岩石学报  2020, Vol. 36 Issue (7): 2116-2126, doi: 10.18654/1000-0569/2020.07.13   PDF    
氧逸度对攀枝花岩体成岩成矿作用的制约:来自锆石微量元素的证据
罗雕, 侯通, 潘荣昊     
中国地质大学地质过程与矿产资源国家重点实验室, 北京 100083
摘要: 本文报道了攀枝花钒钛磁铁矿含矿岩体边缘岩相带中的苦橄玢岩和岩体中淡色辉长岩的锆石微量元素特征。结果表明二者所含锆石都具有明显的Ce正异常和Eu负异常,以及轻稀土元素亏损和重稀土元素富集的特征,其Th/U比值为0.35~3.23,都属于典型的岩浆锆石。本次研究利用最新实验标定的锆石氧逸度计对苦橄玢岩和淡色辉长岩的氧逸度进行了估算。估算结果表明苦橄玢岩和淡色辉长岩均具较高的氧逸度,分别为QFM+0.3~QFM+2.5和QFM+0.7~QFM+3(QFM为石英-铁橄榄石-磁铁矿缓冲剂)。苦橄玢岩作为来自深部岩浆房侵入到攀枝花主岩体的富橄榄石"晶粥体",其高氧逸度的特征反映出攀枝花岩体的原生岩浆以及地幔源区是相对氧化的,而导致这一结果的原因很可能与古老俯冲事件导致的地幔交代作用有关。通过地幔柱-岩石圈相互作用,在较高氧逸度下发生部分熔融形成了铁质苦橄岩及其堆晶作用产物苦橄玢岩。此外,淡色辉长岩的氧逸度也显示出较高的特征,这说明这种氧化的特征很可能是贯穿了整个成岩过程的,对钒钛磁铁矿成矿,特别是导致铁钛氧化物早期结晶起到了不可忽视的作用。
关键词: 峨眉山大火成岩省    锆石    氧逸度    苦橄玢岩    淡色辉长岩    
Constraints of oxygen fugacity on the formation of the Panzhihua layered intrusion and its mineralization: Evidence from trace element in zircon
LUO Diao, HOU Tong, PAN RongHao     
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract: This study reports trace elemental characterisitics of zircons from leucogabbro and picritic porphyry in the marginal zone of the Panzhihua layered intrusion which hosted Fe-Ti oxide deposit. The studied zircons are of magmatic origination and characterized with positive Ce anomalies, negative Eu anomalies, depletion of light rare earth elements and enrichment of heavy rare earth elements, with Th/U ratios ranging from 0.35 to 3.23. The oxygen fugacity values of the picritic porphyry and the leucogabbro are estimated by the latest experimentally calibrated zircon oxybarometer. The results show that both of the oxygen fugacities of the picritic porphyry and the leucogabbro are high, ranging from QFM+0.3~QFM+2.5 and QFM+0.7~QFM+3 (QFM is quartz-fayalite-magnetite buffer), respectively. According to previous studies, the Panzhihua picritic porphyry was crystallized from an olivine crystal mush which had derived from a deep magma chamber that intruded into the Panzhihua layered intrusion. The high oxygen fugacity of the studied samples reflects that the primary magma and mantle source of the Panzhihua layered intrusion is relatively oxidized, which is probably related to the mantle metasomatism caused by the ancient subduction events. The interaction of the lithospheric mantle with the mantle plume leads to partial melting under the high oxygen fugacity to form the ferropicritic primary melts and its cumulation product of the picritic porphyry. The leucogabbro also shows high oxygen fugacity characteristics, which indicates the layered intrusion and Fe-Ti oxide mineralization are formed under oxidizing condition. Therefore, such an oxidizing condition could account for the early crystallization of Fe-Ti oxides and thus plays an important role in the Fe-Ti oxide mineralization.
Key words: Emeishan Large Igneous Province    Zircon    Oxygen fugacity    Picritic porphyry    Leucogabbro    

氧逸度是决定岩浆性质的重要物理化学参数之一。它通过控制岩浆熔体中的变价元素,尤其是铁的氧化还原状态,来改变矿物的结晶顺序和成分(Canil,1997Kilinc et al., 1983Li and Lee, 2004Botcharnikov et al., 2008Frost and McCammon, 2008Zhang et al., 2017Armstrong et al., 2019),从而决定了岩浆的演化路径,比如是向富Si贫Fe的Bowen趋势演化(Bowen,1928)还是向富Fe贫Si的Fenner趋势演化(Fenner,1929)。目前氧逸度计算方法主要有:(1)变价元素不同价态之间的比值,最常用的元素是Fe、Cr和V等(Kress and Carmichael, 1991Jayasuriya et al., 2004Putirka,2016);(2)变价元素在矿物/熔体间的分配系数,比如橄榄石中的V、锆石中的Eu和Ce(Canil,1997Gaetani and Grove, 1997Mallmann and O'Neill, 2009, 2013);(3)熔体微量元素比值,比如V/Sc、Zn/FeT、V/Yb等,但是对于侵入岩获取熔体成分非常困难,而且V/Sc比值的方法也仅适用于演化程度较低的幔源岩浆(Lee et al., 2005, 2010Laubier et al., 2014柏中杰等,2019);(4)矿物化学平衡,比如Fe-Ti氧化物共生矿物和尖晶石-橄榄石矿物对等(Buddington and Lindsley, 1964Frost et al., 1988Ballhaus et al., 1990Frost and Lindsley, 1992)。

攀西地区超大型Fe-Ti-V的矿床主要赋存于层状岩体中,这些岩体是研究峨眉山大火成岩省成岩成矿过程的重要媒介。早期对攀枝花岩体及相关岩浆岩的研究,不仅加深了对其成因和成矿作用的认识,而且揭示了岩浆系统的复杂性,即在岩浆源区特征、岩浆系统性质、岩浆-围岩相互作用以及成矿关键因素等方面存在较大争议(Zhou et al., 2005, 2013Ganino et al., 2008, 2013Pang et al., 2008a, b2009,2010,2015Zhang et al., 2009Hou et al., 2012, 2013Howarth and Prevec, 2013; Howarth et al., 2013Song et al., 2013王坤等, 2013; Tang et al., 2017Wang et al., 2018, 2020Bai et al., 2019)。和全球其他层状岩体相比,在攀枝花岩体的形成过程中,铁钛氧化物开始饱和结晶的时间较早(Pang et al., 2009Song et al., 2013),很多研究将其归因于岩浆的氧逸度较高。具体来说,Pang et al.(2008a)使用QUILF软件对攀枝花岩体下部岩相带进行计算,结果显示钛磁铁矿-橄榄石-单斜辉石在~950℃,QFM+1~QFM+1.5的条件下达到平衡。Ganino et al.(2008)Ganino et al.(2013)根据C-H-O-Sr同位素研究认为岩浆受到了碳酸盐围岩的混染,大量的CO2进入到岩浆中,使氧逸度从QFM增加到QFM+1.5,导致铁钛氧化物结晶形成矿床。Bai et al.(2019)研究认为攀枝花岩体的母岩浆成分与同时代喷发的二滩高钛玄武岩类似,通过对峨眉山苦橄岩中共存的橄榄石和尖晶石成分得到了高钛玄武质岩浆的氧逸度为QFM+1~QFM+2.5,提出源区是较氧化的,并且攀枝花岩体继承了地幔源区高氧逸度的特征。因此,较高氧逸度的特征是由岩浆演化,比如岩浆-围岩相互作用导致的,还是母岩浆氧逸度本身就很高导致的呢?该问题的约束对于我们进一步认识攀枝花层状岩体的成岩过程及钒钛磁铁矿矿床的成因机制具有重要意义。

铁钛氧化物常常被用来估算岩浆的氧逸度,但是由于氧化物对环境变化的反应灵敏,所以即使在火山体系中,铁钛氧化物的成分也很难保留住岩浆房中的氧化还原条件等信息(Venezky and Rutherford, 1997)。由于攀枝花岩体属于缓慢降温的侵入岩体系,铁钛氧化物本身早已经发生成分的再平衡,使用它们进行氧逸度估算时需要先估算原生铁钛氧化物的成分。但是,在岩石薄片二维尺度上进行原生铁钛氧化物的成分的精确恢复是很难的。因此,本文使用LA-ICP-MS对攀枝花兰家火山段边缘岩相带中的苦橄玢岩和岩体上部淡色辉长岩中分选出的锆石的微量元素数据进行了测试分析,使用Loucks et al.(2020)最新实验标定的,应用范围较广的锆石氧逸度计来约束来自深部岩浆房的苦橄玢岩和攀枝花主岩体结晶晚期形成的淡色辉长岩的氧逸度,并据此来探讨原生岩浆和成岩过程中的氧化还原条件,及其对成岩成矿的约束作用。

1 地质背景 1.1 区域地质

峨眉山大火成岩省位于扬子板块西缘,在空间上分为内带、过渡带和外带三部分(He et al., 2003),主要由大规模的大陆溢流玄武岩以及与其时空紧密伴生的镁铁质-超镁铁质层状侵入体和正长质、花岗质岩体组成。其中,溢流玄武岩是峨眉山大火成岩省火山岩序列的主体,覆盖中国西南云、贵、川三省,最南可至越南北部,出露面积达5×105km2,是~260Ma峨眉山地幔柱作用的产物(Chung and Jahn, 1995Xu et al., 2001Zhou et al., 2002aHou et al., 2012)。

扬子板块基底由被新元古代(~800Ma)康定花岗岩侵入的中元古代花岗质片麻岩和变质沉积岩组成(Zhou et al., 2002b),新元古代到晚二叠系地层不整合覆盖在基底之上。其二叠系地层岩性主要为碳酸盐岩和玄武岩(Yan et al., 2003),三叠系地层包括陆相和海相沉积岩,而侏罗系到白垩系地层则完全是陆相碎屑岩。扬子地块西缘和北缘出现新元古代岛弧特征的深成岩-变质岩组合,被认为与860~760Ma期间大洋岩石圈俯冲到扬子地块下有关(Zhou et al., 2002a)。由于新生代印度-欧亚大陆俯冲碰撞造山作用,在峨眉山大火成岩省中部攀西地区,发育一系列南北向断裂,沿着这些断裂出露大量的镁铁质-超镁铁质层状岩体,如攀枝花、红格、白马、力马河和新街岩体,大部分岩体都赋存钒钛磁铁矿矿床,个别岩体赋存铂族元素矿床(图 1),大部分的岩体锆石U-Pb谐和年龄约为260Ma(Pang et al., 2010)。

图 1 攀西地区地质简图据 (侯通,2014修改) Fig. 1 Simplified geological map of Panxi region (modified after Hou, 2014)
1.2 攀枝花层状岩体

攀枝花层状岩体侵位于新元古代灯影组白云质灰岩/大理岩中,岩体长约19km,最厚处超过2km,在攀枝花市附近出露面积~30km2。在1936~1940年发现了赋存于攀枝花层状岩体中的钒钛磁铁矿矿床,其开采从1967年一直持续到现在。该矿床受后期断裂作用被分割为7个矿段,矿石储量为1333Mt,平均品位为Fe ~33%、TiO2 ~12%、V2O5 ~0.3%(马玉孝等,2003)。

尽管与新生代印度-欧亚碰撞有关的区域构造活动广泛,但除了局部沿剪切带和边缘带之外,攀枝花岩体固化后几乎没有遭受变形或变质作用。基于岩石矿物组合、结构构造以及铁钛氧化物含量,将岩体划分为4个岩相带,自上而下分别为:淡色辉长岩相带;含少量钒钛磁铁矿矿层的层状辉长岩带;含有大量钒钛磁铁矿矿层的辉长岩相带;边缘岩相带。岩体上部的淡色辉长岩相带厚500~1500m,主要由没有被矿化的淡色辉长岩组成。淡色辉长岩为细粒结构,由大量粗粒斜长石(最长达5mm)和适量单斜辉石以及少量角闪石和磁铁矿组成(Hou et al., 2012)。在岩体中,钒钛磁铁矿矿层主要位于岩体中下部,向上逐渐减少。矿物成分在垂向上也展示出有规律的变化,比如,橄榄石的Fo值和斜长石的An值向上逐渐变小,Fo从82减小到63,An从68减小到40,单斜辉石的成分则变化不大,为En41-46Fs10-17Wo47-48(Pang et al., 2009)。和世界上其他的层状岩体相比,攀枝花岩体开始饱和结晶铁钛氧化物的时间较早,具体表现就是铁钛氧化物开始结晶时橄榄石、单斜辉石和斜长石的成分相对原始,分别约为Fo=71、Mg#=79、An=69(Pang et al., 2015)。

在攀枝花矿区兰家火山段,很多苦橄玢岩岩脉呈截然接触关系侵入到灯影组白云质大理岩和由细粒辉长岩组成的岩体边缘岩相带中。岩脉宽1~5m,向上逐渐变窄并尖灭。苦橄玢岩呈现全晶质结构,主要由大小不同(0.5~5mm)、Fo值为77.4~90.4的橄榄石斑晶(含量50%~60%)和基质中细粒的橄榄石(20%)、普通辉石(15%)、黑云母和角闪石(5%)以及少量的铬尖晶石组成(Hou et al., 2013)。淡色辉长岩主要是斜长石含量比一般的辉长岩要高,处于辉长岩和斜长岩之间的过渡岩石类型。我们从两种岩石类型中都分选出了岩浆锆石,进行了U-Pb年代学的研究,得到苦橄玢岩和淡色辉长岩锆石的U-Pb谐和年龄分别为261.4±4.6Ma和259.8±0.8Ma(Hou et al., 2012, 2013)。

2 样品及分析方法

本次研究使用Hou et al.(2012, 2013)攀枝花岩体苦橄玢岩岩脉和岩体上部淡色辉长岩中锆石样品。LA-ICP-MS锆石原位微量元素分析测试是在北京中科矿研检测技术有限公司完成。激光剥蚀系统为ESI NWR 193nm,ICP-MS为Analytikjena PlasmaQuant MS Elite ICP-MS。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括大约15~20s的空白信号和45s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal完成(Liu et al., 2010)。

锆石微量元素含量利用SRM610作为外标、Si作内标的方法进行定量计算(Liu et al., 2010),微量元素的分析精度优于10%。

3 锆石微量元素分析结果

苦橄玢岩和淡色辉长岩中的锆石常呈自形(图 2),具有振荡环带和高的Th/U比值(0.35~3.23)(表 1),两者的稀土元素配分模式相似,具有Ce的正异常和Eu的负异常,轻稀土亏损、重稀土富集的特征,属于典型的岩浆锆石(图 3)。

表 1 攀枝花淡色辉长岩和苦橄玢岩中锆石微量元素含量(×10-6) Table 1 Trace elements (×10-6) in zircon from the leucogabbro and the picritic porphyry of the Panzhihua layered intrusion

图 2 淡色辉长岩和苦橄玢岩锆石阴极发光图像 编号1和4来自于苦橄玢岩,其余来自于淡色辉长岩 Fig. 2 CL images of zircons from the picritic porphyry and leucogabbro No.1 and No.4 from picritic porphyry and others from leucogabbro

图 3 锆石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989) Fig. 3 Chondrite-normalized REE patterns for the zircon (normalization values after Sun and McDonough, 1989)

苦橄玢岩中锆石的La和Pr元素含量略高于淡色辉长岩(表 1)。苦橄玢岩和淡色辉长岩的年龄非常接近,具有相似的全岩微量元素配分模式和Sr-Nd同位素成分,表明它们具有相同的源区,苦橄玢岩代表了深部岩浆房侵入到攀枝花主岩体的富橄榄石的“晶粥体”,淡色辉长岩代表了深部岩浆中经历了大规模分异后侵位到浅部岩浆房中演化到晚期的产物(Hou et al., 2012, 2013)。

4 锆石的温度计和氧逸度计

锆石的微量元素组成能够提供其形成环境、反应母岩浆的起源和成分演化(Hoskin et al., 2000Belousova et al., 2006)。锆石中的Ti含量可以用作为温度计来估算岩浆温度(Watson and Harrison, 2005Watson et al., 2006Ferry and Watson, 2007),目前应用较广的是由Ferry and Watson(2007)提出的的锆石钛温度计:

(1)

等式左边为锆石中的Ti含量,等式右边T是锆石结晶温度的绝对值,αSiO2αTiO2分别代表了SiO2、TiO2的活度,本研究采用αSiO2=0.6和αTiO2=0.7进行计算,此外,锆石中Ce的分配系数受氧逸度影响很大(Burnham and Berry, 2012),锆石的可以用做氧逸度计,Trail et al.(2012)曾经通过实验标定得到了花岗质熔体中锆石与熔体氧逸度之间的经验公式:

(2)

此处是指锆石的Ce分配系数异常,fO2是岩浆的氧逸度,T是绝对温度,由于基本等于(Trail et al., 2012),可以用球粒陨石标准化后的Ce异常值来代替公式中的值,即= ,其中CeN、LaN、PrN表示球粒陨石标准化后的值。但是这一公式只适用于花岗质熔体中的锆石,能否应用到其他熔体成分还需要进一步研究(Trail et al., 2012)。除此以外,在使用SIMS或者LA-ICP-MS进行分析时,单个锆石的La和Pr含量常常接近或者低于检测线,常常导致计算出来的氧逸度范围很大,给地质解释带来困难。

最近,Loucks et al.(2020)发现锆石中的Ce/U与U/Ti比值之间遵循如下关系:,利用热力学公式推导得到:

(3)

使用来自不同成分岩浆共85个样品中的1042个锆石微量元素数据进行回归分析得到:

(4)

等式左边logfO2(sample)-logfO2(FMQ)为样品氧逸度相对于QFM缓冲剂的值,也可以表达为ΔQFM,等式右边是锆石的Ce、Ti和Ui含量,不需要单独测定结晶的温度、压力或者母熔体成分,其中Ui代表锆石结晶时U的含量,通过238U和235U的放射性衰变常数和锆石结晶年龄可以得到,公式为Ui=U×e1.98173×10-4×t, 其中U为测试分析中锆石U的含量,t是锆石结晶年龄,单位为百万年。新的氧逸度计公式的相关系数R=0.963,标准误差为0.6个对数单位,适用的岩石类型范围很广,可以涵盖从金伯利岩到流纹岩、拉斑玄武岩、埃达克岩、闪长岩以及几乎所有准铝质、过铝质和过碱性的岩浆,公式的氧逸度的适用范围为QFM-4.9~QFM+2.9。

为了验证这新旧两个公式的准确性,我们使用Li et al.(2012)文章中报道的西藏玉龙二长花岗斑岩中锆石微量元素数据进行试验,温度使用的是Ferry and Watson(2007)锆石Ti温度计。结果显示Trail et al.(2012)氧逸度公式计算出来的氧逸度值变化范围较大且分散,为QFM-4.6~QFM+7.3(图 4a),计算得到了很多非常不合理的氧逸度值。然而,针对同样的锆石成分,使用最新的Loucks et al.(2020)的氧逸度公式计算出来的氧逸度值比较集中,为QFM-0.1~QFM+3.7,平均值为QFM+1.9(图 4b)。与前人通过角闪石得到的氧逸度值为NNO+0.6~NNO+2.3很接近(Huang et al., 2019)。使用Trail et al.(2012)公式对本文获得的锆石微量元素数据计算得到了变化范围很大的氧逸度值(QFM-7.7~QFM+3.8,图 4a),而使用Loucks et al.(2020)公式计算则得到了变化范围较窄的氧逸度值(QFM+0.1~QFM+3.0)。这充分表明Loucks et al.(2020)的锆石氧逸度计更加精确,得到的结果可能更接近真实情况。

图 4 使用两种不同氧逸度公式计算结果(a,据Trail et al., 2012;b,据Loucks et al., 2020) 西藏玉龙二长花岗斑岩锆石微量元素数据引自Li et al.(2012);氧逸度缓冲线据Frost(1991) Fig. 4 The zircon trace element data of monzogranite porphyry in Yulong, Tibet from Li et al.(2012); The oxygen fugacity buffer lines after Frost(1991) The oxygen fugacity values calculated from Trail et al. (2012)(a) and Loucks et al. (2020)(b)

尽管Loucks et al.(2020)的锆石氧逸度公式对于85个样品中1042个数据回归效果很好,但是在本文涉及到的氧逸度为QFM~QFM+3之间产生了较小范围内的波动。因此,为了得到更加准确的氧逸度值,将原文数据库中位于QFM~QFM+3的49个样品共889个锆石数据点使用最小二乘法进行回归(图 5),得到对本研究而言更加合理的氧逸度计算公式:

图 5 对QFM~QFM+3的49个样品线性回归 Fig. 5 Line regression of 49 samples from QFM to QFM+3
(5)

回归得到的R2=0.65,标准误差为0.6个对数单位。因此本研究使用新回归的锆石氧逸度计来估算攀枝花苦橄玢岩和淡色辉长岩的氧逸度。

使用新回归公式5对此次研究的锆石计算出来的氧逸度值为QFM+0.3~QFM+3(图 6a),把公式5计算得到的氧逸度值与Loucks et al., (2020)得到的氧逸度值相比较(图 6b),发现在大于QFM+2时,两个公式计算出来的氧逸度基本相等,在小于QFM+2时,公式5计算出来的氧逸度值稍微高于Loucks et al.(2020)的值。总的来说,两个公式得到的结果非常接近,而公式5得到的是更为合理的内插值,因此本文使用公式5计算出来的值代表锆石结晶时的氧逸度值。

图 6 苦橄玢岩和淡色辉长岩氧逸度计算结果 (a)氧逸度计算使用公式5,温度公式计算使用Ferry and Watson(2007);(b)公式5计算结果与Loucks et al.(2020)计算结果比较 Fig. 6 Calculated oxygen fugacities of zircons from the picritic porphyry and leucogabbro (a) based on the oxybarometer of equation 5 and thermobarometer of Ferry and Watson (2007); (b) comparison between result of equation 5 and Loucks et al.(2020)
5 讨论 5.1 攀枝花苦橄玢岩和淡色辉长岩氧逸度

使用重新回归得到的锆石氧逸度公式5和Ferry and Watson(2007)分别得到苦橄玢岩锆石结晶时的氧逸度为QFM+0.3~QFM+2.5,温度为648~710℃;淡色辉长岩中锆石结晶时氧逸度为QFM+0.7~QFM+3,温度范围为603~675℃(图 5)。二者相比,苦橄玢岩和淡色辉长岩的氧逸度范围接近,后者略高,而前者的温度要高于后者。

影响锆石Ti温度计的主要因素有:压力以及TiO2和SiO2的活度。当锆石形成于压力大于1GPa时,计算出来的温度比实际温度偏低,而当压力小于1GPa时,计算温度比实际温度偏高。当锆石中Ti置换Si但是Si未达饱和时,计算温度比实际温度偏高,当锆石中Ti置换Si而Ti未达饱和时,则计算温度比实际温度偏低(Watson and Harrison, 2005Ferry and Watson, 2007Fu et al., 2008高晓英和郑永飞,2011)。本文研究的淡色辉长岩和苦橄玢岩都形成于小于1GPa的环境中(Tao et al., 2015),压力效应会使计算温度偏高,而在攀枝花整个岩浆系统都是相对富钛的,计算温度也会偏高,因此,综合分析表明,锆石计算温度较低并不是上述这些因素导致的,而是由于锆石结晶于岩浆演化的晚期,即相对低温阶段。

Jugo(2009)认为拉斑玄武质岩石的平均氧逸度条件在QFM-1到QFM+0.5之间,而我们的估算值要高于这个范围,可见攀枝花苦橄玢岩和岩体结晶时的氧逸度是偏高的。在岩浆从源区运移至地表的过程中,部分熔融、分离结晶、地壳混染、岩浆脱气等过程都有可能影响原始岩浆的氧逸度(Ballhaus,1993Bell and Simon, 2011Cottrell and Kelley, 2011Kelley and Cottrell, 2012Brounce et al., 2014; Grocke et al., 2016; Tang et al., 2018)。

在分离结晶过程中,橄榄石和斜方辉石的结晶会消耗Fe2+,导致残余熔体中的氧逸度升高,但是Ghiorso(1997)通过MELTS模拟表明分离结晶过程最多只会造成0.8个对数单位的氧逸度变化。本文中的苦橄玢岩是苦橄质岩浆在深部形成的晶粥体向上迁移并侵位到大理岩和攀枝花主岩体后形成的,它含有大量堆晶橄榄石(Hou et al., 2013),而产在主岩体上部的淡色辉长岩则经历了橄榄石的分离结晶作用,但是它们都有着高的氧逸度值。因此,分离结晶作用显然不是造成二者高氧逸度的主要原因。此外,幔源岩浆从源区上升至上地壳岩浆房的过程中可能会有地壳物质的混入,从而改变幔源岩浆的氧逸度(Carmichael,1991),比如Siberian Traps玄武岩侵入到含煤地层中,导致氧逸度下降到QFM-6(Iacono-Marziano et al., 2012)。但是Hou et al.(2013)通过微量元素比值、Re-Os和Sr-Nd同位素分析表明攀枝花兰家火山段的苦橄玢岩并没有遭受明显的地壳混染,所以地壳混染对于幔源岩浆的氧逸度影响可以忽略不计。

关于脱气作用对于岩浆氧逸度的影响,目前仍有争议,有研究认为岩浆的脱气量与残余熔体氧逸度存在正相关关系(Holloway,2004Métrich et al., 2009Bell and Simon, 2011),但也有研究表明岩浆脱气作用对于残余熔体氧逸度影响程度很有限(Ballhaus,1993Kelley and Cottrell, 2012Moussallam et al., 2014, 2019Grocke et al., 2016Waters and Lange, 2016Brounce et al., 2017)。比如,Waters and Lange (2016)通过一系列实验使用多种方法得到了脱气作用前和脱气作用后岩浆的氧逸度,发现它们之间没有明显的差异。然而,本次研究中的苦橄玢岩和淡色辉长岩皆为侵入岩,都含有一定量的原生角闪石,说明脱气作用的影响可以忽略,因此苦橄玢岩和淡色辉长岩的高氧逸度也不太可能是由岩浆脱气作用造成的。

相关实验岩石学研究表明熔融产物的氧逸度不会随着部分熔融程度的变化而变化(Chin et al., 2014),部分研究者提出部分熔融过程的硫、氢、碳、卤素等物质可以作为内部缓冲剂(Ballhaus et al., 1990Blundy et al., 1991Canil et al., 2006, 1994),使得部分熔融过程在近似开放体系中进行,从而无法改变熔融产物的氧化还原状态,所以部分熔融过程也不是造成苦橄玢岩和淡色辉长岩高氧逸度的主要因素。

综上所述,苦橄玢岩的高氧逸度很可能是继承了源区的高氧逸度条件。Bai et al.(2019)对攀枝花边缘岩相带的研究表明攀枝花岩体母岩浆的岩浆房位于地壳底部(10kbar),氧逸度为QFM+1~QFM+2.5的条件中,与我们得到的苦橄玢岩氧逸度QFM+0.3~QFM+2.5接近。苦橄玢岩作为来自深部岩浆房侵入到攀枝花主岩体的富橄榄石“晶粥体”(crystal mush;Hou et al., 2013),其高氧逸度的特征反映出地幔源区是相对氧化的,与一般的大火成岩省不同,其氧逸度特征与俯冲带是类似的。

5.2 俯冲作用导致源区高氧逸度

大量的研究表明,峨眉山大火成岩省的地幔源区可能受到了俯冲作用的影响。攀枝花、红格、白马和太和岩体的稀有气体同位素比典型的地幔柱岩浆具有明显的低3He/4He,具有古老洋壳交代的特征,表明了地幔源区存在俯冲物质(Hou et al., 2011)。Sr-Nd和Re-Os同位素研究也同样认为,攀西地区的岩石圈地幔受到了俯冲洋壳的交代作用,改造后的岩石圈地幔与上升的二叠纪峨眉山地幔柱发生相互作用产生了铁质苦橄岩(Hou et al., 2013)。Yu et al.(2017)发现峨眉山苦橄岩中的橄榄石斑晶氧同位素成分比地幔稍重,提出峨眉山苦橄岩的源区含有循环物质。Ren et al.(2017)发现峨眉山苦橄岩中橄榄石熔体包裹体的成分与辉石岩(榴辉岩)衍生熔体成分相似,橄榄石中熔体包裹体原位铅同位素成分表明源区由循环的洋壳(类似EM1)与下地幔橄榄岩(类似FOZO)混合组成。Zhu et al.(2018)提出了峨眉山大火成岩省源区中有10%~20%的循环洋壳物质的参与。Zhang et al.(2019)报道了峨眉山苦橄岩中橄榄石熔体包裹体的微量元素数据,提出地幔源区中含有84%的下地幔橄榄岩、15%的与MORB成分类似的洋壳和1%的远洋沉积物。Yang and Liu(2019)利用Zn同位素对峨眉山苦橄岩进行研究,发现有~15%的循环洋壳进入了地幔源区中,综上所述,峨眉山大火成岩省的地幔源区中含有循环洋壳的成分,而在俯冲作用过程中,俯冲板片释放的物质对地幔的交代作用可能会导致地幔区域性的氧逸度异常(Ballhaus,1993Ballhaus et al., 1991Canil et al., 1994Foley,2011Gerrits et al., 2019Moussallam et al., 2019)。

5.3 峨眉山大火成岩省氧化源区的成岩成矿意义

Zhang et al.(2009)Hou et al.(2013)强调了受古老俯冲物质交代的岩石圈地幔与二叠纪峨眉山地幔柱相互作用对形成攀西地区超大型钒钛磁铁矿矿床的重要性。Chin et al.(2014)Griffin et al.(2018)探讨了软流圈熔体在上升过程中大陆岩石圈对于其成分的影响,并得出结论,交代作用可能是改变上升熔体成分和氧逸度的重要过程。Tollan and Hermann(2019)表明弧岩浆在到达地表之前熔体与周围橄榄岩发生反应,并导致岩浆氧化。Tassara et al.(2020)通过对Deseado Massif中的二辉橄榄岩捕虏体进行研究发现较还原的岩浆在经过岩石圈地幔的时候会导致氧逸度升高。因此,当受俯冲交代作用导致氧逸度较高的岩石圈地幔与上升地幔柱相互作用时,可能会使岩浆的氧逸度进一步升高。例如,He et al.(2020)对内蒙古达里湖二辉橄榄岩包体的研究中,使用pMELTS模拟了达里湖橄榄岩和汉诺坝辉石岩在各种高fO2条件下(QFM+0~QFM+3)的部分熔融过程,结果表明,熔体中的FeOT和MgO含量随fO2的增加而增加,橄榄岩衍生熔体在QFM+1时的FeOT为12.6%~13.6%,在QFM+2.75时急剧增加至16%;辉石岩衍生熔体在QFM+1时的FeOT为15%,在QFM+2.75处也急剧增加至16%。从而证明了橄榄岩和辉石岩成分的地幔在氧化条件下发生部分熔融可以形成富Fe的地幔熔体,特别是铁质苦橄岩(He et al., 2020)。我们先前的研究得出,攀枝花岩体的原生岩浆含有>13%FeOT和~20%MgO,是典型的铁质苦橄岩岩浆(Hou et al., 2013),因此结合本次研究得到的高氧逸度值,提出攀西地区所处的扬子地块西部岩石圈地幔在新元古代被俯冲洋壳交代,导致地幔氧逸度升高,在大约260Ma时,峨眉山地幔柱与受俯冲交代的岩石圈地幔相互作用,在高的氧逸度条件下发生部分熔融作用,形成了铁质苦橄岩岩浆及其堆晶产物苦橄玢岩。苦橄玢岩与淡色辉长岩都显示出较高的氧逸度特征,而淡色辉长岩代表了深部岩浆经历了大规模分异后侵位到浅部岩浆房中的产物(Hou et al., 2012),说明这种氧化的特征可能是贯穿了整个成岩过程的,对钒钛磁铁矿成矿,特别是导致铁钛氧化物早期结晶起到了不可忽视的作用。

6 结论

(1) 使用最新实验标定的锆石氧逸度计得到攀枝花岩体兰家火山段苦橄玢岩和淡色辉长岩中锆石的氧逸度,分别为QFM+0.3~QFM+2.5和QFM+0.7~QFM+3。

(2) 苦橄玢岩高氧逸度继承自地幔源区,导致地幔源区氧化的原因可能与古老俯冲事件导致的地幔交代作用有关,受古老俯冲物质交代的岩石圈地幔与二叠纪峨眉山地幔柱相互作用,在较高氧逸度下发生部分熔融形成了铁质苦橄岩及其堆晶作用产物苦橄玢岩。

(3) 相对氧化的特征可能贯穿了整个攀枝花岩体的成岩过程,对钒钛磁铁矿成矿过程起到了不可忽视的作用。

参考文献
Armstrong K, Frost DJ, McCammon C, Rubie DC and Ballaran TB. 2019. Deep magma ocean formation set the oxidation state of Earth's Mantle. Science, 365(6456): 903-906 DOI:10.1126/science.aax8376
Bai ZJ, Zhong H, Hu RZ, Zhu WG and Hu WJ. 2019. Composition of the chilled marginal rocks of the Panzhihua layered intrusion, Emeishan Large Igneous Province, SW China:Implications for parental magma compositions, sulfide saturation history and Fe-Ti oxide mineralization. Journal of Petrology, 60(3): 619-648 DOI:10.1093/petrology/egz008
Bai ZJ, Zhong H and Zhu WG. 2019. Redox state of mantle-derived magma and constraints on the genesis of magmatic deposits. Acta Petrologica Sinica, 35(1): 204-214 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.01.16
Ballhaus C, Berry RF and Green DH. 1990. Oxygen fugacity controls in the Earth's upper mantle. Nature, 348(6300): 437-440 DOI:10.1038/348437a0
Ballhaus C, Berry RF and Green DH. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer:Implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107(1): 27-40 DOI:10.1007/BF00311183
Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle. Contributions to Mineralogy and Petrology, 114(3): 331-348 DOI:10.1007/BF01046536
Bell AS and Simon A. 2011. Experimental evidence for the alteration of the Fe3+/∑Fe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles. Geology, 39(5): 499-502 DOI:10.1130/G31828.1
Belousova EA, Griffin WL and O'Reilly SY. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:Examples from eastern Australian granitoids. Journal of Petrology, 47(2): 329-353 DOI:10.1093/petrology/egi077
Blundy JD, Brodholt JP and Wood BJ. 1991. Carbon-fluid equilibria and the oxidation state of the upper mantle. Nature, 349(6307): 321-324 DOI:10.1038/349321a0
Botcharnikov RE, Almeev RR, Koepke J and Holtz F. 2008. Phase relations and liquid lines of descent in hydrous ferrobasalt:Implications for the Skaergaard intrusion and Columbia River Flood Basalts. Journal of Petrology, 49(9): 1687-1727 DOI:10.1093/petrology/egn043
Bowen NL. 1928. The Evolution of the Igneous Rocks. Princeton: Princeton University Press
Brounce M, Stolper E and Eiler J. 2017. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 114(34): 8997-9002 DOI:10.1073/pnas.1619527114
Brounce MN, Kelley KA and Cottrell E. 2014. Variations in Fe3+/∑Fe of mariana arc basalts and mantle wedge fO2. Journal of Petrology, 55(12): 2513-2536 DOI:10.1093/petrology/egu065
Buddington AF and Lindsley DH. 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2): 310-357 DOI:10.1093/petrology/5.2.310
Burnham AD and Berry AJ. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta, 95: 196-212 DOI:10.1016/j.gca.2012.07.034
Canil D, O'Neill HSC, Pearson DG, Rudnick RL, McDonough WF and Carswell DA. 1994. Ferric iron in peridotites and mantle oxidation states. Earth and Planetary Science Letters, 123(1-3): 205-220 DOI:10.1016/0012-821X(94)90268-2
Canil D. 1997. Vanadium partitioning, the oxidation state of Archaean komatiite magmas. Nature, 389(6653): 842-845 DOI:10.1038/39860
Canil D, Johnston ST and Mihalynuk MG. 2006. Mantle redox in Cordilleran ophiolites as a record of oxygen fugacity during partial melting and the lifetime of mantle lithosphere. Earth and Planetary Science Letters, 248(1-2): 106-117 DOI:10.1016/j.epsl.2006.04.038
Carmichael ISE. 1991. The redox states of basic, silicic magmas:A reflection of their source regions?. Contributions to Mineralogy and Petrology, 106(2): 129-141 DOI:10.1007/BF00306429
Chin EJ, Lee CTA and Barnes JD. 2014. Thickening, refertilization, and the deep lithosphere filter in continental arcs:Constraints from major and trace elements and oxygen isotopes. Earth and Planetary Science Letters, 397: 184-200 DOI:10.1016/j.epsl.2014.04.022
Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892 DOI:10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
Cottrell E and Kelley KA. 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3-4): 270-282 DOI:10.1016/j.epsl.2011.03.014
Fenner CN. 1929. The crystallization of basalts. American Journal of Science, 18(105): 225-253
Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437 DOI:10.1007/s00410-007-0201-0
Foley SF. 2011. A reappraisal of redox melting in the earth's mantle as a function of tectonic setting and time. Journal of Petrology, 52(7-8): 1363-1391 DOI:10.1093/petrology/egq061
Frost BR, Lindsley DH and Andersen DJ. 1988. Fe-Ti oxide-silicate equilibria; Assemblages with fayalitic olivine. American Mineralogist, 73(7-8): 727-740
Frost BR. 1991. Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25(1): 1-9
Frost BR and Lindsley DH. 1992. Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz:Part Ⅱ. Application. American Mineralogist, 77(9-10): 1004-1020
Frost DJ and McCammon CA. 2008. The redox state of Earth's mantle. Annual Review of Earth and Planetary Sciences, 36: 389-420 DOI:10.1146/annurev.earth.36.031207.124322
Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA and Valley JW. 2008. Ti-in-zircon thermometry:Applications and limitations. Contributions to Mineralogy and Petrology, 156(2): 197-215 DOI:10.1007/s00410-008-0281-5
Gaetani GA and Grove TL. 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt:Constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61(9): 1829-1846 DOI:10.1016/S0016-7037(97)00033-1
Ganino C, Arndt NT, Zhou MF, Gaillard F and Chauvel C. 2008. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineralium Deposita, 43(6): 677-694 DOI:10.1007/s00126-008-0191-5
Ganino C, Harris C, Arndt NT, Prevec SA and Howarth GH. 2013. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China):Evidence from stable isotopes. Geoscience Frontiers, 4(5): 547-554 DOI:10.1016/j.gsf.2012.12.006
Gao XY and Zheng YF. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417-432 (in Chinese with English abstract)
Gerrits AR, Inglis EC, Dragovic B, Starr PG, Baxter EF and Burton KW. 2019. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet. Nature Geoscience, 12(12): 1029-1033 DOI:10.1038/s41561-019-0471-y
Ghiorso MS. 1997. Thermodynamic models of igneous processes. Annual Review of Earth and Planetary Sciences, 25: 221-241 DOI:10.1146/annurev.earth.25.1.221
Griffin WL, Huang JX, Thomassot E, Gain SEM, Toledo V and O'Reilly SY. 2018. Super-reducing conditions in ancient and modern volcanic systems:Sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineralogy and Petrology, 112(S1): 101-114 DOI:10.1007/s00710-018-0575-x
Grocke SB, Cottrell E, De Silva S and Kelley KA. 2016. The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters, 440: 92-104 DOI:10.1016/j.epsl.2016.01.026
He B, Xu YG, Chung SL, Xiao L and Wang YM. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391-405 DOI:10.1016/S0012-821X(03)00323-6
He DT, Liu YS, Chen CF, Foley SF and Ducea MN. 2020. Oxidization of the mantle caused by sediment recycling may contribute to the formation of iron-rich mantle melts. Science Bulletin, 65(7): 519-521 DOI:10.1016/j.scib.2020.01.003
Holloway JR. 2004. Redox reactions in seafloor basalts:Possible insights into silicic hydrothermal systems. Chemical Geology, 210(1-4): 225-230 DOI:10.1016/j.chemgeo.2004.06.009
Hoskin PWO, Kinny PD, Wyborn D and Chappell BW. 2000. Identifying accessory mineral saturation during differentiation in granitoid magmas:An integrated approach. Journal of Petrology, 41(9): 1365-1396 DOI:10.1093/petrology/41.9.1365
Hou T, Zhang ZC, Ye XR, Encarnacion J and Reichow MK. 2011. Noble gas isotopic systematics of Fe-Ti-V oxide ore-related mafic-ultramafic layered intrusions in the Panxi area, China:The role of recycled oceanic crust in their petrogenesis. Geochimica et Cosmochimica Acta, 75(22): 6727-6741 DOI:10.1016/j.gca.2011.09.003
Hou T, Zhang ZC and Pirajno F. 2012. A new metallogenic model of the Panzhihua giant V-Ti-iron oxide deposit (Emeishan Large Igneous Province) based on high-Mg olivine-bearing wehrlite and new field evidence. International Geology Review, 54(15): 1721-1745 DOI:10.1080/00206814.2012.665211
Hou T, Zhang ZC, Encarnacion J, Santosh M and Sun YL. 2013. The role of recycled oceanic crust in magmatism and metallogeny:Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan Large Igneous Province, SW China. Contributions to Mineralogy and Petrology, 165(4): 805-822 DOI:10.1007/s00410-012-0836-3
Hou T. 2014. Super-efficient enrichment mechanism of iron in the intermediate-basic magmatic system:Case studies on typical iron deposits. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing
Howarth GH and Prevec SA. 2013. Hydration vs. oxidation:Modelling implications for Fe-Ti oxide crystallisation in mafic intrusions, with specific reference to the Panzhihua intrusion, SW China. Geoscience Frontiers, 4(5): 555-569 DOI:10.1016/j.gsf.2013.03.002
Howarth GH, Prevec SA and Zhou MF. 2013. Timing of Ti-magnetite crystallisation and silicate disequilibrium in the Panzhihua mafic layered intrusion:Implications for ore-forming processes. Lithos, 170-171: 73-89 DOI:10.1016/j.lithos.2013.02.020
Huang ML, Bi XW, Hu RZ, Gao JF, Xu LL, Zhu JJ and Shang LB. 2019. Geochemistry, in-situ Sr-Nd-Hf-O isotopes, and mineralogical constraints on origin and magmatic-hydrothermal evolution of the Yulong porphyry Cu-Mo deposit, Eastern Tibet. Gondwana Research, 76: 98-114 DOI:10.1016/j.gr.2019.05.012
Iacono-Marziano G, Gaillard F, Scaillet B, Polozov AG, Marecal V, Pirre M and Arndt NT. 2012. Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments. Earth and Planetary Science Letters, 357-358: 319-326 DOI:10.1016/j.epsl.2012.09.052
Jayasuriya KD, O'Neill HSC, Berry AJ and Campbell SJ. 2004. A Mössbauer study of the oxidation state of Fe in silicate melts. American Mineralogist, 89(11-12): 1597-1609 DOI:10.2138/am-2004-11-1203
Jugo PJ. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37(5): 415-418 DOI:10.1130/G25527A.1
Kelley KA and Cottrell E. 2012. The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329-330: 109-121 DOI:10.1016/j.epsl.2012.02.010
Kilinc A, Carmichael ISE, Rivers ML and Sack RO. 1983. The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contributions to Mineralogy and Petrology, 83(1): 136-140
Kress VC and Carmichael ISE. 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108(1-2): 82-92 DOI:10.1007/BF00307328
Laubier M, Grove TL and Langmuir CH. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts:An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392: 265-278 DOI:10.1016/j.epsl.2014.01.053
Lee CTA, Leeman WP, Canil D and Li ZXA. 2005. Similar V/Sc systematics in MORB and arc basalts:Implications for the oxygen fugacities of their mantle source regions. Journal of Petrology, 46(11): 2313-2336 DOI:10.1093/petrology/egi056
Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albaréde F and Leeman WP. 2010. The redox state of arc mantle using Zn/Fe systematics. Nature, 468(7324): 681-685 DOI:10.1038/nature09617
Li JX, Qin KZ, Li GM, Cao MJ, Xiao B, Chen L, Zhao JX, Evans NJ and McInnes BIA. 2012. Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet:Insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineralogy and Petrology, 105(3): 201-221
Li ZXA and Lee CTA. 2004. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters, 228(3-4): 483-493 DOI:10.1016/j.epsl.2004.10.006
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Loucks RR, Fiorentini ML and Henriquez GJ. 2020. New magmatic oxybarometer using trace elements in zircon. Journal of Petrology DOI:10.1093/petrology/egaa034
Ma YX, Ji XT, Li JC and Huang M. 2003. Mineral Resources of Panzhihua, Sichuan Province, SW China. Chengdu: Chengdu University of Technology Press (in Chinese)
Mallmann G and O'Neill HSC. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765-1794 DOI:10.1093/petrology/egp053
Mallmann G and O'Neill HSC. 2013. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. Journal of Petrology, 54(5): 933-949 DOI:10.1093/petrology/egt001
Métrich N, Berry AJ, O'Neill HSC and Susini J. 2009. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 73(8): 2382-2399 DOI:10.1016/j.gca.2009.01.025
Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K and Donovan A. 2014. Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth and Planetary Science Letters, 393: 200-209 DOI:10.1016/j.epsl.2014.02.055
Moussallam Y, Longpré MA, McCammon C, Gomez-Ulla A, Rose-Koga EF, Scaillet B, Peters N, Gennaro E, Paris R and Oppenheimer C. 2019. Mantle plumes are oxidised. Earth and Planetary Science Letters, 527: 115798 DOI:10.1016/j.epsl.2019.115798
Pang KN, Li CS, Zhou MF and Ripley EM. 2008a. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China:Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology, 156(3): 307-321 DOI:10.1007/s00410-008-0287-z
Pang KN, Zhou MF, Lindsley D, Zhao DG and Malpas J. 2008b. Origin of Fe-Ti oxide ores in mafic intrusions:Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295-313
Pang KN, Li CS, Zhou MF and Ripley EM. 2009. Mineral compositional constraints on petrogenesis and oxide ore genesis of the Late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos, 110(1-4): 199-214 DOI:10.1016/j.lithos.2009.01.007
Pang KN, Zhou MF, Qi L, Shellnutt G, Wang CY and Zhao DG. 2010. Flood basalt-related Fe-Ti oxide deposits in the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 123-136 DOI:10.1016/j.lithos.2010.06.003
Pang KN, Shellnutt JG and Zhou MF. 2015. The Panzhihua Intrusion, SW China. In:Charlier B, Namur O, Latypov R, Tegner C (eds.). Layered Intrusions. Dordrecht: Springer
Putirka K. 2016. Rates, styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. American Mineralogist, 101(4): 819-840
Ren ZY, Wu YD, Zhang L, Nichols ARL, Hong LB, Zhang YH, Zhang Y, Liu JQ and Xu YG. 2017. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions. Geochimica et Cosmochimica Acta, 208: 63-85 DOI:10.1016/j.gca.2017.01.054
Song XY, Qi HW, Hu RZ, Chen LM, Yu SY and Zhang JF. 2013. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma:Evidence from the Panzhihua intrusion, SW China. Geochemistry, Geophysics, Geosystems, 14(3): 712-732 DOI:10.1002/ggge.20068
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tang M, Erdman M, Eldridge G and Lee CTA. 2018. The redox "filter" beneath magmatic orogens and the formation of continental crust. Science Advances, 4(5): eaar4444
Tang QY, Li CS, Tao Y, Ripley EM and Xiong F. 2017. Association of Mg-rich olivine with magnetite as a result of brucite marble assimilation by basaltic magma in the Emeishan Large Igneous Province, SW China. Journal of Petrology, 58(4): 699-714 DOI:10.1093/petrology/egx031
Tao Y, Putirka K, Hu RZ and Li CS. 2015. The magma plumbing system of the Emeishan Large Igneous Province and its role in basaltic magma differentiation in a continental setting. American Mineralogist, 100(11-12): 2509-2517 DOI:10.2138/am-2015-4907
Tassara S, Reich M, Konecke BA, González-Jiménez JM, Simon AC, Morata D, Barra F, Fiege A, Schilling ME and Corgne A. 2020. Unraveling the effects of melt-mantle interactions on the gold fertility of magmas. Frontiers in Earth Science, 8: 29 DOI:10.3389/feart.2020.00029
Tollan P and Hermann J. 2019. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. Nature Geoscience, 12(8): 667-671 DOI:10.1038/s41561-019-0411-x
Trail D, Watson EB and Tailby ND. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70-87 DOI:10.1016/j.gca.2012.08.032
Venezky DY and Rutherford MJ. 1997. Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2ka eruption at Mount Rainier. Journal of Geophysical Research:Solid Earth, 102(B9): 20069-20086 DOI:10.1029/97JB01590
Wang K, Xing CM, Ren ZY and Wang Y. 2013. Liquid immiscibility in the Panzhihua mafic layered intrusion:Evidence from melt inclusions in apatite. Acta Petrologica Sinica, 29(10): 3503-3518 (in Chinese with English abstract)
Wang K, Wang CY and Ren ZY. 2018. Apatite-hosted melt inclusions from the Panzhihua gabbroic-layered intrusion associated with a giant Fe-Ti oxide deposit in SW China:Insights for magma unmixing within a crystal mush. Contributions to Mineralogy and Petrology, 173(7): 59 DOI:10.1007/s00410-018-1484-z
Wang K, Dong H and Liu R. 2020. Genesis of giant Fe-Ti oxide deposits in the Panxi region, SW China:A review. Geological Journal, 55(5): 3782-3795 DOI:10.1002/gj.3632
Waters LE and Lange RA. 2016. No effect of H2O degassing on the oxidation state of magmatic liquids. Earth and Planetary Science Letters, 447: 48-59 DOI:10.1016/j.epsl.2016.04.030
Watson EB and Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841-844 DOI:10.1126/science.1110873
Watson EB, Wark DA and Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433 DOI:10.1007/s00410-006-0068-5
Xu YG, Chung SL, Jahn BM and Wu GY. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in Southwestern China. Lithos, 58(3-4): 145-168 DOI:10.1016/S0024-4937(01)00055-X
Yan DP, Zhou MF, Song HL, Wang XW and Malpas J. 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics, 361(3-4): 239-254 DOI:10.1016/S0040-1951(02)00646-7
Yang C and Liu SA. 2019. Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan Large Igneous Province. Journal of Geophysical Research:Solid Earth, 124(12): 12537-12555 DOI:10.1029/2019JB017405
Yu SY, Shen NP, Song XY, Ripley EM, Li CS and Chen LM. 2017. An integrated chemical and oxygen isotopic study of primitive olivine grains in picrites from the Emeishan Large Igneous Province, SW China:Evidence for oxygen isotope heterogeneity in mantle sources. Geochimica et Cosmochimica Acta, 215: 263-276 DOI:10.1016/j.gca.2017.08.007
Zhang HL, Hirschmann MM, Cottrell E and Withers AC. 2017. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochimica et Cosmochimica Acta, 204: 83-103 DOI:10.1016/j.gca.2017.01.023
Zhang L, Ren ZY, Handler MR, Wu YD, Zhang L, Qian SP, Xia XP, Yang Q and Xu YG. 2019. The origins of high-Ti and low-Ti magmas in large igneous provinces, insights from melt inclusion trace elements and Sr-Pb isotopes in the Emeishan Large Igneous Province. Lithos, 344-345: 122-133 DOI:10.1016/j.lithos.2019.06.014
Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan Large Igneous Province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369-392 DOI:10.1016/j.lithos.2009.04.023
Zhou MF, Malpas J, Song XY, Robinson PT, Sun M, Kennedy AK, Lesher CM and Keays RR. 2002a. A temporal link between the Emeishan Large Igneous Province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters, 196(3-4): 113-122 DOI:10.1016/S0012-821X(01)00608-2
Zhou MF, Yan DP, Kennedy AK, Li YQ and Ding J. 2002b. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67 DOI:10.1016/S0012-821X(01)00595-7
Zhou MF, Robinson PT, Lesher CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280 DOI:10.1093/petrology/egi054
Zhou MF, Chen WT, Wang CY, Prevec SA, Liu PP and Howarth GH. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4(5): 481-502 DOI:10.1016/j.gsf.2013.04.006
Zhu J, Zhang ZC, Reichow MK, Li HB, Cai WC and Pan RH. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. Journal of Geophysical Research:Solid Earth, 123(2): 1018-1034 DOI:10.1002/2017JB015058
柏中杰, 钟宏, 朱维光. 2019. 幔源岩浆氧化还原状态及对岩浆矿床成矿的制约. 岩石学报, 35(1): 204-214.
高晓英, 郑永飞. 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417-432.
侯通. 2014. 中基性岩浆系统中铁的超常富集机理:以典型铁矿为例.博士学位论文. 北京: 中国地质大学(北京).
马玉孝, 纪相田, 李金成, 黄明. 2003. 攀枝花矿产资源. 成都:成都理工大学出版社, 1-275.
王坤, 邢长明, 任钟元, 王焰. 2013. 攀枝花镁铁质层状岩体磷灰石中的熔融包裹体:岩浆不混熔的证据. 岩石学报, 29(10): 3503-3518.