岩石学报  2020, Vol. 36 Issue (3): 948-966, doi: 10.18654/1000-0569/2020.03.18   PDF    
新疆阿尔泰沙依肯布拉克铍矿区片麻状花岗闪长岩年代学、地球化学及其意义
李强1, 丁建刚2, 马德成2, 杨富全1, 张忠利3, 杨成栋1     
1. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;
2. 新疆维吾尔自治区有色地质勘查局七〇一队, 昌吉 831100;
3. 新疆维吾尔自治区有色地质勘查局七〇六队, 阿勒泰 836500
摘要: 沙依肯布拉克片麻状花岗闪长岩出露于中阿尔泰,为铍矿化伟晶岩的直接围岩,是研究其与稀有金属矿化关系、区域构造环境和中阿尔泰是否存在古老基底的理想对象。本文采用LA-ICP-MS锆石U-Pb定年法,获得其加权平均年龄为405.6±3.9Ma,属早泥盆世,明显早于阿尔泰稀有金属成矿高峰期。岩石具有高硅(SiO2=73.8%~74.7%)、富铝(Al2O3=13.3%~14.6%)、相对富钠(Na2O/K2O=1.28~3.13)的特点,A/CNK和A/NK值均大于1,属低钾钙碱性过铝质-强过铝质花岗岩。微量元素表现出Ba、Sr、P、Nb、Ti、Ce的负异常和Rb、Th、Ta、Pb、Nd、Sm、Hf的相对正异常,稀土元素显示轻稀土弱富集、重稀土平缓及较弱的负Eu异常(δEu=0.70~0.82)。岩石的εNdt)和二阶段Nd模式年龄较为均一,分别为-1.76~-1.22和1.19~1.21Ga。综合以上地球化学特征,结合区域构造-演化,本文认为中阿尔泰存在古老基底,沙依肯布拉克花岗闪长岩可能来源于中元古代地壳物质在早泥盆世俯冲消减环境下的部分熔融,在形成过程中混入了部分幔源物质。
关键词: 早泥盆世    稀有金属    古老基底    沙依肯布拉克    阿尔泰    
Geochronology, geochemistry and significance of the gneissic granodiorite from Shayikenbulake Be deposit in Altay, Xinjiang
LI Qiang1, DING JianGang2, MA DeCheng2, YANG FuQuan1, ZHANG ZhongLi3, YANG ChengDong1     
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. No. 701 Geological Team, Xinjiang Nonferrous Geoexploration Bureau, Changji 831100, China;
3. No. 706 Geological Team, Xinjiang Nonferrous Geoexploration Bureau, Altay 836500, China
Abstract: The Shayikenbulake gneissic granodiorite located in the Central Altay is the direct wall rock of Be-mineralized pegmatite, and it is an ideal object to study its relationship with rare metal mineralization, regional tectonic environment and whether the ancient basement exist in the Central Altay. Zircons yielded weighted mean LA-ICP-MS U-Pb age of 405.6±3.9Ma for the granodiorite, indicating that it was emplaced in the Early Devonian and is obviously earlier than the peak of rare metal mineralization in Altay. The granodiorites are high in the concentrations of SiO2 (73.77%~74.69%), Al2O3 (13.32%~14.57%) and Na2O/K2O (1.28~3.13) with A/CNK and A/NK ratios >1, which are defined as low-K calc-alkaline peraluminous-strongly peraluminous granites. Trace elements of the granodiorite show negative anomalies for Ba, Sr, P, Nb, Ti, Ce and relative positive anomalies for Rb, Th, Ta, Pb, Nd, Sm, Hf. REE show weak enrichment of LREE, gentle HREE, and weak negative Eu anomalies (δEu=0.70~0.82). The εNd(t) values and two-stage model ages t2DM (Nd) range from -1.76 to -1.22 and from 1.19Ga to 1.21Ga, respectively. Combined with regional tectonic evolution and geochemistry characteristics presented here, this paper suggest that the Central Altay contains ancient basement, the Shayikenbulake granodiorite was probably derived from partial melt of Mesoproterozoic crustal material in the Early Devonian subduction environment, and mixed with mantle-derived components in the formation process.
Key words: Early Devonian    Rare metal    Ancient basement    Shayikenbulake    Altay    

阿尔泰造山带位于中亚造山带西南缘,是由一系列大陆块体、岛弧和增生杂岩构成的增生型造山带,是中亚造山带的重要组成部分(Şengör et al., 1993Xiao et al., 2004),呈北西-南东向横贯于中、俄、哈、蒙四国,构造上位于西伯利亚板块和哈萨克斯坦-准噶尔板块之间,其北接西伯利亚板块,南以额尔齐斯-布尔根板块缝合带为界与准噶尔板块相接,经历了古生代地壳双向增生和中新生代陆内造山作用,同时也是重要的多金属-稀有金属-白云母成矿带(Şengör et al., 1993王京彬等,1998Windley et al., 2002王登红等,2002何国琦等,2004Wang et al., 2006童英等,2007Mao et al., 2008Xiao et al., 2009)。阿尔泰侵入岩分布广泛,占至少40%以上的面积(Zou et al., 1989),甚至个别地体中超过了70%,以酸性侵入岩为主,形成于523~202Ma,具有五期:479~421Ma,峰值为455Ma;410~370Ma,峰值为395Ma,是阿尔泰造山带主要岩浆侵入时期;368~313Ma,峰值不明显;300~252Ma,峰值为275Ma;247~202Ma,峰值215Ma(Yang et al., 2018)。大量发育的侵入岩可能为造山带内伟晶岩的形成提供了有利的物源条件,使阿尔泰发育十万余条伟晶岩脉,形成了世界级的可可托海Li-Be-Nb-Ta-Cs-Rb-Hf矿床(邹天人,1995周刚等,2007刘锋等,2014)。

花岗岩岩石地球化学和同位素地球化学研究能够指示地球动力学机制和造山带陆壳增生过程(Han et al., 1997Barbarin, 1999Wang et al., 2009),前人通过阿尔泰造山带花岗岩的研究,提出了陆壳的侧向增生模型和双向增生模型(王涛等,2010Cai et al., 2011aLong et al., 2011)。另外,阿尔泰组成结构复杂,是否存在前寒武纪基底也一直存在争议,近年来花岗岩Nd同位素研究为该问题提供了新的线索(Wang et al., 2009王涛等,2010)。除此之外,阿尔泰造山带中大量稀有金属矿化伟晶岩产于花岗岩中,两者具有密切的空间关系,但花岗岩围岩是否为伟晶岩的母岩体则不能一概而论,如阿斯喀尔特Be-Nb-Mo矿床中白云母钠长花岗岩围岩形成时代为231~219Ma,伟晶岩形成稍晚(锆石U-Pb年龄为221~218Ma,辉钼矿Re-Os年龄为229~215Ma),两者为同一花岗岩-伟晶岩演化系统(刘文政等,2015王春龙等,2015丁欣等,2016);柯鲁木特-吉得克Li-Be-Nb-Ta矿床中黑云母花岗岩和二云母花岗岩围岩形成时代分别为456Ma和446Ma,伟晶岩形成则晚的多(锆石U-Pb年龄为188~238Ma),两者不存在成因关系(任宝琴等,2011et al., 2012秦克章等,2013)。因此,对稀有金属矿床中赋存伟晶岩的花岗岩类进行年代学和地球化学研究,不仅能够探讨其来源、演化和构造环境,还能够揭示其与伟晶岩、稀有金属矿化的关系。

本文通过对中阿尔泰沙依肯布拉克矿区片麻状花岗闪长岩年代学、地球化学、Sm-Nd同位素组成的研究,来探讨其岩浆来源、演化以及形成的大地构造背景,从而为阿尔泰造山带构造演化研究提供新资料,同时也对阿尔泰稀有金属矿床成矿过程探讨具有重要意义。

1 地质背景和岩相学特征

新疆阿尔泰呈北西-南东向(图 1a),从北向南被红山嘴-诺尔特断裂和阿巴宫、巴寨断裂分为北、中、南阿尔泰3个块体(Li et al., 2003Xiao et al., 2004)。中阿尔泰地层组成主要为早古生代变质岩系,主要出露震旦纪至中奥陶世浅变质巨厚陆源复理石建造、晚奥陶世火山-磨拉石及陆源碎屑岩建造和中-晚志留世变砂岩(杨富全等,2011)。研究区位于中阿尔泰块体的库威-结别特伟晶岩矿集区(邹天人和李庆昌,2006),区域出露地层主要为中-上奥陶统哈巴河群上亚群和中-上志留统库鲁木提群下亚群,前者岩性为二云母混合花岗片麻岩、条带状混合岩和黑云母石英片岩等,后者岩性为二云变粒岩、黑云母长石片岩夹大理岩、含矽线石石榴石黑云母斜长片麻岩等。区域岩浆侵入活动强烈,以花岗岩类为主,分布与区域构造线基本一致,主要为花岗闪长岩、二云母花岗岩、黑云母花岗岩、混合花岗岩等。伟晶岩脉广泛分布,主要呈北东、北西向展布,脉宽几厘米至数十米,延长数米至上千米不等,白云母、铍、锂、铌、钽等稀有金属矿产主要分布于伟晶岩中(新疆维吾尔自治区有色地质勘查局七〇一队,2015新疆维吾尔自治区有色地质勘查局七〇一队. 2015.新疆富蕴县沙依肯布拉克地区稀有金属矿预查报告)。

图 1 沙依肯布拉克矿区地质略图(据新疆维吾尔自治区有色地质勘查局七〇一队, 2015) Fig. 1 Geological map of Shayikenbulake deposit

沙依肯布拉克矿床位于新疆富蕴县,是近年来新发现的中型铍矿床,矿区出露地层主要为中-上奥陶统哈巴河群上亚群,岩性以黑云母石英片岩为主,出露面积约占矿区三分之二。矿区侵入岩发育,主要为片麻状花岗闪长岩和中细粒花岗闪长岩,以岩基为主,无明显岩相分带。其中片麻状花岗闪长岩主要分布于矿区西南部,近南北走向,地表出露部分宽70~200m,长度贯穿矿区(超过1400m),侵位于黑云母石英片岩中(图 1b)。该岩体内部及其与黑云母石英片岩接触部位伟晶岩较发育(图 2ab),以文象结构伟晶岩为主,同一伟晶岩中往往只出现两到三种结构带,部分伟晶岩具有Be、Nb、Ta矿化,如沙依肯布拉克1号伟晶岩脉(马德成,2017)。片麻状花岗闪长岩呈灰白-灰黑色,片麻状构造,中细粒结构,主要由斜长石(60%~65%)、钾长石(5%~10%)、石英(20%~25%)、黑云母(5%±)和白云母(3%~5%)组成(图 2cd)。其中斜长石呈近半自形板状-他形粒状、似眼球状,大小为0.5~2mm,个别2~4mm,定向分布,轻微绢云母化、高岭土化、白云母化等。部分斜长石粒内隐约见环带构造,可见机械双晶、轻微破碎、轻微弯曲等变形现象,被钾长石蚕蚀状交代,可见蠕虫结构。钾长石为微斜长石,呈半自形板状-他形粒状,大小为0.5~1.5mm,与斜长石混杂状定向分布并交代斜长石。石英呈他形粒状,粒径一般0.05~1.5mm。黑云母、白云母呈鳞片-叶片状,片径一般<0.8mm,集合体主要呈线纹状、条纹状聚集定向分布,黑云母显棕褐色,多色性明显,少量绿泥石化、绿帘石化。副矿物主要为磷灰石、锆石和榍石。

图 2 沙依肯布拉克片麻状花岗闪长岩野外(a、b)和镜下(c、d)特征 Pl-斜长石;Bi-黑云母;Ms-白云母;Q-石英 Fig. 2 Field (a, b) and microscopic (c, d) characteristics of the Shayikenbulake gneissic granodiorite
2 锆石U-Pb年代学测试

用于锆石定年和地球化学分析的样品均采自沙依肯布拉克矿床1号铍矿化伟晶岩脉的围岩(片麻状花岗闪长岩,坐标为47°32′07″N、89°34′04″E)。测年样品的破碎和锆石的挑选工作由河北省区域地质矿产调查研究所实验室完成,样品经过严格的粉碎、重液分离和磁选,再在双目镜下挑选出晶形好、无裂缝、干净透明的锆石晶体。锆石样品靶的制作和锆石阴极发光照相在北京锆年领航科技有限公司完成。

锆石U-Pb同位素定年利用北京科荟测试技术有限公司的LA-Q-ICP-MS分析完成。激光剥蚀系统为ESI NWR 193nm,ICP-MS为Analytikjena PlasmaQuant MS Elite ICP-MS。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括大约15~20s的空白信号和45s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(Liu et al., 2010)完成。U-Pb同位素定年中采用锆石标准GJ-1作外标进行同位素分馏校正,每分析5~10个样品点,分析2次GJ-1。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用GJ-1的变化采用线性内插的方式进行了校正(Liu et al., 2010)。锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot完成。

本次用于测年的锆石在透射光下多为无色或半透明,金刚光泽,多呈半自形-自形长柱状及双锥状晶体,晶棱及晶面清楚,长轴变化于80~200μm,长短轴比变化于1.5:1~4:1。在阴极发光图像中,大多数锆石均发育较好的振荡环带结构(图 3),显示了岩浆锆石的特点(Claesson et al., 2000Belousova et al., 2002)。25粒锆石的LA-ICP-MS U-Pb测年分析数据列于表 1,锆石Th和U含量变化范围较大,分别为83.90×10-6~378.9×10-6和205.4×10-6~909.1×10-6,但大部分锆石含有较低的Th和U含量,Th/U比值为0.52~1.01,显示了岩浆锆石的特征(Rubatto,2002)。25个分析结果中的24个年龄变化范围较小,在误差范围内有一致的206Pb/238U、207Pb/235U和207Pb/206Pb值,206Pb/238U表面年龄为400.0~413.1Ma,加权平均年龄为405.6±3.9Ma(MSWD=3.9)(图 4)。24个分析点都集中于谐和线及其附近很小的区域内,表明锆石在形成后U-Pb体系保持封闭,没有明显的U或Pb同位素的丢失或加入。结合锆石阴极发光图及元素特征分析,该年龄代表了花岗闪长岩的结晶年龄,为早泥盆世。另外有1个锆石的206Pb/238U年龄为460.5Ma,时代较老,阴极发光图也显示了较好的振荡环带结构,但该锆石中心发育小面积暗色核部,为激光剥蚀半径覆盖区域(图 3),可能代表了继承的早期锆石。因此推断该206Pb/238U年龄可能受到早期继承锆石影响,导致结果偏老。

图 3 沙依肯布拉克矿区花岗闪长岩代表性锆石阴极发光(CL)图像 Fig. 3 CL images of representative zircons from granodiorite in Shayikenbulake

图 4 沙依肯布拉克矿区花岗闪长岩LA-ICP-MS锆石U-Pb年龄谐和图 Fig. 4 LA-ICP-MS zircon U-Pb age concordia diagrams of the granodiorite from Shayikenbulake deposit

表 1 沙依肯布拉克矿区花岗闪长岩LA-ICP-MS锆石U-Pb年龄结果表 Table 1 LA-ICP-MS zircon U-Pb dating data of the granodiorite from Shayikenbulake deposit
3 地球化学研究 3.1 样品及测试方法

主量元素、微量和稀土元素分析在广州澳实分析测试中心完成。主量元素利用X荧光光谱仪(ME-XRF26)测试,其中Al2O3、CaO、Fe2O3、K2O、MgO、MnO、Na2O、P2O5、SiO2、TiO2采用GB/T14506.28— 2010标准;H2O+按GB/T14506.2— 2010标准;CO2按GB9835— 1988标准;FeO用滴定法测定,按照GB/T14506.14— 2010标准执行;LOI采用LY/T1253— 1999标准。微量元素用四酸消解、质谱/光谱仪综合分析(ME-MS61),稀土元素采用硼酸锂熔融、等离子质谱法(ME-MS81)测定。

Sm-Nd同位素的分离和分析在北京大学造山带与地壳演化教育部重点实验室完成,同位素分离通过传统的阳离子交换柱法分离和纯化Sm和Nd元素,同位素分析在英国Nu Instruments公司生产的多接收电感耦合等离子质谱仪(MC-ICPMS)Nu Plasma Ⅱ上完成。

本次研究共采集了5件花岗闪长岩样品,对其进行主量、微量、稀土元素分析和Sm-Nd同位素分析,测试结果见表 2表 3

表 2 沙依肯布拉克矿区花岗闪长岩主量(wt%)、微量及稀土(×10-6)元素组成 Table 2 Major (wt%) and trace (×10-6) element data of the granodiorite from Shayikenbulake deposit

表 3 沙依肯布拉克矿区花岗闪长岩Sm-Nd同位素组成 Table 3 Sm-Nd isotope compositions of the granodiorite from Shayikenbulake deposit
3.2 主量元素

片麻状花岗闪长岩具有富硅(SiO2=73.8%~74.7%)、富铝(Al2O3=13.3%~14.6%)、富钠(Na2O=3.9%~4.9%)、全碱含量中等(K2O+Na2O=6.5%~6.9%)的特征。Na2O含量高于K2O含量,Na2O/K2O变化于1.28~3.13。岩石中钙含量中等(CaO=1.1%~1.5%),低铁(Fe2O3T=1.8%~2.1%)、低镁(MgO=0.26%~0.31%)、低钛(TiO2=0.10%~0.13%)和低磷(P2O5=0.02%~0.09%)。在SiO2-K2O图解上(图 5a),SiO2和K2O显示较好的正相关性,总体表现为钙碱性特征。铝饱和指数较高(A/CNK=1.07~1.22),基本属于强过铝质花岗岩(A/CNK≥1.1),在A/NK-A/CNK图解(图 5b)中样品点大多数分布于过铝质区域,但其Al2O3含量偏低于一般的强过铝质花岗岩。

图 5 沙依肯布拉克矿区花岗闪长岩SiO2-K2O图解(a,据Rickwood,1989)和A/NK-A/CNK图解(b,据Maniar and Piccoli, 1989) Fig. 5 Whole-rock SiO2 vs. K2O diagram (a, after Rickwood, 1989) and A/NK vs. A/CNK diagram (b, after Maniar and Piccoli, 1989) of the granodiorite from Shayikenbulake deposit
3.3 微量元素

岩石中高场强元素(HFSE)总体含量较高,Th变化于9.72×10-6~13.15×10-6,U变化于0.9×10-6 ~1.3×10-6,Zr在98.0×10-6 ~126.0×10-6之间,Hf在3.5×10-6 ~4.5×10-6之间。Nb(9.1×10-6~14.9×10-6)和Ta(0.61×10-6~8.89×10-6)的含量也相对较高,可能与该岩体的演化程度有关,但Nb、Ta的含量分布并不均匀,如样品SYK15-24中两者含量明显偏低,使其Nb/Ta比值(14.92)不同于其它样品(Nb/Ta比值为1.6~2.7)。大离子亲石元素(LILE)Rb(315×10-6~410×10-6)和Ba(456×10-6~868×10-6)高于地壳丰度,Sr(90.6×10-6~116.0×10-6)则低于地壳丰度。岩石还具有中等的Y、Yb和低的Cr和Ni含量。在原始地幔标准化微量元素蛛网图中(图 6a),各样品微量元素分布模式基本一致,与可可托海3号脉矿坑东部的似斑状黑云母二长花岗岩和阿尔泰南缘萨尔布拉克铁矿区片麻状花岗岩类似(刘锋等, 2010, 2014),呈现Rb、Th、Pb、Nd、Sm、Hf的相对正异常,Ti、P、Sr、Ce、Nb和Ba的相对负异常,尤其Ti和P较低,接近原始地幔值。

图 6 沙依肯布拉克矿区花岗闪长岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)(标准化值据Sun and McDonough, 1989) SEB(萨尔布拉克花岗岩)和KKTH(可可托海花岗岩)数据刘锋等(2010, 2014) Fig. 6 Plots of primitive mantle-normalized trace elements patterns (a) and chondrite-normalized REE patterns (b) of the granodiorite from Shayikenbulake deposit (normalization values after Sun and McDonough, 1989) Data of SEB (Saerbulake granite) and KKTH (Keketuohai granite) from Liu et al.(2010, 2014)
3.4 稀土元素

岩石稀土总量较高,变化不大,ΣREE介于95.4×10-6~125.9×10-6之间,明显低于萨尔布拉克铁矿区片麻状花岗岩,稍低于可可托海3号脉矿坑东部的似斑状黑云母二长花岗岩(刘锋等, 2010, 2014)。沙依肯布拉克矿区花岗闪长岩具有轻稀土相对富集(LREE/HREE=5.45~9.26,(La/Yb)N=5.46~10.88),分馏较明显((La/Sm)N=2.48~2.78),重稀土轻微分馏((Gd/Yb)N=1.53~2.4)的特征。在球粒陨石标准化稀土元素配分图中(图 6b),除样品SYK15-22外,所有样品均表现出相似的轻稀土弱富集、分馏较明显,重稀土平缓、分馏不明显的右倾型REE配分模式,且由于较明显的负铕异常(δEu=0.70~0.82),而呈现“V”型谷状。样品SYK15-22轻稀土、重稀土和稀土总量(95.4×10-6)均明显低于其它样品,可能是富含稀土元素的副矿物(如磷灰石)的含量较少造成的。总的来说,沙依肯布拉克矿区花岗闪长岩与可可托海3号脉矿坑东部的似斑状黑云母二长花岗岩的稀土配分模式较相似,与萨尔布拉克矿区花岗岩相比则差距较大(刘锋等, 2010, 2014)。

3.5 Sm-Nd同位素

5件花岗闪长岩样品的Sm-Nd同位素结果列于表 3。计算时t采用本次获得LA-ICP-MS锆石U-Pb年龄405.6Ma。样品的Nd同位素组成相对均一,147Sm/144Nd为0.13722~0.15065,143Nd/144Nd为0.512409~0.512428,fSm/Nd变化于-0.23~-0.30,Sm/Nd比值介于0.227~0.249之间,表明所有样品未发生明显的Sm、Nd同位素的分异。二阶段模式年龄t2DM集中变化于1.19~1.21Ga,暗示其源区可能为一套中元古代的物质。εNd(t)均为负值,变化于-1.76~-1.22之间,明显不同于阿尔泰造山带具有接近于零或高的正εNd(t)花岗岩(王涛等,2010)。

4 讨论 4.1 年代学意义

阿尔泰早泥盆世岩浆活动剧烈(表 4),在区域上形成了一系列侵入岩和与之相关的矿床,如南阿尔泰麦兹盆地蒙库矿区与铁矿化相关的英云闪长岩(Yang et al., 2010),托莫尔特矿区与铁锰矿化相关的黑云母花岗斑岩(杨富全等,2012);中阿尔泰具有铜镍硫化物-钛铁氧化物复合型矿化的库卫镁铁-超镁铁质杂岩体(李强等,2015);北阿尔泰诺尔特盆地小土尔根矿区具有铜矿化花岗闪长斑岩、黑云二长花岗岩和花岗斑岩(Geng et al., 2019)。除此之外,该时期阿尔泰还发育更多与矿化无关的侵入岩,如南阿尔泰哈巴河花岗闪长岩(Cai et al., 2011a)、二长花岗岩(李永等,2012)、冲乎尔花岗闪长岩(Cai et al., 2011a)、克兰河中游英云闪长岩和二长花岗岩(刘国仁等,2010)、敖包特片麻状黑云二长花岗岩(黄博涛等,2017)、塔尔浪片麻状二云母花岗岩(Yuan et al., 2007)、琼库尔片麻状似斑状黑云母花岗岩(童英等,2007)等。早泥盆世发育的以花岗岩为主的大量侵入岩(表 4)表明,400Ma左右的岩浆活动分布最为广泛,遍布整个阿尔泰,是阿尔泰造山带构造-岩浆活动的高峰期(Wang et al., 2006童英等,2007王涛等,2010Yang et al., 2011, 2010, 2018Liu et al., 2012张亚峰等,2014)。

表 4 新疆阿尔泰早泥盆世代表性侵入岩数据 Table 4 Data of the representative Early Devonian intrusions in Altay, Xinjiang

阿尔泰伟晶岩的形成时代则明显不同于花岗岩(表 5)。前人对阿尔泰具有稀有金属矿化伟晶岩的大量年代学研究结果表明,稀有金属成矿高峰期为三叠-侏罗纪(王登红等,2002Wang et al., 2007et al., 2012Che et al., 2015王春龙等,2015Zhou et al., 2018)。除个别矿区中发现了与稀有金属伟晶岩同时代的容矿花岗岩(如大喀拉苏和阿斯喀尔特),大多数稀有金属矿床中容矿花岗岩要远早于伟晶岩形成时代(如柯鲁木特和别也萨麻斯等),还有一些稀有金属伟晶岩赋存于片岩、片麻岩中,矿区小范围内并没有花岗岩出露(如卡鲁安)。因此,与阿尔泰三叠-侏罗纪的大量稀有金属成矿有关的岩浆作用或热液活动是一个亟待查明的重要科学问题。一般认为岩浆成因的花岗伟晶岩与花岗岩母岩具有密切的时空关系,如LCT(富Li、Cs、Ta)型伟晶岩通常分布于以花岗岩母岩为中心的10km半径范围内,且分异程度随距离增加而变大,发育稀有金属矿化的区域分带;NYF(富Nb、Y、F)型伟晶岩则通常分布于A型花岗岩母岩边缘或周边不远的范围内,不发育区域分带(Černý, 1991张辉等,2019)。然而最新的研究表明,阿尔泰大部分伟晶岩及周边花岗岩之间存在显著的时间或物源上的解耦,暗示两者并无成因关系(et al., 2012, 2018; Zhang et al., 2016; 张辉等,2019)。因此本文认为目前较少报道阿尔泰三叠-侏罗纪花岗岩的原因有两个:一是存在隐伏的花岗岩母岩,暂时未被发现;二是伟晶岩并非花岗质岩浆分异演化而来,而是富集稀有金属的岩石经小比例部分熔融(深熔)形成的(张辉等,2019)。

表 5 新疆阿尔泰稀有金属伟晶岩及容矿岩体形成时代 Table 5 Ages of rare-metal pegmatites and ore-hosting intrusions in Altay, Xinjiang

沙依肯布拉克矿区目前在地表见稀有金属伟晶岩共17条,其中规模较大的有1号、2号、3号、7号和20号。1号伟晶岩脉具有铍和铌钽矿化,赋存于片麻状花岗闪长岩中,两者接触界线截然(图 2)。本文利用LA-ICP-MS锆石U-Pb定年法获得的花岗闪长岩加权平均年龄(405.6±3.9Ma,MSWD=3.9)要远远早于1号伟晶岩脉的形成时代(文象结构带和块体微斜长石带中锆石LA-ICP-MS U-Pb年龄均为202Ma,未刊数据),与阿尔泰大多数稀有金属矿床特征相似,暗示两者可能只具有空间上的叠加关系,并不属于同一花岗岩-伟晶岩演化系统。综上所述,沙依肯布拉克矿区花岗闪长岩是阿尔泰早泥盆世岩浆侵入高峰的产物,为铍矿化伟晶岩脉的围岩,但二者并无成因关系。

4.2 岩石成因及来源

沙依肯布拉克矿区片麻状花岗闪长岩具有高硅(SiO2=73.8%~74.7%)、富铝(Al2O3=13.3%~14.6%)、相对富钠(Na2O/K2O=1.28~3.13)的特点,A/CNK和A/NK值均大于1,为铝过饱和型,在SiO2-K2O相关图上显示钙碱性的特点(图 5a),表明其属于低钾钙碱性过铝质-强过铝质花岗岩,可能来源于高矾的变泥质岩和变质杂砂岩的部分熔融(White and Chappell, 1988Patiño Douce, 1995, 1999Sylvester,1998Eyal et al., 2004Healy et al., 2004),压力≥8千帕发生单斜辉石残留时英云闪长岩和花岗闪长岩的部分熔融(Patiño Douce, 1997, 1999),以及水饱和情况下玄武质岩石和(或)角闪岩的部分熔融(Ellis and Thompson, 1986)。在10000Ga/Al对Nb和Zr图解上,样品点位于I型或S型花岗岩区域(图 7ab);在A/CNK-A/NK图解上,样品点位于I型和S型花岗岩过渡区域,更多偏向S型花岗岩一侧(图 5b)。王德滋等(1993)认为S型花岗岩的Rb/Sr比值一般>0.9,而I型花岗岩Rb/Sr比值则<0.9,沙依肯布拉克矿区花岗闪长岩的Rb/Sr变化于2.83~3.87,同样显示了S型花岗岩的特征。尽管如此,沙依肯布拉克片麻状花岗闪长岩在SiO2-Pb和Rb-Th相关图(图 7cd)上显示了I型花岗岩的特点,且岩石中未发育堇青石、岩石K2O/Na2O<1等特征暗示其不同于典型S型花岗岩。岩石低的Fe2O3T+MgO+TiO2(均小于3%)和Mg#(22.5~23.4)值暗示岩浆可能经历了较高程度的演化(刘锋等,2014)。吴福元等(2017)指出,高分异花岗岩具有铝过饱和的特征,因此常含有石榴石、白云母等矿物,暗示发育该两种矿物的不一定是S型花岗岩,也可能是高分异花岗岩。微量元素的比值在衡量岩浆结晶分异程度方面具有明显的优势,全岩Zr/Hf和Nb/Ta比值可以判断花岗岩分异程度,表现为两者随着花岗岩分异程度升高而降低(Bau, 1996Ballouard et al., 2016)。本文片麻状花岗闪长岩具有极低的Nb/Ta比值(1.6~2.7,除SYK15-24)和低于地壳的Zr/Hf值(27.6~30.3),具有高分异花岗岩特征。另外,未分异的花岗质岩石的Be含量大约为4×10-6~6×10-6,只有经过强烈的结晶分异作用,Be才能富集形成绿柱石(London et al., 2002)。本文所有样品的Be含量变化于11.4×10-6~23.1×10-6,同样暗示了岩体的高度分异。因此,沙依肯布拉克片麻状花岗闪长岩为高分异花岗岩,具有I-S型花岗岩过渡特点。

图 7 沙依肯布拉克矿区花岗闪长岩10000Ga/Al-Zr(a)和10000Ga/Al-Nb(b)(据Whalen, 1987)及SiO2-Pb(c)和Rb-Th(d)(据Chappell, 1999)关系图 Fig. 7 The plots of 10000Ga/Al vs. Zr (a), 10000Ga/Al vs. Nb (b) (after Whalen, 1987) and SiO2 vs. Pb (c), Rb vs.Th (d) (after Chappell, 1999) for the granodiorite from Shayikenbulake deposit

沙依肯布拉克矿区片麻状花岗闪长岩的Ba相对于Th、Rb明显亏损,Nd的二阶段模式年龄t2DM集中变化于1.19~1.21Ga,显示出成熟度高的陆壳岩石特征(马昌前等,2004),暗示其源区可能为一套中元古代物质。所有样品的Zr/Hf值相对于原始地幔(Zr/Hf=37,McDonough and Sun, 1995),更接近地壳的Zr/Hf值(33,Taylor and Mclenann, 1985);La/Yb值变化于7.9~15.2,平均值为9.4,与原始地幔的相应值4.0(McDonough and Sun, 1995)相差较大,与地壳的相应值7.3(Taylor and Mclenann, 1985)更接近,表明岩石受地壳组分影响较大。La/Nb变化于1.25~2.27(平均值为1.59),均>1.0,不同于地幔来源的岩浆(DePaolo and Daley, 2000)。尽管如此,所有样品的Th/U值变化于9.6~13.5之间,平均为11.59,远高于地壳平均值3.8(Taylor and Mclenann, 1985);Zr含量(除SYK15-25外)介于102×10-6~126×10-6之间,不同于普通S型花岗岩(Zr<100×10-6,温度<800℃)(Watson and Harrison, 1983);εNd(t)均一变化于-1.76~-1.22,高于壳源花岗岩,在εNd(t)-t图上(图 8),位于新疆元古代地壳上部,表明在其形成过程中有部分幔源物质的加入。

图 8 阿尔泰早泥盆世代表性岩体t-εNd(t)关系图(底图据Wang et al., 2009, 数据来源见表 4) Fig. 8 The t vs. εNd(t) diagram for the representative Early Devonian intrusions in Altay (base map after Wang et al., 2009, data of intrusions are listed in Table 4)

岩体的Rb/Sr比值均>1.30,大部分<3.50,暗示熔融是在富挥发份的条件下发生的(Harris and Inger, 1992),也有一定流体加入的影响(Kalsbeek et al., 2001)。周红升等(2008)认为P在磷灰石和独居石中分配系数较高,Sr和Eu在斜长石中分配系数较高,尤其在偏铝质的酸性岩中Sr在斜长石、磷灰石总分配系数最大。沙依肯布拉克花岗闪长岩所有样品的微量、稀土元素(图 6)显示了Ti、P、Sr、Nb的亏损,以及弱的负Eu异常,暗示了斜长石作为熔融残留相或结晶分离相的存在(Patiño Douce, 1995, 1999),且花岗闪长岩源区残留有磷灰石(柴凤梅等,2010),而Ti的亏损可能同钛铁矿的分离结晶作用有关。

总之,沙依肯布拉克矿区片麻状花岗闪长岩属于低钾钙碱性过铝质-强过铝质高分异花岗岩,具有I-S型花岗岩过渡特征,源区残留有斜长石、钛铁矿和磷灰石等,在形成过程中受到部分幔源组分的影响。

4.3 地质意义

沙依肯布拉克片麻状花岗闪长岩显示了Sr、P、Nb、Ti的负异常,与阿尔泰早泥盆世侵入岩地球化学一致,同样具有弧花岗岩的特征(Sajona et al., 1996李佐臣等,2013)。在Nb-Y关系构造判别图解上(图 9),所有样品落在火山弧+同碰撞花岗岩区,与阿尔泰同时代的可可托海3号脉矿坑东部的似斑状黑云母二长花岗岩(405Ma,刘锋等,2014)和萨尔布拉克片麻状花岗岩(410Ma,刘锋等,2010)相似,均显示火山弧特征。前人对阿尔泰构造演化进行了大量的研究,目前关于阿尔泰造山带的形成时间(于学元等,1995Han et al., 1997Liu et al., 1997Graupner et al., 1999)、俯冲对象和俯冲方向(张海祥等,2004张招崇等, 2005, 2007耿新霞等,2010王涛等,2010)仍存在争议,但早泥盆世阿尔泰处于俯冲消减环境得到了大多数人的认同(许继峰等,2001苏慧敏等,2008Chai et al., 2009Zhang et al., 2009赵战锋等,2009Ye et al., 2015李强等,2015),形成了一系列从酸性到基性的侵入岩及火山熔岩,遍布整个阿尔泰(表 4)。沙依肯布拉克片麻状花岗闪长岩形成于早泥盆世(405.6Ma),地球化学结果显示其具有火山弧特点。结合区域构造演化,本文认为该岩体是阿尔泰早泥盆世俯冲消减环境下岩浆侵入高峰的产物。早泥盆世俯冲消减过程中,俯冲板片脱水形成的流体和被软流圈加热形成的俯冲板片熔体交代的地幔楔与软流圈地幔混合形成基性岩浆,在中阿尔泰库卫一带侵位,形成铜镍硫化物-钛铁氧化物复合型矿化的镁铁-超镁铁质杂岩体(柴凤梅等,2012李强等,2015);在上涌岩浆热的作用下,地壳发生部分熔融,并有部分地幔物质加入到岩浆中,在沙依肯布拉克矿区侵位,形成花岗闪长岩。

图 9 沙依肯布拉克矿区花岗闪长岩Nb-Y构造环境判别图解(据Pearce et al., 1984) 数据来源:萨尔布拉克片麻状花岗岩据刘锋等(2010); 可可托海二长花岗岩据刘锋等(2014) Fig. 9 The Nb vs. Y diagram of the tectonic setting of trace elements for the granodiorite from Shayikenbulake deposit (after Pearce et al., 1984) Data sources: Saerbulake gneissic granite from Liu et al. (2010); Keketuohai monzogranite from Liu et al. (2014)

沙依肯布拉克花岗闪长岩的εNd(t)变化范围较小,为-1.76~-1.22,Nd的二阶段模式年龄t2DM为1.19~1.21Ga,与处于同一矿区的中细粒花岗闪长岩(LA-ICP-MS锆石U-Pb年龄为531Ma,εNd(t)为-4.69~-3.72,t2DM为1.52~1.64Ga,Li et al., 2018;未刊数据)基本一致,明显不同于中亚造山带大多数高正εNd(t)值花岗岩(Han et al., 1997Jahn et al., 2000a, bHong et al., 2003),却与产于前寒武纪基底或微陆块及其周边的花岗岩类似(Wu et al., 2000Jahn et al., 2004Kovalenko et al., 2004童英等,2007)。沙依肯布拉克矿区中细粒花岗闪长岩12颗锆石年龄限定其形成于早寒武世,另有8颗发育较好振荡环带结构的锆石206Pb/238U年龄更为古老,变化于738.1~989.5Ma(Li et al., 2018)。除此之外,前寒武纪年龄在阿尔泰其它侵入岩和火山-沉积岩中也曾被多次发现,如可可托海矿区花岗岩1颗锆石206Pb/238U年龄为859Ma(Wang et al., 2006);昆格依特角闪黑云英云闪长岩2颗锆石为604Ma和619Ma,3颗锆石207Pb/206Pb为1031~1071Ma(张亚峰等,2014);阿维滩花岗岩1颗锆石206Pb/238U年龄为637Ma(Wang et al., 2006);库卫含橄辉长岩1颗锆石206Pb/238U年龄为847Ma,中粒辉长岩1颗锆石206Pb/238U年龄为930Ma(李强等,2015);克兰盆地原“库鲁木提群”片岩17颗锆石206Pb/238U年龄为547~941Ma,5颗锆石207Pb/206Pb年龄为1058~1871Ma,2颗锆石207Pb/206Pb年龄为2681~2887Ma(杨富全等,2017)。本文片麻状花岗闪长岩负的εNd(t)、古老的二阶段模式年龄,结合矿区中细粒花岗闪长岩和区域侵入岩、火山-沉积岩中出现的前寒武纪锆石信息,表明其物源可能部分为古老地壳物质,暗示了古老基底的存在。童英等(2007)假设以前寒武纪基底或古生代变沉积岩为陆壳端元,以亏损地幔为新生地幔端元,进行二端元估算,得出阿尔泰北部早泥盆世花岗岩的形成过程中有较多地壳物质的加入。Wang et al.(2009)通过大量花岗岩和基性侵入岩的全岩Sr-Nd同位素填图,得出阿尔泰的εNd(t)由北东向南西具有升高的趋势,如中阿尔泰εNd(t)变化于-4~2,南阿尔泰εNd(t)明显升高(1.4~6),Nd的模式年龄则相反,由中阿尔泰的1.6~1.1Ga变为南阿尔泰的1.0~0.5Ga,暗示中阿尔泰普遍发育古老基底,南阿尔泰则以年轻(幔源)物质为主体,即具有中部老、南缘新的特点。近年来一些学者(Cai et al., 2011b; 刘锋等,2014Yang et al., 2017宋鹏等,2017)也报道了阿尔泰花岗岩的Nd同位素组成(图 8表 4),如中阿尔泰的友谊峰、禾木、喀纳斯、可可托海、昆格依特、布铁乌、库卫等花岗岩εNd(t)主要变化于-3.3~-0.4,南阿尔泰阿勒泰、库尔木图、克孜噶尔等花岗岩εNd(t)为-2.2~0.8,主要集中在0左右,同样具有中阿尔泰εNd(t)低于南阿尔泰的特征。宋鹏(2017)通过进一步的Nd-Hf同位素填图,得出中阿尔泰具有相对最老的深部物质组成,指示其深部存在前寒武纪基底或者具有微陆块性质。总之,本文研究成果结合前人发表的大量岩体Nd-Hf同位素数据,均说明中阿尔泰深部存在相对均匀的古老基底(Wang et al., 2009),为阿尔泰的构造演化过程提供了新的线索。

5 结论

(1) 中阿尔泰沙依肯布拉克矿区片麻状花岗闪长岩的LA-ICP-MS锆石U-Pb年龄为405.6±3.9Ma,为阿尔泰早泥盆世岩浆侵入高峰的产物。

(2) 花岗闪长岩具有高硅(SiO2>73%)、富铝(Al2O3>13%)、相对富钠(Na2O/K2O>1.2)的特点,A/CNK和A/NK值均大于1,为铝过饱和型,总体趋向钙碱性,属于低钾钙碱性过铝质-强过铝质花岗岩。

(3) 岩石具有Ba、Sr、P、Nb、Ti的负异常,富集Th、Pb和轻稀土元素,显示负Eu异常,εNd(t)<-1.2,暗示中阿尔泰存在前寒武纪古老基底,源岩可能为中元古代地壳,在成岩过程中有部分幔源物质的加入,形成于早泥盆世俯冲消减环境。

致谢      样品的年龄测试,主量元素、微量及稀土元素的分析分别得到了北京科荟测试技术有限公司和广州澳实分析测试中心相关工作人员的帮助,Sm-Nd同位素前处理和测试得到了北京大学朱文萍老师和黄宝玲老师的指导和帮助,在此表示感谢!

参考文献
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition. Geology, 44(3): 231-234 DOI:10.1130/G37475.1
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626 DOI:10.1016/S0024-4937(98)00085-1
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123: 323-333 DOI:10.1007/s004100050159
Belousova EA, Griffin WL, O'Reilly SY and Fisher NI. 2002. Igneous zircon:Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602-622 DOI:10.1007/s00410-002-0364-7
Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ, Long XP and Wu FY. 2011a. Prolonged magmatism, juvenile narure and tectonic evolution of the Chinese Altai, NW China:Evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949-968 DOI:10.1016/j.jseaes.2010.11.020
Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ, Long XP and Wu FY. 2011b. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 127(1-2): 261-281 DOI:10.1016/j.lithos.2011.09.001
Černý P. 1991. Rare-element granitic pegmatites. Part II:Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 68-81
Chai FM, Mao JW, Dong LH, Yang FQ, Liu F, Geng XX and Zhang ZX. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang:Implications for the tectonic evolution and metallogeny. Gondwana Research, 16(2): 189-200 DOI:10.1016/j.gr.2009.03.002
Chai FM, Dong LH, Yang FQ, Liu F, Geng XX and Huang CK. 2010. Age, geochemistry and petrogenesis of Tiemierte granites in the Kelang basin at the southern margin of Altay, Xinjiang. Acta Petrologica Sinica, 26(2): 377-386 (in Chinese with English abstract)
Chai FM, Yang FQ, Liu F, Geng XX, Lü SJ, Jiang LP, Zang M and Chen B. 2012. Geochronology and genesis of volcanic rocks in Beitashan Foramtion at the northern margin of the Junggar, Xinjiang. Acta Petrologica Sinica, 28(7): 2183-2198 (in Chinese with English abstract)
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH and Zhu ZY. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979-989 DOI:10.1016/j.oregeorev.2014.07.008
Chen JF. 2011. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution. Master Degree Thesis. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese)
Claesson S, Vetrin V, Bayanova T and Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2): 95-108 DOI:10.1016/S0024-4937(99)00076-6
DePaolo DJ and Daley EE. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2): 157-185 DOI:10.1016/S0009-2541(00)00261-8
Ding JG, Yang CD, Yang FQ and Li Q. 2020. Genetic relationship between ore-bearing pegmatite and the surrounding granite of Bieyesamasi rare metal deposit in Altay of Xinjiang, China. Journal of Earth Sciences and Environment, 42(1): 71-85 (in Chinese with English abstract)
Ding X, Li JK, Ding JG, Wang S, Liu YC and Wang X. 2016. Molybdenite Re-Os isochron age and geological implication in Asikaerte Be-Nb-Mo deposit of Xinjiang. Journal of Guilin University of Technology, 36(1): 60-65 (in Chinese with English abstract)
Ellis DJ and Thompson AB. 1986. Subsolidus and partial melting reactions in the quartz-excess CaO+MgO+Al2O3+SiO2+H2O system under water-excess and water-deficient condients to 10kb:Some implications for the origin of peraluminous melts from mafic rocks. Journal of Petrology, 27(1): 91-121 DOI:10.1093/petrology/27.1.91
Eyal M, Litvinovsky BA, Katzir Y and Zanvilevich AN. 2004. The Pan-African high-K calc-alkaline peraluminous Elat granite from southern Israel:Geology, geochemistry and petrogenesis. Journal of African Earth Sciences, 40(3-4): 115-136 DOI:10.1016/j.jafrearsci.2004.11.005
Geng XX, Chai FM, Yang FQ, Zuo WZ, Guo ZL, Liu F and Zhang ZX. 2010. Geochronology and genesis of the bimodal volcanic rocks in Dalawuzi from the southern margin of Altay, Xinjiang. Acta Petrologica Sinica, 26(10): 2967-2980 (in Chinese with English abstract)
Geng XX, Yang CD, Yang FQ, Qin JH and Wen CQ. 2019. Geochemistry and Sr-Nd-Hf isotopes of granitoids from the Xiaotuergen porphyry Cu deposit, Altay orogenic Belt, Xinjiang, Northwest China:Implications for petrogenesis, tectonic setting, and mineralization. Ore Geology Reviews, 112: 103071 DOI:10.1016/j.oregeorev.2019.103071
Graupner T, Kempe U, Dombon E, Pätzold O, Leeder O and Spooner ETC. 1999. Fluid regime and ore formation in the tungsten (-yttrium) deposits of Kyzyltau (Mongolian Altai):Evidence for fluid variability in tungsten-tin ore systems. Chemical Geology, 154(1-4): 21-58 DOI:10.1016/S0009-2541(98)00123-5
Han BF, Wang SG, Jahn BM, Hong DW, Kagami H and Sun YL. 1997. Depleted-mantle source for the Ulungur river A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159 DOI:10.1016/S0009-2541(97)00003-X
Harris NBW and Inger S. 1992. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 110(1): 46-56 DOI:10.1007/BF00310881
He GQ, Cheng SD, Xu X, Li JY and Hao J. 2004. An Introduction to the Explanatory Text of the Map of Tectonics in Xinjiang and Its Neighbouring Areas. Beijing: Geological Publishing House, 1-65 (in Chinese)
Healy B, Collins WJ and Richards SW. 2004. A hybrid origin for Lachlan S-type granites:The Murrumbidgee Batholith example. Lithos, 78(1-2): 197-216 DOI:10.1016/j.lithos.2004.04.047
Hong DW, Wang SG, Xie XL, Zhang JS and Wang T. 2003. Metallogenic province derived from mantle sources:Nd, Sr, S and Pb isotope evidence from the Central Asian Orogenic Belt. Gondwana Research, 6(4): 711-728 DOI:10.1016/S1342-937X(05)71019-4
Huang BT, Dong ZC, Pan F and Wang K. 2017. Geochronology, petrogenesis and geological significance of the Early Devonian and Terminal Cambrian granites in Qinghe area of China's Altay orogenic belt. Acta Petrologica et Mineralogica, 36(4): 458-472 (in Chinese with English abstract)
Jahn BM, Wu FY and Hong DW. 2000a. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia. Journal of Earth System Science, 109(1): 5-20 DOI:10.1007/BF02719146
Jahn BM, Wu FY and Chen B. 2000b. Massive granitoid generation in central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82-92 DOI:10.18814/epiiugs/2000/v23i2/001
Jahn BM, Capdevila R, Liu DY, Vernon A and Bsfstvh G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor Ulaan Baatar, Mongolia:Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629-653 DOI:10.1016/S1367-9120(03)00125-1
Kalsbeek F, Jepsen HF and Nutman AP. 2001. From source migmatites to plutons:Tracking the origin of ca.435Ma S-type granites in the East Greenland Caledonian Orogen. Lithos, 57(1): 1-21
Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB and Larin AM. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt:Geological and isotopic evidence. Journal of Asian Earth Sciences, 23(5): 605-627 DOI:10.1016/S1367-9120(03)00130-5
Li JY, Xiao WJ, Kang KZ, Sun GH and Gao LM. 2003. Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China. In: Mao JW, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. IAGOD Guidebook Series 10: CERCAMS/NHM London, 31-74
Li Q, Chai FM, Yang FQ and Yang JJ. 2015. Petrogenesis of the Kuwei Ni-Cu sulfide- and Fe-Ti oxide-bearing mafic-ultramafic intrusions in Altay, Xinjiang, NW China. Acta Petrologica Sinica, 31(8): 2211-2229 (in Chinese with English abstract)
Li Q, Yang FQ and Yang CD. 2018. New zircon U-Pb age of granodiorite from the Shayikenbulake Be deposit in Altay, Xinjiang and its significance. Acta Geologica Sinica, 92(2): 870-871 DOI:10.1111/1755-6724.13566
Li Q, Yang FQ and Yang CD. 2019. Geochronology and geochemical characteristics of Dakalasu granite in Altay of Xinjiang, China and their tectonic significance. Journal of Earth Sciences and Environment, 41(4): 396-413 (in Chinese with English abstract)
Li Y, Zhou G and Chai FM. 2012. LA-ICP-MS U-Pb ages and geological implications of the Habahe pluton at the southern margin of the Altay, Xinjiang. Xinjiang Geology, 30(2): 146-151 (in Chinese with English abstract)
Li ZC, Pei XZ, Li RB, Pei L, Hu B, Liu CJ, Chen GC and Chen YX. 2013. LA-ICP-MS zircon U-Pb dating, geochemistry of the Mishuling intrusion in western Qinling and their tectonic significance. Acta Petrologica Sinica, 29(8): 2617-2634 (in Chinese with English abstract)
Liu F, Yang FQ, Li YH, Guo ZL, Chai FM, Geng XX and Zhang ZX. 2010. The chronology and geochemistry of the granite from the Serbulak iron deposit in the southern margin of Altay, Xinjiang. Acta Geologica Sinica, 84(2): 195-205 (in Chinese with English abstract)
Liu F, Zhang ZX, Li Q, Zhang C and Li C. 2014. New precise timing constraint for the Keketuohai No.3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209-219
Liu F, Cao F, Zhang ZX and Li Q. 2014. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang. Acta Petrologica Sinica, 30(1): 1-15 (in Chinese with English abstract)
Liu GR, Dong LH, Gao FP, Chen JX, Zhao H, Wang DS, Song ZY, He LX and Qin JH. 2010. LA-ICP-MS U-Pb zircon dating and geochemistry of the Devonian granites from the middle Kelan River valley of Altay in Xinjiang. Acta Geoscientica Sinica, 31(4): 519-531 (in Chinese with English abstract)
Liu W, Liu CQ and Masuda A. 1997. Complex trace-element effects of mixing-fractional crystallization composite processes:Applications to the Alaer granite pluton, Altay Mountains, Xinjiang, northwestern China. Chemical Geology, 135(1-2): 103-124 DOI:10.1016/S0009-2541(96)00111-8
Liu W, Liu XJ and Xiao WJ. 2012. Massive granitoid production without massive continental-crust growth in the Chinese Altay:Insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry. American Journal of Science, 312(6): 629-684 DOI:10.2475/06.2012.02
Liu WZ, Zhang H, Tang HF, Tang Y and Lü ZH. 2015. Molybdenite Re-Os dating of the Asikaerte Be-Mo deposit in Xinjiang, China and its genetic implications. Geochimica, 44(2): 145-154 (in Chinese with English abstract)
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Long LL, Gao J, Klemd R, Beier C, Qian Q, Zhang X, Wang JB and Jiang T. 2011. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen:Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos, 126(3-4): 321-340 DOI:10.1016/j.lithos.2011.07.015
London D and Evensen JM. 2002. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445-486 DOI:10.2138/rmg.2002.50.11
Lü ZH, Zhang H, Tang Y and Guan SJ. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No.112 pegmatite in Altay, northwestern China:Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374-391
Lü ZH, Zhang H, Tang Y, Liu YL and Zhang X. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai:Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Review, 95: 161-181 DOI:10.1016/j.oregeorev.2018.02.022
Lugmair GW and Marti K. 1978. Lunar initial 143Nd/144Nd:Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357 DOI:10.1016/0012-821X(78)90021-3
Ma CQ, Ming HL and Yang KG. 2004. An Ordovician magmatic arc at the northern foot of Dabie Mountains:Evidence from geochronology and geochemistry of intrusive rocks. Acta Petrologica Sinica, 20(3): 393-402 (in Chinese with English abstract)
Ma DC. 2017. Prospecting Shayiken Xinjiang Fuyun County Braque area of rare metal metallogenic characteristics. World Nonferrous Metals, (12):115, (12): 115, 117 (in Chinese)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China):Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203 DOI:10.1016/j.jseaes.2007.10.006
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Patiño Douce AE. 1995. Experimental generation of hybrid silicic melts by reaction of high-Al basalt with metamorphic rocks. Journal of Geophysical Research, 100(B8): 15623-15639 DOI:10.1029/94JB03376
Patiño Douce Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-766 DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Patiño Douce AE. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C and Vigneresse JL (eds.). Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168(1): 55-75
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Qin KZ, Shen MD, Tang DM, Guo ZL, Zhou QF, Wang CL, Guo XJ, Tian Y and Ding JG. 2013. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay. Xinjiang Geology, 31(Suppl): 1-7 (in Chinese with English abstract)
Ren BQ, Zhang H, Tang Y and Lü ZH. 2011. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance. Acta Mineralogica Sinica, 31(3): 587-596 (in Chinese with English abstract)
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263 DOI:10.1016/0024-4937(89)90028-5
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138 DOI:10.1016/S0009-2541(01)00355-2
Sajona FG, Maury RC, Bellon H, Cotton J and Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island-arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726 DOI:10.1093/petrology/37.3.693
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0
Song P. 2017. Nd and Hf isotopic characteristics of granitoids in the Altai-East Junggar-East Tianshan and their implications of deep structure. Ph. D. Dissertation. Beijing: Chinese University of Geosciences (in Chinese with English summary)
Song P, Tong Y, Wang T, Qin Q, Zhang JJ and Ning DX. 2017. Zircon U-Pb ages and genetic evolution of Devonian granitic rocks in the southeastern Chinese Altai and its tectonic implications:New evidence for magmatic evolution of calc-alkaline-high-K calc-alkaline-alkaline rocks. Acta Geologica Sinica, 91(1): 55-79 (in Chinese with English abstract)
Su HM, Zhang DY, Ai Y and Zhang ZC. 2008. Mineralogy of clinopyroxene from the Middle Devonian volcanic rocks in the south margin of the Altay Mountains and its geological significances. Acta Geologica Sinica, 82(11): 1602-1612 (in Chinese with English abstract)
Sun M, Yuan C, Xiao WJ, Long XP, Xia XP, Zhao GC, Lin SF, Wu FY and Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive accretionary history in the Early to Middle Palaeozoic. Chemical Geology, 247(3-4): 352-383 DOI:10.1016/j.chemgeo.2007.10.026
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes. In: Saunders AD and Morry MJ (eds.). Magmatism in the Ocean Basin. Geological Society, London, Special Publications, 42(1): 313-345
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44 DOI:10.1016/S0024-4937(98)00024-3
Taylor SR and Mclenann SM. 1985. The Continental Crust:Its Composition and Evolution. Blackwell: Oxford Press, 1-312
Tong Y. 2006. Geochronology, origin of the Late Paleozoic granitoids from the Altai Orogen in China and their geological significance. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
Tong Y, Wang T, Hong DW, Dai YJ, Han BF and Liu XM. 2007. Ages and origin of the Early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica, 23(8): 1933-1944 (in Chinese with English abstract)
Wang CL, Qin KZ, Tang DM, Zhou QF, Shen MD, Guo ZL and Guo XJ. 2015. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications. Acta Petrologica Sinica, 31(8): 2337-2352 (in Chinese with English abstract)
Wang DH, Chen YC, Xu ZG, Li TD and Fu XJ. 2002. Minerogenetic Series and Regularity of Mineralization in the Altai Metallogenetic Province, China. Beijing: Atomic Press, 1-493 (in Chinese)
Wang DZ, Liu CS, Shen WZ and Chen FR. 1993. The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava. Acta Petrologica Sinica, 9(1): 44-54 (in Chinese with English abstract)
Wang JB, Qin KZ, Wu ZL, Hu JH and Deng JN. 1998. Volcanic Exhalative Sedimentary Lead-Zinc Deposits in the South Margin of Altay Mountains, Xinjiang. Beijing: Geological Publishing House, 1-210 (in Chinese)
Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF and Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China:Implications for the tectonic evolution of an accretionary orogen. Journal of Geology, 114(6): 735-751 DOI:10.1086/507617
Wang T, Tong Y, Jahn BM, Zou TR, Wang YB, Hong DW and Han BF. 2007. SHRIMP U-Pb zircon geochronology of the Altai No.3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32(1-2): 325-336
Wang T, Jahn BM, Zheng YD, Li TB, Gao YJ and Kovachet VP. 2008. Mesozoic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and its implications for crustal architecture and growth. In: Abstract SE53-A010, AOGS 5th Annual General Meeting. Busan, Korea
Wang T, Jahn BM, Kovach VP, Tong Y, Hong DW and Han BF. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372 DOI:10.1016/j.lithos.2009.02.001
Wang T, Tong Y, Li S, Zhang JJ, Shi XJ, Li JY, Han BF and Hong DW. 2010. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth:Perspectives from Chinese Altay. Acta Petrologica et Mineralogica, 29(6): 595-618 (in Chinese with English abstract)
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304 DOI:10.1016/0012-821X(83)90211-X
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
White AJR and Chappell BW. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 79(2-3): 169-181 DOI:10.1017/S026359330001419X
Windley BF, Kröner A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China:New zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719-737 DOI:10.1086/342866
Wu FY, Jahn BM, Wilde S and Sun DY. 2000. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113 DOI:10.1016/S0040-1951(00)00179-7
Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites:Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 DOI:10.1007/s11430-016-5139-1
Xiao WJ, Windley BF, Badarch G, Sun S, Li JY, Qin KZ and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:Implications for the growth of Central Asia. Journal of the Geological Society, 161(3): 339-342 DOI:10.1144/0016-764903-165
Xiao WJ, Kröner A and Windley BF. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185-1188 DOI:10.1007/s00531-009-0418-4
Xu JF, Chen FR, Yu XY, Niu HC and Zheng ZP. 2001. Kuerti ophiolite in Altay area of North Xinjiang:Magmatism of an Ancient back-arc basin. Acta Petrologica et Mineralogica, 20(3): 344-352 (in Chinese with English abstract)
Yang FQ, Mao JW, Liu F, Chai FM, Guo ZL, Zhou G, Geng XX and Gao J. 2010. Geochronology and geochemistry of the granites from the Mengku iron deposit, Altay Mountains, Northwest China:Implications for its tectonic setting and metallogenesis. Australian Journal of Earth Sciences, 57(6): 803-818 DOI:10.1080/08120099.2010.495464
Yang FQ, Liu F, Chai FM, Zhang ZX, Geng XX, Lü SJ, Jiang LP and Ouyang LJ. 2011. Iron deposits in Altay, Xinjiang:Geological characteristics, time-space distribution and metallogenesis. Mineral Deposits, 30(4): 575-598 (in Chinese with English abstract)
Yang FQ, Guo XJ, Huang CK, Liu F, Chai FM, Geng XX and Zhang ZX. 2012. Metallogenesis of the Tuomoerte Fe-(Mn) deposit in Altay, Xinjiang. Rock and Mineral Analysis, 31(5): 906-914 (in Chinese with English abstract)
Yang FQ, Chai FM, Li Q, Gu GL and Yang CD. 2017. The discovery of the Late Cambrian-Early Ordovician strata in the basement of the Kelan Basin, Altay, Xinjiang:Constrains from Zircon LA-MC-ICP-MS U-Pb dating. Acta Geoscientica Sinica, 38(6): 859-871 (in Chinese with English abstract)
Yang FQ, Geng XX, Wang R, Zhang ZX and Guo XJ. 2018. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China. Journal of Asian Earth Sciences, 159: 233-258 DOI:10.1016/j.jseaes.2017.05.020
Yang TN, Li JY, Zhang J and Hou KJ. 2011. The Altai-Mongolia terrane in the Central Asian Orogenic Belt (CAOB):A peri-Gondwana one? Evidence from zircon U-Pb, Hf isotopes and REE abundance. Precambrian Research, 187(1-2): 79-98 DOI:10.1016/j.precamres.2011.02.005
Yang Y, Sun M, Long XP, Li PF, Zhao GC, Kröner A, Broussolle A and Yang JH. 2017. Whole-rock Nd-Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai:Constraints on the nature of the lower crust and tectonic setting. Gondwana Research, 47: 131-141 DOI:10.1016/j.gr.2016.07.003
Ye XT, Zhang CL, Zou HB, Zhou G, Yao CY and Dong YG. 2015. Devonian Alaskan-type ultramafic-mafic intrusions and silicic igneous rocks along the southern Altai orogen:Implications on the Phanerozoic continental growth of the Altai orogen of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 113: 75-89 DOI:10.1016/j.jseaes.2014.08.008
Yu XY, Mei HJ and Jiang FZ, et al. 1995. Irtysh Volcanics and Metallogenesis. Beijing: Science Press, 95-243 (in Chinese)
Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xia XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai:Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39 DOI:10.1016/j.chemgeo.2007.02.013
Zeng QS, Chen GH, Wang H and Shan Q. 2007. Geochemical characteristic, SHRIMP zircon U-Pb dating and tectonic implication for granitoids in Chonghuer basin, Altai, Xinjiang. Acta Petrologica Sinica, 23(8): 1921-1932 (in Chinese with English abstract)
Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract)
Zhang HX, Niu HC, Hiroaki S, Shan Q, Yu XY, Jun'ichi I and Zhang Q. 2004. Late Paleozoic adakite and Nb-enriched basalt from Northern Xinjiang:Evidence for the southward subduction of the Paleo-Asian Ocean. Geological Journal of China Universities, 10(1): 106-113 (in Chinese with English abstract)
Zhang X, Zhang H, Ma ZL, Tang Y, Lü ZH, Zhao JY and Liu YL. 2016. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155 DOI:10.1016/j.jseaes.2016.04.020
Zhang YF, Lin XW, Wang X, Guo QM, Zhao DC, Lü JL and Wang X. 2014. LA-ICP-MS U-Pb geochronology, petrogenesis and its geological implications of Kungeyite plutons in southern Altay Orogenic Belt. Geoscience, 28(1): 16-28 (in Chinese with English abstract)
Zhang YF, Lin XW, Guo QM, Wang X, Zhao DC, Dang C and Yao S. 2015. LA-ICP-MS zircon U-Pb dating and geochemistry of Aral granitic plutons in Koktokay area in the Southern Altay Margin and their source significance. Acta Geologica Sinica, 89(2): 339-354 (in Chinese with English abstract)
Zhang YF, Lin XW, Zhao YM, Guo QM, Zhao DC, Wang X and Zhu WP. 2017. Geochronology and geochemistry of granitoids of Ascalt beryllium deposit in Qinghe County, northern Xinjiang. Mineral Deposits, 36(3): 643-658 (in Chinese with English abstract)
Zhang ZC, Yan SH, Chen BL, Zhou G, He YK, Chai FM and He LX. 2005. Middle Devonian picrites of south margin of Altay Orogenic Belt and implications for tectonic setting and petrogenesis. Earth Science, 30(3): 289-297 (in Chinese with English abstract)
Zhang ZC, Zhou G, Yan SH, Chen BL, He YK, Chai FM and He LX. 2007. Geology and geochemistry of the Late Paleozoic volcanic rocks of the south margin of the Altai Mountains and implications for tectonic evolution. Acta Geologica Sinica, 81(3): 344-358 (in Chinese with English abstract) DOI:10.1111/j.1755-6724.2007.tb00958.x
Zhang ZC, Zhou G, Kusky TM, Yan SH, Chen BL and Zhao L. 2009. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, northwestern China:Major and trace element characteristics, Sr-Nd isotopic systematic and implications for tectonic evolution. Gondwana Research, 16(2): 201-215 DOI:10.1016/j.gr.2009.03.004
Zhao ZF, Xue CJ, Zhang LW, Wen CS, Zhou G and Liu GR. 2009. U-Pb dating of zircons from acid intrusions in Yulekenhalasu copper deposit of Qinghe, Xinjiang, and its geological significance. Mineral Deposits, 28(4): 425-433 (in Chinese with English abstract)
Zhou G, Zhang ZC, Luo SB, He B, Wang X, Ying LJ, Zhao H, Li AH and He YK. 2007. Confirmation of high-temperature strongly peraluminous Mayin'ebo granites in the south margin of Altay, Xinjiang:Age, geochemistry and tectonic implications. Acta Petrologica Sinica, 23(8): 1909-1920 (in Chinese with English abstract)
Zhou HS, Ma CQ, Zhang C, Chen L, Zhang JY and She ZB. 2008. Yanshanian aluminous A-type granitoids in the Chunshui of Biyang, south margin of North China Craton:Implications from petrology, geochronology and geochemistry. Acta Petrologica Sinica, 24(1): 49-64 (in Chinese with English abstract)
Zhou QF, Qin KZ, Tang DM, Tian Y, Cao MJ and Wang CL. 2015. Formation age and evolution time span of the koktokay No.3 pegmatite, Altai, NW China:Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65(3): 210-231
Zhou QF, Qin KZ, Tang DM, Wang CL and Sakyi PA. 2018. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geological Magazine, 155(3): 707-728 DOI:10.1017/S0016756816001096
Zou TR, Cao HZ and Wu BQ. 1989. Orogenic and anorogenic granitoids in the Altay Mountains of Xinjiang and their discrimination criteria. Acta Geologica Sinica, 2(1): 45-64
Zou TR. 1995. Accretionary continental margin (Altai) rare element pegmatitic deposits model. In: Pei RF (ed.). Deposit Models in China. Beijing: Geological Publishing House, 118-120 (in Chinese)
Zou TR and Li QC. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House, 1-264 (in Chinese with English abstract)
柴凤梅, 董连慧, 杨富全, 刘锋, 耿新霞, 黄承科. 2010. 阿尔泰南缘克朗盆地铁木尔特花岗岩体年龄、地球化学特征及成因. 岩石学报, 26(2): 377-386.
柴凤梅, 杨富全, 刘锋, 耿新霞, 吕书君, 姜丽萍, 藏梅, 陈斌. 2012. 新疆准噶尔北缘北塔山组火山岩年龄及岩石成因. 岩石学报, 28(7): 2183-2198.
陈剑锋. 2011.阿尔泰3号脉缓倾斜部分的形成和演化.硕士学位论文.贵阳: 中国科学院地球化学研究所
丁建刚, 杨成栋, 杨富全, 李强. 2020. 新疆阿尔泰别也萨麻斯稀有金属矿床含矿伟晶岩与花岗岩围岩成因关系. 地球科学与环境学报, 42(1): 71-85.
丁欣, 李建康, 丁建刚, 王赛, 刘永超, 王娴. 2016. 新疆阿斯喀尔特Be-Nb-Mo矿床Re-Os同位素年龄及地质意义. 桂林理工大学学报, 36(1): 60-65. DOI:10.3969/j.issn.1674-9057.2016.01.009
耿新霞, 柴凤梅, 杨富全, 左文喆, 郭正林, 刘锋, 张志欣. 2010. 新疆阿尔泰南缘达拉乌兹双峰式火山岩年龄及岩石成因. 岩石学报, 26(10): 2967-2980.
何国琦, 成守德, 徐新, 李锦轶, 郝杰. 2004. 中国新疆及邻区大地构造图(1:2500000)说明书. 北京: 地质出版社, 1-65.
黄博涛, 董增产, 潘峰, 王凯. 2017. 阿尔泰造山带青河地区早泥盆世和寒武纪末花岗岩的年代学、岩石成因及其地质意义. 岩石矿物学杂志, 36(4): 458-472. DOI:10.3969/j.issn.1000-6524.2017.04.002
李强, 柴凤梅, 杨富全, 杨俊杰. 2015. 新疆阿尔泰库卫铜镍硫化物-钛铁氧化物复合型矿化镁铁-超镁铁质杂岩体成因. 岩石学报, 31(8): 2211-2229.
李强, 杨富全, 杨成栋. 2019. 新疆阿尔泰大喀拉苏花岗岩年代学、地球化学特征及其构造意义. 地球科学与环境学报, 41(4): 396-413. DOI:10.3969/j.issn.1672-6561.2019.04.002
李永, 周刚, 柴凤梅. 2012. 阿尔泰南缘哈巴河岩体LA-ICP-MS锆石定年及地质意义. 新疆地质, 30(2): 146-151. DOI:10.3969/j.issn.1000-8845.2012.02.005
李佐臣, 裴先治, 李瑞保, 裴磊, 胡波, 刘成军, 陈国超, 陈有炘. 2013. 西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义. 岩石学报, 29(8): 2617-2634.
刘锋, 杨富全, 李延河, 郭正林, 柴凤梅, 耿新霞, 张志欣. 2010. 新疆阿尔泰南缘萨尔布拉克铁矿区花岗岩年代学及地球化学研究. 地质学报, 84(2): 195-205.
刘锋, 曹峰, 张志欣, 李强. 2014. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1-15.
刘国仁, 董连慧, 高福平, 陈剑祥, 赵华, 王定胜, 宋志勇, 何立新, 秦纪华. 2010. 新疆阿尔泰克兰河中游泥盆纪花岗岩锆石LA-ICP-MS U-Pb年龄及地球化学特征. 地球学报, 31(4): 519-531.
刘文政, 张辉, 唐红峰, 唐勇, 吕正航. 2015. 新疆阿斯喀尔特铍钼矿床中辉钼矿Re-Os定年及成因意义. 地球化学, 44(2): 145-154.
马昌前, 明厚利, 杨坤光. 2004. 大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据. 岩石学报, 20(3): 393-402.
马德成. 2017. 新疆富蕴县沙依肯布拉克一带稀有金属成矿地质特征及找矿前景. 世界有色金属, (12): 115, 117.
秦克章, 申茂德, 唐冬梅, 郭正林, 周起凤, 王春龙, 郭旭吉, 田野, 丁建刚. 2013. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代. 新疆地质, 31(增1): 1-7.
任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596.
宋鹏, 童英, 王涛, 秦切, 张建军, 宁东旭. 2017. 阿尔泰东南缘泥盆纪花岗质岩石的锆石U-Pb年龄、成因演化及构造意义:钙碱性-高钾钙碱性-碱性岩浆演化新证据. 地质学报, 91(1): 55-79. DOI:10.3969/j.issn.0001-5717.2017.01.004
宋鹏. 2017.阿尔泰-东准噶尔-东天山东段花岗岩Nd、Hf同位素特征对比及深部组成结构示踪意义.博士学位论文.北京: 中国地质大学 http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126621.htm
苏慧敏, 张东阳, 艾羽, 张招崇. 2008. 阿尔泰南缘中泥盆世北塔山组火山岩中单斜辉石的矿物学研究及其地质意义. 地质学报, 82(11): 1602-1612. DOI:10.3321/j.issn:0001-5717.2008.11.016
童英. 2006.阿尔泰造山带晚古生代花岗岩年代学、成因及其地质意义.博士学位论文.北京: 中国地质科学院 http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213441.htm
童英, 王涛, 洪大卫, 代雅建, 韩宝福, 柳晓明. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义. 岩石学报, 23(8): 1933-1944. DOI:10.3969/j.issn.1000-0569.2007.08.014
王春龙, 秦克章, 唐冬梅, 周起凤, 申茂德, 郭正林, 郭旭吉. 2015. 阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义. 岩石学报, 31(8): 2337-2352.
王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社, 1-493.
王德滋, 刘昌实, 沈渭洲, 陈繁荣. 1993. 桐庐I型和相山S型两类碎斑熔岩对比. 岩石学报, 9(1): 44-54. DOI:10.3321/j.issn:1000-0569.1993.01.005
王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社, 1-210.
王涛, 童英, 李舢, 张建军, 史兴俊, 李锦轶, 韩宝福, 洪大卫. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595-618. DOI:10.3969/j.issn.1000-6524.2010.06.002
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765.
许继峰, 陈繁荣, 于学元, 牛贺才, 郑作平. 2001. 新疆北部阿尔泰地区库尔提蛇绿岩:古弧后盆地系统的产物. 岩石矿物学杂志, 20(3): 344-352. DOI:10.3969/j.issn.1000-6524.2001.03.018
杨富全, 刘锋, 柴凤梅, 张志欣, 耿新霞, 吕书君, 姜丽萍, 欧阳刘进. 2011. 新疆阿尔泰铁矿:地质特征、时空分布及成矿作用. 矿床地质, 30(4): 575-598. DOI:10.3969/j.issn.0258-7106.2011.04.001
杨富全, 郭旭吉, 黄承科, 刘锋, 柴凤梅, 耿新霞, 张保江. 2012. 新疆阿尔泰托莫尔特铁(锰)矿成矿作用. 岩矿测试, 31(5): 906-914. DOI:10.3969/j.issn.0254-5357.2012.05.026
杨富全, 柴凤梅, 李强, 谷高灵, 杨成栋. 2017. 新疆阿尔泰克兰盆地基底发现晚寒武世-早奥陶世地层——来自LA-MC-ICP-MS锆石U-Pb年龄证据. 地球学报, 38(6): 859-871.
于学元, 梅厚钧, 江福芝, 等. 1995. 额尔齐斯火山岩和成矿作用. 北京: 科学出版社, 95-243.
曾乔松, 陈广浩, 王核, 单强. 2007. 阿尔泰冲乎尔盆地花岗质岩类的锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 23(8): 1921-1932. DOI:10.3969/j.issn.1000-0569.2007.08.013
张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814.
张海祥, 牛贺才, Hiroaki S, 单强, 于学元, Jun'ichi I, 张旗. 2004. 新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据. 高校地质学报, 10(1): 106-113. DOI:10.3969/j.issn.1006-7493.2004.01.010
张亚峰, 蔺新望, 王星, 郭岐明, 赵端昌, 吕军利, 王旭. 2014. 阿尔泰造山带南缘昆格依特岩体LA-ICP-MS锆石U-Pb年代学、岩石成因及其地质意义. 现代地质, 28(1): 16-28. DOI:10.3969/j.issn.1000-8527.2014.01.002
张亚峰, 蔺新望, 郭岐明, 王星, 赵端昌, 党晨, 姚珊. 2015. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义. 地质学报, 89(2): 339-354.
张亚峰, 蔺新望, 赵玉梅, 郭岐明, 赵端昌, 王星, 朱伟鹏. 2017. 新疆北部青河县阿斯喀尔特铍矿区花岗质岩石年代学及地球化学特征. 矿床地质, 36(3): 643-658.
张招崇, 闫升好, 陈柏林, 周刚, 何永康, 柴凤梅, 何立新. 2005. 阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义. 地球科学, 30(3): 289-297.
张招崇, 周刚, 闫升好, 陈柏林, 贺永康, 柴凤梅, 何立新. 2007. 阿尔泰山南缘晚古生代火山岩的地质地球化学特征及其对构造演化的启示. 地质学报, 81(3): 344-358.
赵战锋, 薛春纪, 张立武, 温长顺, 周刚, 刘国仁. 2009. 新疆青河玉勒肯哈腊苏铜矿区酸性岩锆石U-Pb法定年及其地质意义. 矿床地质, 28(4): 425-433. DOI:10.3969/j.issn.0258-7106.2009.04.005
周刚, 张招崇, 罗世宾, 何斌, 王祥, 应立娟, 赵华, 李爱红, 贺永康. 2007. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义. 岩石学报, 23(8): 1909-1920. DOI:10.3969/j.issn.1000-0569.2007.08.012
周红升, 马昌前, 张超, 陈玲, 张金阳, 佘振兵. 2008. 华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类:年代学、地球化学及其启示. 岩石学报, 24(1): 49-64.
邹天人. 1995.增生大陆边缘(阿尔泰式)稀有金属伟晶岩矿床模式.见: 裴荣富编.中国矿床模式.北京: 地质出版社, 118-120
邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社, 1-264.