岩石学报  2020, Vol. 36 Issue (6): 1719-1730, doi: 10.18654/1000-0569/2020.06.05   PDF    
佳木斯地块东缘晚古生代大陆边缘构造演化
李功宇1,2, 周建波1, 李龙2, 王红燕1     
1. 吉林大学地球科学学院, 长春 130061;
2. Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
摘要: 佳木斯地块位于中国东北微陆块群的最东缘,其东缘地区晚古生代的岩浆和沉积演变进程为欧亚大陆东缘由被动陆缘向活动陆缘构造环境的转化提供了关键证据。年代学和地球化学研究表明,佳木斯地块东缘中泥盆世黑台组砂岩,形成于被动陆缘的构造环境,黑台组上覆的老秃顶子组流纹岩也形成于被动陆缘的构造环境;晚石炭世珍子山组砂岩,形成于活动陆缘的构造环境;早二叠世的二龙山组安山岩以及相邻地区早二叠世的其它火成岩形成于活动陆缘的构造环境。同时,佳木斯地块东缘泥盆-二叠纪的沉积地层也呈现出由浅海相到陆相地层转化的特征。因此,佳木斯地块东缘由被动陆缘向活动陆缘的转化应该发生在中泥盆世到晚石炭世,而该构造环境的转化也为晚古生代时期蒙古-鄂霍茨克洋向欧亚大陆之下俯冲过程的研究提供了关键信息。
关键词: 佳木斯地块    大陆边缘构造环境转化    晚古生代    欧亚大陆东缘    蒙古-鄂霍茨克洋    
The Late Paleozoic continental margin tectonic evolution at the eastern margin of the Jiamusi Block
LI GongYu1,2, ZHOU JianBo1, LI Long2, WANG HongYan1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
Abstract: The Jiamusi Block, one of the micro-continental blocks in NE China, is located at the eastern margin of the Eurasia. The Late Paleozoic magmatic and sedimentary evolution of the eastern margin of the Jiamusi Block provide the key evidence for understanding the transition from a passive to an active continental margin at the eastern margin of the Eurasia. New geochronological and geochemical studies indicate that the sandstones in the Middle Devonian Heitai Formation formed in a passive continental margin setting. And the rhyolite in the Laotudingzi Formation overlying the Heitai Formation formed in the same tectonic setting to that of the Heitai Formation. The sandstones from the Late Carboniferous Zhenzishan Formation formed in an active continental margin setting. The andesite from the Early Permian Erlongshan Formation and the other kinds of Early Permian igneous rocks from the adjacent areas formed in an active continental margin setting. The Late Paleozoic sedimentary strata also show the characteristic of the transition from shallow marine facies to continental facies. Thus, the transition from a passive to an active continental margin in the Jiamusi Block occurred during Middle Devonian to Late Carboniferous, which provides key information for the process of the Mongol-Okhotsk oceanic subduction-accretion beneath the Eurasia during the Late Paleozoic.
Key words: Jiamusi Block    Continental margin tectonic transition    Late Paleozoic    Eastern margin of the Eurasia    Mongol-Okhotsk Ocean    

中国东北地区位于华北克拉通和西伯利亚克拉通之间(图 1; Natal'in, 1991, 1993; Şengör et al., 1993; Zhou and Wilde, 2013),也是欧亚大陆东缘和中亚造山带东段的重要组成部分。传统意义上,其由多个微陆块组成,自西向东依次为,额尔古纳地块、兴安地块、松辽地块和佳木斯-兴凯地块(图 1; Li, 2006; Tang, 1990; 唐克东等, 1995; Zhou et al., 2009; Şengör et al., 1993)。在晚古生代时期,中国东北经受了多个古大洋板块的构造叠加(李锦轶等, 1999; 吴福元等, 2001; Wilde et al., 2000, 2003),使得该地区发生了由被动大陆边缘向活动大陆边缘以及由安第斯型大陆边缘向西太平洋型大陆边缘等一系列构造环境的转化(Li et al., 2019; 周建波等, 2018)。然而,由于蒙古-鄂霍茨克洋、古亚洲洋以及古太平洋的时间和空间上的叠加,致使对中国东北大陆边缘构造环境的转化,特别是转化的具体时间以及构造体制属性等问题缺乏明确认识。幸运的是,佳木斯地块东缘的沉积和火山记录将为解决这些问题提供有力的证据。

图 1 亚洲大陆中部和东部构造单元划分及研究区位置(据Zhou et al., 2009) Fig. 1 Tectonic subdivisions of central and eastern Asia and location of the study area (after Zhou et al., 2009)

关于佳木斯地块东缘地区构造环境等问题,前人已有部分研究。Li et al. (2019)通过对宝清地区的珍子山组和黑台组砂岩研究认为,在晚泥盆世,佳木斯地块处于被动陆缘的构造环境,而在晚石炭世则处于活动陆缘的构造环境。而对该地区二龙山组安山岩的研究显示,早二叠世佳木斯地块处于活动大陆边缘的构造环境(Li et al., 2020)。除此之外,佳木斯地块东缘地区274Ma至296Ma的弧属性火成岩,也证实了在早二叠世时期,佳木斯地块处于活动大陆边缘的构造环境(于介江等, 2013; Meng et al., 2008, Yang et al., 2015; Sun et al., 2015; Bi et al., 2015)。那么,在此之前佳木斯地块就一定存在着由被动陆缘向活动陆缘构造环境的转化。然而,关于该转化的具体时代和构造属性问题,前人的研究并没有给出明确的解释。

本文将根据对佳木斯地块东缘地区晚古生代的岩浆和沉积演变进程的对比分析,明确欧亚大陆东缘晚古生代时期活动大陆边缘和被动大陆边缘的存在时限,进一步解释其构造环境转化的具体属性。

1 区域地质背景

佳木斯地块作为欧亚大陆和中亚造山带最东缘的重要组成部分,西以吉林-黑龙江高压带(吉黑缝合带)为界与松辽地块相邻,东以跃进山-同江断裂为界与那丹哈达地体毗邻(图 1; 周建波等, 2018)。

那丹哈达地体,是古太平洋增生带的一部分,主要由三叠纪到侏罗纪的增生杂岩和侵入其中的白垩纪花岗岩组成(Zhou and Wild, 2013; Kojima, 1989; 程瑞玉等, 2006; 韩伟和周建波, 2020)。其三叠纪到侏罗纪的增生杂岩可划分为两个主要的岩石地层单元:跃进山杂岩和饶河杂岩(Zhou et al., 2014)。跃进山杂岩是第一阶段的增生杂岩,由变质碎屑岩和变质的基性-超基性岩组成,而饶河杂岩作为那丹哈达地体的主要组成部分,主要由灰岩、层状燧石和变质沉积岩中夹杂的基性-超基性岩组成(黑龙江省地质矿产局, 1993)。实验数据显示,饶河杂岩的增生过程发生在170Ma到130Ma之间,最后的侵位时间在137Ma到130Ma之间(Zhou et al., 2014; 韩伟和周建波, 2020)。跃进山杂岩的增生时间在210Ma到180Ma之间,这说明古太平洋板块在晚三叠世到早侏罗世期间就已经开始发生俯冲(Zhou et al., 2009; Zhou and Li, 2017)。

佳木斯地块向北延伸到俄罗斯境内的布列亚地块,向南延伸到中国境内的兴凯地块,并统称为布列亚-佳木斯-兴凯地块(曹熹等, 1992)。整个佳木斯地块主要由以麻山群为代表的寒武纪变质基底(图 2; Zhou et al., 2010)、古生代的花岗岩类、晚古生代至中生代的沉积地层以及与之相关的少量火成岩组成,具有基底-盖层双层结构的微陆块典型结构特征(黑龙江省地质矿产局, 1993)。麻山群由一套变质程度达到高角闪岩相到麻粒岩相的变质岩系组成,主要岩石类型为麻粒岩、片麻岩、变粒岩和大理岩(姜继圣, 1992; 吴福元等, 2001)。长期以来,关于麻山群的形成时代一直存在争议。通常认为,麻山群作为佳木斯地块的基底,其原岩形成时代不早于古元古代,麻粒岩相变质作用发生在早古生代(宋彪等, 1997; Wilde et al., 1997, 2000; 吴福元等, 2001)。研究区内广泛出露的古生代花岗岩主要可分为两大类型:一种为基底花岗片麻岩类,侵位年龄为~520Ma,后期经历泛非运动,并具有与麻山群变质岩系相同的片麻理构造;另一种为片麻状花岗岩,片麻理发育程度不等,具有明显的岩浆结晶结构,形成时代为270~254Ma(Wilde et al., 1997; Wu et al., 2000, 2007)。研究区内的少量火成岩主要包含于晚古生代至中生代的沉积地层中。该套地层主要出露于佳木斯地块东缘的宝清至密山一带(图 2),主要包括中泥盆世的黑台组、老秃顶子组和七里卡山组、早石炭世的北兴组、晚石炭世的光庆组和珍子山组、早二叠世的二龙山组以及晚二叠世的杨岗组(图 3; 黑龙江省地质矿产局, 1993)。黑台组主要为一套陆相-海相的碎屑岩-碳酸盐岩组合,早-中泥盆世的植物化石年龄、380Ma和480Ma的碎屑锆石年龄均报道于该组中(李宁和王成文, 2017; 王成源等, 1986; Li et al., 2019; Meng et al., 2010)。老秃顶子组为一套火山-沉积地层,岩性主要为中酸性、酸性火山碎屑岩与板岩, 孟恩等(2011)报道了该组中的流纹岩年龄为392~388Ma。七里卡山组为以凝灰物质为主夹碎屑岩的陆相火山-沉积地层。北兴组主要为火山碎屑岩,夹少量滨-浅海相火山碎屑岩。光庆组、珍子山组为陆相砂砾岩、含煤层砂板岩夹火山碎屑岩,锆石年龄为260Ma的英安岩和凝灰岩都在珍子山组中被报道(Bi et al., 2017; Meng et al., 2008),晚石炭世到早二叠世的植物化石年龄也出现于该组中(黄本宏, 1982; 苑立青, 1994),除此之外,315Ma的碎屑锆石年龄同样在珍子山组中被报道(Li et al., 2019)。杨岗组岩性为中酸性-酸性火山岩,该组中的流纹斑岩年龄为264Ma(Meng et al., 2008)。二龙山组主要为中基性火山岩,290~280Ma的安山岩年龄在该组中被报道(Meng et al., 2008; Li et al., 2020)。整套地层呈现出由浅海相到海陆交互相,再到陆相转化的特征(黑龙江省地质矿产局, 1993; Sun et al., 2015)。

图 2 佳木斯地块地质图(据黑龙江省地质矿产局, 1993; Wilde et al., 2003; 吴福元等, 2001)及代表性岩石采样位置和锆石年龄(Ma) Fig. 2 Simplified geological map of the Jiamusi Block (after BGMRH, 1993; Wilde et al., 2003; Wu et al., 2001) and sample locations with zircon ages (Ma) of typical samples

图 3 佳木斯地块宝清地区晚古生代地层序列(据黑龙江省地质矿产局, 1993) Fig. 3 Late Paleozoic stratigraphic sequence in the Baoqing area of the Jiamusi Block (after BGMRH, 1993)
2 佳木斯地块的被动大陆边缘

佳木斯地块东缘究竟何时处于被动大陆边缘的构造环境是探讨其大陆边缘构造环境转化的关键问题之一。

2.1 被动大陆边缘的岩浆证据

前人根据地层关系对比,将佳木斯地块东缘地区出露的老秃顶子组置于晚泥盆世(黑龙江省地质矿产局, 1993)。然而,在该组中获得的准确的流纹岩锆石年龄分别为392±3Ma和388±2Ma(图 4),指示了中泥盆世的形成时代(孟恩等, 2011)。老秃顶子组火山岩来自于佳木斯地块东缘的宝清地区,主要由流纹岩及次要的玄武质岩石组成,显示了双峰式火山岩的岩石组合特征,基性端员岩石的SiO2含量为50.40%~55.66%、Mg#含量为0.39~0.50、Na2O/K2O的值为2.88~4.99、Al2O3含量为15.66%~18.06%,轻稀土元素富集,高场强元素亏损, 初始87Sr/86Sr比值为0.70599,εNd(t)=+2.04,暗示其原始岩浆起源于遭受地壳物质混染的岩石圈地幔;酸性端员岩石的SiO2含量为77.59%~78.75%、Na2O/K2O比值为0.32~0.36、Al2O3含量11.62%~11.76%,Rb、Th、U、K元素富集, Nb、Ta、Eu、P、Ti元素亏损, 其初始87Sr/86Sr比值为0.70378~0.70736,εNd(t)=-4.15~-2.20,εHf(t)=+1.8~+8.6,tDM1=671~998Ma,暗示其岩浆应起源于新增生下地壳物质的部分熔融,同时该组火山岩具有大陆板内玄武岩所特有的高的Zr含量和Zr/Y比值,结合构造判别图解(图 5),其形成于板内伸展构造环境,这也揭示了老秃顶子组形成于一个次稳定-稳定的被动大陆边缘盆地沉积环境(孟恩等, 2011)。

图 4 老秃顶子组流纹岩锆石U-Pb年龄协和图(据孟恩等, 2011) Fig. 4 Zircon U-Pb concordia diagrams for the Laotudingzi Formation rhyolites (after Meng et al., 2011)

图 5 老秃顶子组火山岩的Zr-Zr/Y变异图解(据孟恩等, 2011) Fig. 5 Zr/Y vs. Zr diagram for volcanic rocks of the Middle Devonian Laotudingzi Formation (after Meng et al., 2011)
2.2 被动大陆边缘的沉积证据

区域地质资料显示,中泥盆世老秃顶子组整合覆盖于黑台组之上,其上覆地层为晚泥盆世七里卡山组和早石炭世北兴组。黑台组为一套稳定的海相-陆相的碳酸盐岩-碎屑岩组合,其中灰岩产海相生物化石;七里卡山组以一套产植物化石的紫色凝灰质板岩、细砂岩夹英安质凝灰岩组合,而与其整合接触的上覆地层北兴组仍然为一套海陆交互相稳定沉积的灰色及灰黑色凝灰岩板岩为主夹中细粒砂岩,产腕足类化石(图 3; 黑龙江省地质矿产局, 1993, 1997),这表明该区在中泥盆世至早石炭世之前应处于一个被动大陆边缘的构造环境。除此之外,黑台组中的砂岩样品的地球化学特征也表明了黑台组形成于被动陆缘的构造环境(图 6; Li et al., 2019)。而该组中砂岩获得的碎屑锆石最年轻年龄为380Ma(图 7)。前人的化石证据表明,该组中腕足类化石组合反映的地质时代为早泥盆世埃姆斯期晚期,牙形刺化石反映的地质时代为中泥盆世艾菲尔期早期(李宁和王成文, 2017)。结合该组中碎屑锆石年龄,大约确定了黑台组的沉积时限为中泥盆世艾菲尔期初期到吉维特期末期。综上所述,佳木斯地块在早石炭世之前应处于被动大陆边缘的构造环境。

图 6 黑台组和珍子山组砂岩构造判别图解(据Li et al., 2019) Fig. 6 Tectonic discrimination diagrams for the Heitai and Zhenzishan formations samples (after Li et al., 2019)

图 7 黑台组和珍子山组砂岩锆石U-Pb年龄协和图(据Li et al., 2019) Fig. 7 Zircon U-Pb concordia diagrams for the Heitai and Zhenzishan formations sandstones (after Li et al., 2019)
3 佳木斯地块的活动大陆边缘 3.1 活动大陆边缘的岩浆证据

佳木斯地块东缘存在着许多形成时代为296~274Ma的早二叠世的火成岩(图 2; 于介江等, 2013; Meng et al., 2008; Yang et al., 2015; Sun et al., 2015; Bi et al., 2015)。它们都具有高钠、高铝、低钾、轻稀土元素和大离子亲石元素富集、高场强元素亏损以及铕元素无或较弱的正异常的地球化学特征(Li et al., 2019)。而在根据地球化学数据所投出的构造判别图中,均显示了这些火山具有典型的弧属性(图 8)。Li et al. (2020)对佳木斯地块东缘地区二龙山组安山岩进行了详细的锆石年代学和地球化学研究,获得了四个安山岩锆石年龄均为~280Ma(图 9),并指出二龙山组的岩石组成主要为玄武岩、玄武安山岩、安山岩和英安岩,其与安第斯型岩石组合一致,而且,地球化学特征显示,其属于钙碱性系列,主量元素间呈现出随SiO2含量的增加,Al2O3、K2O升高而Fe2O3T、TiO2、MgO、CaO、P2O5降低的变化规律,微量元素呈现出大离子亲石元素和轻稀土元素相对富集,而高场强元素和重稀土元素相对亏损的特征。构造判别图解和地球化学特征都表明二龙山组安山岩也具有弧属性(图 8),应形成于活动大陆边缘的火山弧环境。

图 8 佳木斯地块东缘晚古生代火成岩构造判别图解(据Li et al., 2020) Fig. 8 Tectonic discrimination diagrams for the igneous rocks along the eastern margin of the Jiamusi Block (after Li et al., 2020)

图 9 二龙山组安山岩锆石U-Pb年龄协和图(据Li et al., 2020) Fig. 9 Zircon U-Pb concordia diagrams for the Erlongshan Formation andesites (after Li et al., 2020)

以上研究结果说明在早二叠世时期,佳木斯地块处于活动大陆边缘的构造环境。需要指出的是,这些证据并不能说明活动大陆边缘的构造环境就开始于早二叠世时期。

3.2 活动大陆边缘的沉积证据

区域地质资料显示,佳木斯地块东缘的晚石炭世光庆组和珍子山组地层为陆相砂砾岩、含煤层砂板岩夹火山碎屑岩,杨岗组和二龙山组岩性为中酸性-酸性-中基性的火山岩(图 3; 黑龙江省地质矿产局, 1993),这与该地区早泥盆世至早石炭世被动大陆边缘的浅海相沉积特征具有明显的区别。除此之外,Li et al. (2019)对佳木斯地块东缘珍子山组的砂岩进行了详细的年代学和地球化学研究,获得了砂岩样品的碎屑锆石最年轻年龄为310Ma(图 5)。前人报道的该组中的植物化石组合(黄本宏, 1982; 苑立青, 1994)具有安加拉植物群的特征,地质时代为晚石炭世晚期格舍尔期-早二叠世早期阿瑟尔期。结合该组中的碎屑锆石年龄,认为其地质时代为石炭纪晚期莫斯科期-早二叠世早期阿瑟尔期。而珍子山组砂岩的地球化学特征及其构造判别图解显示其同样形成于活动大陆边缘的构造环境(图 6)。该结论将佳木斯地块晚古生代时期的活动大陆边缘构造环境的存在时限继续向前推进至晚石炭世。

4 佳木斯地块晚古生代大陆边缘构造环境的演化

佳木斯地块在晚古生代时期,分别存在着被动大陆边缘和活动大陆边缘的构造环境。新的地质年代学和地球化学研究表明,佳木斯地块东缘中泥盆世黑台组砂岩形成于被动陆缘的构造环境,而黑台组上覆的老秃顶子组流纹岩也形成于被动陆缘的构造环境;晚石炭世珍子山组砂岩形成于活动陆缘的构造环境(Li et al., 2019);早二叠世的二龙山组中280Ma的安山岩以及相邻地区296~274Ma的其它火成岩形成于活动陆缘的构造环境(Li et al., 2020; 于介江等, 2013; Meng et al., 2008, Yang et al., 2015; Sun et al., 2015; Bi et al., 2015)。同时,佳木斯地块东缘泥盆-二叠纪的沉积地层也呈现出由浅海相到陆相地层转化的特征(黑龙江省地质矿产局, 1993; Sun et al., 2015)。因此,佳木斯地块东缘由被动陆缘向活动陆缘的转化发生在中泥盆世至晚石炭世(390~310Ma)。

佳木斯地块东缘晚古生代被动大陆边缘向活动大陆边缘的转化,为研究欧亚大陆边缘构造环境的演化历史提供了关键性的证据。然而,由于该地区在晚古生代时期,多个古大洋板块的先后叠加作用,致使到底是哪种构造体制导致了佳木斯地块东缘中泥盆世到晚石炭世的构造环境的转化问题始终存在争议。古亚洲洋是在早奥陶世至早侏罗世期间存在于西伯利亚克拉通和华北克拉通之间的古大洋(黑龙江省地质矿产局, 1993; Zhou and Li, 2017)。在泥盆纪古亚洲洋开始向中亚造山带俯冲(Zhao et al., 2013),二叠纪末的最终闭合过程也可能导致了中国东北地区与华北克拉通之间存在碰撞后的伸展环境(Meng et al., 2008);蒙古-鄂霍茨克洋作为古太平洋早期的一部分位于中国东北地区和西伯利亚克拉通之间,在泥盆纪开始了向西伯利亚克拉通和中国东北的俯冲增生过程(Donskaya et al., 2013);古太平洋位于中亚造山带的东缘,晚古生代时期也开始了向中国东北地区的俯冲增生过程(Zhou et al., 2014)。Sun et al. (2015)Bi et al. (2015)通过该地区早二叠世火成岩的研究,指出古太平洋板块向中国东北地区的俯冲增生发生在早二叠世时期,并导致了二叠纪弧属性火成岩的形成,认为佳木斯地块早二叠世的活动大陆边缘构造环境与古太平洋板块的俯冲有关。还有另外的一种观点则是认为,佳木斯地块的活动大陆边缘应该属于古亚洲洋的俯冲范围,佳木斯地块和兴凯地块的最终闭合过程与之有关(Meng et al., 2008; 许文良等, 2012)。除此之外,Zhou and Li (2017)通过对不同古大洋板块向中国东北地区俯冲时限的对比分析,认为佳木斯地块东缘地区早二叠世弧属性的火成岩应该与蒙古-鄂霍茨克洋的俯冲增生有关。总结起来,到底是古太平洋板块的俯冲、古亚洲洋板块的俯冲还是蒙古-鄂霍茨克洋的俯冲导致了佳木斯地块的被动陆缘向活动陆缘构造环境的转化呢?这需要我们进一步的对比和区分。

古亚洲洋是在早奥陶世至早侏罗世期间存在于西伯利亚克拉通和华北克拉通之间的古大洋(黑龙江省地质矿产局, 1993; Zhou and Li, 2017)。其向中国东北地区的俯冲早在泥盆纪就已经开始了(Li et al., 2010; Zhao et al., 2013),早于早石炭世或早二叠世佳木斯地块活动大陆边缘的存在时间。除此之外,佳木斯地块东缘早二叠世的弧属性的火成岩基本呈现南北向分布,说明与之有关的大洋俯冲方向应为向西俯冲(Bi et al., 2016; Sun et al., 2015; Yang et al., 2015),明显与古亚洲洋的南北向俯冲不符。因此,本文不认为与古亚洲洋的俯冲有关。在中国东北地区,由南北向古亚洲洋闭合到古太平洋的西向俯冲的地球动力学机制的转换发生在晚三叠世到早侏罗世(Zhou et al., 2009, 2014; Zhou and Li, 2017; Han et al., 2020)。也就是说,古太平洋板块向西俯冲应该开始于晚三叠世时期。因为古太平洋板块的西向俯冲增生过程产生了一系列增生杂岩(Zhou et al., 2014)以及变质岩,如吉黑高压变质带中的蓝片岩变质年龄为210到180Ma(Zhou et al., 2014; Zhou and Wilde, 2013),跃进山杂岩中的绿片岩变质年龄为~188Ma(杨金中等, 1998)。

蒙古-鄂霍茨克洋作为古生代时期的古太平洋或者泛大洋的一部分逐渐被人们认识(Lehmann et al., 2010; Van der Voo et al., 2015),它的开启导致了多个板块的漂移,一直向南可影响到中国东北地区(Kelty et al., 2008; Zhou and Wilde, 2013)。Zhou and Li (2017)通过对早二叠世弧属性的火成岩的研究分析,发现了该大洋在古生代时期的向西俯冲。在时间和空间上,蒙古-鄂霍茨克洋的俯冲与佳木斯地块390Ma到310Ma期间的被动陆缘向活动陆缘的转化最为符合。虽然,蒙古-鄂霍茨克洋的俯冲方向与现在佳木斯地块东缘的早二叠世弧火成岩的展布方向并不完全一致,但是Zhou and Li (2017)认为佳木斯地块在中生代时期发生了顺时针的旋转,那么现在佳木斯地块东缘南北向展布的火成岩恰好分布在蒙古-鄂霍茨克洋的边缘(见其图 5a)。因此,我们认为佳木斯地块晚古生代时期由被动陆缘向活动陆缘的转化应该与蒙古-鄂霍茨克洋的俯冲作用有关。

5 佳木斯地块晚古生代大陆边缘构造环境模型

根据以上讨论,本文认为佳木斯地块东缘在中泥盆世(~390Ma)之前处于被动大陆边缘的构造环境(图 10a);由于蒙古-鄂霍茨克洋中泥盆世至晚石炭世内某一时间开启的俯冲-增生,导致了佳木斯地块东缘由被动大陆边缘向活动大陆边缘构造环境转化;晚石炭世至早二叠世(310~280Ma),佳木斯地块则一直处于活动大陆边缘的构造环境(图 10b)。需要指出的是,本文所给出的构造模型依据有限,更多更详细的研究需要我们进一步完成,以便更好的证实蒙古-鄂霍茨克洋的俯冲-增生对中国东北地区乃至欧亚大陆东缘构造环境演化的影响。

图 10 佳木斯地块东缘晚古生代大陆边缘构造环境演化模式图(据Li et al., 2020) Fig. 10 A sketch model to outline the tectonic evolution of the Jiamusi Block during the Late Paleozoic (after Li et al., 2020)

致谢      感谢审稿专家的详细审阅和良好建议;同时感谢期刊编辑提出的宝贵的修改建议。

参考文献
Bi JH, Ge WC, Yang H, Zhao GC, Xu WL and Wang ZH. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China: Petrogensis and tectonic implications. Lithos, 234-235: 27-46 DOI:10.1016/j.lithos.2015.07.015
Bi JH, Ge WC, Yang H, Wang ZH, Xu WL, Xing DH and Chen HJ. 2016. Geochronology and geochemistry of Late Carboniferous-Middle Permian I- and A-type granites and gabbro-diorites in the eastern Jiamusi Massif, NE China: Implications for petrogenesis and tectonic setting. Lithos, 266-267: 213-232 DOI:10.1016/j.lithos.2016.10.001
Bi JH, Ge WC, Yang H, Wang ZH, Dong Y, Liu XW and Ji Z. 2017. Age, petrogenesis, and tectonic setting of the Permian bimodal volcanic rocks in the eastern Jiamusi Massif, NE China. Journal of Asian Earth Sciences, 134: 160-175 DOI:10.1016/j.jseaes.2016.09.022
Bureau of Geology and Mineral Resources of Heilongjiang Province (BGMRH). 1993. Regional Geological of Heilongjiang Province. Beijing: Geological Publishing House, 1-734 (in Chinese)
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1997. The Lithostratigraphy of the Heilongjiang Province, NE China. Wuhan: Publishing House of China University of Geosciences, 94-132 (in Chinese)Cao X, Dang ZX, Zhang XZ, Jiang JS and Wang HD. 1992. The Composite Jiamusi Terrane. Changchun: Jilin Publishing House of Science and Technology, 1-126 (in Chinese)
Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM and Yang JH. 2006. Emplacement age of the Raohe Complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22(2): 353-376 (in Chinese with English abstract)
Donskaya TV, Gladkochub DP, Mazukabzov AM and Ivanov AV. 2013. Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 62: 79-97 DOI:10.1016/j.jseaes.2012.07.023
Han W and Zhou JB. 2020. Paleo-Pacific subduction-accretion: Geochemical and geochronology constraints from the Raohe accretionary complex, NE China. Acta Petrologica Sinica, 36(3): 703-725 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.03.05
Han W, Zhou JB, Wilde SA and Li L. 2020. LA-ICPMS zircon U-Pb dating of the Heilongjiang Complex in the Luobei area: New constraints for the Late Palaeozoic-Mesozoic tectonic evolution of Jiamusi Block, NE China. Geological Journal, 55(3): 1644-1669 DOI:10.1002/gj.3443
Huang BH. 1982. Permo-Carboniferous terrestrial deposits and paleogeographic features in the northern part of Northeast China. Geological Review, 28(5): 395-402 (in Chinese with English abstract)
Jiang JS. 1992. Regional metamorphism and evolution of Mashan Khondalite series. Acta Petrologica et Mineralogica, 11(2): 97-110 (in Chinese with English abstract)
Kelty TK, Yin A, Dash B, Gehrels GE and Ribeiro AE. 2008. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in Central Asia. Tectonophysics, 451(1-4): 290-311 DOI:10.1016/j.tecto.2007.11.052
Kojima S. 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology, 69: 213-232 DOI:10.1016/0031-0182(89)90165-X
Lehmann J, Schulmann K, Lexa O, Corsini M, Kröner A, Štípská P, Tomurhuu D and Otgonbator D. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia. American Journal of Science, 310(7): 575-628 DOI:10.2475/07.2010.02
Li GY, Zhou JB, Wilde SA and Li L. 2019. The transition from a passive to an active continental margin in the Jiamusi Block: Constraints from Late Paleozoic sedimentary rocks. Journal of Geodynamics, 129: 131-148 DOI:10.1016/j.jog.2018.01.010
Li GY, Zhou JB and Li L. 2020. The Early Permian active continental margin at the eastern margin of the Jiamusi Block, NE China: Evidenced by zircon U-Pb chronology and geochemistry of the Erlongshan andesites. Geological Journal, 55: 1670-1688 DOI:10.1002/gj.3530
Li HY, He B, Xu YG and Huang XL. 2010. U-Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: Insights into interactions of the North China Craton with surrounding plates. Journal of Asian Earth Science, 39(5): 335-346 DOI:10.1016/j.jseaes.2010.05.002
Li JY, Niu BG, Song B, Xu WX, Zhang YH and Zhao ZR. 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Beijing: Geological Publishing House, 32-50 (in Chinese)
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 26(3-4): 207-224 DOI:10.1016/j.jseaes.2005.09.001
Li N and Wang CW. 2017. Formation and evolution of Jiamusi-Mongolia Block and contact relationship of Late Paleozoic strata in Northeast China and adjacent region. Journal of Jilin University (Earth Science Edition), 47(5): 1331-1340 (in Chinese with English abstract)
Meng E, Xu WL, Yang DB, Pei FP, Yu Y and Zhang XZ. 2008. Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif, northeastern China: Zircon U-Pb chronology, geochemistry and its tectonic implications. Chinese Science Bulletin, 53(8): 1231-1245 DOI:10.1007/s11434-008-0164-1
Meng E, Xu WL, Pei FP, Yang DB, Yu Y and Zhang XZ. 2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1-4): 42-51 DOI:10.1016/j.tecto.2009.11.015
Meng E, Xu WL, Pei FP and Wang F. 2011. Middle Devonian volcanism in eastern Heilongjiang Province and its tectonic implications: Constraints from petro-geochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica et Mineralogica, 30(5): 883-900 (in Chinese with English abstract)
Natal'in BA. 1991. Mesozoic accretion, collision tectonics of the southern Far East of the USSR. Pacific Geology, 10(5): 3-23
Natal'in BA. 1993. History, modes of Mesozoic accretion in southeastern Russia. Island Arc, 2(1): 15-34 DOI:10.1111/j.1440-1738.1993.tb00072.x
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0
Song B, Li JY, Niu BG and Xu WX. 1997. Single-grain zircon ages and its implications in biotite-plagioclase gneiss in Mashan Group in the eastern Heilongjiang. Acta Geoscientia Sinca, 18(3): 306-312 (in Chinese with English abstract)
Sun MD, Xu YG, Wilde SA, Chen HL and Yang SF. 2015. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction. Tectonophysics, 659: 122-136 DOI:10.1016/j.tecto.2015.07.034
Tang KD. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260
Tang KD, Wang Y, He GQ and Shao JA. 1995. Continental-margin structure of Northeast China and its adjacent areas. Acta Geologica Sinica, 69(1): 16-30 (in Chinese with English abstract)
Van der Voo R, Van Hinsbergen DJJ, Domeier M, Spakman W and Torsvik TH. 2015. Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis. In: Anderson TH, Didenko AN, Johnson CL, Khanchuk AI and MacDonald JH Jr (eds.). Late Jurassic Margin of Laurasia: A Record of Faulting Accommodating Plate Rotation. Boulder, Colorado: The Geological Society of America, 513: 589-606
Wang CY, Shi CG and Qu GS. 1986. Conodonts and Ostracodes from the Devonian "Heitai Formation" of Mishan County, Heilongjiang Province. Acta Micropalaeontologica Sinica, 8(2): 205-213 (in Chinese with English abstract)
Wilde SA, Dorsett-Bain HL and Liu JL. 1997. The identification of a Late Pan-African granulite facies event in Northeastern China: SHRIMP U-Pb zircon dating of the Mashan Group at Liumao, Heilongjiang Province, China. In: Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology. Amsterdam: VSP International Science Publishers, 17: 59-74
Wilde SA, Zhang XZ and Wu FY. 2000. Extension of a newly identified 500Ma metamorphic terrane in Northeast China: Further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 328(1-2): 115-130 DOI:10.1016/S0040-1951(00)00180-3
Wilde SA, Wu FY and Zhang XZ. 2003. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 122(1-4): 311-327 DOI:10.1016/S0301-9268(02)00217-6
Wu FY, Jahn BM, Wilde SA and Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113 DOI:10.1016/S0040-1951(00)00179-7
Wu FY, Wilde SA and Sun DY. 2001. Zircon SHRIMP U-Pb ages of gneissic granites in Jiamusi massif, northeastern China. Acta Petrologica Sinica, 17(3): 443-452 (in Chinese with English abstract)
Wu FY, Yang JH, Lo CH, Wilde SA, Sun DY and Jahn BM. 2007. The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 16(1): 156-172 DOI:10.1111/j.1440-1738.2007.00564.x
Xu WL, Wang F, Meng E, Gao FH, Pei FP, Yu JJ and Tang J. 2012. Paleozoic-Early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China: Evidence from igneous rock association and U-Pb geochronology of detrital zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract)
Yang H, Ge WC, Zhao GC, Yu JJ and Zhang YL. 2015. Early Permian-Late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications. Gondwana Research, 27(4): 1509-1533 DOI:10.1016/j.gr.2014.01.011
Yang JZ, Qiu HJ, Sun JP and Zhang XZ. 1998. Yuejinshan complex and its tectonic significance. Journal of Changchun University of Science and Technology, 28(4): 380-385 (in Chinese with English abstract)
Yu JJ, Hou XG, Ge WC, Zhang YL and Liu JC. 2013. Magma mixing genesis of the Early Permian Liulian pluton at the northeastern margin of the Jiamusi massif in NE China: Evidences from petrography, geochronology and geochemistry. Acta Petrologica Sinica, 29(9): 2971-2986 (in Chinese with English abstract)
Yuan LQ. 1994. The discovery of Upper Palaeozoic erathem coal-bearing formation and its significance, in Mishan area, East Heilongjiang Province. Coal Geology and Exploration, 22(1): 1-4 (in Chinese with English abstract)
Zhao P, Chen Y, Xu B, Faure M, Shi GZ and Choulet F. 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China. Journal of Geophysical Research: Solid Earth, 118(5): 1873-1894 DOI:10.1002/jgrb.50198
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246 DOI:10.1016/j.tecto.2009.08.009
Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Zheng CQ, Wang H and Zeng WS. 2010. Pan-African metamorphic and magmatic rocks of the Khanka massif, NE China: Further evidence regarding their affinity. Geological Magazine, 147(5): 737-749 DOI:10.1017/S0016756810000063
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377 DOI:10.1016/j.gr.2012.05.012
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-Accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466 DOI:10.1002/2014TC003637
Zhou JB and Li L. 2017. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145: 91-100 DOI:10.1016/j.jseaes.2017.04.013
Zhou JB, Pu XG, Hou HS, Han W, Cao JL and Li GY. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia. Acta Petrologica Sinica, 34(10): 2845-2856 (in Chinese with English abstract)
曹熹, 党增欣, 张兴洲, 姜继圣, 王洪德. 1992. 佳木斯复合地体. 长春: 吉林科学技术出版社, 1-126.
程瑞玉, 吴福元, 葛文春, 孙德有, 柳小明, 杨进辉. 2006. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报, 22(2): 353-376.
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社, 1-734.
黑龙江省地质矿产局. 1997. 黑龙江省岩石地层. 武汉: 中国地质大学出版社, 94-132.
韩伟, 周建波. 2020. 古太平洋板块俯冲-增生时限:饶河增生杂岩的地球化学和年代学制约. 岩石学报, 36(3): 703-725.
黄本宏. 1982. 东北北部石炭二叠纪陆相地层及古地理概况. 地质论评, 28(5): 395-402. DOI:10.3321/j.issn:0371-5736.1982.05.001
姜继圣. 1992. 麻山群孔兹岩系主期区域变质作用及演化. 岩石矿物学杂志, 11(2): 97-110.
李锦轶, 牛宝贵, 宋彪, 徐文喜, 张雨红, 赵子然. 1999. 长白山北段地壳的形成与演化. 北京: 地质出版社, 32-50.
李宁, 王成文. 2017. 东北及邻区晚古生代地层接触关系与佳-蒙地块的形成和演化. 吉林大学学报(地球科学版), 47(5): 1331-1340.
孟恩, 许文良, 裴福萍, 王枫. 2011. 黑龙江省东部中泥盆世火山作用及其构造意义-来自岩石地球化学、锆石U-Pb年代学和Sr-Nd-Hf同位素的制约. 岩石矿物学杂志, 30(5): 883-900. DOI:10.3969/j.issn.1000-6524.2011.05.012
宋彪, 李锦轶, 牛宝贵, 徐文喜. 1997. 黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义. 地球学报, 18(3): 306-312.
唐克东, 王莹, 何国琦, 邵济安. 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69(1): 16-30.
王成源, 施从广, 曲关生. 1986. 黑龙江密山泥盆系"黑台组"的牙形刺与介形类. 微体古生物学报, 8(2): 205-216.
吴福元, Wilde SA, 孙德有. 2001. 佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄. 岩石学报, 17(3): 443-452.
许文良, 王枫, 孟恩, 高福红, 裴福萍, 于介江, 唐杰. 2012. 黑龙江省东部古生代-早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389.
杨金中, 邱海峻, 孙加鹏, 张兴洲. 1998. 跃进山岩系及其构造意义. 长春科技大学学报, 28(4): 380-385.
于介江, 侯雪刚, 葛文春, 张彦龙, 柳佳成. 2013. 佳木斯地块东北缘早二叠世六连岩体的岩浆混合成因:岩相学、年代学和地球化学证据. 岩石学报, 29(9): 2971-2986.
苑立青. 1994. 黑龙江密山地区晚古生代煤系的发现. 煤田地质与勘探, 22(1): 1-4.
周建波, 蒲先刚, 侯贺晟, 韩伟, 曹嘉麟, 李功宇. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约. 岩石学报, 34(10): 2845-2856.