岩石学报  2020, Vol. 36 Issue (5): 1586-1596, doi: 10.18654/1000-0569/2020.05.16   PDF    
广西丹池成矿带芒场矿田岩浆岩源区特征及锆石U-Pb年龄分析
伍静1, 苑宏伟1, 甘能俭1, 韦绍成1, 廖娟2,3, 张健4, 梁华英2     
1. 广西大学资源环境与材料学院, 南宁 530004;
2. 中国科学院广州地球化学研究所, 矿物学与成矿学重点实验室, 广州 510640;
3. 中国科学院大学, 北京 100049;
4. 南宁师范大学, 北部湾环境演变与资源利用教育部重点实验室, 南宁 510001
摘要: 丹池成矿带是我国重要锡多金属成矿带,过去对丹池成矿带成岩成矿研究主要集中在大厂矿田及五圩矿田,而对丹池成矿带北部的芒场矿田岩浆作用时代、源区特征及其成矿性缺少分析。芒场矿田岩浆活动强烈,发育隐伏斑状花岗岩及有关的花岗斑岩脉和隐伏细粒花岗斑岩及有关的白云母花岗斑岩脉。本文分析花岗斑岩脉U-Pb年龄及花岗斑岩脉和白云母花岗斑岩脉主、微量元素组成,以探讨岩浆活动时代、岩浆源区特征及其成矿潜力。芒场矿田花岗斑岩脉锆石U-Pb年龄为89.1±0.9Ma(MSWD=0.9),和丹池成矿带内大厂矿田岩浆活动时代相近,表明丹池成矿带岩浆活动时代都发生于90Ma左右。白云母花岗斑岩脉具高A/CNK比值(2.69~2.88),含高铝硅酸盐矿物白云母及在Th-Rb图上沿S型花岗岩趋势线分布,和大厂矿田S型黑云母花岗岩的特征基本一致,表明其主要为S型花岗岩。花岗斑岩脉形成时代晚于白云母花岗斑岩脉,但其具有更低的SiO2含量和更高的MgO、Fe2O3T、CaO和TiO2含量,且在SiO2与TiO2、Fe2O3T、Al2O3和P2O5关系图中分布于不同区域,没有线性变化关系,显示两者不是同一岩浆结晶分异演化形成的,而为不同沉积变质岩部分熔融形成的。白云母花岗斑岩脉富Al2O3、K2O、Rb、Cs、Sn、W、Nb和Ta,在Rb/Ba-Rb/Sr图上位于富粘土源区,为强风化作用形成的富粘土质富稀有金属源区部分熔融形成的产物。华南西部基底发育经强风化作用形成的富粘土质富稀有金属元素沉积变质源区,为华南西南缘大规模锡矿床的形成提供了物质基础。
关键词: 岩浆特征    U-Pb定年    芒场矿田    广西    
Source characteristics of magmatic rocks and zircon U-Pb age in the Mangchang ore field, Danchi metallogenic belt, Guangxi
WU Jing1, YUAN HongWei1, GAN NengJian1, WEI ShaoCheng1, LIAO Juan2,3, ZHANG Jian4, LIANG HuaYing2     
1. College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
2. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. MOE Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning 530001, China
Abstract: The Danchi metallogenic belt is an important tin-polymetallic metallogenic belt in Guangxi,China. Previous work focused mainly on the Sn-polymetallic deposits in the Dachang and the Wuxu ore fields,while less work has been carried out on the ages,source features and ore potential fertility of the felsic igneous rocks in the Machang ore field. Magmatic activities are strong in the Mangchang ore field,where concealed small grain granites and porphyritic granites and their related muscovite granite porphyry dykes and porphyry granite dykes were found,respectively. Zircon LA-ICP-MS U-Pb ages of a porphyry granite dyke,and major and trace element compositions of granite porphyry dikes and muscovite porphyry granite dykes are analyzed in order to reveal the ages of their magmatic activities,source features and fertility of the different igneous felsic rocks in the Mangchang ore field. The granite porphyry dyke has a zircon U-Pb age of 89.1±0.9Ma (MSWD=0.9),which is similar to the zircon ages of felsic igneous rocks and cassiterite U-Pb ages of the ore bodies in the Dachang ore field of the same metallogenic belt. This similar zircon and cassiterite U-Pb ages in the Mangchang and Dachang ore fields suggest that the magmatic activities and related Sn-polymetallic mineralization occurred at about 90Ma in the Danchi metallogenic belt. The muscovite granite porphyry dyke is characterized by high A/CNK (2.69~2.88),with a mineral assemblage containing muscovite and being distributed along the S-type granite evolution line on the Th vs. Rb diagram,which is the same as those of the Longxiangai biotite granite in the Dachang ore field,indicating that both of them could be classified as S-type granite. The granite porphyry dykes which emplaced later than the muscovite granite dyke have lower SiO2 and higher MgO,Fe2O3T,CaO and TiO2 concentrations than the muscovite granite dyke and the both types of dykes distribute on different domains on the diagrams of SiO2 vs. TiO2,Fe2O3T,Al2O3 and P2O5 without evolution trend,suggesting that they are not derived from the same magma chamber,but from partial melting of different metasedimentary rocks. The muscovite granite porphyry dyke is characterized by high concentrations of Al2O3,K2O,Rb,Cs,Sn,W,Nb,and Ta and is located in the domain of clay rich sedimentary source on the Rb/Ba vs. Rb/Sr diagram,suggesting that it was sourced from partial melting of clay and rare metal rich sedimentary source formed by strong weathering. Our results indicate that the basement of southwestern China contains clay and rare metal rich metasedimentary rocks,which could provide enough ore forming material for the formation of large and giant Sn(W) and other rare metal deposits in southwestern China and the adjacent area.
Key words: Magmatic characteristics    Zircon U-Pb Age    Mangchang ore field    Guangxi    

广西丹池成矿带发育多个大型超大型锡多金属矿床,是我国重要锡生产基地。丹池成矿带从北西往南东由麻阳、芒场、大厂、北香及五圩等矿田组成(图 1a)。前人对丹池成矿带大厂矿田及五圩矿田成岩成矿作用开展了较多研究(陈毓川等,1993王登红等,2004Cai et al., 2007梁婷等,2011王新宇等,2015Guo et al., 2018aZhang et al., 2018Zhao et al., 2018伍静等,2018Huang et al., 2019Wang et al., 2019张健等,2019),发现大厂矿田成岩成矿时代多在85~92Ma之间,而对矿带内其它矿田岩浆活动时代及岩浆特征却了解不多,因而妨碍了对丹池成矿带时空分布的认识。此外,大厂矿田龙箱盖黑云母花岗岩和矽卡岩型锌铜矿床紧密共生,而远离锡石硫化物矿床(张健等,2019),由于铜和锡在岩浆中地球化学不同,前者多和高氧化岩浆作用有关,而后者多和还原岩浆作用有关,龙箱盖黑云母花岗岩是否为锡成矿岩体还存争议,因而对丹池成矿带锡矿化岩体特征还了解不多。

图 1 丹池成矿带(a)及芒场矿田地质简图(b)(据魏彭寿等, 1986修改) 1-二叠系; 2-石炭系; 3-泥盆系; 4-安山玢岩脉; 5-花岗斑岩脉; 6-白云母花岗斑岩脉; 7-地层界线; 8-断层;9-背斜; 10-矿田; 11-锡锌矿床; 12-铅银矿床; 13-铅锌矿床; 14-采样位置 Fig. 1 Geological sketch map of the Danchi metallogenic belt (a) and the Manchang ore field (b) (modified after Wei et al., 1986)

芒场矿田位于大厂矿田北西约40km处,矿田内出露一系列岩脉及在矿田深部发育和矿化关系密切的隐伏花岗岩体(魏彭寿等,1986),为进一步分析整个矿带岩浆作用时空分布及了解锡成矿岩体地球化学特征提供了条件。目前对芒场矿田岩浆岩源区特征及形成时代了解不多,仅在二十世纪八十年代用绢云母Rb-Sr及全岩Rb-Sr法分析了岩脉同位素年龄(魏彭寿等,1986)。由于未见原始数据或等时线,难以评价年龄数据的可靠性及精度。

为了深入了解芒场矿田内岩浆特征及成矿带岩浆作用时空分布特征,本文分析了花岗斑岩脉锆石U-Pb年龄及花岗斑岩脉和白云母花岗斑岩脉的主、微量元素组成,以此探讨锡矿成矿岩体源区特征及形成稀有矿床潜力。

1 芒场矿田地质特征

芒场矿田位于丹池成矿带大厂矿田北西方位约40km处(图 1a),矿田内发育大型锡锌矿床1处(大山),中型锌铅银矿床1处(马鞍山)及一系列小型矿床及矿化点(图 1b)。矿田内出露地层主要为泥盆系砂岩、泥岩、泥灰岩、灰岩及硅质岩,石炭系泥灰岩、灰岩及白云岩,二叠系砂岩、泥岩、硅质岩及凝灰岩,三叠系粉砂岩、泥岩、灰岩、硅质岩等。矿田内断裂构造发育,主要有NW向、NE及近SN向三组,其中NW向及NE向较发育(图 1b)。矿体主要以脉状产于中泥盆统罗富组碳酸盐化角岩中及以网脉状产于中泥盆统纳标组上段石英砂岩中。矿石矿物主要有铁闪锌矿、锡石、黄铁矿、方铅矿及磁黄铁矿等, 脉石矿物主要为石英、方解石、菱锰矿、菱铁矿、白云石、阳起石、透辉石、石榴子石等(邹锡青和王思源,1993)。

芒场矿田岩浆活动强烈,在背斜轴部汇龙坳一带深部工程揭示深部发育隐伏细粒花岗岩和斑状花岗岩及在地表出露一系列岩脉(魏彭寿等,1986)。隐伏细粒花岗岩与成矿关系密切,围绕该岩体发育从高温至低温的热变质作用及高温的锡钼、高中温的锡锌、中低温的银铅锌及低温的锑汞等矿床或矿化(魏彭寿等,1986)。隐伏斑状花岗岩呈岩株产出,矿化蚀变较弱(魏彭寿等,1986)。矿田内岩脉侵入泥盆纪及石炭纪地层中, 主要为酸性岩脉及中性岩脉。岩脉走向多为SN或NW向,岩脉厚 < 1米至数米,长者延长达数千米(图 1b)(魏彭寿等,1986)。中性岩脉分布于矿田中西部,主要为石英安山玢岩和石英闪长玢岩(魏彭寿等,1986);酸性岩脉主要分布于矿区中部,主要为花岗斑岩及白云母花岗斑岩。花岗斑岩脉为隐伏斑状花岗岩上延部分(魏彭寿等,1986),分布于矿区中东部,岩脉厚2~20m,长超过1000m。花岗斑岩脉为浅灰色,具斑状结构,块状构造,斑晶矿物粒度较大,长石长轴多在5~10mm之间,主要由石英、斜长石及黑云母组成(图 2a, b), 基质为显晶质,矿物组成和斑晶相似。花岗斑岩脉切割白云母花岗斑岩脉,表明其形成时代晚于白云母花岗斑岩脉。白云母花岗斑岩脉见于矿田中部大山矿床西侧,为隐伏细粒花岗岩的上延部分(魏彭寿等,1986)。白云母花岗斑脉长约4000m,厚2~10m,岩石灰白色,斑状结构,块状构造,斑晶主要由石英和白云母及少量长石组成,粒度较小,斑晶粒径主要在1~2mm之间,基质为显晶质,矿物组成和斑晶基本一致(图 2c, d)。

图 2 花岗斑岩脉(a、b)和白云母花岗斑岩脉(c、d)特征 Q-石英;Ms-白云母;Bi-黑云母;Pl-斜长石 Fig. 2 Photos showing the characteristics of granite porphyry (a, b) and muscovite granite porphyry (c, d)
2 样品及分析方法

样品分别采自花岗斑岩脉及白云母花岗斑岩脉,其中,锆石U-Pb定年样品采样位置分别(图 1b): 25°7′47″N、107°28′43″E(花岗斑岩脉)和25°8′3″N、107°28′59″E(白云母花岗斑岩脉);主、微量元素分析的样品采自锆石定年样品附近100m范围内。

锆石选自约1kg花岗斑岩脉(MAS2-2)和1kg白云母花岗斑岩脉(MAS3-2)。样品经碎样、磁选及重液选等方法选出锆石后,在显微镜下挑选锆石颗粒,后装入环氧树脂中并磨光。用光学显微镜及扫描电镜阴极发光CL观察,选出晶形较好、没裂纹及包裹体不发育的锆石晶体点进行测定。锆石LA-ICP-MS分析在中国科学院矿物学与成矿学重点实验室完成,分析仪器Agilent 7500a ICP-MS,激光熔样点直径31μm,分析方法和流程见Li et al. (2016)。为了减少锆石继承铅和铅丢失等对计算年龄的影响,在207Pb/235U-206Pb/238U中谐和度低于85%的年龄数据在计算最终年龄时被排除。为了获得较精确的年龄值,我们用累积概率统计分析锆石年龄。同一岩浆作用结晶锆石年龄为正态分布,正态分布数据在累积概率统计图上是一条斜率为正值的直线,分布在直线延伸方向上方较大年龄被视为继承锆石年龄,分布在直线延伸方向下方的年龄则被视为铅丢失锆石年龄(Liang et al., 2006Zou et al., 2017)。

岩石主微量元素分析样品选自显微镜下观察后蚀变较弱的岩石,在中国科学院同位素地球化学国家重点实验室分析,主量元素组成用X-射线荧光光谱法(XRF)进行测试;微量元素采用ICP-MS法测定,分析仪器为Perkin-Elmer Sciex ELAN 6000,分析方法见Li et al. (2016)。主量元素组成XRF分析精度在1%~2%之间,微量元素组成ICP-MS测试精度高于5%~10%。

3 分析结果 3.1 锆石年龄

芒场矿田花岗斑岩脉锆石LA-ICP-MS U-Pb年龄见表 1。我们也分析了白云母花岗斑岩脉锆石LA-ICP-MS U-Pb同位素组成,但分析15个点数据谐和度都小于80%,未获得白云母花岗斑岩脉锆石U-Pb谐和年龄。花岗斑岩脉共作了25个点锆石U-Pb同位素组成分析。在谐和度>85%的20个分析点中,3个点年龄值在733~1475Ma之间,和其它17个点的年龄不同,在计算主群锆石统计年龄时排除。其余17个分析点年龄在83~102 Ma之间,统计年龄为92.3±2.7Ma (MSWD=27.9)。用累积概率统计图处理年龄数据,把位于统计图上方非线性分布6个点视为继承铅,下方一个点视为铅丢失。10个成线性分布点获得年龄为89.1±0.9Ma (MSWD=1.74) (图 3)。

表 1 花岗斑岩脉锆石LA-ICP-MS U-Pb同位素组成表 Table 1 LA-ICP-MS U-Pb isotope composition of zircon from granite porphyry dyke

图 3 花岗斑岩脉锆石U-Pb谐和年龄图 Fig. 3 Diagram of zircon U-Pb concordant age of granite porphyry dyke
3.2 主、微量元素组成

芒场矿田白云母花岗斑岩脉和花岗斑岩脉主、微量元素组成见表 2。芒场矿田白云母花岗斑岩脉LOI值小于2.6%,表明分析岩石受后期低温蚀变影响较弱,主、微量元素组成可基本反映岩石的组成。芒场花岗斑岩脉的LOI值>5%,显示经历了后期强烈低温蚀变作用,其活泼元素氧化物Na2O、K2O、CaO及元素Cs、Rb、Ba等和LOI值具有相关性,表明其受后期低温蚀变的影响,不反映其原始组成,因此,在后文中将不讨论花岗斑岩中这些元素组成特征及其地质意义。花岗斑岩主量元素Al2O3在低温热液蚀变的岩石中为惰性元素(Guo et al., 2012),不受后期低温蚀变影响,花岗斑岩脉中Al2O3、TiO2、Fe2O3T、SiO2和LOI值关系不大,表明其受后期低温蚀变的影响也较弱,可反映其原始组成。

表 2 芒场矿田白云母花岗斑岩脉和花岗斑岩脉主量元素(wt%)和微量元素(×10-6)组成 Table 2 Major element(wt%) and trace element (×10-6) concentrations of the muscovite granite porphyry dyke and granite porphyry dyke in the Mangchang ore field

白云母花岗斑岩脉具高SiO2 (73.70%~74.86%)、低TiO2(< 0.10%)特征,在SiO2-(K2O+Na2O)岩石化学分类图(TAS)上位于花岗岩区域(图 4a),为高钾钙碱性岩石(图 4b)。芒场白云母花岗斑岩脉和大厂龙箱盖黑云母花岗岩相比,相对更富Al2O3 (前者15.93%~16.16%,后者 < 14.41%)。白云母花岗斑岩脉稀土元素含量较低,(REE在13.4×10-6~21.6×10-6之间,低于花岗斑岩脉(202×10-6~216 ×10-6)。

图 4 芒场矿田白云母花岗斑岩和大厂龙箱盖黑云母花岗岩元素组成特征(底图分别据Middlemost, 1994; Rickwood, 1989; Maniar and Piccoli, 1989; Chappell, 1999) 图 5图 9图 10图例同此图 Fig. 4 Elemental composition characteristics of muscovite granite porphyry in Mangchang ore field and the Longxianggai biotite granite in Dachang ore field (base map after Middlemost, 1994; Rickwood, 1989; Maniar and Piccoli, 1989; Chappell, 1999, respectively)

白云母花岗斑岩脉富Sn (49×10-6~70×10-6)、W (35×10-6~58×10-6)、Ta (32.0×10-6~35.8×10-6)、Nb (133×10-6~144×10-6)和Rb (1045×10-6~1135×10-6),高于矿田内花岗斑岩脉Sn (< 19×10-6)、W (< 25×10-6)、Ta (< 6.4×10-6)、Nb (< 65.8×10-6)和Rb (< 446×10-6)及大厂矿田龙箱盖黑云母花岗岩Sn (< 21×10-6)、W (< 25×10-6)、Ta (< 18.8×10-6)、Nb (< 63.3×10-6)和Rb(429×10-6~851×10-6)等元素的含量。

4 讨论 4.1 芒场矿田岩浆活动时代

前人据绢云母Rb-Sr及全岩Rb-Sr法获得矿田内岩脉同位素年龄在81~95Ma之间(魏彭寿等,1986)。但由于仅报道结果而未见具体数据,难以评估年龄数据可靠性及精度。我们获得花岗斑岩脉锆石LA-ICP-MS U-Pb年龄为89.1±0.9Ma (MSWD=1.74) (图 3),略大于前人获得的全岩Rb-Sr年龄(84Ma)。花岗斑岩脉切割和成矿关系密切白云母花岗斑岩脉,表明白云母花岗岩脉及其深部隐伏细粒花岗斑岩以及相关矿化的形成时代应大于89Ma。花岗斑岩脉锆石年龄(~89Ma)和大厂矿田岩浆活动时代(88~92Ma) (王登红等,2004梁婷等,2011Guo et al., 2018aHuang et al., 2019)在误差范围内近似一致。表明丹池成矿带岩浆作用时代主要都在90Ma左右。丹池成矿带岩浆作用时代和华南西南部一带锡多金属及钨、钨-铜、铜-钼矿床成岩成矿时代基本一致,主要集中于90~95Ma之间(Cheng and Mao, 2010; Guo et al., 2018b; Huang et al., 2019; Wang et al., 2019),显示其形成于同一动力学背景。

4.2 白云母花岗斑岩脉和花岗斑岩脉源区异同分析

芒场矿田花岗斑岩脉切穿白云母花岗斑脉(图 1b),表明前者形成时代晚于后者,但对两者是否为同一岩浆房结晶分异的产物则了解不多。

白云母花岗斑岩脉含S型花岗岩特征矿物白云母和具高的A/CNK值(2.69~2.88),远大于过铝质花岗岩的值(1.1)(表 2图 4c),加上其在Rb-Th图上沿S型花岗岩趋势线分布,和大厂矿田龙箱盖黑云母花岗岩的一致(图 4d),表明其为强过铝质S型花岗岩,为变质沉积岩部分熔融形成的(Harrison et al., 1999Kalsbeek,2001King et al., 2011)。芒场矿田花岗斑岩脉由于LOI值较大,显然受后期地质作用影响而使其主量元素发生变化,因而不能用A/NK和A/CNK关系讨论其为过铝质或过碱质。芒场矿田花岗斑岩具较高的Zr/Hf和Nb/Ta值(图 5),表明其不属高分异花岗岩类。芒场矿田花岗斑岩脉Al2O3含量较高(13.12%~14.77%),和大厂矿田龙箱盖黑云母花岗岩的相似(Huang et al., 2019Wang et al., 2019),表明其属过铝质花岗岩;该花岗斑岩脉稀土元素模型为向右倾斜线,具强烈的Eu负异常(图 6),显示壳源花岗岩特征,加上其微量元素组成和矿田内白云母花岗斑岩脉及大厂矿田龙箱盖S型黑云母花岗岩(Huang et al., 2019Wang et al., 2019)的相似(图 6),也支持其为壳源花岗岩。因此,我们认为芒场矿田花岗斑岩脉也为S型花岗岩。

图 5 芒场矿田白云母花岗斑岩脉和花岗斑岩脉及龙箱盖黑云母花岗斑岩Nb/Ta-Zr/Hf关系图 Fig. 5 Nb/Ta vs. Zr/Hf diagram of the granite porphyry dyke and the muscovite granite porphyry dyke in the Mangchang ore field and the Longxianggai biotite granite in the Dachang ore field

图 6 芒场矿田花岗斑岩脉(a、b)和白云母花岗斑岩脉(c、d)及大厂矿田龙箱盖黑云母花岗岩(e、f)微量及稀土元素模型 Fig. 6 Trace and rare earth element models of the granite porphyry dike (a, b), the muscovite granite porphyry dyke (c, d) in the Mangchang ore field and the Longxiangai biotite granite in the Dachang ore field (e, f)

同一岩浆房演化形成的岩体从早至晚SiO2含量逐渐增加,芒场矿田花岗斑岩脉形成时代晚于白云母花岗斑岩脉,但其SiO2含量却小于白云母花岗斑岩脉,不支持两者为同一岩浆房结晶分异的产物。此外白云母花岗斑岩脉和花岗斑岩脉在SiO2与Fe2O3T、P2O5、TiO2、Al2O3关系图上(Harker图)位于不同区域(图 7a-d),没有线性变化关系,也表明两者不是同一岩浆房结晶分异的产物。在Sr-Eu关系图上(图 8a),白云母花岗斑岩脉、花岗斑岩脉和大厂矿田龙箱盖黑云母花岗岩位于不同区域,白云母花岗斑岩脉比花岗斑岩脉具更高的Sr含量和低的Eu含量,不位于花岗岩常见结晶分异矿物斜长石、钾长石和黑云母的结晶分异线上。虽然白云母花岗斑岩脉位于花岗斑岩脉独居石、褐帘石(图 8b)及角闪石(图 8c)的结晶分异方向线附近,但由于花岗斑岩脉中未见褐帘石及角闪石等矿物,因而白云母花岗斑岩脉低(La/Yb)N值及低的TiO2和Zr值不支持其为花岗斑岩岩浆结晶褐帘石或角闪石等矿物造成的。上述主微量元素特征差异表明,芒场矿田紧密共生的白云母花岗斑岩脉和花岗斑岩脉不属同一岩浆房结晶分异的产物,而为不同沉积源区变质基底部分熔融形成的。

图 7 芒场矿田白云母花岗斑岩脉和花岗斑岩脉及大厂矿田龙箱盖黑云母花岗岩Harker图图例同图 4图 5 Fig. 7 The Harker diagrams of the muscovite granite porphyry dyke and the granite porphyry dyke in the Mangchang ore field and the Longxianggai biotite granite in the Dachang ore field

图 8 芒场矿田白云母花岗斑岩脉和花岗斑岩脉及大厂矿田龙箱盖黑云母花岗岩主、微量元素关系图 图例同图 4图 5;矿物结晶与元素变化趋势线据Huang and Jiang, 2014 Fig. 8 Diagrams showing major element and trace element relation of the muscovite granite porphyry dyke and the granite porphyry dyke in the Mangchang ore field and Longxianggai biotite granite in the Dachang ore field
4.3 芒场矿田白云母花岗斑岩脉源区特征及成矿性分析

芒场矿田白云母花岗斑岩脉Rb含量在1045×10-6~1135×10-6之间,其Rb2O含量在0.23% ~0.25%之间,超过含锂云母的碱性长石花岗岩类与伟晶岩类Rb矿床最低工业品位(0.1%~0.2%)。白云母花岗斑岩脉长约4000m,厚2~10m(魏彭寿等,1986),Rb2O储量很大,具有潜在的经济价值,可视为花岗岩型铷矿床。

稀有金属花岗岩和一般花岗岩相比,多具高Al2O3、富P2O5、低CaO、MgO、TiO2、Fe2O3T及低的TiO2/MnO特征(王联魁和黄智龙,2000)。芒场矿田白云母花岗斑岩脉高Al2O3含量(15.93%~16.16%),和世界稀有金属花岗岩的Al2O3值(15%~16%)基本一致,高于花岗岩的Al2O3平均值(14.47%)(勒斯勒和朗格,1985)、华南花岗岩的Al2O3平均值(13.73%)(中国科学院贵阳地球化学研究所,1979)以及大厂矿田龙箱盖黑云母花岗岩的Al2O3值(~14%)(表 2);白云母花岗斑岩脉的CaO (0.43%~0.53%)、MgO (0.07%~0.11%)、TiO2(0.01%)、Fe2O3T(1.31%~1.59%)、TiO2/MnO (0.11~0.17)值低于或和世界稀有金属花岗岩的值(CaO: 0.49%、MgO: 0.26%、TiO2: 0.04%、Fe2O3T: 1.42%、TiO2/MnO: 0.37) (王联魁和黄智龙,2000)一致,明显低于华南花岗岩的平均值(CaO: 1.39%、MgO: 0.66%、TiO2: 0.28%、Fe2O3T: 2.96%、TiO2/MnO: 3.50)。因此,芒场矿田白云母花岗斑岩脉具有稀有金属成矿花岗岩的一般特征。

白云母花岗斑岩脉含较高的Sn (49×10-6~70×10-6)、Nb (132×10-6~144×10-6)和Ta (32×10-6~36×10-6),高于S型花岗岩Sn含量(11×10-6) (Williamson et al., 2010)及大厂矿田龙箱盖岩体Sn (10×10-6~19 ×10-6)、Nb (62.30×10-6~65.38×10-6)和Ta (5.90×10-6~6.40×10-6)的含量。这也表明白云母花岗斑岩岩浆相对富集稀有金属元素,有利于形成Sn等稀有金属矿床,具有良好的形成稀有金属矿床潜力。

白云母花岗斑岩脉Nb/Ta和Zf/Hf比值较小(图 5),具稀土元素四分组模型(图 6),在Rb-Ba-Sr图(图 9)上分布于高分异花岗岩附近,显示高分异花岗岩特征(Breiter et al., 2014Ballouard et al., 2016吴福元等,2017)。稀有金属为不相容元素,随着结晶分异而富集,白云母花岗斑岩脉富稀有金属既可能是源区富稀有金属所致,也可能为岩浆高分异所致或两者复合所致。大厂龙箱盖岩体和芒场矿田白云母花岗斑岩脉具相近的Nb/Ta比值(图 5表 2),在Rb-Ba-Sr图上位于高分异花岗岩区(图 9),也为高分异花岗岩,但其Sn、Nb和Ta含量却远小于芒场矿田白云母花岗斑岩脉的相关元素含量(表 2),因此,芒场矿田白云母花岗斑岩脉源区可能更富稀有金属。

图 9 芒场矿田白云母花岗斑岩脉和龙箱盖黑云母花岗岩在Rb-Ba-Sr组成图(据El Bouseily and El Sokkary 1975) Fig. 9 Distribution domains of the muscovite granite dyke in the Mangchang ore field and the Lonxianggai biotite granite in the Rb-Ba-Sr diagram (after El Bouseily and El Sokkary, 1975)

强风化作用使岩石形成富粘土质矿物,导致岩石丢失Na、Ca、Sr、Pb,而Li、K、Rb、Cs、Sn(W)被粘土矿物吸附或进入粘土矿物,经再搬运沉积会形成富粘土质、碱金属(Li、K、Rb、Cs)及稀有金属(Sn(W))源区(Romer and Kroner, 2016)。芒场矿田白云母花岗斑岩脉富K贫Na(K2O/Na2O: 28~30)及富Rb、Cs、Sn等元素,在Rb/Ba-Rb/Sr图上位于富粘土源区(图 10),表明白云母花岗斑岩脉为富粘土富稀有金属沉积变质基底部分熔融形成的。

图 10 芒场矿田白云母花岗岩脉和大厂龙箱盖黑云母花岗岩Rb/Ba-Rb/Sr图(据Sylvester, 1998) Fig. 10 Composition variation of muscovite granite porphyry dyke in the Mangchang ore field and the Longxianggai biotite granite in the Rb/Ba vs. Rb/Sr diagram (after Sylvester, 1998)

芒场矿田白云母花岗斑岩脉主微量元素组成特征表明,研究区基底发育富粘土质富稀有金属元素沉积变质岩。华南西南缘及越南北部地区发育一系列锡矿床(Huang et al., 2019),都可能与基底发育富粘土质富稀有金属元素沉积变质岩有关。

5 结论

通过上述分析, 我们获得下列结论:

(1) 芒场矿田花岗斑岩脉锆石LA-ICP-MS U-Pb年龄约89Ma,和大厂矿田岩浆作用时代基本一致,表明丹池成矿带成矿岩浆作用主要在90Ma左右;

(2) 芒场矿田花岗斑岩脉和白云母花岗斑岩脉为不同成分沉积变质岩源区部分熔融的产物;

(3) 芒场矿田白云母花岗斑岩脉主要为富粘土质富稀有金属源区部分熔融形成的,研究区基底发育富粘土质富稀有金属源区,华南西南地区发育一系列大型超大型锡矿床都可能与基底发育富粘土质富锡源区有关。

参考文献
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition. Geology, 44(3): 231-234
Breiter K, Lamarão CN, Borges RMK and Dall'Agnol R. 2014. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos, 192-195: 208-225 DOI:10.1016/j.lithos.2014.02.004
Cai MH, Mao JW, Liang T, Pirajno F and Huang HL. 2007. The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China:Clues from fluid inclusions and He isotope systematics. Mineralium Deposita, 42(6): 613-626 DOI:10.1007/s00126-007-0127-5
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Chen YC, Huang MZ, Xu J, Hu YZ, Tang SH, Li YQ and Meng LK. 1993. Tin Deposits of Dachang. Beijing:Geological Publishing House, 1-361 (in Chinese with English abstract)
Cheng YB and Mao JW. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China:Constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4): 258-276 DOI:10.1016/j.lithos.2010.08.013
El Bouseily AM and El Sokkary AA. 1975. The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology, 16(3): 207-219 DOI:10.1016/0009-2541(75)90029-7
Guiyang Institute of Geochemistry, Chinese Academy of Sciences. 1979. Geochemistry of Granites in South China. Beijing: Science Press (in Chinese)
Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Luo M and Zhang LC. 2018a. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China:Insights from cassiterite U-Pb ages and trace element compositions. Ore Geology Reviews, 95: 863-879 DOI:10.1016/j.oregeorev.2018.03.023
Guo J, Zhang RQ, Li CY, Sun WD, Hu YB, Kang DM and Wu JD. 2018b. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China:Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627-642 DOI:10.1016/j.oregeorev.2017.11.033
Guo S, Ye K, Chen Y, Liu JB, Mao Q and Ma YG. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt:Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136: 145-167
Harrison MT, Grove M, McKeegan KD, Coath CD, Lovera OM and Le Fort P. 1999. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. Journal of Petrology, 40(1): 3-19 DOI:10.1093/petroj/40.1.3
Huang CL and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China:geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203: 207-226 DOI:10.1016/j.lithos.2014.05.030
Huang WT, Liang HY, Zhang J, Wu J, Chen XL and Ren L. 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geology Reviews, 112: 103030 DOI:10.1016/j.oregeorev.2019.103030
Kalsbeek F. 2001. Geochemical comparison between Archaean and Proterozoic orthogneisses from the Nagssugtoqidian orogen, West Greenland. Precambrian Research, 105(2-4): 165-181 DOI:10.1016/S0301-9268(00)00110-8
King J, Harris N, Argles T, Parrish R and Zhang HF. 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123(1-2): 218-239 DOI:10.1130/B30085.1
Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW and Zhang YQ. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159 DOI:10.1007/s00126-005-0047-1
Liang T, Wang DH, Hou KJ, Li HQ, Huang HM, Cai MH and Wang DM. 2011. LA-MC-ICP-MS zircon U-Pb dating of Longxianggai pluton in Dachang of Guangxi and its geological significance. Acta Petrologica Sinica, 27(6): 1624-1636 (in Chinese with English abstract)
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-322 DOI:10.1016/j.oregeorev.2015.07.016
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost EAK. 1994. Naming materials in the magma igneous rock system. Earth Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263 DOI:10.1016/0024-4937(89)90028-5
Romer RL and Kroner U. 2016. Phanerozoic tin and tungsten mineralization-Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60-95 DOI:10.1016/j.gr.2015.11.002
Rosler HJ and Lange H. 1985. Geochemical Tables. Beijing:Science Press, 169 (in Chinese with English abstract)
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29-44 DOI:10.1016/S0024-4937(98)00024-3
Wang DH, Chen YC, Chen W, Sang HQ, Li HQ, Lu YF, Chen KL and Lin ZM. 2004. Dating the Dachang giant tin-polymetallic deposit in Nandan, Guangxi. Acta Geologica Sinica, 78(1): 132-138 (in Chinese with English abstract)
Wang LK and Huang ZL. 2000. Liquid Separation , Experiment of Li-F Granite. Beijing:Science Press, 125-140 (in Chinese)
Wang TY, Li GJ, Wang QF, Santosh M, Zhang QA and Deng J. 2019. Petrogenesis and metallogenic implications of Late Cretaceous I- and S-type granites in Dachang-Kunlunguan ore belt, southwestern South China Block. Ore Geology Reviews, 113: 103079 DOI:10.1016/j.oregeorev.2019.103079
Wang XY, Huang HW, Chen NS, Huang XQ, Wu XK, Hao S and Li HM. 2015. In-situ LA-MC-ICP MS U-Pb geochronology of cassiterite from Changpo-Tongkeng tin-polymetallic deposits, Dachang Orefield, Guangxi. Geological Review, 61(4): 892-900 (in Chinese with English abstract)
Wei PS, Pan QY and Tong JS. 1986. Features and mineralization of Mangchang magmatite. Geology of Guangxi, (1): 15-24 (in Chinese with English abstract)
Williamson BJ, Müller A and Shail RK. 2010. Source and partitioning of B and Sn in the Cornubian batholith of southwest England. Ore Geology Reviews, 38(1-2): 1-8 DOI:10.1016/j.oregeorev.2010.05.002
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Identification and study of highly differentiated granites. Scientia Sinica (Terrae), 47(7): 745-765 (in Chinese) DOI:10.1360/N072016-00139
Wu J, Nong SH, Huang WT, Zhang J, Liang HY, Yuan JT and Chen L. 2018. Geological and geochemical characteristic of Sb-Au and Pb-Zn-Sb mineralization and complex mineralization in the Sanpaidong ore district, Wuxu ore field, Guangxi. Acta Petrologica Sinica, 34(5): 1327-1334 (in Chinese with English abstract)
Zhang J, Huang WT, Liang HY, Wu J and Chen XL. 2018. Genesis of the Jianzhupo Sb-Pb-Zn-Ag deposit and formation of an ore shoot in the Wuxu ore field, Guangxi, South China. Ore Geology Reviews, 102: 654-665 DOI:10.1016/j.oregeorev.2018.09.026
Zhang J, Huang WT, Chen XL, Wu J, Ren L, Liang HY and Chen L. 2019. Different geochemical characteristics and genetic link between Sn-polymetallic deposit and skarn Zn-Cu deposit in the Dachang ore field, Guangxi. Geotectonica et Metallogenia, 43(6): 1186-1199 (in Chinese with English abstract)
Zhao H, Su WC, Shen NP, Xie P, Cai JL and Gan WZ. 2018. Fluid inclusion study of the Gaofeng tin-polymetallic deposit in the Dachang ore field, Guangxi, China. Acta Petrologica Sinica, 34(12): 3553-3566 (in Chinese with English abstract)
Zou XQ and Wang SY. 1993. Discussion on stable isotopic composition and genesis of Mangchang tin-polymetallic orefield, Guangxi. Geology of Guangxi, 6(2): 63-68 (in Chinese with English abstract)
Zou YQ, Chen XL, Huang WT, Zhang J, Liang HY, Xu JF and Chen L. 2017. Identification of an Early-Middle Jurassic oxidized magmatic belt, South Gangdese, Tibet, and geological implications. Science Bulletin, 62(12): 888-898 DOI:10.1016/j.scib.2017.05.026
陈毓川, 黄民智, 徐钰, 胡云中, 唐绍华, 李荫清, 孟令库. 1993. 大厂锡矿地质. 北京:地质出版社, 1-361.
勒斯勒 HJ, 朗格 H. 1985. 地球化学表. 北京:科学出版社, 169-172.
梁婷, 王登红, 侯可军, 李华芹, 黄惠明, 蔡明海, 王东明. 2011. 广西大厂笼箱盖复式岩体的LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 岩石学报, 27(6): 1624-1636.
王登红, 陈毓川, 陈文, 桑海清, 李华芹, 路远发, 陈开礼, 林枝茂. 2004. 广西南丹大厂超大型锡多金属矿床的成矿时代. 地质学报, 78(1): 132-138. DOI:10.3321/j.issn:0001-5717.2004.01.015
王联魁, 黄智龙. 2000. Li-F花岗岩液态分离与实验. 北京: 科学出版社.
王新宇, 黄宏伟, 陈能松, 黄锡强, 吴祥珂, 郝爽, 李惠民. 2015. 广西大厂矿田长坡-铜坑锡多金属矿床锡石LA-MC-ICP-MS U-Pb年龄及其地质意义. 地质论评, 61(4): 892-900.
魏彭寿, 潘其云, 童加松. 1986. 芒场岩浆岩特征及其成矿作用. 广西地质, (1): 15-24.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
伍静, 农仕华, 黄文婷, 张健, 梁华英, 苑金涛, 陈玲. 2018. 广西五圩矿田三排洞矿床Sb-Au与Pb-Zn-Sb矿化地质地球化学特征与复合成矿分析. 岩石学报, 34(5): 1327-1334.
张健, 黄文婷, 陈喜连, 伍静, 任龙, 梁华英, 陈玲. 2019. 广西大厂矿田锡多金属矿床与矽卡岩型锌铜矿床地球化学特征差异及成因关系分析. 大地构造与成矿学, 43(6): 1186-1199.
赵海, 苏文超, 沈能平, 谢鹏, 蔡佳丽, 甘文志. 2018. 广西大厂矿田高峰锡多金属矿床流体包裹体研究. 岩石学报, 34(12): 3553-3566.
中国科学院贵阳地球化学研究所. 1979. 华南花岗岩类的地球化学. 北京: 科学出版社.
邹锡青, 王思源. 1993. 广西芒场锡多金属矿田稳定同位素组成对矿床成因探讨. 广西地质, 6(2): 63-68.