冬兵等, 2013),而笔者等获得的年龄为1721Ma(Geng et al., 2020)。因此,这次岩浆事件的准确时限还需进一步研究。这期双峰式岩浆岩形成于大陆裂解环境(图 6; 王子正等, 2013; 杨斌等, 2015; Geng et al., 2020)。

图 6 华南陆块中-新元古代岩浆演化示意图 1-太古宙-古元古代变质基底;2-碎屑沉积岩;3-碳酸盐岩;4-冰碛砾岩;5-中-基性火山岩;6-中-酸性火山岩;7-蛇绿岩组合;8-双峰式火山岩;9-基性岩墙(群);10-辉长岩类;11-花岗斑岩脉;12-花岗岩类;13-不整合界线;14-地层缺失 Fig. 6 Schematic diagram of Meso-Neoproterozoic magmatic evolution in the South China Block 1-Archean-Paleoproterozoic metamorphic basement; 2-clastic rocks; 3-carbonate rocks; 4-moraine-breccia; 5-intermediate-mafic volcanic rocks; 6-intermediate-acid volcanic rock; 7-ophiolite sequence; 8-bimodal volcanics; 9-mafic dykes; 10-gabbro; 11-granite-porphyry dykes; 12-granitoids; 13-unconformity boundary; 14-stratigraphic break

第三期(1.69~1.66Ga)。该期岩浆事件以扬子地块西南缘大红山群火山岩和河口群火山岩以及东川群中的粗玄岩为代表,它们形成于1700~1640Ma(Zhao et al., 2010b; Zhao and Zhou, 2011; 杨红等, 2012; 周家云等, 2011; Chen et al., 2013b; 耿元生等, 2017),由于数据有限在年龄直方图上并没有形成明显的峰值(图 4c)。这期岩浆活动形成与岩浆热液有关的铁氧化物铜金矿床(Iron-Oxide-Copper-Gold, IOCG)或层状铜矿床(Sediment-hosted Stratiform Copper, SSC)(Zhao and Zhou, 2011; 王生伟等, 2016)。根据火山岩组合及相关的沉积建造组合特征,这期火山岩形成于裂谷环境(图 6; Wang and Zhou, 2014; Wang et al., 2014c)。

第四期岩浆作用(~1.5Ga)。该期岩浆活动以扬子地块西南缘会理一带的基性岩墙为代表。在四川会理通安镇的竹菁地区集中出露,在长4km、宽90~370m的范围内出露有数十条基性岩墙,主要是辉长岩,一些辉长岩中含有Fe-Ti氧化物,局部成为矿体,这些基性岩墙主要走向北西向(300°~350°)(Fan et al., 2013)。此外,在通安附近也见有该期的辉长岩脉(耿元生等, 2012),这些岩墙主要侵入到通安组地层中。这期岩浆事件从1531Ma(耿元生等, 2012)延续到1486Ma(Fan et al., 2013),在年龄直方图上在1.5Ga附近有一个小的峰值(图 4c)。这期岩浆岩的母岩浆为裂谷环境(图 6)下略微富集的岩石圈地幔部分熔融的产物(Fan et al., 2013)。

第五期岩浆作用(~1.4Ga)。这期作用以海南岛抱板地区出露的片麻状花岗闪长岩为代表,形成年龄在1455~1431Ma之间,可能形成于岛弧或大陆边缘构造环境(Li et al., 2002a; 许德如等, 2006; 张立敏等, 2017)。这期岩浆事件分布局限,其区域构造意义还有待进一步研究。此外,在四川西南会理地区发现有1.37Ga的辉长岩,可能形成于洋壳初始俯冲背景(任光明等, 2017)。由于四川会理和海南相距较远,二者的形成时代有一定差别,是否代表同一期岩浆事件尚需进一步研究。

第六期岩浆事件(1.08~0.96Ga)。这期岩浆事件在华南的不同地区表现形式有所差异。在扬子地块西南缘以川西地区会理群天宝山组中的火山岩、云南元谋地区苴林群普登组中的火山岩、云南元谋-四川会理一带出露的花岗岩及基性岩脉为代表,它们形成于1072~1014Ma(耿元生等, 2007a, 2017; 杨崇辉等, 2009; Chen et al., 2014, 2018; Zhu et al., 2016)。但对于该地区的这期岩浆事件形成的构造环境尚有不同认识,部分研究者认为这期岩浆事件形成于板块的碰撞环境,与Grenville期的造山事件有关(Li et al., 2002a; 耿元生等, 2007a; 杨崇辉等, 2009)。有的研究者认为该地区这期岩浆事件形成的花岗岩属于A型花岗岩,形成于陆内裂谷盆地环境(Chen et al., 2018);或形成于扬子与华夏陆块碰撞初期在扬子陆块内形成的裂谷环境(Zhu et al., 2016)。在扬子陆块其他地区,这期岩浆事件则以赣东北蛇绿岩带、湖北黄陵西部庙湾蛇绿岩中的辉长岩等为代表。其中赣东北蛇绿岩中的辉长岩等形成于1038~970Ma(李献华等, 1994; Gao et al., 2009; Zhang et al., 2015b; Wang et al., 2015a; 李源等, 2017; 蒋幸福等, 2017);庙湾蛇绿岩形成于1096~973Ma(Peng et al., 2012b; Deng et al., 2017)。此外,四川石棉地区出露的超基性-基性岩组合(部分研究者认为属于蛇绿岩组合)中的辉长岩也曾获得1066Ma的锆石SHRIMP U-Pb年龄结果(Hu et al., 2017);在扬子地块的西北缘四川青县通木梁群火山岩中堆晶辉长岩等也曾获得过971~966Ma的锆石U-Pb年龄数据(Li et al., 2018)。赣东北的蛇绿岩属于江南造山带的一部分,而庙湾蛇绿岩位于扬子地块的内部,石棉蛇绿岩则位于扬子地块的西缘。这些产于不同地点的蛇绿岩组合基本是同时代的产物,它们是否构成了一套西起石棉,向东经庙湾,东到赣东北蛇绿岩带是值得重视的问题。不论是岩石组合和地球化学特征,扬子西南缘云南元谋-四川会理的火山岩和花岗岩与江南造山带、扬子地块北缘的岩浆岩组合都有明显的差异,因此我们在华南中-新元古代岩浆演化示意图中将它们分别表示(图 6)。

第七期岩浆事件(0.93~0.82Ga)。在华南陆块中-新元古代年龄直方图中可以看出,从0.95Ga左右的低谷,到新元古代晚期是一个连续的正态分布的年龄曲线。其最大峰值在0.84Ga左右,之后岩浆活动的强度渐次减弱(图 4c)。我们之所以采用0.82Ga作为这次岩浆事件的结束时限,主要考虑以下因素:首先从广西北部,经贵州梵净山、湖南、江西北部、安徽南部、到浙江北部新元古代早期地层(也称下构造层,包括四堡群、梵净山群、冷家溪群、双桥山群和双溪坞群等)与新元古代中晚期地层(也称上构造层,包括丹州群、下江群、板溪群、修水群及河上镇群等)之间存在明显的不整合接触,造成该不整合界面的构造运动时限大体在0.82Ga(高林志等, 2011; 孟庆秀等, 2013)。其次,扬子地块西缘形成于裂谷环境的苏雄组双峰式火山岩形成于806~803Ma(李献华等, 2001a; 卓皆文等, 2015),江南造山带东段侵入许村花岗岩的混合岩墙形成于805~804Ma,形成于裂谷环境的上墅组双峰式火山岩形成于802~797Ma(Wang et al., 2012c),考虑到从碰撞造山转变为陆内的裂谷环境需要一定的时间,由此推断二者转换的时间大约在820Ma左右。最后,在华南中-新元古代岩浆岩年龄直方图上(图 4c)可以看出从840Ma的最大峰值到810Ma的小峰,频度有明显的下降,因此我们以820Ma为界。

在华南地区该阶段的岩浆岩最显著的是出露在江南造山带中的火山岩和相关的花岗岩类。在江南造山带的东段平水群、双溪坞群中的火山岩(从玄武岩到流纹岩都有出露)以及相伴的侵入岩(如西裘花岗岩套、山后岩浆杂岩等),形成时间在950~840Ma(Li et al., 2009b; Chen et al., 2009a, b; Liu et al., 2015; 陈辉等, 2016; Lyu et al., 2017)。在江南造山带中段以双桥山群中的火山岩(包括玄武岩、安山岩和流纹岩)以及相关的侵入岩(如皖南的许村岩体、歙县岩体、休宁岩体、江西的九岭岩体等)为代表,它们主要形成于840~820Ma(李献华等, 2002; Li et al., 2003c, 2016b; Wu et al., 2006; 薛怀民等, 2010; Wang et al., 2014d)。到江南造山带西段,该期岩浆事件以梵净山群、四堡群中的火山岩(以基性火山岩为主)和相伴的侵入岩(梵净山地区的桃树林岩体,四堡地区的三防、本洞、元宝山等岩体及辉长岩等)为代表,其主要形成于840~818Ma(Zhou et al., 2009; Li et al., 1999; Zhao et al., 2011; 王敏等, 2011; 薛怀民等, 2012; 张传恒等, 2014; Yao et al., 2014; Wang et al., 2014d; Lin et al., 2016)。上述资料表明,江南造山带中该期的岩浆事件发生的时间并不完全相同,东部相对较早,西部相对较晚。它们不仅在时间上有差异,在锆石Hf同位素和全岩Nd同位素组成上也存在明显差异和分带性(Wang et al., 2014d),表明它们的物质来源和形成环境都有所差异。东部的火山岩和花岗岩类早期形成于岛弧环境,之后逐步过渡到弧后的前陆盆地环境,西部则形成于扬子地块和华夏地块的碰撞环境。

该期岩浆事件在扬子地块北缘和西缘也有较明显的表现。在扬子北缘的碧口群、西乡群下部的火山岩、勉略混杂岩带中的一些基性岩块,以及米仓山地块中的早期侵入体也属于这一阶段的岩浆产物,它们形成于855~824Ma期间(Yan et al., 2004; 闫全人等, 2007; 赖绍聪等, 2007; 夏林圻等, 2009; 叶霖等, 2009; Dong et al., 2012),这些岩浆岩主要形成于岛弧环境(Dong et al., 2012, 2017)。

位于扬子地块内部接近北缘的黄陵花岗岩基出露面积900km2,其主体三斗坪英云闪长岩、黄陵庙奥长花岗岩和大老岭(二长)花岗岩也形成于这一阶段(马大铨等, 2002; Zhao et al., 2013a, b),它们可能形成于岛弧环境(Zhao et al., 2013a, b)。在扬子地块西缘以盐边群中的火山岩和相关的侵入岩为代表,盐边群中的火山岩主要为玄武岩,目前还没有可靠的年龄数据,但是侵入到盐边群的关刀山岩体已经获得856Ma的年龄(Li et al., 2003b; Du et al., 2014),结合碎屑锆石的年龄等资料,盐边群的火山岩大致形成于880~830Ma(Zhou et al., 2006a; 杜利林等, 2013),主要形成于扬子西缘弧后盆地(Li et al., 2006; 杜利林等, 2005; 2013; Sun et al., 2008)。之后,有一期基性岩脉侵入到盐边群、登相营群之中(824~809Ma)(Cui et al., 2015; Niu et al., 2015),标志着扬子西缘这期岩浆事件的结束。

以上论述表明,该期岩浆事件在华南表现强烈。但是不同地区表现形式有所差异,很难逐个小地区进行表示。因此,考虑到江南造山带和扬子北缘的造山过程具有相似性,因此在华南中-新元古代岩浆事件演化示意图上大体分为江南造山带和扬子北缘与扬子其他地区进行表示(图 6)。

第八期岩浆事件(0.82~0.72Ga)。从华南地区中-新元古代岩浆岩的年龄直方图可以看出,华南地区0.82~0.72Ga岩浆活动依然比较强烈,但显示从老到新岩浆活动的强度呈逐渐递减的趋势(图 4c)。这期岩浆事件在华南不同地区表现的形式不同。在江南造山带及附近,由于0.82Ga左右的武陵运动标志造山运动的结束,所以这一地区0.82Ga以后的岩浆事件以代表拉张环境的火山岩和侵入岩为特征。如江南造山带东段802~797Ma的双峰式火山岩(Li et al., 2008b; Wang et al., 2012c; 吴荣新等, 2007),扬子陆块西缘806~803Ma的苏雄组双峰式火山岩(李献华等, 2001a; 卓皆文等, 2015)以及上构造层中形成于拉张环境的一些火山岩,如丹州群三门街组中的火山岩(765Ma, Zhou et al., 2007)等。在江南造山带及附近这一阶段的非造山型侵入岩也比较发育,如皖南-浙北一带的莲花山花岗岩、石耳山花岗岩、白际花岗岩等(Li et al., 2003a; 吴荣新等, 2005; 薛怀民等, 2010; 邓奇等, 2016),赣北的梅仙岩体(Xin et al., 2017)及广西的田朋岩体等(王孝磊等, 2006)。

该阶段在扬子地块北缘的火山岩主要包括碧口群上部、武当群、西乡群、耀岭河群等中的火山岩(Yan et al., 2004; Ling et al., 2008; 夏林圻等, 2008, 2009; 祝禧艳等, 2008; 徐学义等, 2010; Zhu et al., 2014),以及以汉南杂岩为代表的侵入岩等(凌文黎等, 2006; Zhao et al., 2010a; Dong et al., 2011, 2012, 2017; 杨朋涛等, 2012; 敖文昊等, 2014)。在扬子北缘(或者称勉略带)这期岩浆事件是该区0.85~0.82Ga岩浆事件的延续,0.85~0.82Ga的岩浆事件导致北侧的陡岭地体与小摩岭岛弧的拼合,大洋继续向南发展,到该阶段,在洋盆中形成了大量的火山岩,在凤凰山岛弧产生了大量的侵入岩,形成汉南杂岩(Dong et al., 2017)。因此,扬子北缘该期的岩浆事件主要形成于大洋盆地和岛弧环境(图 6)。

在扬子地块西缘,该阶段形成了大量的岩浆岩,包括龙门山杂岩、康定杂岩、米易杂岩、大田杂岩等,成分变化很大,有沙坝辉长岩、苏长岩、同德闪长岩、磨盘山和康定TTG岩系、摩挲营花岗岩-二长花岗岩等,这些不同成分的岩浆岩基本形成于810~740Ma期间(Zhou et al., 2002b, 2006b; Li et al., 2003a, 2009a; 杜利林等, 2006; 耿元生等, 2007b; 郭春丽等, 2007; Huang et al., 2008; Meng et al., 2015)。对于这套岩浆杂岩的形成背景目前存在不同认识,部分学者认为时期岩浆活动形成于地幔柱导致的拉伸构造环境(Li et al., 2002b, 2003a, c; Zhu et al., 2006);另一些学者则认为这期岩浆活动形成于与岛弧有关的构造环境(颜丹平等, 2002; Zhou et al., 2002b; 沈渭洲等, 2003)。

2.3 塔里木及周缘中-新元古代的岩浆事件序列

塔里木陆块位于我国西北,由于大部分被沙漠覆盖,其前寒武纪基底只在其东北缘、东南缘及西南缘的局部出露。已有资料显示,塔里木陆块包括了太古宙、古元古代的变质基底,也出露大量的中-新元古代的地层和火成岩。在塔里木北侧的天山造山带、东南缘的阿尔金-祁连造山带中出露一些中-新元古代的地块,对于分布于(早)古生代造山带中地块的归属存在不同认识,有的认为它们可能来自不属于塔里木的外来地块,有的认为它们可能来自塔里木陆块的外来地块。本文所称塔里木及周缘,既包括塔里木陆块也包括中天山造山带及祁连造山带中的一些中-新元古代地块。根据岩浆岩的形成时代,塔里木陆块及周缘的中-新元古代岩浆事件可以分为八期。

第一期岩浆事件(1.79~1.77Ga)。目前,该期岩浆事件的产物在塔里木及周缘目前仅发现两处。一处位于塔里木西南缘叶城地区为侵入到太古宙-古元古代赫罗斯坦杂岩中的基性岩墙,岩墙宽2~10m,延长300~2000m,走向310°~330°。较宽的岩墙从边部辉绿岩到中心辉长岩,有一定变化,并发育冷凝边。其中一条较宽岩墙中辉长岩的斜锆石U-Pb年龄为1780±12Ma,可以代表基性岩墙的形成年龄(Zhang et al., 2019)。这些基性岩墙从形成时代和地球化学上都可与华北该时期的基性岩墙群对比,形成于大陆的伸展环境。另一处是位于柴达木北缘大柴旦西北鹰峰地区的环斑花岗岩。鹰峰岩体呈北西-南东向延长的枣核型,出露面积20km2,主要由粉红色环斑花岗岩和灰白色环斑花岗岩组成。该岩体侵入到达肯大坂群,并有辉长岩脉和花岗岩脉侵入其中。Xiao et al. (2004)曾采用锆石TIMS方法获得1776±36Ma的年龄结果,Chen et al. (2013a)采用锆石LA-ICPMS U-Pb法获得1794±6Ma的年龄结果。通常认为,环斑花岗岩是非造山环境的产物,是地壳伸展构造的标志之一(Windley, 1991; Rämö and Haapala, 1995)。因此,鹰峰环斑花岗岩形成于非造山的拉伸环境(图 7)。从形成年代上看,鹰峰地区的环斑花岗岩较华北陆块内北京密云环斑花岗岩(1679~1685Ma)形成要早,可能意味着塔里木陆块中元古代早期裂解的深成岩浆事件略早于华北陆块,而与华北陆块中元古代早期的熊耳群火山事件和太行岩墙群事件发生的时间基本一致。由于这期岩浆事件分布零星,在年龄直方图上没有形成明显的峰(图 4d)。

第二期岩浆事件(~1.50Ga)。该期岩浆事件以塔里木北缘的库鲁克塔格的阿斯廷布拉克铁矿区内出露的基性岩床为代表。该区出露的基性岩以岩床形式为主,少量为小岩株,岩床一般长度大于2000m,宽度200~400m,它们侵入到兴地塔格群兴地河组下部的大理岩中。这些岩床以辉绿岩为主,主要由辉石、角闪石、斜长石组成,具有典型的辉绿结构。在局部,可以在与岩床接触的大理岩中观察到阳起石,可能是接触变质的产物(新疆维吾尔自治区地质矿产局, 1993)。在辉绿岩中获得过1491±11Ma,1497±21Ma和1551±8Ma的年龄数据(Wu et al., 2014; Wang et al., 2017c; 张健等, 2018),这几个数据尚有一定差异。基性岩床的地球化学具有大陆溢流玄武岩的特点,形成于大陆裂解(裂谷)环境(图 7; Wu et al., 2014; 张健等, 2018)。在塔里木西南缘库地北,喀拉喀什群中1525±4Ma流纹岩(Zhang et al., 2019)可能也属于这期岩浆事件。

图 7 塔里木陆块及周缘中-新元古代岩浆演化示意图 1-太古宙-古元古代变质基底;2-碎屑沉积岩;3-碳酸盐岩;4-冰碛砾岩;5-中基性火山岩;6-双峰式火山岩;7-基性岩床;8-基性岩墙;9花岗岩类;10-辉长岩类;11-不整合界线;12-地层缺失 Fig. 7 Schematic diagram of Meso-Neoproterozoic magmatic evolution in the Tarim Block 1-Archean-Paleoproterozoic metamorphic base-ment; 2-clastic rocks; 3-carbonate rocks; 4-moraine-breccia; 5-intermediate-mafic volcanic rocks; 6-bimodal volcanics; 7-mafic sills; 8-mafic dykes; 9-granitoids; 10-gabbro; 11-unconformity boundary; 12-stratigraphic break

第三期岩浆事件(1.45~1.40Ga)。该期岩浆事件以塔里木北部天山造山带内的阿拉塔格、尾亚、星星峡等地出露的片麻状花岗闪长岩、二长花岗岩等为代表。这些变形的花岗岩体出露面积变化较大,有的仅在星星峡群片麻岩中呈大的透镜状,而在阿拉塔格地区该期的花岗岩套出露近80km2。岩石类型以片麻状花岗闪长岩、片麻状二长花岗岩为主,少量的片麻状英云闪长岩、片麻状闪长岩和片麻状钾长花岗岩,它们侵入到星星峡群之中,并与星星峡群一起经历了强烈的变形,普遍具有与围岩产状一致的片麻理。目前的年代学资料显示,这套岩浆杂岩主要形成于1458~1405Ma期间(胡霭琴等, 2006; 施文翔等, 2010; He et al., 2015),地球化学特征表明它们主要属于碱性-钙碱性系列,形成于大陆岩浆弧环境(图 7, He et al., 2015)。在塔里木西南缘的库斯拉甫一带出露的阿孜巴勒迪尔岩体形成时代为1423±19Ma到1401±5Ma(黄建国等, 2012; Ye et al., 2016),也属于这期岩浆事件的产物。该岩体侵入到长城系的碳酸盐岩和混合岩中,地球化学成分显示该岩体属于A2型花岗岩,形成于大陆裂解环境(图 7, Ye et al., 2016)。由此可见,该期岩浆事件在塔里木北部天山造山带中的产物和塔里木西南缘的产物形成构造背景有明显差异,说明当时天山造山带中的一些中元古代地块处于碰撞造山环境,而当时塔里木西南缘的阿孜巴勒迪尔岩体则形成于大陆裂解环境。值得注意的是,天山造山带中这期岩浆事件略早,而塔里木南缘的这期岩浆事件发生的略晚,是否为同一期岩浆事件的产物尚需更深入的研究。在塔里木及周缘的年龄直方图上,1.43Ga有一个明显的峰值(图 4d),代表该期岩浆事件的主活动期年龄。

第四期岩浆事件(~1.12Ga)。在期岩浆事件的产物目前仅在塔里木西南缘的库斯拉甫北西一带有所发现。在该地区,花岗闪长岩、眼球状花岗岩及淡色花岗岩侵入到中元古代的桑株塔格群中,这些岩体呈北西向拉长的椭圆状,宽2~3km,长可达10km左右。其中花岗闪长岩的锆石SHRIMP U-Pb年龄为1118±5Ma,眼球状花岗岩的锆石LA-ICPMS U-Pb年龄为1116±9Ma,淡色花岗岩的锆石SHRIMP U-Pb年龄为1116±1Ma(Zhang et al., 2019)。地球化学特征显示它们具有A2型花岗岩特征,形成于地幔柱引发的裂解环境(Zhang et al., 2019)。

第五期岩浆事件(0.96~0.88Ga)。在塔里木及周缘中-新元古代岩浆事件年龄直方图上在0.93Ga左右有一个明显的峰值(图 4d),是这期岩浆事件的反映。该期岩浆事件在塔里木及周缘的不同地区表现形式有所差别。在塔里木西南缘叶城以南以塞拉加兹塔格群中的火山岩为代表,这套火山岩以玄武岩为主,其次为流纹岩,缺少中性成分的安山岩,具有双峰式火山岩的特点(Wang et al., 2015d)。根据全岩Rb-Sr年龄曾将该群划分为中元古代早期(新疆维吾尔自治区地质矿产局, 1993),近年高精度锆石原位定年表明,这套火山岩形成于896~881Ma期间,属于新元古代早期(Wang et al., 2015d, 2015e)。塞拉加兹塔格群中双峰式火山岩组合与华北陆块、西非克拉通、刚果克拉通、巴西圣弗兰西斯科克拉通等地925~870Ma的裂谷型火山岩可以类比,表明它们形成于裂谷环境(Wang et al., 2015e)。

在塔里木东南缘,从新疆若羌向东经阿尔金、祁连到柴达木北缘造山带中都有该期岩浆岩分布,主要有片麻状花岗岩、眼球状花岗片麻岩、条带状花岗片麻岩等花岗质侵入岩。它们侵入到古-中元古代变质地层中,并与围岩一同经历了强烈的变形,其变形面理产状与围岩中的片理、片麻理产状一致。这些正片麻岩在成分上主要是花岗闪长岩、石英二长岩,少量为花岗岩,它们主要形成于951~881Ma(Tung et al., 2007; 张建新等, 2011; Song et al., 2012; Yu et al., 2013; Fu et al., 2015)。这些岩浆片麻岩以高钾钙碱性I型花岗岩为主,εHf(0.9Ga)值介于-5.6到+3.9之间,锆石Hf的二阶段模式年龄(tDM2)介于1.9~1.4Ga,这些特征表明,塔里木东南缘该期片麻状花岗岩,是在活动大陆边缘条件下由古元古代晚期-中元古代早期基性-中性母岩部分熔融产生的(Yu et al., 2013)。

在塔里木陆块北缘,该期岩浆事件的产物仅在库鲁克塔格的兴地附近有零星出露,岩性为片理化的花岗岩,形成时代为933±11Ma,并认为其可与华南等地的Grenvillian期造山事件相对比(Shu et al., 2011)。此外,在塔里木中部塔参1井基底花岗闪长岩的角闪石40Ar-39Ar坪年龄分别为931.68±0.73Ma和890.65±1.94Ma (Li et al., 2005),可能也属于这期岩浆事件的产物。这期岩浆事件在塔里木陆块以北的中天山造山带内则广泛分布,从西部的温泉,经中东部的阿拉塔格、尾亚,到东部的星星峡等地都有分布,主要是不同类型的片麻状花岗岩,由于它们同围岩一起经历了强烈的变形改造,以往曾将其作为地层的组成部分。近年大量的研究表明,这些花岗质片麻岩是经过强烈改造的花岗岩,属于岩浆岩的范畴。它们主要是花岗岩,少部分属于花岗闪长岩,主要形成于969~882Ma(Yang et al., 2008; 胡霭琴等, 2010; 彭兴明等, 2012; Huang et al., 2014; Wang et al., 2014g; Wang et al., 2014e; Huang et al., 2015; Gao et al., 2015),岩相学、地球化学特征表明它们属于S型花岗岩,形成于活动大陆边缘环境(图 7; Huang et al., 2015; Gao et al., 2015)。

第六期岩浆事件(0.88~0.82Ga)。在塔里木陆块及周缘中-新元古代岩浆事件年龄直方图上在0.93Ga与0.83Ga两个年龄高峰之间有明显的低谷,低谷的最小年龄值在0.88Ga左右。另外在塔里木陆块北缘的库鲁克塔格地区有形成于裂谷拉张环境的818±11Ma和816±15Ma的辉长岩墙或辉绿岩墙(Zhang et al., 2011; 邓兴梁等, 2008)。所以,我们把这一期岩浆事件限定在0.88~0.82Ga(图 4d)。该期岩浆事件在塔里木陆块北缘的库鲁克塔格一带表现强烈,形成大量的含角闪石花岗闪长岩、石榴-白云母花岗岩、二云母花岗岩及混合岩中的一些淡色花岗和淡色花岗岩脉。它们主要形成于834~824Ma期间(Ge et al., 2013, 2014)。地球化学特征表明,它们类似于现代的埃达克质岩石。锆石的Hf同位素等揭示,它们是在俯冲增生背景下由太古宙基性的下地壳部分熔融产生(图 7; Ge et al., 2014)。库鲁克塔格东段大平梁斜长花岗岩(锆石LA-ICPMS U-Pb年龄826±13Ma)以及由于岩体侵位于围岩形成的矽卡岩铜矿床(辉钼矿Re-Os等时线年龄830±26Ma)(Cao et al., 2010)也应属于这一期岩浆事件的产物。

在塔里木陆块东南缘柴北缘鹰峰地区,该期岩浆事件以粗玄岩墙和Aolaoshan组中的玄武岩和流纹岩为代表,这期火山岩+粗玄岩岩墙的组合和地球化学特征表明它们是双峰式岩浆岩组合,它们在851~821Ma期间(Lu et al., 2008b; Xu et al., 2016b)形成于地幔柱有关的拉张环境,并有可能构成大火成岩省(Xu et al., 2016b)。塔里木北缘库鲁克塔格地区该期岩浆事件发生于碰撞造山环境,而塔里木东南的柴北缘鹰峰地区该期岩浆事件发生在裂谷拉张环境(图 7),二者似乎是矛盾的。一种可能就如Xu et al. (2016b)所解释的,在850Ma之前已形成Rodinia超大陆,之后在华南、柴北缘、澳大利亚之间由于地幔柱的上涌形成了大火山岩省。另外一种可能就是柴北缘一带当时面对大陆,开始向外扩散裂解,而塔里木北缘则当时面向大洋,由于陆块的不断扩散,面向大洋的一侧发生了洋壳向陆块的俯冲,所以在塔里木北缘形成了与碰撞造山有关的岩浆岩。

第七期岩浆事件(0.82~0.72Ga)。该期岩浆事件在塔里木北缘的库鲁克塔格一带表现最为明显,形成大量的花岗岩类、基性侵入岩、基性岩脉、贝义西组火山岩等,这些岩石从组合到地球化学特征都表明它们形成于大陆裂谷环境(Zhang et al., 2007b, 2009b, 2011; Shu et al., 2011; Long et al., 2011b; Cao et al., 2014; Tang et al., 2016)。从塔里木及邻区中-新元古代岩浆岩年龄直方图上可以看出,这期岩浆事件在~0.79Ga和~0.73Ga有两个峰值(图 4d)。早期峰值期间,形成了大量的花岗岩(如太阳岛花岗岩)和少量的基性岩脉(如中途站的基性-超基性岩脉)(Zhang et al., 2007b, 2011; Long et al., 2011b; Shu et al., 2011)。从0.77Ga到0.75Ga岩浆活动相对较弱,局部形成了一些花岗岩。0.75Ga到0.72Ga岩浆活动再次加强,形成了兴地附近的超-基性岩浆杂岩(如兴地Ⅰ到Ⅳ号岩体)及相关的花岗岩脉或岩株(Zhang et al., 2011; Cao et al., 2014; Tang et al., 2016)等。该阶段在库鲁克塔格地区还形成了贝义西组火山岩(740~725Ma)(徐备等, 2008; Xu et al., 2009; 高林志等, 2010)。该阶段的岩浆事件,除在库鲁克塔格地区表现强烈外,在塔里木陆块西北的阿克苏一带也有表现,如侵入到阿克苏群中的基性岩墙群(Chen et al., 2004; Zhang et al., 2009b; 张健等, 2014)。在塔里木西南缘这期岩浆事件表现较弱,在库地附近的辉长岩和花岗岩构成双峰式的岩浆组合(Zhang et al., 2006)。在塔里木陆块内都表现为陆内拉张背景。在塔里木陆块以北的天山造山带中,这期岩浆事件也有表现,如中天山西段赛里木湖附近的辉长岩及花岗岩(Wang et al., 2014h),星星峡地区的花岗岩(Lei et al., 2013)等,它们的形成环境很可能也属于陆内的拉伸背景(Wang et al., 2014h; Lei et al., 2013)。

第八期岩浆事件(0.68~0.60Ga)。在塔里木及周缘中-新元古代岩浆岩年龄直方图中在0.68~0.60Ga期间有一个独立的峰,其峰值在0.64Ga左右(图 4d)。这期岩浆事件在华北基本没有出现,在华南只有零星分布,在塔里木北缘的库尔勒-库鲁克塔格一带则比较明显的。形成了一些二长花岗岩、正长花岗岩、石英正长岩等花岗岩体(Ge et al., 2012, 2014; 何登发等, 2011; 张传林等, 2014)外,也有辉绿岩等基性岩脉(Zhu et al., 2008),同时也有一些火山岩喷发,如阿勒通沟组上部的火山岩(He et al., 2014)、扎摩克提组上部火山岩(Xu et al., 2009; He et al., 2014)等。这期岩浆岩的组合和地球化学特征,表明它们形成于陆内的拉伸环境或者是弧后裂谷盆地环境(图 7; Ge et al., 2012)。在塔里木陆块西北的阿克苏一带,不整合在阿克苏群之上的苏盖特布拉克组火山岩也形成于该时期较晚阶段的大陆裂谷环境,并可与库鲁克塔格地区的特瑞爱肯组及华南的南沱组成冰期相对比(Xu et al., 2013)。

3 三大陆块中-新元古代岩浆事件的差异演化

通过华北、华南和塔里木三大陆块中-新元古代岩浆事件的对比(表 1),可以看出这三个陆块的岩浆事件序列、岩浆岩的组合、岩浆岩形成的构造背景存在一定的差异。即使在同一陆块内(如华南和塔里木),不同部位的岩浆演化也存在差异。

表 1 华北、华南和塔里木陆块中-新元古代岩浆事件对比 Table 1 Comparison of Meso-Neoproterozoic magmatic events in North China, South China and Tarim blocks

1.78~1.5Ga,华北、华南和塔里木陆块内岩浆事件的强度、期次、岩浆作用方式尽管不同,但是它们都形成于拉伸的构造背景。其中华北的强度较大,1.78Ga的熊耳火山岩和太行岩墙群分布比较广,可以达到大火成岩省的规模。而在华南和塔里木陆块,该时期的岩浆活动仅在局部存在,规模非常小。尽管规模上有差异,但是三大陆块都存在中元古代早期与拉伸构造背景有关的岩浆活动。如果1.8Ga之前存在一个全球的Columbia超大陆,华北、华南和塔里木陆块可能位于超大陆的不同位置,但是在这一阶段,岩浆活动的记录表明它们都参与了Columbia超大陆的裂解过程。

表 1可以看出,从1.4Ga开始华南和塔里木陆块的岩浆演化与华北有了明显的差异。1.4Ga在华南陆块的海南岛形成了与碰撞有关的片麻状花岗岩(Li et al., 2002a; 张立敏等, 2017),1.37Ga在四川南部会理一带形成了与洋壳消减碰撞有关的辉长岩(任光明等, 2017),表明华南陆块在这一阶段局部已经从拉张构造体制转变为挤压构造体制。塔里木陆块北缘在1.4Ga左右形成了与碰撞造山有关的S型花岗岩,也表明该陆块的北侧已经发生了构造体制的转变。华北陆块尽管没有这一阶段的岩浆活动记录,但是,从蓟县系大红峪组火山岩到1.32Ga的燕辽沉降带中大规模的基性岩床,表明华北陆块从中元古代早期到中元古代晚期始终处于拉伸的构造背景。到新元古代早期,华南、塔里木陆块与华北陆块构造体制的差异更加明显。在华南陆块,江南造山带和扬子北缘在0.9~0.82Ga都发育了大量的与造山作用有关的火山岩和侵入岩,塔里木陆块北缘形成了大量的与造山作用有关的S型花岗岩,表明它们经历了Rodinia超大陆的汇聚过程。而华北陆块的辽东半岛、徐淮地区在0.92Ga则发育了大量的与拉伸裂解有关的基性岩床和岩墙,到0.83Ga左右在南缘发育了与拉张有关的大红口碱性火山岩,在西缘的千里山在0.81Ga发育了代表拉张环境的基性岩墙,始终处于一种拉伸状态,并没有参与Rodinia超大陆的汇聚。从1.4Ga左右开始,华南、塔里木陆块就与华北陆块经历了不同的岩浆演化,处于不同的构造背景,在全球构造演化中处于不同的位置。

从中-新元古代岩浆演化看,华北陆块从1.78Ga到新元古代中期经历了相同的岩浆演化过程,一直处于拉张的构造环境。从一个侧面说明华北陆块从古元古代末期就是一个完整的陆块,所以后期经历了相同的岩浆演化过程。但是,华南和塔里木陆块内却有不同的岩浆演化事件。在华南陆块,1.40~1.37Ga局部有与造山左右有关的岩浆事件(海南岛花岗岩和四川会理辉长岩),在1.0Ga左右在江南造山带(赣东北)、扬子地块内(湖北宜昌庙湾)以及扬子西缘石棉都发育有蛇绿岩;在扬子西南则发育有与岛弧背景有关的火山岩(四川会理群天宝山组火山岩),在云南元谋发育有板内的花岗岩。这些不同部位发育的岩浆岩表明,华南陆块不同部位经历了不同的岩浆构造事件,它们很可能是由不同的小地块在1.0Ga左右经过较广泛的岩浆构造事件拼合到一起的。塔里木陆块也有类似的岩浆演化特点。如在1.4Ga左右塔里木陆块北缘的花岗岩具有大陆岩浆弧岩浆岩的特征,而同时期在塔里木陆块西南的阿孜巴勒迪尔岩体具有A2型花岗岩特征,形成于大陆裂解环境。如0.96~0.88Ga期间,塔里木东南缘和北缘的花岗岩以I型和S型为特点,形成于活动大陆边缘。而在塔里木陆块的西南缘该时期则形成了塞拉加兹塔格群中双峰式火山岩,形成于陆内裂谷环境。再如,在0.82~0.72Ga期间塔里木陆块北缘的库鲁克塔格地区发育了大量的与拉张环境有关的花岗岩和基性岩脉,而在陆块的西北缘阿克苏地区在却发生了蓝片岩相的变质作用,形成了与洋壳俯冲有关的低温高压的蓝片岩(Chen et al., 2004)。同一陆块内不同部位,不同阶段岩浆岩组合的差异意味着塔里木陆块原来并不是一个统一的陆块,很可能是在不同时期由不同块体拼合而成的。Guo et al. (2001)根据阿尔金北缘与南缘蛇绿岩形成时代的差异,就曾提出过塔里木陆块的基底是在不同时期由不同块体拼合而成的的认识。

4 几个有关问题的讨论 4.1 关于1.4Ga左右岩浆事件的性质

在华南和塔里木陆块零星出露一些1.43Ga左右的岩浆岩,在华南陆块包括海南岛的片麻状花岗岩、川西南1.37Ga的辉长岩,在塔里木陆块有在北缘分布的片麻状花岗闪长岩、片麻状二长花岗岩等。海南岛的花岗岩被认为形成碰撞造山环境(张立敏等, 2017),四川会理一带的辉长岩被认为是蛇绿混杂岩的组成部分,形成于洋壳初始俯冲阶段(任光明等, 2017),塔里木北缘的变形花岗岩类被认为形成于大陆岩浆弧环境(He et al., 2015)。从地球化学特征看,这些岩浆事件都与碰撞造山环境有关。但从全球构造演化看似乎存在矛盾。Columbia超大陆在~1.8Ga形成之后,很快进入了拉伸阶段,在超大陆内部形成一些盆地,在边缘形成一些被动陆缘,但是并没有使超大陆完全裂解。通常认为,以北美麦卡基岩墙(1.27Ga)或北澳大利亚Derim-Galiwinku基性大火成岩省(1.32Ga)的出现为标志,Columbia超大陆发生了最终的裂解(Rogers and Santosh, 2002; Zhao et al., 2004b; Hou et al., 2008; Zhang et al., 2012a)。按照这种认识,我们可以说,在1.32~1.27Ga之前,Columbia超大陆仍处于完整的一体化状态。在Columbia超大陆在未完全裂解开之前,到裂解开之后的一段时间,全球的绝大多数陆块都处于一种拉张裂解的背景。是否存在一些小的边缘陆块较早就从超大陆裂解出去(或者始终没有与超大陆聚合)它们之间发生了局部的拼合,产生了局部的与造山有关的岩浆岩目前尚难以证实。由于华南和塔里木北缘出露的1.43~1.37Ga的岩浆事件非常局限,资料有限,对他们形成的构造背景还需要进行更深入的研究。除了研究局部具体的岩浆岩特征之外,还要从更大的尺度,甚至全球的尺度探讨它们形成的构造背景。同时,在超大陆格局复原时也应考虑到这期岩浆事件的作用和影响。

4.2 关于Rodinia超大陆聚合的时限

最初,格林威尔造山运动是指1.19~0.98Ga期间劳伦古陆与亚马逊地体间的“陆-陆碰撞”作用(Rivers, 1997; 周金成等, 2008)。随着Rodinia超大陆的提出,部分学者就把导致Rodinia形成的地质过程称为Grenville期。我国的四堡运动最初是指造成上覆丹州群与下伏四堡群之间不整合的构造运动,时间在1.0Ga左右。一些学者提出导致扬子地块和华夏地块聚合的四堡运动与形成Rodinia超大陆的Grenville运动大致相当(Li et al., 2002a, 2008a)。后来随着大量高精度同位素年龄数据的发表,该不整合界面的时限在0.82Ga左右。从时间上看,四堡运动与格林威尔运动有一定差异。由于超大陆的形成是一个复杂过程,于是有人提出从Columbia超大陆的分离到Rodinia超大陆的形成都属于Rodinia过程。Ernst et al. (2008)根据大量的中-新元古代大火成岩省的资料,把1.3~0.9Ga作为Rodinia超大陆的聚合阶段,0.9~0.7Ga作为Rodinia超大陆的裂解阶段(图 8)。在该图中华北基本是空白,华南和塔里木只表示了0.82~0.75Ga与超大陆裂解有关的岩浆事件。本文根据现有的资料,将华北、华南和塔里木陆块的有关岩浆岩资料表示到该图中(由于华南和塔里木陆块内存在差异演化因此塔里木用北表示塔里木东北缘和西北缘,用南表示东南缘和西南缘;华南则用北表示扬子地块北缘及西缘,用南主要表示江南造山带),有些分布范围广,达到了属于大火山岩省(如华北1.78Ga的熊耳火山岩和太行基性岩墙群、华北1.32Ga的基性岩床等)。有些规模较小,为了与全球岩浆作用的对比也在该图上给以了表示(图 8)。

图 8 全球主要陆块1.8~0.7Ga期间大火成岩省分布示意图(据Ernst et al., 2008修改) 黑色和灰色引自Ernst et al., 2008, 黑色为大火成岩省; 灰色为被剥蚀残留的大火成岩省.绿色代表与伸展有关的岩浆事件,红色代表与挤压有关的岩浆事件 Fig. 8 Barcode diagrams showing the 1.8~0.7Ga LIPs in different cratonic blocks (modified after Ernst et al., 2008) Black and grey from Ernst et al., 2008, black for LIPs; gray for LIPs (after erosion and continental breakup). Green is the magma event associated with extension, and red is the magma event associated with extrusion

该图中Ernst et al. (2008)表示了大火成岩省,并未说明这些火成岩的形成构造背景。从补充后的图中可以看出,华北陆块从1.8Ga到0.8Ga左右的岩浆活动一直是在拉张环境下形成的,由此可以判断华北陆块并没有参与Rodinia超大陆的聚合过程。华南陆块和塔里木陆块,与Rodinia超大陆聚合的岩浆事件从1.0Ga到0.82Ga左右,最终的结束事件在0.82Ga左右。所以从华南和塔里木陆块的岩浆事件演化看,Rodinia超大陆聚合的岩浆事件结束的时间应在0.82Ga左右,而不是0.9Ga。

Ernst et al. (2008)所确定的Rodinia超大陆开始聚合的时限1.3Ga实际是Columbia超大陆最终裂解的时限。裂解后各陆块相互间有漂移的过程。这一过程是属于Columbia超大陆的裂解过程还是属于Rodinia超大陆的聚合过程是值得探讨的。从图 8中可以看出,在东南极、劳伦古陆、刚果-巴西等地都存在1.25Ga左右的大火成岩省。北美Elzevirian期(1.25~1.19Ga)是一期俯冲增生造山事件(Rivers, 1997),与这几个地区的岩浆事件在时间上可以对比。因此我们认为Rodinia超大陆的聚合期应从1.25Ga到0.82Ga。

4.3 华南陆块中1.0Ga左右岩浆事件所提出的问题

图 2可以看出,在江南造山带(赣东北)、扬子地块内(湖北宜昌庙湾)以及扬子西缘石棉都发育有在1.0Ga左右的蛇绿岩;在扬子西南则发育有与岛弧背景有关的火山岩(四川会理群天宝山组火山岩),在云南元谋发育有板内的花岗岩等。对出露在华南陆块不同部位、近同时形成岩浆岩已有较多的研究,提出了不同的认识。但是从全局上这些1.0Ga左右的岩浆岩向我们提出了一系列的问题,不同地点的蛇绿岩是同一条蛇绿岩带还是几条蛇绿岩带?这些蛇绿岩带在Rodinia超大陆形成过程中起到什么作用?1.0Ga左右的蛇绿岩与近同时代的扬子西南缘天宝山组以酸性火山岩为主的岩浆岩在构造上有没有联系?通过地球化学有人认为扬子西南缘1.0Ga左右的岩浆岩形成于类似岛弧的环境,有人认为形成于陆内裂谷环境,它们究竟是形成于同一构造背景还是形成于不同的构造背景?用于进行构造环境分析的地球化学指标的可靠性如何?等等。

Zhang et al. (2015b)认为,赣东北蛇绿岩是扬子地块与华夏地块之间洋中脊的产物,洋脊从北向南俯冲形成了赣东北蛇绿岩。Wang et al. (2015a)提出,赣东北蛇绿岩是弧后洋消减,扬子地块与怀玉岛弧碰撞的产物。Peng et al. (2012b)提出庙湾蛇绿岩是北侧神农架弧与扬子地块碰撞的产物。彭松柏等已经注意到庙湾蛇绿岩与赣东北蛇绿岩的关系,认为扬子北缘与澳大利亚东南缘之间的大洋在1.0Ga左右消减,神农架岛弧位于扬子地块的北侧,主消减带位于神农架弧与扬子地块之间,而赣东北蛇绿岩是主消减带东部的一个分支。Hu et al. (2017)认为神农架弧与扬子地块间消减带呈弧形,石棉蛇绿岩和庙湾蛇绿岩都是该弧形消减带的产物。对具体的蛇绿岩来说这些不同的模式都具有一定的合理性,但是扬子地块本身并不是一个很大的地块,因此需要从扬子地块的整体(甚至是整个Rodinia超大陆的形成过程)考虑这几处蛇绿岩的相互关系、形成的构造背景等问题。同时,扬子地块西南缘1.0Ga左右的天宝山组火山岩、相关的侵入岩与这几处蛇绿岩是基本同时形成的,它们之间是否存在内在的联系,是否处于统一的构造体制都是需要从扬子地块的整体及它们在Rodinia超大陆形成过程中的作用进行总体的考虑。

关于扬子西南缘1.0Ga左右的火山岩和侵入岩,有的研究者(Li et al., 2002a; 杨崇辉等, 2009)认为它们与扬子地块、华夏地块拼合的江南造山带有关,如果这样江南造山带的地理分布就需要进行再认识。也有的研究者(Chen et al., 2018)认为该期的岩浆事件形成于扬子地块西南1150~960Ma的康滇裂谷带中,有的研究者(Zhu et al., 2016)认为该期岩浆事件形成于扬子和华夏碰撞初期的裂谷盆地中。这些模式都有一定的地质资料给以支持,但是缺少对这些岩浆岩与同时期蛇绿岩相互关系的研究,缺少这期岩浆事件与江南造山带广泛的0.88~0.82Ga岩浆事件相互关系的研究以及该期岩浆事件在Rodinia超大陆形成过程中所起作用的研究。

总之,1.0Ga左右蛇绿岩和岩浆岩的发现,为我们提出了一些新的问题,这些问题需要我们从华南陆块的总体或更大的范围和视角进行研究。

5 结论

(1) 华北陆块中-新元古代岩浆事件可以划分为7个阶段(1.78Ga、1.70Ga、1.63Ga、1.32Ga、1.23Ga、0.93Ga和0.83Ga),各阶段的岩浆岩均形成于大陆地壳伸展的构造背景。华南陆块中-新元古代岩浆事件可以划分为8个阶段(1.78Ga、1.72Ga、1.67Ga、1.5Ga、1.42Ga、1.0Ga、0.84Ga和0.77Ga),其中~1.4Ga左右的一期岩浆构造事构造件分布局限,可能形成于局部的构造拼合背景。1.0Ga左右的岩浆事件,在华南陆块的不同部位表现形式不同,意味着发生过不同地块的拼合。从0.95Ga到0.82Ga的岩浆事件主要分布在江南造山带和扬子地块北缘,这一阶段的岩浆事件导致扬子地块和华夏地块拼接成一体,形成华南陆块。塔里木陆块该阶段的岩浆事件可以划分为8个阶段(1.78Ga、1.5Ga、1.43Ga、1.1Ga、0.92Ga、0.83Ga、0.74Ga和0.65Ga),其中1.43Ga、0.96~0.88Ga和0.88~0.82Ga阶段,塔里木陆块不同部位的岩浆事件表现形式和形成背景有明显差异。

(2) 华北、华南和塔里木陆块从1.8Ga到1.5Ga的岩浆事件都是在拉张构造背景下形成的,意味着它们都经历了Columbia超大陆的裂解。但是从~1.4Ga,华南和塔里木陆块都存在与碰撞有关的岩浆事件,而华北陆块缺少这一阶段的岩浆活动记录,表明三大陆块开始了各自的演化过程。华南和塔里木陆块0.96~0.82Ga的岩浆活动强烈,都与Rodinia超大陆的聚合有关,而华北这一阶段的岩浆活动仍以拉张环境为构造背景。这种差异意味着华南和塔里木陆块卷入了Rodinia超大陆的聚合,而华北陆块很可能没有经历Rodinia超大陆的聚合过程。

(3) 华南陆块的的不同部位发育的1.0Ga左右的蛇绿岩以及代表不同构造环境的岩浆岩和火山岩提出了一系列新的科学问题,需要我们从华南陆块的总体或更大的范围和视角进行研究和认识。

致谢      感谢刘俊来教授、刘正宏教授和刘永江教授为本专辑付出的辛勤劳动;感谢两位审稿人提出了中肯的修改意见。

谨以此文祝贺我的老师杨振升先生90华诞,并祝先生健康长寿。

参考文献
Ao WH, Zhang YK, Zhang RY, Zhao Y and Sun Y. 2014. Neoproterozoic crustal accretion of the northern margin of Yangtze Plate:Constrains from geochemical characteristics, LA-ICP-MS zircon U-Pb chronology and Hf isotopic compositions of Trondhjemite from Zushidian area, Hannan Region. Geological Review, 60(6): 1393-1408 (in Chinese with English abstract)
Bai DY, Jia BH, Liu W, Chen BH, Liu YR and Zhang XY. 2010. Zircon SHRIMP U-Pb dating of the igneous rocks from Chengbu, Hunan:Constraint on the Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12): 1715-1726 (in Chinese with English abstract)
Bai J, Huang XG, Dai FY and Wu CH. 1993. The Precambrian Crustal Evolution of China. Beijing: Geological Publishing House (in Chinese)
Bao ZW, Wang Q, Bai GD, Zhao ZH, Song YW and Liu XM. 2008. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling Orogen and its geodynamic implications. Chinese Science Bulletin, 53(13): 2050-2061
Bao ZW, Wang Q, Zi F, Tang GJ, Du FJ and Bai GD. 2009. Geochemistry of the Paleoproterozoic Longwangzhuang A-type granites on the southern margin of North China Craton:Petrogenesis and tectonic implications. Geochimica, 38(6): 509-522 (in Chinese with English abstract)
Bogdanova SV, Gintov OB, Kurlovich DM, Lubnina NV, Nilsson MKM, Orlyuk MI, Pashkevich IK, Shumlyanskyy LV and Starostenko VI. 2013. Late palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna). Lithos, 174: 196-216
Boger SD, Carson CJ, Wilson CJL and Fanning CM. 2000. Neoproterozoic deformation in the Radok Lake region of the Northern Prince Charles Mountains, East Antarctica:Evidence for a single protracted orogenic event. Precambrian Research, 104(1-2): 1-24
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of the Xinjiang Uygur Autonomous Region. Beijing:Geological Publishing House, 1-841 (in Chinese)
Cai YT, Zhang J, Dong ZD, Cao ZQ, Xiao SY, Li S, Li CK, Chen LZ and Fan FP. 2018. Neoproterozoic basic magmatism in the north of Anhui Province:Evidence from whole- rock geochemistry and U-Pb geochronology of diabase in Langan area. Geology in China, 45(2): 351-366 (in Chinese with English abstract)
Cai ZH, Xu ZQ, Yu SY, Li SZ, He BZ, Ma XX, Chen XJ and Xu XY. 2018. Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton. Precambrian Research, 304: 156-170
Cao XF, Lü XB, Lei JH, Chen C, Wang YQ, Du BF, Mei W, Gao X and Du AD. 2010. The age of the Neoproterozoic Dapingliang skarn copper deposit in Kuruketage, NW China. Resource Geology, 60(4): 397-403
Cao XF, Lü XB, Liu ST, Zhang P, Gao X, Chen C and Mo YL. 2011. LA-ICP-MS zircon dating, geochemistry, petrogenesis and tectonic implications of the Dapingliang Neoproterozoic granites at Kuluketage block, NW China. Precambrian Research, 186(1-4): 205-219
Cao XF, Lü XB, Yuan Q, Wang XD, Liu H and Shen W. 2014. Neoproterozoic granitic activities in the Xingdi plutons at the Kuluketage block, NW China:Evidence from zircon U-Pb dating, geochemical and Sr-Nd-Hf isotopic analyses. Journal of Asian Earth Sciences, 96: 93-107
Cao ZQ, Cai YT, Zeng ZX, Hu ZX, Chen J, Jiang XF, Sun ZQ, Wu B, Liu CX and Guo P. 2017. Discovery of Neoproterozoic A-type granite in northern Yangtze Craton and its tectonic significance. Earth Science, 42(6): 957-973 (in Chinese with English abstract)
Chen H, Ni P, Chen RY, Lü ZC, Pang ZS, Wang GG and Yuan HX. 2016. Chronology and geological significance of spillite-keratophyre in Pingshui Formation, Northwest Zhejiang Province. Geology in China, 43(2): 410-418 (in Chinese with English abstract)
Chen HJ, Chen YJ, Ripley EM, Li CS, Deng XH, Yue SW, Zheng Z and Fu B. 2017b. Isotope and trace element studies of the Xingdi Ⅱ mafic-ultramafic complex in the northern rim of the Tarim Craton:Evidence for emplacement in a Neoproterozoic subduction zone. Lithos, 278
Chen NS, Gong SL, Xia XP, Geng HY, Wang L, Sun M and Kusky TM. 2013a. Zircon Hf isotope of Yingfeng rapakivi granites from the Quanji massif and 2.7Ga crustal growth. Journal of Earth Science, 24(1): 29-41
Chen WT, Zhou MF and Zhao XF. 2013b. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China:Implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77
Chen WT, Sun WH, Wang W, Zhao JH and Zhou MF. 2014. "Grenvillian" intra-plate mafic magmatism in the southwestern Yangtze Block, SW China. Precambrian Research, 242: 138-153
Chen WT, Sun WH, Zhou MF and Wang W. 2018. Ca.1050Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China. Precambrian Research, 309: 22-44
Chen Y, Xu B, Zhan S and Li YA. 2004. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications. Precambrian Research, 133(3-4): 271-281
Chen YL, Luo ZH, Zhao JX, Li ZH, Zhang HF and Song B. 2005. Petrogenesis and dating of the Kangding complex, Sichuan Province. Science in China (Series D), 48(5): 622-634
Chen ZH, Lu SN, Li HK, Song B, Li HM and Xiang ZQ. 2004. The age of the Dehe biotite monzogranite gneiss in the North Qinling:TIMS and SHRIMP U-Pb zircon dating. Geological Bulletin of China, 23(2): 136-141 (in Chinese with English abstract)
Chen ZH, Lu SN, Li HK, Li HM, Xiang ZQ, Zhou HY and Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break-up of Rodinia:Tectonic implications for Neoproterozoic granite occurrences. Journal of Asian Earth Sciences, 28(1): 99-115
Chen ZH, Xing GF, Guo KY, Dong YG, Chen R, Zeng Y, Li LM, He ZY and Zhao L. 2009a. Petrogenesis of keratophyes in the Pingshui Group, Zhejiang:Constraints from zircon U-Pb ages and Hf isotopes. Chinese Science Bulletin, 54(9): 1570-1578
Chen ZH, Guo KY, Dong YG, Chen R, Li LM, Liang YH, Li CH, Yu XM, Zhao L and Xing GF. 2009b. Possible Early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone:Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry. Science in China (Series D), 52(7): 925-939
Chen ZH, Zhao L, Chen DD, Zhao XL and Xing GF. 2017a. First discovery of a Palaeoproterozoic A-type granite in southern Wuyishan terrane, Cathaysia Block:Evidence from geochronology, geochemistry, and Nd-Hf-O isotopes. International Geology Review, 59(1): 80-93
Corrigan D and Hanmer S. 1997. Anorthosites and related granitoids in the Grenville orogen:A product of convective thinning of the lithosphere?. Geology, 25(1): 61-64
Cui ML, Zhang BL, Peng P, Zhang LC, Shen XL, Guo ZH and Huang XF. 2010. Zircon/baddeleyite U-Pb dating for the Paleo-proterozoic intermediate-acid intrusive rocks in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er Volcanic Province. Acta Petrologica Sinica, 26(5): 1541-1549 (in Chinese with English abstract)
Cui ML, Zhang BL and Zhang LC. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton:Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er Group. Gondwana Research, 20(1): 184-193
Cui ML, Zhang LC, Zhang BL and Zhu MT. 2013. Geochemistry of 1.78Ga A-type granites along the southern margin of the North China Craton:Implications for Xiong'er magmatism during the break-up of the supercontinent Columbia. International Geology Review, 55(4): 496-509
Cui X, Zhu WB, Fitzsimons ICW, Wang X, Lu YZ and Wu XH. 2017. A possible transition from island arc to continental arc magmatism in the eastern Jiangnan Orogen, South China:Insights from a Neoproterozoic (870~860Ma) gaboric-dioritic complex near the Fuchuan ophiolite. Gondwana Research, 46: 1-16
Cui XZ, Jiang XS, Wang J, Wang XC, Zhuo JW, Deng Q, Liao SY, Wu H, Jiang ZF and Wei YN. 2015. Mid-Neoproterozoic diabase dykes from Xide in the western Yangtze Block, South China:New evidence for continental rifting related to the breakup of Rodinia supercontinent. Precambrian Research, 268: 339-356
Danderfer A, De Waele B, Pedreira AJ and Nalini HA. 2009. New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton-Brazil. Precambrian Research, 170(1-2): 116-128
Danderfer FA, Lana CC, Nalini Júnior HA and Costa AFO. 2015. Constraints on the Statherian evolution of the intraplate rifting in a Paleo-Mesoproterozoic paleocontinent:New stratigraphic and geochronology record from the eastern São Francisco Craton. Gondwana Research, 28(2): 668-688
Deng H, Kusky TM, Wang L, Peng SB, Jiang XF, Wang JP and Wang SJ. 2012. Discovery of a sheeted dike complex in the northern Yangtze Craton and its implications for craton evolution. Journal of Earth Science, 23(5): 676-695
Deng H, Peng SB, Polat A, Kusky T, Jiang XF, Han QS, Wang L, Huang T, Wang JP, Zeng W and Hu ZX. 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton:Evidence for evolving tectonic settings. Precambrian Research, 289: 75-94
Deng Q, Wang J, Wang ZJ, Wang XC, Qiu YS, Yang QX, Du QD, Cui XZ and Zhou XL. 2013. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block:Implications for the breakup of Rodinia. International Geology Review, 55(15): 1865-1884
Deng Q, Wang ZJ, Wang J, Hu ZZ, Cui XZ, Du QD, Ma L, Xiong XH and Yang F. 2016. 800~780Ma continental rift magmatism in the eastern part of the Jiangnan Orogen:Implications from ~790Ma aluminous A-type granites in Zhejiang-Anhui-Jiangxi border area. Geological Bulletin of China, 35(11): 1855-1868 (in Chinese with English abstract)
Deng QZ, Yang QX, Mao XW and Kong LY. 2016. Study of lithostratigraphic sequences and chronology of middle-late Nanhua in Wudang-Suizhou area. Resources Environment and Engineering, 30(2): 132-142 (in Chinese with English abstract)
Deng XL, Shu LS, Zhu WB, Ma DS and Wang B. 2008. Precambrian tectonism, deformation and geochronology of igneous rocks in the Xingdi Fault Zone, Xinjiang. Acta Petrologica Sinica, 24(12): 2800-2808 (in Chinese with English abstract)
Deng XQ, Zhao TP, Peng TP, Gao XY and Bao ZW. 2015. Petrogenesis of 1600Ma Maping A-type granite in the southern margin of the North China Craton and its tectonic implications. Acta Petrologica Sinica, 31(6): 1621-1635 (in Chinese with English abstract)
Ding BH, Shi RD, Zhi XC, Zheng L and Chen L. 2008. Neoproterozoic (~850Ma) subduction in the Jiangnan orogen:Evidence from the SHRIMP U-Pb dating of the SSZ-type ophiolite in southern Anhui Province. Acta Petrologica et Mineralogica, 27(5): 375-388 (in Chinese with English abstract)
Dong YP, Liu XM, Santosh M, Zhang XN, Chen Q, Yang C and Yang Z. 2011. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China:Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif. Precambrian Research, 189(1-2): 66-90
Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF and Zhang GW. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China:Constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274
Dong YP, Sun SS, Yang Z, Liu XM, Zhang FF, Li W, Cheng B, He DF and Zhang GW. 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China. Precambrian Research, 293: 73-90
Du LL, Geng YS, Yang CH, Wang XS, Ren LD, Zhou XW, Shi YR and Yang ZS. 2005. Geochemistry and SHRIMP U-Pb zircon chronology of basalts from the Yanbian Group in the Western Yangtze Block. Acta Geologica Sinica, 79(6): 805-813
Du LL, Geng YS, Yang CH, Wang XS, Ren LD, Zhou XW, Wang YB and Yang ZS. 2006. The stipulation of Neoproterozoic TTG in western Yangtze block and its significance. Acta Petrologica et Mineralogica, 25(4): 273-281 (in Chinese with English abstract)
Du LL, Yang CH, Geng YS, Wang XS, Ren LD and Zhou XW. 2009. Petrogenesis of the Gaojiacun mafic-ultramafic pluton at the southwestern margin of Yangtze Block:Evidence from petrology, geochemistry and geochronology. Acta Petrologica Sinica, 25(8): 1897-1908 (in Chinese with English abstract)
Du LL, Guo JH, Geng YS, Yang CH, Liu FL, Ren LD, Zhou XW and Liu PH. 2013. Age and tectonic setting of the Yanbian Group in the southwestern Yangtze Block:Constraints from clastic sedimentary rocks. Acta Petrologica Sinica, 29(2): 641-672 (in Chinese with English abstract)
Du LL, Guo JH, Nutman AP, Wyman D, Geng YS, Yang CH, Liu FL, Ren LD and Zhou XW. 2014. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860Ma on the western margin of the Yangtze Block:Evidence from the Guandaoshan pluton. Lithos, 196
Ernst RE, Wingate MTD, Buchan KL and Li ZX. 2008. Global record of 1600~700Ma Large Igneous Provinces (LIPs):Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160(1-2): 159-178
Ernst RE. 2014. Large Igneous Provinces. Cambridge:Cambridge University Press, 1-65
Evans DAD and Mitchell RN. 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology, 39(5): 443-446
Fan HP, Zhu WG, Li ZX, Zhong H, Bai ZJ, He DF, Chen CJ and Cao CY. 2013. Ca. 1.5Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia:The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos, 168-169: 85-98
Fitzsimons ICW. 2000. Grenville-age basement provinces in East Antarctica:Evidence for three separate collisional orogens. Geology, 28(10): 879-882
Fu JG, Liang XQ, Zhou Y, Wang C, Jiang Y and Zhong YS. 2015. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granitic rocks in the Xitieshan area, North Qaidam, Northwest China:Implications for Neoproterozoic geodynamic evolutions of North Qaidam. Precambrian Research, 264: 11-29
Gao J, Klemd R, Long LL, Xiong XM and Qian Q. 2009. Adakitic signature formed by fractional crystallization:An interpretation for the Neo-proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic mélange belt, South China. Lithos, 110(1-4): 277-293
Gao J, Wang XS, Klemd R, Jiang T, Qian Q, Mu LX and Ma YZ. 2015. Record of assembly and breakup of Rodinia in the southwestern Altaids:Evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen. Journal of Asian Earth Sciences, 113: 173-193
Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ and Liu YM. 2008. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chinese Science Bulletin, 53(17): 2665-2671
Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F and Song B. 2008. SHRIMP zircon ages:Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China Old land. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract)
Gao LZ, Wang ZQ, Xu ZQ, Yang JS and Zhang W. 2010. A new evidence from zircon SHRIMP U-Pb dating of the Neoproterozoic diamictite in Quruqtagh area, Tarim basin, Xinjiang, China. Geological Bulletin of China, 29(2-3): 205-213 (in Chinese with English abstract)
Gao LZ, Chen J, Ding XZ, Liu YR, Zhang CH, Zhang H, Liu YX, Pang WH and Zhang YH. 2011. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups, northeastern Hunan:Constraints on the Wuling Movement. Geological Bulletin of China, 30(7): 1001-1008 (in Chinese with English abstract)
Gao LZ, Liu YX, Ding XZ, Zhang CH, Wang ZQ, Chen J and Liu YR. 2012. SHRIMP dating of Cangshuipu Group in the middle part of the Jiangnan Orogen and its implications for tectonic evolutions. Geology in China, 39(1): 12-20 (in Chinese with English abstract)
Gao LZ, Liu YX, Ding XZ, Song ZR, Huang ZZ, Zhang CH, Zhang H and Shi ZG. 2013a. Geochronographic dating of the Tieshajie Formation in the Jiangshan-Shaoxing fault zone and its implications. Geological Bulletin of China, 32(7): 996-1005 (in Chinese with English abstract)
Gao LZ, Guo XP, Ding XZ, Zong WM, Gao ZJ, Zhang CH and Wang ZQ. 2013b. Nanhuan glaciation event and its stratigraphic correlation in Tarim Plate, China. Acta Geoscientica Sinica, 34(1): 39-57 (in Chinese with English abstract)
Gao LZ, Zhang H, Ding XZ, Liu YX, Zhang CH, Huang ZZ, Xu XM and Zhou ZY. 2014. SHRIMP zircon U-Pb dating of the Jiangshan-Shaoxing faulted zone in Zhejiang and Jiangxi. Geological Bulletin of China, 33(6): 763-775 (in Chinese with English abstract)
Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China, 27(6): 793-798 (in Chinese with English abstract)
Gao W and Zhang CH. 2009. Zircon SHRIMP U-Pb ages of the Huangling granite and the tuff beds from Liantuo Formation in the Three Gorges area of Yangtze River, China and its geological significance. Geological Bulletin of China, 28(1): 45-50 (in Chinese with English abstract)
Ge RF, Zhu WB, Zheng BH, Wu HL, He JW and Zhu XQ. 2012. Early Pan-African magmatism in the Tarim Craton:Insights from zircon U-Pb-Lu-Hf isotope and geochemistry of granitoids in the Korla area, NW China. Precambrian Research, 212
Ge RF, Zhu WB, Wu HL, Zheng BH and He JW. 2013. Timing and mechanisms of multiple episodes of migmatization in the Korla Complex, northern Tarim Craton, NW China:Constraints from zircon U-Pb-Lu-Hf isotopes and implications for crustal growth. Precambrian Research, 231: 136-156
Ge RF, Zhu WB, Wilde SA, He JW, Cui X, Wang X and Zheng BH. 2014. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics, 33(3): 302-329
Geng YS, Yang CH, Du LL, Wang XS, Ren LD and Zhou XW. 2007a. Chronology and tectonic environment of the Tianbaoshan Formation:New evidence from zircon SHRIMP U-Pb age and geochemistry. Geological Review, 53(4): 323-334 (in Chinese with English abstract)
Geng YS, Yang CH, Wang XS, Ren LD, Du LL and Zhou XW. 2007b. Age of crystalline basement in western margin of Yangtze terrane. Geological Journal of China Universities, 13(3): 429-441 (in Chinese with English abstract)
GengYS, Yang CH, Wang XS, Du LL, Ren LD and Zhou XW. 2008. Metamorphic Basement Evolution in Western Margin of Yangtze Block. Beijing: Geological Publishing House (in Chinese)
Geng YS and Zhou XW. 2010. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance:Evidence from geochronology. Acta Petrologica et Mineralogica, 29(6): 779-795 (in Chinese with English abstract)
Geng YS and Zhou XW. 2011. Characterastics of geochemistry and zircon Hf isotope of the Early Neoproterozoic granite in Alax area, Inner Mongolia. Acta Petrologica Sinica, 27(4): 897-908 (in Chinese with English abstract)
Geng YS, Liu YQ, Gao LZ, Peng N and Jiang XJ. 2012. Geochronology of the Mesoproterozoic Tong'an Formation in southwestern margin of Yangtze Craton:New evidence from zircon LA-ICP-MS U-Pb ages. Acta Geologica Sinica, 86(9): 1479-1490 (in Chinese with English abstract)
Geng YS. 2015. Neoproterozoic Era of South China Craton. In:Zhai MG (ed.). Precambrian Geology of China. Berlin Heidelberg:Springer-Verlag, 263-301
Geng YS, Kuang HW, Liu YQ and Du LL. 2017. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block. Acta Geologica Sinica, 91(10): 2151-2174 (in Chinese with English abstract)
Geng YS, Kuang HW, Du LL, Liu YQ and Zhao TP. 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 35(8): 2299-2324 (in Chinese with English abstract)
Geng YS, Du LL, Kuang HW and Liu YQ. 2020. Ca. 1.7Ga magmatism on southwestern margin of the Yangtze Block:Response to the breakup of Columbia. Acta Geologica Sinica, in press
Goldberg AS. 2010. Dyke swarms as indicators of major extensional events in the 1.9~1.2Ga Columbia supercontinent. Journal of Geodynamics, 50(3-4): 176-190
Greentree MR and Li ZX. 2008. The oldest known rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5-6): 289-302
Guo CL, Wang DH, Chen YC, Zhao ZG, Wang YB, Fu XF and Fu DM. 2007. SHRIMP U-Pb zircon ages and major element, trace element and Nd-Sr isotope geochemical studies of a Neoproterozoic granitic complex in western Sichuan:Petrogenesis and tectonic significance. Acta Petrologica Sinica, 23(10): 2457-2470 (in Chinese with English abstract)
Guo Y, Wang SW, Sun XM, Wang ZZ, Yang B, Liao ZW, Zhou BG, Jiang XF, Hou L and Yang B. 2014. The Paleoproterozoic breakup event in the Southwest Yangtze Block:Evidence from U-Pb zircon age and geochemistry of diabase in Wuding, Yunnan Province, SW China. Acta Geologica Sinica, 88(9): 1651-1665 (in Chinese with English abstract)
Guo ZJ, Zhang ZC, Jia CZ and Wei GQ. 2001. Tectonics of Precambrian basement of the Tarim Craton. Science in China (Series D), 44(3):229-236
Guo ZJ, Zhang ZC, Liu SW and Li HM. 2003. U-Pb geochronological evidence for the Early Precambrian complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 19(3): 537-542 (in Chinese with English abstract)
Han BF, Zhang L, Wang YM and Song B. 2007. Enriched mantle source of Paleoproterozoic high Mg and low Ti-P mafic dykes in central part of the North China Craton:Constraints from zircon Hf isotopic compositions. Acta Petrologica Sinica, 23(2): 277-284 (in Chinese with English abstract)
He DF, Yuan H, Li D, Lei GL, Fan C, Chang QS and Ye ML. 2011. Chronology, geochemistry and tectonic setting of granites at the core of Tugerming anticline, Tarim Basin:Indications of Paleozoic extensional and compressional cycle at the northern margin of Tarim continental block. Acta Petrologica Sinica, 27(1): 133-146 (in Chinese with English abstract)
He JW, Zhu WB and Ge RF. 2014. New age constraints on Neoproterozoic diamicites in Kuruktag, NW China and Precambrian crustal evolution of the Tarim Craton. Precambrian Research, 241: 44-60
He YH, Zhao GC, Sun M and Xia XP. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks:Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Research, 168(3-4): 213-222
He ZJ, Zhang XY, Niu BG, Liu RY and Zhao L. 2011a. The paleo-weathering mantle of the Proterozoic rapakivi granite in Miyun County, Beijing and the relationship with the Changzhougou Formation of Changchengian System. Earth Science Frontiers, 18(4): 123-130 (in Chinese with English abstract)
He ZJ, Niu BG, Zhang XY, Zhao L and Liu RY. 2011b. Discovery of the paleo-weathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract)
He ZY, Klemd R, Zhang ZM, Zong KQ, Sun LX, Tian ZL and Huang BT. 2015. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt:Geochronological and geochemical evidence. Lithos, 236-237: 74-89
Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B:Biological Sciences, 361(1470):903-915
Hou GT, Santosh M, Qian XL, Lister GS and Li JH. 2008. Configuration of the Late Paleoproterozoic supercontinent Columbia:Insights from radiating mafic dyke swarms. Gondwana Research, 14(3): 395-409
Hu AQ and Wei GJ. 2006. On the age of the Neo-Archean Qingir gray gneisses from the northern Tarim Basin, Xinjiang, China. Acta Geologica Sinica, 80(1): 126-134 (in Chinese with English abstract)
Hu AQ, Wei GJ, Deng WF, Zhang JB and Chen LL. 2006. 1.4Ga SHRIMP U-Pb age for zircons of granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang, China. Geochimica, 35(4): 333-345 (in Chinese with English abstract)
Hu AQ, Wei GJ, John BM, Zhang JB, Deng WF. and Chen LL. 2010. Formation of the 0.9Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China:Constraints from the SHRIMP zircon age determination and its tectonic significance. Geochimica, 39(3): 197-212 (in Chinese with English abstract)
Hu GH, Hu JL, Chen W and Zhao TP. 2010. Geochemistry and tectonic setting of the 1.78Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563-1576 (in Chinese with English abstract)
Hu GH, Zhang SH, Zhang QQ and Wang SY. 2019. New geochronological constraints on the Dahongkou Formation of the Luanchuan Group and its implications on the Neoproterozoic tectonic evolution of the southern margin of the North China Craton. Acta Petrologica Sinica, 35(8): 2503-2517 (in Chinese with English abstract)
Hu JM, Gong WB, Wu SJ, Liu Y and Liu CC. 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications. Precambrian Research, 255: 756-770
Hu PY, Zhai QG, Wang J, Tang Y and Ren GM. 2017. The Shimian ophiolite in the western Yangtze Block, SW China:Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications. Precambrian Research, 298: 107-122
Hu ZX, Chen C, Mao XW, Deng QZ, Yang JX, Li LJ and Kong LY. 2015. Documentation of Jinningian island-arc volcanic rocks and accretionary complexes in the Dahongshan region, northern Hubei and its tectonic significance. Resources Environment and Engineering, 29(6): 757-766 (in Chinese with English abstract)
Huang BT, He ZY, Zong KQ and Zhang ZM. 2014. Zircon U-Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area, Xinjiang:Constraints on the Precambrian crustal evolution in the Central Tianshan Block. Chinese Science Bulletin, 59(1): 100-112
Huang BT, He ZY, Zhang ZM, Klemd R, Zong KQ and Zhao ZD. 2015. Early Neoproterozoic granitic gneisses in the Chinese Eastern Tianshan:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 113: 339-352
Huang JG, Yang RD, Yang J, Cui CL and Hou LJ. 2012. Mesoproterozoic magmatic activities and its geological significance in Kusilafu area of the northern margin of western Kunlun. Chinese Journal of Geology, 47(3): 867-885 (in Chinese with English abstract)
Huang XL, Xu YG, Li XH, Li WX, Lan JB, Zhang HH, Liu YS, Wang YB, Li HY, Luo ZY and Yang QJ. 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. Precambrian Research, 165(3-4): 190-204
Jackson MJ, Scott DL and Rawlings DJ. 2000. Stratigraphic framework for the Leichhardt and Calvert Superbasins:Review and correlations of the pre-1700Ma successions between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47(3): 381-403
Jiang HJ, Chen QL, Yang X and Chu CL. 2017. The style of sequence stratigraphy of Neoproterozoic rift basin in the Tarim Basin. Acta Geologica Sinica, 91(3): 588-604 (in Chinese with English abstract)
Jiang XF, Peng SB, Kusky T, Wang L, Deng H and Wang JP. 2017. Formation time of the northeastern Jiangxi ophiolite in the eastern Jiangnan Orogenic Belt:Evidence from LA-ICP-MS zircon U-Pb dating of the gabbro. Geoscience, 31(4): 697-704 (in Chinese with English abstract)
Jiang Y, Zhao XL, Xing GF, Li LM and Duan Z. 2015. Arc magmatic activity of Qingbaikou Period along the southeastern margin of Yangtze Block:Implications from the zircon U-Pb age and geochemical characteristics of Nb-enriched gabbro and high-Mg diorite in the Jinhua plutonic complex. Geological Bulletin of China, 34(8): 1550-1561 (in Chinese with English abstract)
Jin TF, Li YG, Fei GC, Feng YC, Zhou H, Sha XB and Wu K. 2017. Geochronology of zircon U-Pb from Hongshan Formation in the Dahongshan Group in the Southwest Yangtze block for the redefinitions of the forming age of the protolith and metamorphic age. Geological Review, 63(4): 894-910 (in Chinese with English abstract)
Kaur P, Zeh A, Chaudhri N and Eliyas N. 2017. Two distinct sources of 1.73~1.70Ga A-type granites from the northern Aravalli orogen, NW India:Constraints from in situ zircon U-Pb ages and Lu-Hf isotopes. Gondwana Research, 49: 164-181
Kelly NM, Clarke GL and Fanning CM. 2002. A two-stage evolution of the Neoproterozoic Rayner structural episode:New U-Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land East Antarctica. Precambrian Research, 116(3-4): 307-330
Lai SC, Li YF and Qin JF. 2007. Geochemistry and LA-ICP-MS zircon U-Pb dating of the Dongjiahe ophiolite complex from the western Bikou terranein. Science in China (Series D), 50(2): 305-313
Lei RX, Wu CZ, Chi GX, Gu LX, Dong LH, Qu X, Jiang YH and Jiang SY. 2013. The Neoproterozoic Hongliujing A-type granite in Central Tianshan (NW China):LA-ICP-MS zircon U-Pb geochronology, geochemistry, Nd-Hf isotope and tectonic significance. Journal of Asian Earth Sciences, 74: 142-154
Li CD, Zhao LG, Chang QS, Xu YW, Wang SY and Xu T. 2017. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion. Geology in China, 44(3): 511-525 (in Chinese with English abstract)
Li DP, Chen YL, Luo ZH and Zhao JX. 2009a. Zircon SHRIMP U-Pb dating and Neoproterozoic metamorphism of Kangding and Yuanmou intrusive complexes, Sichuan and Yunnan. Journal of Earth Science, 20(6): 897-908
Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC and Lu SN. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670Ma:Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract)
Li HK, Zhang CL, Xiang ZQ, Lu SN, Zhang J, Geng JZ, Qu LS and Wang ZX. 2013. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance. Acta Petrologica Sinica, 29(2): 673-697 (in Chinese with English abstract)
Li HK, Su WB, Zhou HY, Xiang ZQ, Tian H, Yang LG, Huff WD and Ettensohn FR. 2014. The first precise age constraints on the Jixian System of the Meso- to Neoproterozoic standard section of China:SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section, North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012 (in Chinese with English abstract)
Li JH, Hou GT, Qian XL, Halls HC and Davis D. 2001. Single-zircon U-Pb age of the initial Mesoproterozoic basic dike swarms in Hengshan Mountain and its implication for the tectonic evolution of the North China Craton. Geological Review, 47(3): 234-238 (in Chinese with English abstract)
Li JY, Wang XL and Gu ZD. 2018. Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block:Implications for Rodinia assembly. Precambrian Research, 309: 181-197
Li LL, Shi YR, Anderson JL and Cui ML. 2016a. Sensitive high-resolution ion microprobe U-Pb dating of baddeleyite and zircon from a monzonite porphyry in the Xiaoshan area, western Henan Province, China:Constraints on baddeleyite and zircon formation process. Geosphere, 12(4): 1362-1377
Li LM, Lin SF, Xing GF, Davis DW, Davis WJ, Xiao WJ and Yin CQ. 2013. Geochemistry and tectonic implications of Late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, South China. Precambrian Research, 230: 179-192
Li LM, Lin SF, Xing GF, Davis DW, Jiang Y, Davis W and Zhang YJ. 2016b. Ca. 830Ma back-arc type volcanic rocks in the eastern part of the Jiangnan Orogen:Implications for the Neoproterozoic tectonic evolution of South China Block. Precambrian Research, 275: 209-224
Li QW and Zhao JH. 2018. The Neoproterozoic high-Mg dioritic dikes in South China formed by high pressures fractional crystallization of hydrous basaltic melts. Precambrian Research, 309: 198-211
Li T. 2010. The study of Neoproterozoic tectonic-magmatic events in the northern margin of the Yangtze continental. Master Degree Thesis. Xi'an: Chang'an University, 1-55 (in Chinese)
Li WX, Li XH, Li ZX and Lou FS. 2008a. Obduction-type granites within the NE Jiangxi Ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia blocks. Gondwana Research, 13(3): 288-301
Li XH, Zhou GQ, Zhao JX, Fanning CM and Compston W. 1994. SHRIMP ion microprobe zircon U-Pb age of the NE Jiangxi ophiolite and its tectonic implications. Geochimica, 23(2): 125-131 (in Chinese with English abstract)
Li XH, Liu Y, Tu XL, Liu HC and Ling XS. 1996. Multiple-stage evolution of zircon U-Pb isotopic systematics in S-type granites and its chronological significance: A case study on Sanfang granite, northern Guangxi. Acta Mineralogica Sinica, 16(2): 170-177 (in Chinese with English abstract)
Li XH, Wang YX, Zhao ZH, Chen DF and Zhang H. 1998. SHRIMP U-Pb zircon geochronology for amphibolite from the Precambrian basement in SW Zhejiang and NW Fujian provinces. Geochimica, 27(4): 327-334 (in Chinese with English abstract)
Li XH. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia assembly. Precambrian Research, 97(1-2): 43-57
Li XH. 1999. U-Pb zircon ages of granites from northern Guangxi and their tectonic significance. Geochimica, 28(1): 1-9 (in Chinese with English abstract)
Li XH, Lee CY, Liu Y, Chen DF, Wang YX and Zhao ZH. 1999. Geochemistry characteristics of the Paleoproterozoic meta volcanics in the Cathaysia block and it's tectonic significance. Acta Petrologica Sinica, 15(3): 364-371 (in Chinese with English abstract)
Li XH, Zhou HW, Li ZX and Liu Y. 2001a. Zircon U-Pb age and petrochemical characteristics of the Neoproterozoic bimodal volcanics from western Yangtze block. Geochimica, 30(4): 315-322 (in Chinese with English abstract)
Li XH, Li ZX, Ge WC, Zhou HW, Li WX and Liu Y. 2001b. U-Pb zircon ages of the Neoproterozoic granitoids in South China and their tectonic implications. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 271-273 (in Chinese with English abstract)
Li XH, Li ZX, Zhou HW and Liu Y. 2002. SHRIMP U-Pb zircon geochronological geochemical and Nd isotopic study of the Neoproterozoic granitoids in southern Anhui. Geological Review, 48(Suppl): 8-16 (in Chinese with English abstract)
Li XH, Li ZX, Zhou HW, Liu Y and Kinny PD. 2002b. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Research, 113(1-2): 135-154
Li XH, Li ZX, Zhou HW, Liu Y, Liang XR and Li WX. 2003b. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance. Science in China (Series D), 46(1): 73-83
Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y and Wingate MTD. 2003c. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca.825Ma?. Precambrian Research, 122(1-4): 45-83
Li XH, Li ZX, Sinclair JA, Li WX and Carter G. 2006. Revisiting the "Yanbian Terrane": Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 151(1-2): 14-30
Li XH, Li WX, Li ZX and Liu Y. 2008b. 850~890Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341-357
Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF and Yang YH. 2009b. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemisitry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117-128
Li Y, Xie HQ and Song ZR. 2017. SHRIMP U-Pb zircon ages of the northeastern Jiangxi ophiolites and the Zhangcun Group and a discussion on the tectonic evolution of the Jiangnan Orogen. Geological Review, 63(4): 854-868 (in Chinese with English abstract)
Li YJ, Song WJ, Wu GY, Wang YF, Li YP and Zheng DM. 2005. Jinning granodiorite and diorite deeply concealed in the central Tarim Basin. Science in China (Series D), 48(12): 2061-2068
Li ZX, Li XH, Kinney PD and Wang J. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China. Earth and Planetary Science Letters, 173(3): 171-181
Li ZX, Li XH, Zhou HW and Kinny PD. 2002a. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163-166
Li ZX, Li XH, Kinny PD, Wang J, Zhang S and Zhou H. 2003a. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109
Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K and Vernikovsky V. 2008a. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179-210
Lin GC, Li XH and Li WX. 2007. SHRIMP U-Pb zircon age, geochemistry and Nd-Hf isotope of Neoproterozoic mafic dyke swarms in western Sichuan: Petrogenesis and tectonic significance. Science in China (Series D), 50(1): 1-16
Lin GC. 2010. Zircon U-Pb age and petrochemical characteristics of Shimian granite in western Sichuan: Petrogenesis and tectonic significance. Earth Science (Journal of China University of Geosciences), 35(4): 611-620 (in Chinese with English abstract)
Lin MS, Peng SB, Jiang XF, Polat A, Kysky T, Wang Q and Deng H. 2016. Geochemistry, petrogenesis and tectonic setting of Neoproterozoic mafic-ultramafic rocks from the western Jiangnan Orogen, South China. Gondwana Research, 35: 338-356
Ling WL, Gao S, Zhang BR, Li HM, Liu Y and Cheng JP. 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: Implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research, 122(1-4): 111-140
Ling WL, Gao S, Cheng JP, Jiang LS, Yuan HL and Hu ZC. 2006. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes. Acta Petrologica Sinica, 22(2): 387-396 (in Chinese with English abstract)
Ling WL, Ren BF, Duan RC, Liu XM, Mao XW, Peng LH, Liu ZX, Cheng JP and Yang HM. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 53(14): 2192-2199
Ling XX, Schmädicke E, Li QL, Gose J, Wu RH, Wang SQ, Liu Y, Tang GQ and Li XH. 2015. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China. Lithos, 220-223: 289-299
Liu RY, Niu BG, He ZJ and Ren JS. 2011. LA-ICP-MS zircon U-Pb geochronology of the eastern part of the Xiaomaoling composite intrusives in Zhashui area, Shaanxi, China. Geological Bulletin of China, 30(2-3): 448-460 (in Chinese with English abstract)
Liu SW, Yan QR, Li QG and Wang ZQ. 2009. Petrogenesis of granitoid rocks in the Kangding Complex, western margin of the Yangtze Craton and its tectonic significance. Acta Petrologica Sinica, 25(8): 1883-1896 (in Chinese with English abstract)
Liu SW, Santosh M, Wang W, Bai X and Yang PT. 2011. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research, 20(1): 48-63
Liu XY, Cai JH and Yan GH. 2011. Lithogeochemistry and Geochronology of Xiong'er Group Yanyaozhai subvolcanics in the southern margin of the North China Craton and their geological significan. Acta Geologica Sinica, 85(7): 1134-1145 (in Chinese with English abstract)
Liu YC, Liu LX, Gu XF, Li SG, Liu J and Song B. 2010. Occurrence of Neoproterozoic low-grade metagranite in the western Beihuaiyang zone, the Dabie Orogen. Chinese Science Bulletin, 55(30): 3490-3498
Liu YC, Liu LX, Li Y, Gu XF and Song B. 2017. Zircon U-Pb geochronology and petrogenesis of metabasites from the western Beihuaiyang zone in the Hong'an orogen, Central China: Implications for detachment within subducting continental crust at shallow depths. Journal of Asian Earth Sciences, 145: 74-90
Liu YQ, Gao LZ, Liu YX, Song B and Wang ZX. 2006. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block. Chinese Science Bulletin, 51(19): 2375-2382
Liu Z, Jiang YH, Wang GC, Ni CY, Qing L and Zhang Q. 2015. Middle Neoproterozoic (~845Ma) continental arc magmatism along the northwest side of the Jiangshan-Shaoxing suture, South China: Geochronology, geochemistry, petrogenesis and tectonic implications. Precambrian Research, 268: 212-226
Long XP, Yuan C, Sun M, Zhao GC, Xiao WJ, Wang YJ, Yang YH and Hu AQ. 2010. Archean crustal evolution of the northern Tarim Craton NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180(3-4): 272-284
Long XP, Yuan C, Sun M, Xiao WJ, Zhao GC, Zhou KF, Wang YJ and Hu AQ. 2011a. The discovery of the oldest rocks in the Kuluketage area and its geological implications. Science China (Earth Science), 54(3): 342-348
Long XP, Yuan C, Sun M, Kröner A, Zhao GC, Wilde S and Hu AQ. 2011b. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Research, 187(1-2): 1-14
Long XP, Yuan C, Sun M, Kröner A and Zhao GC. 2014. New geochemical and combined zircon U-Pb and Lu-Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China. Lithos, 200
Lu GM, Wang W, Ernst RE, Söderlund U, Lan ZF, Huang SF and Xue EK. 2019. Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 322: 66-84
Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY and Chen ZH. 2003a. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762-768 (in Chinese with English abstract)
Lu SN, Li HK, Chen ZH, Hao GJ, Zhou HY, Guo JJ, Niu GH and Xiang ZQ. 2003b. Geological Evolution and Incident Response to the Super-Continent Rodiniain Mesoproterozoic-Neoproterozoic. Beijing: Geological Publishing House, 1-194 (in Chinese)
Lu SN, Chen ZH and Xiang ZQ. 2008. Highly Precise Geochronology of the Oldest Intrusive Complex in Taishan Geological Park, Shandong Province. Beijing: Geological Publishing House, 1-90 (in Chinese)
Lu SN, Zhao GC, Wang HC and Hao GJ. 2008a. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77-93
Lu SN, Li HK, Zhang CL and Niu GH. 2008b. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160(1-2): 94-107
Luo BJ, Liu R, Zhang HF, Zhao JH, Yang H, Xu WC, Guo L, Zhang LQ, Tao L, Pan FB, Wang W, Gao Z and Shao H. 2018. Neoproterozoic continental back-arc rift development in the northwestern Yangtze Block: Evidence from the Hannan intrusive magmatism. Gondwana Research, 59: 27-42
Luo XR, Shi FP, Fan WD and Luo XT. 2007. Age and geochemistry of Neoproterozoic granite from Kuruketage in the north of Tarim, Xinjiang. Resources Survey and Environment, 28(4): 235-241 (in Chinese with English abstract)
Lyu PL, Li WX, Wang XC, Pang CJ, Cheng JX and Li XH. 2017. Initial breakup of supercontinent Rodinia as recorded by ca.860~840Ma bimodal volcanism along the southeastern margin of the Yangtze Block, South China. Precambrian Research, 296: 148-167
Ma DQ, Huang XD, Chen ZP, Xiao ZF, Zhang WC and Zhong SZ. 1997. New advanced in the study of the Baoban Group in Hainan Province. Regional Geology of China, 16(2): 130-136 (in Chinese with English abstract)
Ma DQ, Du SH and Xiao ZF. 2002. The origin of Huangling granite batholith. Acta Petrologica et Mineralogica, 21(2): 151-161 (in Chinese with English abstract)
Ma TQ, Chen LX, Bai DY, Zhou KJ, Li G and Wang XH. 2009. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in southeastern Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract)
Mccourt S, Armstrong RA, Kampunzu AB, Mapeo RBM and Morais E. 2004. New U-Pb SHRIMP ages on zircons from the Lubango region, Southwest Angola: Insights into the Proterozoic evolution of South-Western Africa.In: Proceedings of the 20th CAG. Orleans, France:. Geological Society of South Africa, 438
Meng E, Liu FL, Du LL, Liu PH and Liu JH. 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China: Evidence from zircon U-Pb dating and Lu-Hf isotopes, and whole-rock geochemistry. Gondwana Research, 28(2): 800-815
Meng QX, Zhang J, Geng JZ, Zhang CL and Huang WC. 2013. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi groups in middle Hunan Province: Implications for the Neoproterozoic tectonic evolution in South China. Geology in China, 40(1): 191-216 (in Chinese with English abstract)
Mo CH, Liang HY, Wang XZ, Cheng JP and Li HM. 1997. Zircon U-Pb dating of Shuiquangou alkaline complex intrusives, northwestern Hebei Province. Chinese Science Bulletin, 42(9): 772-775
Mukherjee I, Large RR, Corkrey R and Danyushevsky LV. 2018. The Boring Billion, a slingshot for Complex Life on Earth. Scientific Reports, 8: 4432
Neumann NL, Southgate PN, Gibson GM and McIntyre A. 2006. New SHRIMP geochronology for the western fold belt of the Mt.Isa Inlier: Developing a 1800~1650Ma event framework. Australian Journal of Earth Sciences, 53(6): 1023-1039
Niu BG, He ZJ, Ren JS, Wang J and Deng P. 2006. SHRIMP U-Pb ages of zircons from the intrusions in the western Douling-Xiaomaoling uplift and their geological significances. Geological Review, 52(6): 826-835 (in Chinese with English abstract)
Niu JW, Li ZX and Zhu WG. 2015. Palaeomagnetism and geochronology of Mid-Neoproterozoic Yanbian dykes, South China: Implications for ac. 820~800Ma true polar wander event and the reconstruction of Rodinia. Geological Society, London, Special Publications, 424(1): 191-211
Pei FP, Ye YF, Wang F, Cao HH, Lu SM and Yang DB. 2013. Discovery of Mesoproterozoic diabase dyke in Tonghua region, Jilin Province and its tectonic implications.Journal of Jilin University . (Earth Science Edition), 43(1): 110-118 (in Chinese with English abstract)
Pei XZ, Li ZC, Ding SP, Li RB, Feng JY Sun Y, Zhang YF and Liu ZQ. 2009. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block: Zircon SHRIMP U-Pb age and geochemistry, and their tectonic significance. Earth Science Frontiers, 16(3): 231-249 (in Chinese with English abstract)
Peng MX, Zhong CG, Zuo QH, Zhu WM, Yang SW and Huang X. 2012. The formation age and their geological significance of gneissose granites neighbouring Kawabulake Area in East Tianshan Mountain. Xinjiang Geology, 30(1): 12-18 (in Chinese with English abstract)
Peng N, Kuang HW, Liu YQ, Geng YS, Xia XX, Wang YC, Chen XS and Zheng HH. 2018. Recognition of geological age for acanthomorphic acritarchs from the Ruyang Group, southern margin of North China Craton and its implication for evolution of early eukaryotes. Journal of Palaeogeography, 20(4): 595-608 (in Chinese with English abstract)
Peng P, Bleeker W, Ernst RE, Söderlund U and McNicoll V. 2011. U-Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221
Peng P, Liu F, Zhai MG and Guo JH. 2012a. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Science), 58(5): 649-675
Peng P, Wang XP, Zhou XT, Wang C, Sun FB, Su XD, Chen L, Guo JH and Zhai MG. 2018. Identification of the ~810Ma Qianlishan mafic dyke swarm and its implication for geological evolution of the western North China Craton. Acta Petrologica Sinica, 34(4): 1191-1203 (in Chinese with English abstract)
Peng RM, Zhai YS, Wang JP, Chen XF, Liu Q, Lü XY, Shi YX, Wang G, Li SB, Wang LG, Ma YT and Zhang P. 2010. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611-2620 (in Chinese)
Peng SB, Kusky TM, Jiang XF, Wang L, Wang JP and Deng H. 2012b. Geology, geochemistry and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research, 21(2-3): 577-594
Peng TP, Wilde SA, Fan WM, Peng BX and Mao YS. 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 235: 190-207
Peterson TD, Scott JMJ, Le Cheminant AN, Jefferson CW and Pehrsson SJ. 2015. The Kivalliq Igneous Suite: Anorogenic bimodal magmatism at 1.75Ga in the western Churchill Province, Canada. Precambrian Research, 262: 101-119
Pirajno F and Hoatson DM. 2012. A review of Australia's Large Igneous Provinces and associated mineral systems: Implications for mantle dynamics through geological time. Ore Geology Reviews, 48: 2-54
Qin Q, Guo RQ, Zhang XF, Zhan XZ and Huo Y. 2012. Zircon U-Pb geochronology and geological implications of the Xingdi No.Ⅳ gabbro-dioritic pluton in Quruqtagh, Xinjiang. Journal of Xinjiang University. Natural Science Edition, 29(2): 240-248 (in Chinese with English abstract)
Qin XF, Pan YM, Li J, Li RS, Zhou FS, Hu GA and Zhong FY. 2006. Zircon SHRIMP U-Pb geochronology of the Yunkai metamorphic complex in southeastern Guangxi, China. Geological Bulletin of China, 25(5): 553-559 (in Chinese with English abstract)
Rämö OT and Haapala I. 1995. One hundred years of rapakivi granite. Mineralogy and Petrology, 52(3): 129-185
Rämö OT, Haapala I, Vaasjoki M, Yu JH and Fu HQ. 1995. 1700Ma Shachang complex, northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23(9): 815-818
Ren GM, Pang WH, Pan GT, Wang LQ, Sun ZM, Yin FG, Cui XZ, Wang DB, Deng Q and Ren F. 2017. Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance. Geological Bulletin of China, 36(11): 2061-2075 (in Chinese with English abstract)
Ren KX, Yan GH, Cai JH, Mu BL, Li FT, Wang YB and Chu ZL. 2006. Chronology and geological implication of the Paleo-Mesoproterozoic alkaline-rich intrusions belt from the northern part in the North China Craton. Acta Petrologica Sinica, 22(2): 377-386 (in Chinese with English abstract)
Rivers T. 1997. Lithotectonic elements of the Grenville Province: Review and tectonic implications. Precambrian Research, 86(3-4): 117-154
Roberts NMW. 2013. The boring billion?-Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 4(6): 681-691
Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22
Shankar R, Sarma DS, Babu NR and Parashuramulu V. 2018. Paleomagnetic study of 1765Ma dyke swarm from the Singhbhum Craton: Implications to the paleogeography of India. Journal of Asian Earth Sciences, 157: 235-244
Shen WZ, Gao JF, Xu SJ, Tan GQ, Yang ZS and Yang QW. 2003. Formation age and geochemical characteristics of the Lengshuiqing body, Yanbian, Sichuan Province. Acta Petrologica Sinica, 19(1): 27-37 (in Chinese with English abstract)
Shi JP, Yang DB, Huo TF, Yang HT, Xu WL and Wang F. 2017. The geochronology and Nd-Hf isotope compositions of A-type granites on the southern margin of North China Craton: Constraints on the Late Paleoproterozoic extensional events. Acta Petrologica Sinica, 33(10): 3042-3056 (in Chinese with English abstract)
Shi WX, Liao QA, Hu YQ and Yang ZF. 2010. Characteristics of Mesoproterozoic granites and their geological significances from middle Tianshan Block, East Tianshan district, NW China. Geological Science and Technology Information, 29(1): 29-37 (in Chinese with English abstract)
Shi YR, Liu DY, Zhang ZQ, Miao LC, Zhang FQ and Xue HM. 2007. SHRIMP zircon U-Pb dating of gabbro and granite from the Huashan ophiolite, Qinling orogenic belt, China: Neoproterozoic suture on the northern margin of the Yangtze Craton. Acta Geologica Sinica (English Edition), 81(2): 239-243
Shu LS, Deng XL, Zhu WB, Ma DS and Xiao WJ. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences, 42(5): 774-790
Shumlyanskyy L, Ernst RE, Söderlund U, Billström K, Mitrokhin O and Tsymbal S. 2016. New U-Pb ages for mafic dykes in the northwestern region of the Ukrainian shield: Coeval tholeiitic and jotunitic magmatism. GFF, 138(1): 79-85
Song SG, Su L, Li XH, Niu YL and Zhang LF. 2012. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Research, 220-221: 9-22
Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B and Santosh M. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543-553
Su WB, Li HK, Huff WD, Ettensohnd FR, Zhang SH, Zhou HY and Wan YS. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323
Su WB, Li HK, Xu L, Jia SH, Geng JZ, Zhou HY, Wang ZH and Pu HY. 2012. Luoyu and Ruyang groups at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System: Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China. Geological Survey and Research, 35(2): 96-108 (in Chinese with English abstract)
Su XD, Peng P, Zhu RZ, Mao YJ, Zhang ZY and Sun FB. 2020. Multi-stage evolution of the Xuhuai rift: Insights from the occurrence and compositional profiles of doleritic sills in the southeastern margin of the North China Craton. Gondwana Research, 82: 221-240
Sun HQ, Huang JZ, Jiang XS, Luo L, Ma HY and Wu H. 2013. The evolution of "Nanhuaian" rift basin on the southeastern margin of Yangtze platform: Age constraints from the Neoproterozoic granites. Geology in China, 40(6): 1725-1735 (in Chinese with English abstract)
Sun WH, Zhou MF, Yan DP, Li JW and Ma YX. 2008. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambrian Research, 167(1-2): 213-236
Tang QY, Zhang ZW, Li CS, Wang YL and Ripley EM. 2016. Neoproterozoic subduction-related basaltic magmatism in the northern margin of the Tarim Craton: Implications for Rodinia reconstruction. Precambrian Research, 286: 370-378
Tung KN, Yang HJ, Yang HY, Liu DY, Zhang JX, Wan YS and Tseng CY. 2007. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian block and its geological significances. Chinese Science Bulletin, 52(19): 2687-1701
Van Kranendonk MJ. 2012. A chronostratigraphic division of the Precambrian: Possibilities and challenges. In: Gradstein FM, Ogg JG, Schmitz MD and Ogg GM (eds.). The Geological Time Scale 2012. Amsterdam: Elsevier, 299-392
Wang B, Liu HS, Shu LS, Jahn BM, Chung SL, Zhai YZ and Liu DY. 2014g. Early Neoproterozoic crustal evolution in northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan. Precambrian Research, 242: 58-81
Wang B, Shu LS, Liu HS, Gong HJ, Ma YZ, Mu LX and Zhong LL. 2014h. First evidence for ca.780Ma intra-plate magmatism and its implications for Neoproterozoic rifting of the North Yili Block and tectonic origin of the continental blocks in SW of Central Asia. Precambrian Research, 254: 258-272
Wang C, Wang YH, Liu L, He SP, Li RS, Li M, Yang WQ, Cao YT, Meert JG and Shi C. 2014f. The Paleoproterozoic magmatic-metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China. Precambrian Research, 254: 210-225
Wang C, Liu L, Wang YH, He SP, Li RS, Li M, Yang WQ, Cao YT, Collins AS, Shi C and Wu ZN. 2015d. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China. Precambrian Research, 257: 65-82
Wang C, Zhang JH, Li M, Li RS and Peng Y. 2015e. Generation of ca.900~870Ma bimodal rifting volcanism along the southwestern margin of the Tarim Craton and its implications for the Tarim-North China connection in the Early Neoproterozoic. Journal of Asian Earth Sciences, 113: 610-625
Wang C, Peng P, Wang XP, Li QL, Xu XY and Yang SY. 2016. The generations and U-Pb dating of baddeleyites from the Taihang dyke swarm in North China and their implications for magmatic evolution. Acta Petrologica Sinica, 32(3): 646-658 (in Chinese with English abstract)
Wang CZ, Xing GF, Yu MG, Huang ZZ, Hong WT, Zhao XL, Zhou XH, Guan Z and Ju DM. 2015. Timing and tectonic setting of the ophiolite in northeast Jiangxi: Constraints from zircon U-Pb age, Hf isotope and geochemistry of the Zhangshudun gabbro. Acta Petrologica et Mineralogica, 34(3): 309-321 (in Chinese with English abstract)
Wang DB, Sun ZM, Yin FG, Wang LQ, Wang BD and Zhang WP. 2012. Geochronology of the Hekou group on the western margin of the Yangtze Block: Evidence from zircon LA-ICP-MS U-Pb dating of volcanic rocks. Journal of Stratigraphy, 36(3): 630-635 (in Chinese with English abstract)
Wang DB, Yin FG, Sun ZM, Wang LQ, Wang BD, Liao SY, Tang Y and Ren GM. 2013. Zircon U-Pb age and Hf isotope of Paleoproterozoic mafic intrusion on the western margin of the Yangtze Block and their implications. Geological Bulletin of China, 32(4): 617-630 (in Chinese with English abstract)
Wang F, Wang B and Shu LS. 2010. Continental tholeiitic basalt of the Akesu area (NW China) and its implication for the Neoproterozoic rifting in the northern Tarim. Acta Petrologica Sinica, 26(2): 547-558 (in Chinese with English abstract)
Wang GG, Ni P, Zhu AD, Wang XL, Li L, Hu JS, Lin WH and Huang B. 2018a. 1.01~0.98 Ga mafic intra-plate magmatism and related Cu-Au mineralization in the eastern Jiangnan orogen: Evidence from Liujia and Tieshajie basalts. Precambrian Research, 309: 6-21
Wang HC, Xiang ZQ, Zhao FQ, Li HM, Yuan GB and Chu H. 2012. The alkaline plutons in eastern part of Guyang County, Inner Mongolia: Geochronology, petrogenesis and tectonic implications. Acta Petrologica Sinica, 28(9): 2843-2854 (in Chinese with English abstract)
Wang L, Long WG, Xu DM, Xu WC, Zhou D, Jin XB, Huang H and Zhang K. 2015. Zircon U-Pb geochronology of metamorphic basement in Yunkai area and its implications on the Grenvillian event in the Cathaysia Block. Earth Science Frontiers, 22(2): 25-40 (in Chinese with English abstract)
Wang M, Dai CG, Wang XH, Chen JS and Ma HZ. 2011. In-situ zircon geochronology and Hf isotope of muscovite-bearing leucogranites from Fanjingshan, Guizhou Province, and constraints on continental growth of the southern China block. Earth Science Frontiers, 18(5): 213-223 (in Chinese with English abstract)
Wang M, Dai CG, Chen JS, Wang XH and Ma HZ. 2016. Neoproterozoic geochronologic framework of magmatism in Fanjingshan area and its tectonic implications. Geology in China, 43(3): 843-856 (in Chinese with English abstract)
Wang MX, Nebel O and Wang CY. 2016b. The flaw in the crustal 'Zircon Archive': Mixed Hf isotope signatures record progressive contamination of late-stage liquid in mafic-ultramafic layered intrusions. Journal of Petrology, 57(1): 27-52
Wang QH, Yang DB and Xu WL. 2012a. Neoproterozoic basic magmatism in the southeast margin of North China Craton: Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China (Earth Sciences), 55(9): 1461-1479
Wang QH, Yang H, Yang DB and Xu WL. 2014a. Mid-Mesoproterozoic (~1.32Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: Baddeleyite Pb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 254: 114-128
Wang RR, Xu ZQ, Santosh M, Xu XB, Deng Q and Fu XH. 2017a. Middle Neoproterozoic (ca.705~716Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Journal of Geodynamics, 109: 59-74
Wang SW, Jiang XF, Yang B, Sun XM, Liao ZW, Zhou Q, Guo Y, Wang ZZ and Yang B. 2016. The Proterozoic tectonic movement in Kangdian areaⅠ: Kunyang intracontinental rift, mantle plume and its metallogenesis. Geological Review, 62(6): 1353-1377 (in Chinese with English abstract)
Wang T, Li WP and Wang XX. 1998. Zircon U-Pb Age of the Niujiaoshan granitoid gneisses in the Qinling Complex of the Qinling orogenic belt: With a discussion of its geological significance. Regional Geology of China, 17(3): 262-265 (in Chinese with English abstract)
Wang W, Zhou MF, Yan DP and Li JW. 2012b. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Research, 192-195: 107-124
Wang W, Liu SW, Bai X, Li QG, Yang PT, Zhao Y, Zhang SH and Guo RR. 2013. Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos, 162-163: 175-194
Wang W and Zhou MF. 2014. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia. Tectonophysics, 610: 110-127
Wang W, Zhou MF, Zhao XF, Chen WT and Yan DP. 2014c. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent. Sedimentary Geology, 309: 33-47
Wang W, Liu SW, Santosh M, Zhang LF, Bai X, Zhao Y, Zhang SH and Guo RR. 2015b. 1.23Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research, 27(4): 1407-1418
Wang W, Liu SW, Santosh M, Deng ZB, Guo BR, Zhao Y, Zhang SH, Yang PT, Bai X and Guo RR. 2015c. Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27(1): 300-325
Wang W, Cawood PA, Zhou MF and Zhao JH. 2016a. Paleoproterozoic magmatic and metamorphic events link Yangtze to Northwest Laurentia in the Nuna supercontinent. Earth and Planetary Science Letters, 433: 269-279
Wang X, Zhu WB, Luo M, Ren XM and Cui X. 2014b. Approximately 1.78Ga mafic dykes in the Lüliang Complex, North China Craton: Zircon ages and Lu-Hf isotopes, geochemistry, and implications. Geochemistry, Geophysics, Geosystems, 15(8): 3123-3144
Wang XD, Lü XB, Cao XF, Wang YF and Liu W. 2017c. Palaeo-Mesoproterozoic magmatic and metamorphic events from the Kuluketage block, Northeast Tarim Craton: Geochronology, geochemistry and implications for evolution of Columbia. Geological Journal, 53(1): 120-138
Wang XL, Zhou JC, Qiu JS, Zhang WL, Liu XM and Zhang GL. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, South China: Implications for tectonic evolution. Precambrian Research, 145(1-2): 111-130
Wang XL, Zhou JC, Qiu JS, Zhang WL, Liu XM and Zhang GL. 2006. Petrogenesis of the Neoproterozoic strongly Peraluminous granitoids from northern Guangxi: Constraints from zircon geochronology and Hf isotopes. Acta Petrologica Sinica, 22(2): 326-342 (in Chinese with English abstract)
Wang XL, Jiang SY and Dai BZ. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca.1760Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204-216
Wang XL, Jiang SY, Dai BZ, Griffin WL, Dai MN and Yang YH. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca.830Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35-47
Wang XL, Shu LS, Xing GF, Zhou JC, Tang M, Shu XJ, Qi L and Hu YH. 2012c. Post-orogenic extension in the eastern part of the Jiangnan Orogen: Evicence from ca.800~760Ma volcavic rocks. Precambrian Research, 222-223: 404-423
Wang XL, Zhou JC, Griffin WL, Zhao GC, Yu JH, Qiu JS, Zhang YJ and Xing GF. 2014d. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171
Wang XS, Gao J, Klemd R, Jiang T, Zhai QG, Xiao XC and Liang XQ. 2015a. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite (South China). Lithos, 236-237: 90-105
Wang YX, Wang JR, Zhou XL, Wang HT, Di PF, Wang XW and Chen WF. 2017. The cracking of Columbia supercontinent: Evidence from the Dahongshan A-type granite in the southeastern Tarim Craton. Acta Geologica Sinica, 91(11): 2369-2386 (in Chinese with English abstract)
Wang ZM, Han CM, Xiao WJ, Su BX, Sakyi PA, Song DF and Lin LN. 2014e. The petrogenesis and tectonic implications of the granitoid gneisses from Xingxingxia in the eastern segment of Central Tianshan. Journal of Asian Earth Sciences, 88: 277-292
Wang ZZ, Guo Y, Yang B, Wang SW, Sun XM, Hou L, Zhou BG and Liao ZW. 2013. Discovery of the 1.73Ga Haizi anorogenic type granite in the western margin of Yantze Craton, and its geological significance. Acta Geologica Sinica, 87(7): 931-942 (in Chinese with English abstract)
Wei YX, Peng SB, Jiang XF, Peng ZQ, Peng LH, Li ZH, Zhou P and Zeng XW. 2012. SHRIMP zircon U-Pb ages and geochemical characteristics of the Neoproterozoic granitoids in the Huangling anticline and its tectonic setting. Journal of Earth Science, 23(5): 659-675
Windley BF. 1989. Anorogenic magmatism and the Grenvillian Orogeny. Canadian Journal of Earth Sciences, 26(3): 479-489
Windley BF. 1991. Early Proterozoic collision tectonics, and rapakivi granites as intrusions in an extensional thrust-thickened crust: The Ketilidian orogen, South Greenland. Tectonophysics, 195(1): 1-10
Wu CZ, Santosh M, Chen YJ, Samson IM, Lei RX, Dong LH, Qu X and Gu LX. 2014. Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton: Implications for breakup of the Columbia supercontinent. Precambrian Research, 241: 29-43
Wu JS, Geng YS, Shen QH, Wan YS, Liu DY and Song B. 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-continent. Beijing: Geological Publishing House (in Chinese)
Wu RX, Zheng YF and Wu YB. 2005. Zircon U-Pb age, element and oxygen isotope geochemisty of Neoproterozoic granites at Shiershan in South Anhui Province. Geological Journal of China Universities, 11(3): 364-382 (in Chinese with English abstract)
Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM and Wu FY. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212
Wu RX, Zheng YF and Wu YB. 2007. Zircon U-Pb age and isotope geochemistry of Neoproterozoic Jingtan volcanics in south Anhui. Geological Journal of China Universities, 13(2): 282-296 (in Chinese with English abstract)
Xia LQ, Xia ZC, Li XM, Ma ZP and Xu XY. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Northwestern Geology, 41(3): 1-29 (in Chinese with English abstract)
Xia LQ, Xia ZC, Ma ZP, Xu XY and Li XM. 2009. Petrogenesis of volcanic rocks from Xixiang Group in middle part of South Qinling Mountains. Northwestern Geology, 42(2): 1-37 (in Chinese with English abstract)
Xia Y, Xu XS, Zhao GC and Liu L. 2015. Neoproterozoic active continental margin of the Cathaysia block: Evidence from geochronology, geochemistry, and Nd-Hf isotopes of igneous complexes. Precambrian Research, 269: 195-216
Xiang ZQ, Li HK, Lu SN, Zhou HY, Li HM, Wang HC, Chen ZH and Niu J. 2012. Emplacement age of the gabbrodiabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China: Baddeleyite U-Pb precise dating. Acta Petrologica Sinica, 28(9): 2831-2842 (in Chinese with English abstract)
Xiang ZQ. 2014. Mesoproterozoic magmatic events and mineralization in the North China Craton. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-227 (in Chinese with English summary)
Xiao L, Zhang HF, Ni PZ, Xiang H and Liu XM. 2007. LA-ICP-MS U-Pb zircon geochronology of early Neoproterozoic mafic-intermediat intrusions from NW margin of the Yangtze Block, South China: Implication for tectonic evolution. Precambrian Research, 154(3-4): 221-235
Xiao QH, Lu XX, Wang F, Sun YG, Wei XD and Xing ZY. 2004. Age of Yingfeng rapakivi granite pluton on the north flank of Qaidam and its geological significance. Science in China (Series D), 47(4): 357-365
Xin HT, Zhao FQ, Luo ZH, Liu YS, Wan YS and Wang SQ. 2011. Determination of the Paleoproterozoic geochronological framework in Aqtashtagh area in southeastern Tarim, China, and its geological significance. Acta Geologica Sinica, 85(12): 1977-1993 (in Chinese with English abstract)
Xin HT, Liu YS, Luo ZH, Song SC and Wang SQ. 2013. The growth of Archean continental crust in Aqtashtagh area of Southeast Tarim, China: Constraints from petrochemistry and chronology about Milan Group and TTG-gneiss. Earth Science Frontiers, 20(1): 240-259 (in Chinese with English abstract)
Xin YJ, Li JH, Dong SW, Zhang YQ, Wang WB and Sun HS. 2017. Neoproterozoic post-collisional extension of the central Jiangnan Orogen: Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca.820~800Ma magmatic rocks. Precambrian Research, 294: 91-110
Xu B, Kou XW, Song B, Wei W and Wang Y. 2008. SHRIMP dating of the upper Proterozoic volcanic rocks in the Tarim plate and constraints on the Neoproterozoic glaciation. Acta Petrologica Sinica, 24(12): 2857-2862 (in Chinese with English abstract)
Xu B, Xiao SH, Zou HB, Chen Y, Li ZX, Song B, Liu DY, Zhou CM and Yuan XL. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168(3-4): 247-258
Xu B, Zou HB, Chen Y, He JY and Wang Y. 2013. The Sugetbrak basalts from northwestern Tarim Block of Northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Research, 236: 214-226
Xu DR, Xia B, Li PC, Zhang YQ, Chen GH and Ma C. 2006. SHRIMP U-Pb Dating of zircon from the Precambrian granitoids in Northwest Hainan Island and its geological implications. Geotectonica et Metallogenia, 30(4): 510-518 (in Chinese with English abstract)
Xu X, Song SG, Allen MB, Ernst RE, Niu YL and Su L. 2016b. An 850~820Ma LIP dismembered during breakup of the Rodinia supercontinent and destroyed by Early Paleozoic continental subduction in the northern Tibetan Plateau, NW China. Precambrian Research, 282: 52-73
Xu XY, Chen JL, Li XM, Ma PZ, Wang HL, Xia LQ, Xia ZC and Li P. 2010. Geochemistry and petrogenesis of volcanic rocks from Sanlangpu Formation and Dashigou Formation. Acta Petrologica Sinica, 26(2): 617-632 (in Chinese with English abstract)
Xu Y, Yang KG, Polate A and Yang ZN. 2016a. The ~860Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic. Precambrian Research, 275: 310-331
Xu YH, Zhao TP, Peng P, Zhai MG, Qi L and Luo Y. 2007. Geochemical characteristics and geological significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Lüliang area, Shanxi Province. Acta Petrologica Sinica, 23(5): 1123-1132 (in Chinese with English abstract)
Xue HM, Ma F, Song YQ and Xie YP. 2010. Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China: Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks. Acta Petrologica Sinica, 26(11): 3215-3244 (in Chinese with English abstract)
Xue HM, Ma F and Song YQ. 2012. Mafic ultramafic rocks from the Fanjingshan region, southwestern margin of the Jiangnan orogenic belt: Ages, geochemical characteristics and tectonic setting. Acta Petrologica Sinica, 28(9): 3015-3030 (in Chinese with English abstract)
Yan DP, Zhou MF, Song HL and Malpas J. 2002. Where was South China located in the reconstruction of Rodinia?. Earth Science Frontiers, 9(4): 249-256 (in Chinese with English abstract)
Yan QR, Hanson AD, Wang ZQ, Druschke PA, Yan Z, Wang T, Liu DY, Song B, Jian P, Zhou H and Jiang CF. 2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze Plate, China: Implications for Rodinia reconstruction. International Geology Review, 46(9): 817-832
Yan QR, Wang ZQ, Yan Z, Xiang JZ, Chen JL and Wang T. 2007. SHRIMP Analyses for ophiolitic-mafic blocks in the Kangxian-Mianxian section of the Mianxian-Lueyang melange: Their geological implications. Geological Review, 53(6): 755-764 (in Chinese with English abstract)
Yang B, Wang WQ, Dong GC, Guo Y, Wang ZZ and Hou L. 2015. Geochemistry, geochronology and their significances of Haizi bimodal intrusions in Kangdian fault-uplift zone, southwestern margin of Yangtze platform. Acta Petrologica Sinica, 31(5): 1361-1373 (in Chinese with English abstract)
Yang CH, Geng YS, Du LL, Ren LD, Wang XS, Zhou XW and Yang ZS. 2009. The identification of the Grenvillian granite on the western margin of the Yangtze Block and its geological implications. Geology in China, 36(3): 647-657 (in Chinese with English abstract)
Yang H, Liu FL, Du LL, Liu PH and Wang F. 2012. Zircon U-Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze block, and its geological significance. Acta Petrologica Sinica, 28(9): 2994-3014 (in Chinese with English abstract)
Yang JH, Wu FY, Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica, 21(6): 1633-1644 (in Chinese with English abstract)
Yang KF, Fan HR, Santosh M, Hu FF and Wang KY. 2011. Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton: Implications for the final breakup of Columbia supercontinent. Tectonophysics, 498(1-4): 1-10
Yang PT, Liu SW, Li QG, Wang ZQ, Wang W and Bai X. 2012. Emplacing age of the Tiewadian pluton in the South Qinling tectonic belt and its geological implications. Acta Geologica Sinica, 86(9): 1525-1540 (in Chinese with English abstract)
Yang SY, Peng P, Qin ZY, Wang XP, Wang C, Zhang J and Zhao TP. 2019. Genetic relationship between 1780Ma dykes and coeval volcanics in the Lvliang area, North China. Precambrian Research, 329: 232-246
Yang TN, Li JY, Sun GH and Wang YB. 2008. Mesoproterozoic continental arc type granite in the Central Tianshan Mountains: zircon SHRIMP U-Pb dating and geochemical analyses. Acta Geologica Sinica, 82(1): 117-125
Yao JL, Shu LS, Santosh M and Zhao GC. 2014. Neoproterozoic arc-related mafic-ultramafic rocks and syn-collision granite from the western segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia blocks. Precambrian Research, 243: 39-62
Ye L, Cheng ZT, Lu LN, Gao W and Pan ZP. 2009. Petrological geochronology and zircon SHRIMP U-Pb of Tongchang diorites, Mianluening area, Southern Shaanxi province, China. Acta Petrologica Sinica, 25(11): 2866-2876 (in Chinese with English abstract)
Ye MF, Li XH, Li WX, Liu Y and Li ZX. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an Early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12(1-2): 144-156
Ye XT, Zhang CL, Santosh M, Zhang J, Fan XK and Zhang JJ. 2016. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca.1.4Ga A-type granites and Paleoproterozoic intrusive complex. Precambrian Research, 275: 18-34
Yin CQ, Lin SF, Davis DW, Xing GF, Davis WJ, Cheng GH, Xiao WJ and Li LM. 2013. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China. Precambrian Research, 236: 145-156
Young GM. 2013. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers, 4(3): 247-261
Yu JH, Fu HQ, Zhang FL, Wan FX, Haapala I, Rämö OT and Vaasjoki M. 1996. Anorogenic Rapakivi Granites and Related Rocks in the Northern of North China Craton. Beijing: China Science and Technology Press (in Chinese with English abstract)
Yu SY, Zhang JX, del Real PG, Zhao XL, Hou KJ, Gong JH and Li YS. 2013. The Grenvillian orogeny in the Altun -Qilian-North Qaidam mountain belts of northern Tibet Plateau: Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks. Journal of Asian Earth Sciences, 73: 372-395
Yu WJ, Luo ZH, Liu YS, Sun JY, Li Z, Wang Z and Tang ZX. 2017. Petrogenesis of the Lala iron-copper deposit: Evidence by cryptoexplosive breccia CSD data and their zircon U-Pb data. Acta Petrologica Sinica, 33(3): 925-941 (in Chinese with English abstract)
Zhai MG. 2011. Cratonization and the Ancient North China Continent: A summary and review. Science China (Earth Sciences), 54(8): 1110-1120
Zhai MG. 2013. The main old lands in China and assembly of Chinese unified continent. Science China (Earth Sciences), 56(11): 1829-1852
Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)
Zhai MG, Hu B, Zhao TP, Peng P and Meng QR. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics, 662: 153-166
Zhan S, Chen Y, Xu B, Wang B and Faure M. 2007. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research, 154(3-4): 143-158
Zhang AM, Wang YJ, Fan WM, Zhang YZ and Yang J. 2012b. Earliest Neoproterozoic (ca. 1.0Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Research, 220-221(217): 233
Zhang CL, Wang ZG, Shen JL, Bi H, Guo KY and Wang AG. 2003. Zircon SHRIMP dating and geochemistry characteristics of Akazi rock mass of western Kunlun. Acta Petrologica Sinica, 19(3): 523-529 (in Chinese with English abstract)
Zhang CL, Li ZX, Li XH, Ye HM, Wang AG and Guo KY. 2006. Neoproterozoic bimodal intrusive complex in the southwestern Tarim block, Northwest China: Age, geochemistry, and implications for the rifting of Rodinia. International Geology Review, 48: 112-128
Zhang CL, Li XH, Li ZX, Lu SN, Ye HM and Li HM. 2007b. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Research, 152(3-4): 149-169
Zhang CL, Li ZX, Li XH and Ye HM. 2009b. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 35(2): 167-179
Zhang CL, Yang DS, Wang HY, Takahashi Y and Ye HM. 2011. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity with different mantle sources. Gondwana Research, 19(1): 177-190
Zhang CL, Zou HB, Wang HY, Li HK and Ye HM. 2012c. Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block, NW China: Interaction between plate subduction and mantle plume?. Precambrian Research, 222-223: 488-502
Zhang CL, Li HK, Santosh M, Li ZX, Zou HB, Wang HY and Ye HM. 2012e. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt. Journal of Asian Earth Sciences, 47: 5-20
Zhang CL, Santosh M, Zou HB, Li HK and Huang WC. 2013c. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry, zircon U-Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China. Lithos, 179: 263-274
Zhang CL, Ye XT and Li HK. 2014. The latest Neoproterozoic igneous activity on the northern margin of the Tarim Craton. Geological Bulletin of China, 33(5): 606-613 (in Chinese with English abstract)
Zhang CL, Zou HB, Zhu QB and Chen XY. 2015b. Late Mesoproterozoic to early Neoproterozoic ridge subduction along southern margin of the Jiangnan Orogen: New evidence from the Northeastern Jiangxi Ophiolite (NJO), South China. Precambrian Research, 268: 1-15
Zhang CL, Ye XT, Ernst RE, Zhong Y, Zhang J, Li HK and Long XP. 2019. Revisiting the Precambrian evolution of the Southwestern Tarim terrane: Implications for its role in Precambrian supercontinents. Precambrian Research, 324: 18-31
Zhang CH, Gao LZ, Shi XY, Han Y and Liu YM. 2014. SHRIMP age of the volcanic rock from the Fanjingshan Group and its chronostratigraphic significances. Earth Science Frontiers, 21(2): 139-143 (in Chinese with English abstract)
Zhang H, Li TD, Gao LZ, Geng SF, Ding XZ, Liu YX and Kou CH. 2015. Zircon SHRIMP U-Pb dating, geochemical, zircon Hf isotopic features of the Mesoproterozoic Tieshajie Formation in northeastern Jiangxi. Geological Review, 61(1): 65-78 (in Chinese with English abstract)
Zhang J, Zhang HF and Lu XX. 2013a. Zircon U-Pb age and Lu-Hf isotope constraints on Precambrian evolution of continental crust in the Songshan area, the south-central North China Craton. Precambrian Research, 226: 1-20
Zhang J, Zhang CL, Li HK, Ye XT, Geng JZ and Zhou HY. 2014. Revisit to time and tectonic environment of the Aksu blueschist terrane in northern Tarim, NW China: New evidence from zircon U-Pb age and Hf isotope. Acta Petrologica Sinica, 30(11): 3357-3365 (in Chinese with English abstract)
Zhang J, Tian H, Li HK, Su WB, Zhou HY, Xiang ZQ, Geng JZ and Yang LG. 2015. Age, geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-Liao aulacogen along the northern margin of the North China Craton: New evidence for the breakup of the Columbia Supercontinent. Acta Petrologica Sinica, 31(10): 3129-3146 (in Chinese with English abstract)
Zhang J, Li HK, Zhang CL, Tian H, Zhong Y and Ye XT. 2018. New evidence for the breakup of the Columbia supercontinent from the northeastern margin of Tarim Craton: Rock geochemistry, zircon U-Pb geochronology and Hf-O isotopic compositions of the ca.1.55Ga diabase sills in the Kuruktag area. Earth Science Frontiers, 25(6): 106-123 (in Chinese with English abstract)
Zhang JX, Li HK, Meng FC, Xiang ZQ, Yu SY and Li JP. 2011. Polyphase tectonothermal events recorded in "metamorphic basement" from the Altyn Tagh, the southeastern margin of the Tarim basin, western China: Constraint from U-Pb zircon geochronology. Acta Petrologica Sinica, 27(1): 23-46 (in Chinese with English abstract)
Zhang LM, Wang YJ, Li SB and Zhang YZ. 2017. Geochemical and geochronological characteristics of granitic gneisses in the Baoban Group, Gong'ai (Hainan) and its tectonic implications. Geotectonica et Metallogenia, 41(2): 396-411 (in Chinese with English abstract)
Zhang SH, Liu SW, Zhao Y, Yang JH, Song B and Liu XM. 2007a. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogeny. Precambrian Research, 155(3-4): 287-312
Zhang SH, Zhao Y, Yang ZY, He ZF and Wu H. 2009a. The 1.35Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600
Zhang SH, Zhao Y and Santosh M. 2012a. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 399-367
Zhang SH, Zhao Y, Ye H, Hu JM and Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490 (in Chinese with English abstract)
Zhang SH, Zhao Y, Ye H and Hu GH. 2016. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Research, 272: 203-225
Zhang SH, Zhao Y, Li XH, Ernst RE and Yang ZY. 2017. The 1.33~1.30Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125
Zhang SH and Zhao Y. 2018. The 1.33~1.30Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton. Earth Science Frontiers, 25(5): 34-50 (in Chinese with English abstract)
Zhang YJ, Zhou XH, Liao SB, Zhang XD, Wu B, Wang CZ and Yu MG. 2010. Neoproterozoic crustal composition and orogenic process of the Zhanggongshan area, Anhui-Jiangxi. Acta Geologica Sinica, 84(10): 1401-1427 (in Chinese with English abstract)
Zhang YZ, Wang YJ, Geng HY, Zhang YH, Fan WM and Zhong H. 2013b. Early Neoproterozoic (~850Ma) back-arc basin in the Central Jiangnan Orogen (eastern South China): Geochronological and Petrogenetic constraints from meta-basalts. Precambrian Research, 231: 325-342
Zhang YZ, Wang YJ, Zhang YH and Zhang AM. 2015a. Neoproterozoic assembly of the Yangtze and Cathaysia blocks: Evidence from the Cangshuipu Group and associated rocks along the central Jiangnan Orogen, South China. Precambrian Research, 269: 18-30
Zhang YZ and Wang YJ. 2016. Early Neoproterozoic (~840Ma) arc magmatism: Geochronological and geochemical constraints on the metab group and asites in the Central Jiangnan Orogen. Precambrian Research, 275: 1-17
Zhang ZC, Kang JL, Kusky T, Santosh M, Huang H, Zhang DY and Zhu J. 2012d. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, Northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research, 220-221: 158-176
Zhao FQ, Zhao WP, Zuo YC, Li ZH and Xue KQ. 2006. U-Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong, southern Shaanxi, China. Geological Bulletin of China, 25(3): 383-388 (in Chinese with English abstract)
Zhao GC, Cawood PA, Wilde SA and Sun M. 2002a. Review of global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth Science Reviews, 59(1-4): 125-162
Zhao GC, Sun M, Wilde SA and Li SZ. 2004b. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth Science Reviews, 67(1-2): 91-123
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract)
Zhao GC, He YH and Sun M. 2009a. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181
Zhao JH and Zhou MF. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27-47
Zhao JH and Zhou MF. 2009b. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168
Zhao JH, Zhou MF, Zheng JP and Fang SM. 2010a. Neoproterozoic crustal growth and reworking of the northwestern Yangtze Block: Constraints from the Xixiang dioritic intrusion, South China. Lithos, 120(3-4): 439-452
Zhao JH, Zhou MF, Yan DP, Zheng JP and Li JW. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299-302
Zhao JH and Zhou MF. 2013. Neoproterozoic high-Mg basalts formed by melting of ambient mantle in South China. Precambrian Research, 233: 193-205
Zhao JH, Zhou MF, Zheng JP and Griffin WL. 2013a. Neoproterozoic tonalite and trondhjemite in the Huangling Complex, south China: Crustal growth and reworking in a continental arc environment. American Journal of Science, 313(6): 540-583
Zhao JH, Zhou MF and Zheng JP. 2013b. Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China. Precambrian Research, 233: 93-107
Zhao TP, Zhou MF, Zhai MG and Xia B. 2002b. Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China Craton: Implications for the breakup of Columbia. International Geology Review, 44(4): 336-351
Zhao TP, Chen FK, Zhai MG and Xia B. 2004. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China. Acta Petrologica Sinica, 20(3): 685-690 (in Chinese with English abstract)
Zhao TP, Zhai MG, Xia B, Li HM, Zhang YX and Wan YS. 2004a. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495-2502
Zhao TP and Zhou MF. 2009a. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36(2-3): 183-195
Zhao TP, Chen W and Zhou MF. 2009b. Geochemical and Nd-Hf isotopic constraints on the origin of the 1.74Ga Damiao anorthosite complex, North China Craton. Lithos, 113(3-4): 673-690
Zhao TP and Deng XQ. 2016. Petrogenesis and tectonic significance of the Late Paleoproterozoic to early Mesoproterozoic (ca.1.80~1.53Ga) A-type granites in the southern margin of the North China Craton. In: Zhai MG. (ed.). Main Tectonic Events and Metallogeny of the North China Craton. Singapore: Springer, 423-434
Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH and Yang JH. 2010b. Late Paleo-proterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1-2): 57-69
Zhao XF and Zhou MF. 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineralium Deposita, 46(7): 731-747
Zhou JB, Li XH, Ge WC and Li ZX. 2007. Age and origin of Middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research, 12(1-2): 184-197
Zhou JC, Wang XL and Qiu JS. 2008. Is the Jiangnan orogenic belt a grenvillian orogenic belt: Some problems about the Precambrian geology of South China. Geological Journal of China Universities, 14(1): 64-72 (in Chinese with English abstract)
Zhou JC, Wang XL and Qiu JS. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Research, 170(1-2): 27-42
Zhou JY, Mao JW, Liu FY, Tan HQ, Shen B, Zhu ZM, Chen JB, Luo LP, Zhou X and Wang Y. 2011. SHRIMP U-Pb zircon chronology and geochemistry of albitite from the Hekou Group in the western Yangtze Block. Journal of Mineralogy and Petrology, 31(3): 66-73 (in Chinese with English abstract)
Zhou MF, Kennedy AK, Sun M, Malpas J and Lesher CM. 2002a. Neo-proterozoic arc-related mafic intrusions along the northern margin of South China: Implications for the accretion of Rodinia. The Journal of Geology, 110(5): 611-618
Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002b. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67
Zhou MF, Ma YX, Yan DP, Xia XP, Zhao JH and Sun M. 2006a. The Yanbian Terrane (shouthern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Research, 144: 19-38
Zhou MF, Yan DP, Wang CL, Qi L and Kennedy A. 2006b. Subduction-related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters, 248(1-2): 286-300
Zhu RZ, Ni P, Wang GG, Ding JY, Fan MS and Ma YG. 2019. Geochronology, geochemistry and petrogenesis of the Laozhaishan dolerite sills in the southeastern margin of the North China Craton and their geological implication. Gondwana Research, 67: 131-146
Zhu WB, Zhang ZY, Shu LS, Lu HF, Su JB and Yang W. 2008. SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: Implications for the longlasting breakup process of Rodinia. Journal of the Geological Society, 165(5): 887-890
Zhu WB, Zheng BH, Shu LS, Ma DS, Wan JL, Zheng DW, Zhang ZY and Zhu XQ. 2011. Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla mafic dykes: Constrains on the Neoproterozoic continental breakup in the Tarim Block, Northwest China. Journal of Asian Earth Sciences, 42(5): 791-804
Zhu WG, Zhong H, Deng HL, Wilson AH, Liu BG, Li CY and Qin Y. 2006. SHRIMP zircon U-Pb age, geochemistry, and Nd-Sr isotopes of the Gaojiacun mafic-ultramafic intrusive complex, Southwest China. International Geology Review, 48(7): 650-668
Zhu WG, Zhong H, Li ZX, Bai ZJ and Yang YJ. 2016. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca.1.0Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance. Precambrian Research, 273: 67-89
Zhu XY, Chen FK, Wang W, Pham TH, Wang F and Zhang FQ. 2008. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang Group in the Qinling Orogenic Belt within western Henan Province. Acta Geoscientica Sinica, 29(6): 817-829 (in Chinese with English abstract)
Zhu XY, Chen FL, Nie H, Siebel W, Yang YZ, Xue YY and Zhai MG. 2014. Neoproterozoic tectonic evolution of South Qinling, China: Evidence from zircon ages and geochemistry of the Yaolinghe volcanic rocks. Precambrian Research, 245: 115-130
Zhuo JW, Jiang XS, Wang J, Cui XZ, Wu H, Xiong GQ, Lu JZ and Jiang ZF. 2015. LA-ICP-MS zircon U-Pb ages for pisolitic welded tuff from the bottom of the Neoproterozoic Suxiong Formation in western Sichuan and their geological significance. Sedimentary Geology and Tethyan Geology, 35(4): 85-91 (in Chinese with English abstract)
敖文昊, 张宇昆, 张瑞英, 赵燕, 孙勇. 2014. 新元古代扬子北缘地壳增生事件:来自汉南祖师店奥长花岗岩地球化学、锆石LA-ICP-MS U-Pb年代学和Hf同位素证据. 地质论评, 60(6): 1393-1408.
柏道远, 贾宝华, 刘伟, 陈必河, 刘耀荣, 张晓阳. 2010. 湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束. 地质学报, 84(12): 1715-1726.
白瑾, 黄学光, 戴凤岩, 吴昌华. 1983. 中国前寒武纪地壳演化. 北京: 地质出版社.
包志伟, 王强, 资锋, 唐功建, 杜凤军, 白国典. 2009. 龙王A型花岗岩地球化学特征及其地球动力学意义. 地球化学, 38(6): 509-522.
蔡逸涛, 张洁, 董钟斗, 曹正琦, 肖书阅, 李帅, 李成凯, 陈乐柱, 范飞鹏. 2018. 皖北栏杆地区新元古代岩浆活动:含金刚石母岩U-Pb年代学及地球化学制约. 中国地质, 45(2): 351-366.
曹正琦, 蔡逸涛, 曾佐勋, 胡正祥, 陈静, 蒋幸福, 孙政权, 吴波, 刘成新, 郭盼. 2017. 扬子克拉通北缘新元古代A型花岗岩的发现及大地构造意义. 地球科学, 42(6): 957-973.
陈辉, 倪培, 陈仁义, 吕志成, 庞振山, 王国光, 袁慧香. 2016. 浙西北平水铜矿细碧角斑岩成岩年龄及其地质意义. 中国地质, 43(2): 410-418.
陈志宏, 陆松年, 李怀坤, 宋彪, 李惠民, 相振群. 2004. 北秦岭德河黑云二长花岗片麻岩体的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学. 地质通报, 23(2): 136-141.
崔敏利, 张宝林, 彭澎, 张连昌, 沈晓丽, 郭志华, 黄雪飞. 2010. 豫西崤山早元古代中酸性侵入岩锆石/斜锆石U-Pb测年及其对熊耳火山岩系时限的制约. 岩石学报, 26(5): 1541-1549.
邓奇, 汪正江, 王剑, 胡志中, 崔晓庄, 杜秋定, 马龙, 熊小辉, 杨菲. 2016. 江南造山带东段800~780Ma陆内裂谷岩浆活动——来自浙皖赣邻区约790Ma铝质A型花岗岩的证据. 地质通报, 35(11): 1855-1868.
邓乾忠, 杨青雄, 毛新武, 孔令耀. 2016. 湖北武当-随枣地区中-晚南华世岩石地层序列与年代学研究. 资源环境与工程, 30(2): 132-142.
邓小芹, 赵太平, 彭头平, 高昕宇, 包志伟. 2015. 华北克拉通南缘1600Ma麻坪A型花岗岩的成因及其地质意义. 岩石学报, 31(6): 1621-1635.
邓兴梁, 舒良树, 朱文斌, 马东升, 王博. 2008. 新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄. 岩石学报, 24(12): 2800-2808.
丁炳华, 史仁灯, 支霞臣, 郑磊, 陈雷. 2008. 江南造山带存在新元古代(~850Ma)俯冲作用——来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志, 27(5): 375-388.
杜利林, 耿元生, 杨崇辉, 王新社, 任留东, 周喜文, 石玉若, 杨铸生. 2005. 扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄. 地质学报, 79(6): 805-813.
杜利林, 耿元生, 杨崇辉, 王新社, 任留东, 周喜文, 王彦斌, 杨铸生. 2006. 扬子地台西缘新元古代TTG的厘定及其意义. 岩石矿物学杂志, 25(4): 273-281.
杜利林, 杨崇辉, 耿元生, 王新社, 任留东, 周喜文. 2009. 扬子地台西南缘高家村岩体成因:岩石学, 地球化学和年代学证据. 岩石学报, 25(8): 1897-1908.
杜利林, 郭敬辉, 耿元生, 杨崇辉, 刘福来, 任留东, 周喜文, 刘平华. 2013. 扬子西南缘盐边群时代及构造环境:来自碎屑沉积岩的约束. 岩石学报, 29(2): 641-672.
高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 唐烽, 宋彪. 2008. 华北古陆中、新元古代年代地层框架-SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376.
高林志, 王宗起, 许志琴, 杨经绥, 张维. 2010. 塔里木盆地库鲁克塔格地区新元古代冰碛岩锆石SHRIMP U-Pb年龄新证据. 地质通报, 29(2-3): 205-213.
高林志, 陈峻, 丁孝忠, 刘耀荣, 张传恒, 张恒, 刘燕学, 庞维华, 张玉海. 2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约. 地质通报, 30(7): 1001-1008.
高林志, 刘燕学, 丁孝忠, 张传恒, 王自强, 陈俊, 刘耀荣. 2012. 江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义. 中国地质, 39(1): 12-20.
高林志, 刘燕学, 丁孝忠, 宋志瑞, 黄志忠, 张传恒, 张恒, 史志刚. 2013a. 江山-绍兴断裂带铁沙街组变流纹岩SHRIMP锆石U-Pb测年及其意义. 地质通报, 32(7): 996-1005.
高林志, 郭宪璞, 丁孝忠, 宗文明, 高振家, 张传恒, 王自强. 2013b. 中国塔里木板块南华纪成冰事件及其地层对比. 地球学报, 34(1): 39-57.
高林志, 张恒, 丁孝忠, 刘燕学, 张传恒, 黄志忠, 许兴苗, 周宗尧. 2014. 江山-绍兴断裂带构造格局的新元古代SHRIMP锆石U-Pb年龄证据. 地质通报, 33(6): 763-775.
高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报, 27(6): 793-798.
高维, 张传恒. 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义. 地质通报, 28(1): 45-50.
耿元生, 杨崇辉, 杜利林, 王新社, 任留东, 周喜文. 2007a. 天宝山组形成时代和形成环境——锆石SHRIMP U-Pb年龄和地球化学证据. 地质论评, 53(4): 323-334.
耿元生, 杨崇辉, 王新社, 任留东, 杜利林, 周喜文. 2007b. 扬子地台西缘结晶基底的时代. 高校地质学报, 13(3): 429-441.
耿元生, 杨崇辉, 王新社, 杜利林, 任留东, 周喜文. 2008. 扬子地台西缘变质基底演化. 北京: 地质出版社.
耿元生, 周喜文. 2010. 阿拉善地区新元古代岩浆事件及其地质意义. 岩石矿物学杂志, 29(6): 779-795.
耿元生, 周喜文. 2011. 阿拉善地区新元古代早期花岗岩的地球化学和锆石Hf同位素特征. 岩石学报, 27(4): 897-908.
耿元生, 柳永清, 高林志, 彭楠, 江小均. 2012. 扬子克拉通西南缘中元古代通安组的形成时代——锆石LA-ICP-MS U-Pb年龄. 地质学报, 86(9): 1479-1490.
耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174.
耿元生, 旷红伟, 杜利林, 柳永清, 赵太平. 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限. 岩石学报, 35(8): 2299-2324.
郭春丽, 王登红, 陈毓川, 赵支刚, 王彦斌, 付小方, 傅德明. 2007. 川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义. 岩石学报, 23(10): 2457-2470.
郭阳, 王生伟, 孙晓明, 王子正, 杨斌, 廖震文, 周邦国, 蒋小芳, 侯林, 杨波. 2014. 扬子地台西南缘古元古代末的裂解事件——来自武定地区辉绿岩锆石U-Pb年龄和地球化学证据. 地质学报, 88(9): 1651-1665.
郭召杰, 张志诚, 刘树文, 李惠民. 2003. 塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据. 岩石学报, 19(3): 537-542.
韩宝福, 张磊, 王亚妹, 宋彪. 2007. 华北克拉通中部古元古代高Mg低Ti-P镁铁质岩墙的富集地幔源区——锆石Hf同位素的制约. 岩石学报, 23(2): 277-284.
何登发, 袁航, 李涤, 雷刚林, 樊春, 常秋生, 叶茂林. 2011. 吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示. 岩石学报, 27(1): 133-146.
和政军, 张新元, 牛宝贵, 刘仁燕, 赵磊. 2011a. 北京密云元古宙环斑花岗岩古风化壳及其与长城系常州沟组的关系. 地学前缘, 18(4): 123-130.
和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011b. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄. 地质通报, 30(5): 798-802.
胡霭琴, 韦刚健. 2006. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题. 地质学报, 80(1): 126-134.
胡霭琴, 韦刚健, 邓文峰, 张积斌, 陈林丽. 2006. 天山东段1.4Ga花岗闪长质片麻岩SHRIMP锆石U-Pb年龄及其地质意义. 地球化学, 35(4): 333-345.
胡霭琴, 韦刚健, 江博明, 张积斌, 邓文峰, 陈林丽. 2010. 天山0.9Ga新元古代花岗岩SHRIMP锆石U-Pb年龄及其构造意义. 地球化学, 39(3): 197-212.
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563-1576.
胡国辉, 张拴宏, 张琪琪, 王世炎. 2019. 华北克拉通南缘栾川群大红口组形成时代及其对新元古代构造演化的制约. 岩石学报, 35(8): 2503-2517.
胡正祥, 陈超, 毛新武, 邓乾忠, 杨金香, 李琳静, 孔令耀. 2015. 鄂北大洪山晋宁期岛弧火山岩和增生杂岩的厘定及地质意义. 资源环境与工程, 29(6): 757-766.
黄建国, 杨瑞东, 杨剑, 崔春龙, 侯兰杰. 2012. 西昆仑北缘库斯拉甫一带中元古代岩浆活动及地质意义. 地质科学, 47(3): 867-885.
姜海健, 陈强路, 杨鑫, 储呈林. 2017. 塔里木盆地新元古代裂谷盆地层序样式. 地质学报, 91(3): 588-604.
蒋幸福, 彭松柏, Kusky T, 王璐, 邓浩, 王军鹏. 2017. 江南造山带东段赣东北蛇绿岩的形成时代:来自辉长岩LA-ICP-MS锆石U-Pb年龄在证据. 现代地质, 31(4): 697-704.
姜杨, 赵希林, 邢光福, 李龙明, 段政. 2015. 扬子陆块东南缘浙江金华地区青白口纪晚期岛弧岩浆活动——来自富铌辉长岩和高镁闪长岩锆石U-Pb年龄和地球化学证据. 地质通报, 34(8): 1550-1561.
金廷福, 李佑国, 费光春, 冯裕昌, 周恒, 沙小保, 吴愧. 2017. 扬子地台西南缘大红山群红山组的锆石U-Pb年代学研究——对其原岩形成时代和变质时代的再限定. 地质论评, 63(4): 894-910.
赖绍聪, 李永飞, 秦江锋. 2007. 碧口群西段董家河蛇绿岩地球化学及LA-ICP-MS锆石U-Pb定年. 中国科学(D辑), 37.
李承东, 赵利刚, 常青松, 许雅雯, 王世炎, 许腾. 2017. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论. 中国地质, 44(3): 511-525.
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma:来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108-120.
李怀坤, 张传林, 相振群, 陆松年, 张健, 耿建珍, 瞿乐生, 王志先. 2013. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义. 岩石学报, 29(2): 673-697.
李怀坤, 苏文博, 周红英, 相振群, 田辉, 杨立公, Huff WD, Ettensohn FR. 2014. 中-新元古界标准剖面蓟县系首获高精度年龄制约——蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012.
李江海, 侯贵廷, 钱祥麟, Halls HC, Davis D. 2001. 恒山中元古代早期基性岩墙群的单颗粒锆石U-Pb年龄及其克拉通构造演化意义. 地质论评, 47(3): 234-238.
李婷. 2010. 硕士学位论文. 西安: 长安大学.
李献华, 周国庆, 赵建新, Fanning CM, Compston W. 1994. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义. 地球化学, 32(2): 125-131.
李献华, 刘颖, 涂湘林, 刘海臣, 凌湘寿. 1996. S型花岗岩中锆石U-Pb同位素体系的多阶段演化及其年代学意义——以桂北三防岩体为例. 矿物学报, 16(2): 170-177.
李献华, 王一先, 赵振华, 陈多福, 张宏. 1998. 闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学. 地球化学, 27(4): 327-334.
李献华. 1999. 广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义. 地球化学, 28(1): 1-9.
李献华, 李寄嵎, 刘颖, 陈多福, 王一先, 赵振华. 1999. 华夏古陆古元古代变质火山岩的地球化学特征及其构造意义. 岩石学报, 15(3): 364-371.
李献华, 周汉文, 李正祥, 刘颖. 2001a. 扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征. 地球化学, 30(4): 315-322.
李献华, 李正祥, 葛文春, 周汉文, 李武显, 刘颖. 2001b. 华南新元古代花岗岩的锆石U-Pb年龄及其构造意义. 矿物岩石地球化学通报, 20(4): 271-273.
李献华, 李正祥, 周汉文, 刘颖. 2002. 皖南新元古代花岗岩的SHRIMP锆石石U-Pb年代学元素地球化学和Nd同位素研究. 地质论评, 48(增刊): 8-16.
李源, 颉颃强, 宋志瑞. 2017. 赣东北蛇绿岩和张村岩群的锆石SHRIMP U-Pb年龄及对江南造山带构造演化的讨论. 地质论评, 63(4): 854-868.
林广春. 2010. 川西石棉花岗岩的锆石U-Pb年龄和岩石地球化学特征:岩石成因与构造意义. 地球科学, 35(4): 611-620.
凌文黎, 高山, 程建萍, 江麟生, 袁洪林, 胡兆初. 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387-396.
刘仁燕, 牛宝贵, 和政军, 任纪舜. 2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年. 地质通报, 30(2-3): 448-460.
刘树文, 闫全人, 李秋根, 王宗起. 2009. 扬子克拉通西缘康定杂岩中花岗质岩石的成因及其构造意义. 岩石学报, 25(8): 1883-1896.
柳晓艳, 蔡剑辉, 阎国翰. 2011. 华北克拉通南缘熊耳群眼窑寨组次火山岩岩石地球化学与年代学研究及其意义. 地质学报, 85(7): 1134-1145.
刘贻灿, 刘理湘, 古晓锋, 李曙光, 刘佳, 宋彪. 2010. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义. 科学通报, 55(24): 2391-2399.
陆松年, 李怀坤, 李惠民, 宋彪, 王世英, 周红英, 陈志宏. 2003a. 华北克拉通南缘龙王碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762-768.
陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛广华, 相振群. 2003b. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社.
陆松年, 陈志宏, 相振群. 2008. 泰山世界地质公园古老侵入岩系年代格架. 北京: 地质出版社.
罗新荣, 石福品, 樊卫东, 罗新涛. 2007. 新疆库鲁克塔格新元古代花岗岩年龄和地球化学. 资源调查与环境, 28(4): 235-241.
马大铨, 黄香定, 陈哲培, 肖志发, 张旺驰, 钟盛中. 1997. 海南省抱板群研究的新进展. 中国区域地质, 16(2): 130-136.
马大铨, 杜绍华, 肖志发. 2002. 黄陵花岗岩基的成因. 岩石矿物学杂志, 21(2): 151-161.
马铁球, 陈立新, 柏道远, 周柯军, 李纲, 王先辉. 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65-73.
孟庆秀, 张健, 耿建珍, 张传林, 黄文成. 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义. 中国地质, 40(1): 191-216.
牛宝贵, 和政军, 任纪舜, 王军, 邓平. 2006. 秦岭地区陡岭-小茅岭隆起带西段几个岩体的SHRIMP锆石U-Pb测年及其地质意义. 地质论评, 52(6): 826-835.
裴福萍, 叶轶凡, 王枫, 曹花花, 路思明, 杨德彬. 2013. 吉林通化地区中元古代辉绿岩墙的发现及其地质意义. 吉林大学学报(地球科学版), 43(1): 110-118.
裴先治, 李佐臣, 丁三平, 李瑞保, 冯建赟, 孙雨, 张亚峰, 刘战庆. 2009. 扬子地块西北缘轿子顶新元古代过铝质花岗岩:锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义. 地学前缘, 16(3): 231-249.
彭明兴, 钟春根, 左琼华, 朱婉明, 杨世文, 黄迅. 2012. 东天山卡瓦布拉克地区片麻状花岗岩形成时代及地质意义. 新疆地质, 30(1): 12-18.
彭楠, 旷红伟, 柳永清, 耿元生, 夏晓旭, 王玉冲, 陈骁帅, 郑行海. 2018. 华北克拉通南缘汝阳群大型具刺疑源类时代再厘定及早期真核生物群演化意义. 古地理学报, 20(4): 595-608.
彭澎, 王欣平, 周小童, 王冲, 孙风波, 苏向东, 陈亮, 郭敬辉, 翟明国. 2018. 8.1亿年千里山基性岩墙群的厘定及其对华北克拉通西部地质演化的启示. 岩石学报, 34(4): 1191-1203.
彭润民, 翟裕生, 王建平, 陈喜峰, 刘强, 吕学阳, 石永兴, 王刚, 李慎斌, 王立功, 马玉涛, 张鹏. 2010. 内蒙狼山新元古代酸性火山岩的发现及其地质意义. 科学通报, 55(26): 2611-2620.
秦切, 郭瑞清.张晓帆, 展新忠, 郭寅. 2012. 新疆库鲁克塔格兴地Ⅳ号辉长-闪长岩体U-Pb锆石定年及地质意义. 新疆大学学报(自然科学版), 29(2): 240-248.
任光明, 庞维华, 潘桂棠, 王立全, 孙志明, 尹福光, 崔晓庄, 王冬兵, 邓奇, 任飞. 2017. 扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义. 地质通报, 36(11): 2061-2075.
任康绪, 阎国翰, 蔡剑辉, 牟保磊, 李凤棠, 王彦斌, 储著银. 2006. 华北克拉通北部地区古-中元古代富碱侵入岩年代学及意义. 岩石学报, 22(2): 377-386.
沈渭洲, 高剑峰, 徐士进, 谭国全, 杨铸生, 杨七文. 2003. 四川盐边冷水箐岩体的形成时代和地球化学特征. 岩石学报, 19(1): 27-37.
师江朋, 杨德彬, 霍腾飞, 杨浩田, 许文良, 王枫. 2017. 华北克拉通南缘A型花岗岩的年代学和Nd-Hf同位素组成:对古元古代晚期伸展事件的制约. 岩石学报, 33(10): 3042-3056.
施文翔, 廖群安, 胡远清, 杨再峰. 2010. 东天山地区中天山地块内中元古代花岗岩的特征及地质意义. 地质科技情报, 29(1): 29-37.
苏文博, 李怀坤, 徐莉, 贾松海, 耿建珍, 周红英, 王志宏, 蒲含勇. 2012. 华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束. 地质调查与研究, 35(2): 96-108.
孙海清, 黄建中, 江新胜, 罗来, 马慧英, 伍皓. 2013. 扬子东南缘"南华纪"盆地演化——来自新元古代花岗岩的年龄约束. 中国地质, 40(6): 1725-1735.
覃小锋, 潘元明, 李江, 李容森, 周府生, 胡贵昂, 钟锋运. 2006. 桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学. 地质通报, 25(5): 553-559.
王冲, 彭澎, 王欣平, 李秋立, 徐希阳, 杨书艳. 2016. 华北太行岩墙群斜锆石生长世代和U-Pb年龄及其对岩浆演化的启示. 岩石学报, 32(3): 646-658.
王存智, 邢光福, 余明刚, 黄志忠, 洪文涛, 赵希林, 周效华, 段政, 鞠冬梅. 2015. 赣东北蛇绿岩形成时代及构造环境——樟树墩辉长岩锆石U-Pb年龄、Hf同位素和地球化学约束. 岩石矿物学杂志, 34(3): 309-321.
王冬兵, 孙志明, 尹福光, 王立全, 王保弟, 张万平. 2012. 扬子地块西缘河口群的时代:来自火山岩锆石LA-ICP-MS U-Pb年龄的证据. 地层学杂志, 36(3): 630-635.
王冬兵, 尹福光, 孙志明, 王立全, 王保弟, 廖世勇, 唐渊, 任光明. 2013. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 32(4): 617-630.
王飞, 王博, 舒良树. 2010. 塔里木西北缘阿克苏地区大陆拉斑玄武岩对新元古代裂解事件的制约. 岩石学报, 26(2): 547-558.
王惠初, 相振群, 赵凤清, 李惠民, 袁桂邦, 初航. 2012. 内蒙古固阳东部碱性侵入岩:年代学、成因与地质意义. 岩石学报, 28(9): 2843-2854.
王磊, 龙文郭, 徐德明, 徐旺春, 周岱, 金鑫镖, 黄皓, 张鲲. 2015. 云开地区变质基底锆石U-Pb年代学及对华夏地块Grenvillian事件的指示. 地学前缘, 22(2): 25-40.
王敏, 戴传固, 王雪华, 陈建书, 马会珍. 2011. 贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约. 地学前缘, 18(5): 213-223.
王敏, 戴传固, 陈建书, 王雪华, 马会珍. 2016. 贵州省梵净山区新元古代岩浆活动的年代学格架及其大地构造意义. 中国地质, 43(3): 843-856.
王生伟, 蒋小芳, 杨波, 孙晓明, 廖震文, 周清, 郭阳, 王子正, 杨斌. 2016. 康滇地区元古宙构造运动Ⅰ:昆阳陆内裂谷、地幔柱及其成矿作用. 地质论评, 62(6): 1353-1377.
王涛, 李伍平, 王晓霞. 1998. 秦岭杂岩牛角山花岗质片麻岩体锆石U-Pb同位素年龄及其地质意义. 中国区域地质, 17(3): 262-265.
王孝磊, 周金城, 邱检生, 张文兰, 柳小明, 张桂林. 2006. 桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326-342.
王玉玺, 王金荣, 周小玲, 王怀涛, 第鹏飞, 王晓伟, 陈万峰. 2017. Columbia超大陆裂解:来自塔里木克拉通东南缘大红山A型花岗岩的证据. 地质学报, 91(11): 2369-2386.
王子正, 郭阳, 杨斌, 王生伟, 孙晓明, 侯林, 周邦国, 廖震文. 2013. 扬子克拉通西缘1.73Ga非造山型花岗斑岩的发现及其地质意义. 地质学报, 87(7): 931-942.
伍家善, 耿元生, 沈其韩, 万渝生, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社.
吴荣新, 郑永飞, 吴元保. 2005. 皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究. 高校地质学报, 11(3): 364-382.
吴荣新, 郑永飞, 吴元保. 2007. 皖南新元古代井潭组火山岩锆石U-Pb定年和同位素地球化学研究. 高校地质学报, 13(2): 282-296.
夏林圻, 夏祖春, 李向民, 马中平, 徐学义. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1-29.
夏林圻, 夏祖春, 马中平, 徐学义, 李向民. 2009. 南秦岭中段西乡群火山岩岩石成因. 西北地质, 42(2): 1-37.
相振群, 李怀坤, 陆松年, 周红英, 李惠民, 王惠初, 陈志宏, 牛健. 2012. 泰山地区古元古代末期基性岩墙形成时代厘定——斜锆石U-Pb精确定年. 岩石学报, 28(9): 2831-2842.
相振群. 2014.华北克拉通中元古代岩浆事件群与成矿作用.博士学位论文.北京:中国地质大学(北京), 1-227
辛后田, 赵凤清, 罗照华, 刘永顺, 万渝生, 王树庆. 2011. 塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义. 地质学报, 85(12): 1977-1993.
辛后田, 刘永顺, 罗照华, 宋顺昌, 王树庆. 2013. 塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生:米兰岩群和TTG片麻岩的地球化学及年代学约束. 地学前缘, 20(1): 240-259.
新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社.
徐备, 寇晓威, 宋彪, 卫巍, 王宇. 2008. 塔里木板块上元古界火山岩SHRIMP定年及其对新元古代冰期时代的制约. 岩石学报, 24(12): 2857-2862.
许德如, 夏斌, 李鹏春, 张玉泉, 陈广浩, 马驰. 2006. 海南岛北西部前寒武纪花岗质岩SHRIMP锆石U-Pb年龄及地质意义. 大地构造与成矿学, 30(4): 510-518.
徐学义, 陈隽璐, 李向民, 马中平, 王洪亮, 夏林圻, 夏祖春, 李平. 2010. 西乡群三郎铺组和大石沟组火山岩U-Pb定年及岩石成因研究. 岩石学报, 26(2): 617-632.
徐勇航, 赵太平, 彭澎, 翟明国, 漆亮, 罗彦. 2007. 山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义. 岩石学报, 23(5): 1123-1132.
薛怀民, 马芳, 宋永勤, 谢亚平. 2010. 江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束. 岩石学报, 26(11): 3215-3244.
薛怀民, 马芳, 宋永勤. 2012. 江南造山带西南段梵净山地区镁铁质-超镁铁质岩:形成时代、地球化学特征与构造环境. 岩石学报, 28(9): 3015-3030.
颜丹平, 周美夫, 宋鸿林, Malpas J. 2002. 华南在Rodinia古陆中位置的讨论——扬子地块西缘变质岩浆杂岩证据及其与Seychelles地块的对比. 地学前缘, 9(4): 249-255.
闫全人, 王宗起, 闫臻, 向忠金, 陈隽璐, 王涛. 2007. 秦岭勉略构造混杂带康县——勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义. 地质论评, 53(6): 755-764.
杨斌, 王伟清, 董国臣, 郭阳, 王子正, 侯林. 2015. 扬子地台西南缘康滇断隆带海孜双峰式侵入岩体年代学、地球化学及其地质意义. 岩石学报, 31(5): 1361-1373.
杨崇辉, 耿元生, 杜利林, 任留东, 王新社, 周喜文, 杨铸生. 2009. 扬子地块西缘Grenville期花岗岩的厘定及其地质意义. 中国地质, 36(3): 647-657.
杨红, 刘福来, 杜利林, 刘平华, 王舫. 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义. 岩石学报, 28(9): 2994-3014.
杨进辉, 吴福元, 柳小明, 谢烈文. 2005. 北京密云环斑花岗岩锆石U-Pb年龄和Hf同位素及其地质意义. 岩石学报, 21(6): 1633-1644.
杨朋涛, 刘树文, 李秋根, 王宗起, 王伟, 白翔. 2012. 南秦岭铁瓦殿岩体的成岩时代及地质意义. 地质学报, 86(9): 1525-1540.
叶霖, 称增涛, 陆丽娜, 高伟, 潘自平. 2009. 陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学. 岩石学报, 25(11): 2866-2876.
郁建华, 傅会芹, 张凤兰, 万方晓, 哈巴拉I, 拉莫OT, 发斯乔基M. 1996.华北地台北部非造山环斑花岗岩及有关岩石.北京:中国科学技术出版社, 1-182
于文佳, 罗照华, 刘永顺, 孙君一, 李重, 王峥, 唐泽勋. 2017. 拉拉铁铜矿床成因:来自隐爆角砾岩结构定量化和锆石U-Pb年代学的证据. 岩石学报, 33(3): 925-941.
翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
张传林, 王中刚, 沈加林, 毕华, 郭坤一, 王爱国. 2003. 西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征. 岩石学报, 19(3): 523-529.
张传林, 叶现韬, 李怀坤. 2014. 新疆塔里木北缘新元古代最晚期岩浆事件. 地质通报, 33(5): 606-613.
张传恒, 高林志, 史晓颖, 韩瑶, 刘耀明. 2014. 梵净山群火山岩锆石SHRIMP年龄及其年代地层学意义. 地学前缘, 21(2): 139-143.
张恒, 李廷栋, 高林志, 耿树方, 丁孝忠, 刘燕学, 寇彩化. 2015. 赣东北中元古界铁沙街组石英角斑岩和流纹岩锆石SHRIMP U-Pb年龄、Hf同位素及地球化学特征. 地质论评, 61(1): 65-78.
张健, 张传林, 李怀坤, 叶现韬, 耿建珍, 周红英. 2014. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境:来自锆石U-Pb年龄、Hf同位素的新证据. 岩石学报, 30(11): 3357-3365.
张健, 田辉, 李怀坤, 苏文博, 周红英, 相振群, 耿建珍, 杨立功. 2015. 华北克拉通北缘Columbia超大陆裂解事件:来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据. 岩石学报, 31(10): 3129-3146.
张健, 李怀坤, 张传林, 田辉, 钟焱, 叶现韬. 2018. 塔里木克拉通东北缘Columbia超大陆裂解事件:库鲁克塔格地区辉绿岩床的地球化学、锆石U-Pb年代学和Hf-O同位素证据. 地学前缘, 25(6): 106-123.
张建新, 李怀坤, 孟繁聪, 相振群, 于胜尧, 李金平. 2011. 塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石U-Pb年代学的制约. 岩石学报, 27(1): 23-46.
张立敏, 王岳军, 李庶波, 张玉芝. 2017. 海南公爱地区抱板群花岗片麻岩的年代学、地球化学及其构造意义. 大地构造与成矿学, 41(2): 396-411.
张拴宏, 赵越, 叶浩, 胡健民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490.
张拴宏, 赵越. 2018. 华北克拉通北部13.3~13.0亿年基性大火成岩省与稀土-铌成矿事件.地学前缘. 地学前缘, 25(5): 34-50.
张彦杰, 周效华, 廖圣兵, 张晓东, 武彬, 王存智, 余明刚. 2010. 皖赣鄣公山地区新元古代地壳组成及造山过程. 地质学报, 84(10): 1401-1427.
赵凤清, 赵文平, 左义成, 李宗会, 薛克勤. 2006. 陕南汉中地区新元古代岩浆岩U-Pb年代学. 地质通报, 25(3): 383-388.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
赵太平, 陈福坤, 翟明国, 夏斌. 2004. 河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义. 岩石学报, 20(3): 685-690.
周金城, 王孝磊, 邱检生. 2008. 江南造山带是否格林威尔期造山?——关于华南前寒武纪地质的几个问题. 高校地质学报, 14(1): 64-72.
周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66-73.
祝禧艳, 陈福坤, 王伟, Pham TH, 王芳, 张福勤. 2008. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄. 地球学报, 29(6): 817-829.
卓皆文, 江新胜, 王剑, 崔晓庄, 伍皓, 熊国庆, 陆俊泽, 江卓斐. 2015. 川西新元古代苏雄组层型剖面底部豆状熔结凝灰岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 沉积与特提斯地质, 35(4): 85-91.