岩石学报  2020, Vol. 36 Issue (3): 856-870, doi: 10.18654/1000-0569/2020.03.13   PDF    
黑龙江小多宝山矽卡岩型Fe-Cu矿床成矿时代及构造背景——来自岩石地球化学、锆石年代学及Hf同位素证据
杨贺1, 马万里1, 蔡文艳1, 王可勇1,2, 孙丰月1, 王建华3, 周红英4, 寇柏燕5     
1. 吉林大学地球科学学院, 长春 130061;
2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061;
3. 黑龙江多宝山铜业有限公司, 嫩江 161416;
4. 中国地质调查局天津地质调查中心, 天津 300170;
5. 内蒙古自治区第六地质矿产勘查开发院, 海拉尔 021008
摘要: 黑龙江小多宝山Fe-Cu矿床是多宝山-三矿沟多金属成矿带内一典型的矽卡岩型矿床。根据矿物共生组合及矿脉穿切关系,将其成矿作用划分为两期:矽卡岩期和石英-硫化物期;进一步划分为五个阶段:石榴子石-辉石干矽卡岩阶段;绿帘石-阳起石等含水硅酸盐湿矽卡岩阶段;磁铁矿-镜铁矿-石英氧化物阶段;黄铁矿-黄铜矿-石英早期硫化物阶段以及方铅矿-闪锌矿-方解石晚期硫化物阶段。本文报道了该矿床成矿岩体花岗闪长岩的锆石U-Pb年龄、全岩地球化学及锆石Hf同位素数据。花岗闪长岩锆石加权年龄为176±1Ma(MSWD=0.10,n=23),反映小多宝山矿床成矿时代为早侏罗世。其岩石地球化学特征表现为:富钠(Na2O/K2O=1.45%~1.63%),准铝质(A/CNK=0.92~0.97),富集轻稀土元素(LREE)、大离子亲石元素(如Rb、Ba、Sr、K等),相对亏损高场强元素(如Ta、Nb、Ti等),(La/Yb)N=11.16~12.87,表现出弱的负Eu异常(δEu=0.85~0.92),显示出岛弧岩浆岩的地球化学亲缘性。综合岩石地球化学及同位素测试结果,小多宝山花岗闪长岩为准铝质高钾-钙碱性I型花岗岩,起源于幔源岩浆结晶分异作用。锆石Hf同位素εHft)为+7.6~+11.4,二阶段模式年龄(tDM2)为492~732Ma,指示其岩浆源区为古生代新生地壳的熔融。结合区域构造演化,推断小多宝山花岗闪长岩形成于古太平洋板块俯冲的构造环境。
关键词: 小多宝山Fe-Cu矿床    矽卡岩型    成矿时代    构造背景    
Metallogenic epoch and tectonic setting of the Xiaoduobaoshan Fe-Cu deposit in Heilongjiang Province, China: Evidence from petrogeochemistry, zircon U-Pb geochronology and Hf isotopic compositions
YANG He1, MA WanLi1, CAI WenYan1, WANG KeYong1,2, SUN FengYue1, WANG JianHua3, ZHOU HongYing4, KOU BaiYan5     
1. College of Earth Science, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China;
3. Heilongjiang Duobaoshan Copper Co., Ltd., Nenjiang 161416, China;
4. Tianjin Geological Survey Center, China Geological Survey, Tianjin 300170, China;
5. The Inner Mongolia Autonomous Region Sixth Geology and Mineral Exploration and Development Institute, Hailaer 021008, China
Abstract: The Xiaoduobaoshan Fe-Cu deposit is a typical skarn deposit which is located in the Duobaoshan-Sankuanggou metallogenic belt in Heilongjiang, China. Based on the mineral symbiotic assemblage and cutting relationships of ore veins, the mineralization process can be divided into two phases:skarn phase and quartz-sulfide phase. The two phases can be further divided into five stages:garnet-diopside (dry skarn stage); epidote-actinolite (wet skarn stage); magnetite-specularite-quartz (oxide stage); pyrite-chalcopyrite-quartz (early sulfide stage) and galena-sphalerite-calcite (late sulfide stage). The geochemistry, U-Pb chronology and Hf isotopic data of granodiorite in the Xiaoduobaoshan area were studied. The results of zircon U-Pb geochronology for the granodiorite show that the weighted mean age of the rock is 176±1Ma (MSWD=0.10, n=23), suggesting that the Xiaoduobaoshan deposit was formed in the Early Jurassic. Petrogeochemically, the granodiorite are characterized by high content of Na2O/K2O (1.45%~1.63%), the aluminum saturation index (A/CNK) is 0.92~0.97, belonging to metaluminous calc-alkaline rock series. The samples are enriched in LREE and large ion elements (e.g., Rb, Ba, Sr and K), depleted in high field strength elements (e.g., Ta, Nb and Ti). The index of (La/Yb)N is 11.16~12.87, with unobvious negative Eu anomalies (δEu=0.85~0.92), suggesting the island arc magmatic rocks geochemical relatedness. Integrating the study of geochemistry and isotopes, the granodiorite of Xiaoduobaoshan area belong to metaluminous high potassium calc-alkaline I-type granite, which originated from the crystallization differentiation of mantle magma. The εHf(t) values of the granodiorite range from +7.6 to +11.4, and two-stage Hf model ages (tDM2) range from 492~732Ma, indicating that the magma source region is a partial melting of the new curst. Combined with regional tectonic environment, we concluded that the granodiorite of Xiaoduobaoshan area was formed in the tectonic environment of subduction of paleo-Pacific Plate.
Key words: Xiaoduobaoshan Fe-Cu deposit    Skarn    Geochronology    Tectonic setting    

中国东北地区地处中亚造山带东段(Wu et al., 2003),自古生代以来,该区先后经历了古亚洲洋构造域、蒙古-鄂霍茨克构造域及滨太平洋构造域发展演化及叠加改造作用过程(Sengor and Natal’in, 1996; Chen et al., 2017; Wang et al., 2017; 唐杰,2016李宇,2018),致使区内构造-岩浆活动强烈,不同时期、不同构造背景环境热液成矿作用广泛,形成了区内类型多样的众多重要贵、有色金属矿床(武广,2006)。通过区内典型矿床的深入研究,可以深刻揭示区域不同构造演化阶段热液成矿作用特征,对更好的总结区域成矿作用规律有重要的理论意义

多宝山-三矿沟矿集区是中国东北地区著名的Cu(Mo)多金属成矿带(Chen et al., 2017; 葛文春等, 2007a; 郝宇杰, 2015)。该成矿带经历了加里东期、海西-印支期和燕山期强烈多期次构造-岩浆活动及与之相关的成矿作用,造就了区内丰富的矿产资源(褚少雄等, 2012),主要包括多宝山、铜山斑岩型Cu-Mo-Au多金属矿床,争光热液型金矿床以及三矿沟、小多宝山矽卡岩型Fe-Cu矿床(谭成印等, 2010)。小多宝山Fe-Cu矿床位于是三矿沟-多宝山矿集区内一处典型的矽卡岩型矿床。矿床发现于20世纪50年代,规模虽小,但具有品位高、开采成本低的特点。前人已从成矿流体(白令安, 2013; 白令安等, 2016)、矿化蚀变(白令安等, 2015)、成矿岩体地球化学特征(白令安, 2013; 郝宇杰, 2015)等方面进行了一定的研究,但对于小多宝山矿床形成的时代及构造背景认识尚存争议。

目前对小多宝山矿床成矿时代认识主要存在以下四种观点:早侏罗世(白令安等, 2012; 白令安, 2013)、三叠纪(Hao et al., 2017)、二叠纪(赵元艺等, 2011)以及奥陶纪(谭成印等, 2010; 赵忠海等, 2012)。而区域复杂的构造演化致使小多宝山矿床的构造背景亦暂无定论,部分学者认为多宝山-三矿沟多金属成矿带中侏罗世的成矿事件主要是受蒙古鄂霍次克洋俯冲作用影响(Richards, 1999; Meng, 2003; 武广等, 2008; 杨祖龙等, 2009; 佘宏全等, 2012; Chen et al., 2017),但是另一部分学者认为古太平洋构造域的作用也不可忽视(隋振民等, 2007; 葛文春等, 2007a; Zhang et al., 2008; 褚少雄等, 2012; 郝宇杰等, 2013; Shu et al., 2016)。

本文拟通过对小多宝山花岗闪长岩进行岩石地球化学、锆石U-Pb及Hf同位素等研究,查明小多宝山成岩成矿时代及其岩浆源区、岩石成因和成岩构造背景,对提高该矿床成矿理论认识水平,并为三矿沟-多宝山成矿带构造-岩浆演化与多金属成矿作用研究提供重要依据。

1 地质背景 1.1 区域地质

小多宝山矽卡岩型Fe-Cu矿床所属的多宝山-三矿沟Cu-Mo多金属成矿带地处兴安地块东南部,是我国大兴安岭北段东缘重要的矿产矿集区。兴安地块是中国东北重要的构造单元之一,其北缘被塔源-喜桂图缝合带截断,南部为贺根山-黑河缝合带(Wu et al., 2011; 徐备等, 2014; Liu et al., 2017)(图 1a),由前寒武纪变质基底组成,被古生代和中生代的花岗质岩石侵入(武广, 2006)。

图 1 中国东北大地构造略图(a, 据Wu et al., 2011)、三矿沟-多宝山矿集区地质图(b, 据邓轲等, 2018)及小多宝山Fe-Cu矿床地质图(c, 据赵玉明, 1979) Fig. 1 Tectonic map of Northeast China (a, after Wu et al., 2011), geological map of Sankuanggou-Duobaoshan metallogenic belt (b, after Deng et al., 2018) and geological map of the Xiaoduobaoshan Fe-Cu deposit (c)

多宝山-三矿沟成矿带区内主要出露地层为古生代奥陶系、志留系、泥盆系,中生代白垩系及新生代第四系。奥陶系地层自下而上分别为铜山组、多宝山组、裸河组、以及爱辉组,主要岩性为安山岩、英安岩、板岩以及火山碎屑岩夹大理岩。志留系地层以卧都河组、八十里小河组和黄花沟组为主,岩性包括砂岩、粉砂岩和板岩。泥盆系地层自下而上依次为泥鳅河组、腰桑南组和根里河组,以凝灰岩、板岩、砂岩和粉砂岩为该地层主要岩性。二叠系主要包括林西组砂岩、板岩以及花朵山组火山岩。矿区东南角内亦有少量白垩系龙江组火山岩和九峰山组陆相含煤地层出露(邓轲等, 2018)。晚古生代造山事件促使区内形成NE向及NW向断裂为主的构造格局,其中NW向断裂被认为是主要的控矿构造;大量燕山期花岗质岩石在区内西北部、东部及西南部发育,加里东期花岗质岩石仅出露于多宝山地区,而华力西期花岗质岩石在区内中部及西南部皆有出露(图 1b)。

1.2 矿床地质

矿区内出露的地层主要为早古生代海相碎屑岩、火山熔岩和碳酸盐岩等,包括中奥陶统多宝山组和早志留统黄花沟组。多宝山组为一套中性凝灰岩、中性熔岩、安山玢岩夹粉砂岩及条带状大理岩等浅海相火山熔岩和火山碎屑岩(Hao et al., 2015, 2017),倾向220°~225°,倾角介于60°~80°之间。黄花沟组则属于砂泥岩互层的正常浅海相地层(白令安等, 2016)。从空间上看,多宝山组与小多宝山矿床的成矿作用密切相关。Zhao et al. (2018)在充分总结前人研究成果基础上,确定多宝山组火山岩成岩年龄介于506~447Ma之间。研究区内岩浆岩出露较少,按照侵位先后顺序划分为闪长岩、安山玢岩和花岗闪长岩(白令安等, 2015)。燕山期花岗闪长岩主要出露于矿区中部,呈NW向展布。矿体产出于花岗闪长岩和多宝山组中性凝灰岩及大理岩接触带内,受接触带构造控制,亦呈NW向展布(图 1c);此外,花岗闪长岩岩体内不发育石英硫化物矿脉,但在接触带附近发育有广泛的内矽卡岩,在岩体深部则发育广泛的硅化、绢云母化以及绿泥石化,因此,可以认为,燕山期花岗闪长岩为该矿床成矿岩体(白令安等, 2016)。小多宝山矿床共圈定7个铜矿体,多呈扁豆状或不规则透镜状,厚度几到几十米,延伸100~400m,铜矿石平均品位约为0.46%,最高可达4.58%(白令安等, 2015),铁矿石的全铁品位约35%~40%。

矿石矿物主要有镜铁矿(图 2a)、黄铜矿(图 2b-e)、黄铁矿(图 2c、e)、方铅矿、闪锌矿(图 2d)、磁铁矿(图 2b、e),另有少量的赤铁矿及铜蓝等表生氧化物。脉石矿物包括石榴子石(图 2f)、透辉石、角闪石、绿帘石、绿泥石、石英、方解石等。根据矿物共生组合及矿脉穿切关系,共划分为两个成矿期:矽卡岩期和石英-硫化物期。矽卡岩期可分为三个成矿阶段:石榴子石-辉石干矽卡岩阶段;绿帘石-阳起石等含水硅酸盐湿矽卡岩阶段;磁铁矿-镜铁矿-石英氧化物阶段。石英硫化物期则分为两个成矿阶段:黄铁矿-黄铜矿-石英早期硫化物阶段和方铅矿-闪锌矿-方解石晚期硫化物阶段。

图 2 小多宝山Fe-Cu矿床矿物共生组合及矿脉穿切关系照片 (a)氧化物阶段镜铁矿;(b)黄铜矿交代磁铁矿;(c)黄铜矿交代黄铁矿;(d)闪锌矿交代黄铜矿;(e)早期硫化物阶段石英-黄铁矿-黄铜矿脉穿切磁铁矿;(f)干矽卡岩阶段石榴子石. Spe-镜铁矿;Ccp-黄铜矿;Mgt-磁铁矿;Py-黄铁矿;Sp-闪锌矿;Grt-石榴子石;Qtz-石英 Fig. 2 Characteristics of the mineral assemblages and ore cross-cutting relationships in the Xiaoduobaoshan Fe-Cu deposit (a) specularite (Spe) in the oxide stage; (b) chalcopyrite (Ccp) intergrown with magnetite (Mag); (c) chalcopyrite intergrown with pyrite (Py); (d) sphalerite (Sp) intergrown with chalcopyrite; (e) quartz (Qtz), pyrite and chalcopyrite veins in the early sulfide stage cut early magnetite; (f) garnet (Grt) in the dry-skarn stage
2 样品采集与测试方法

本文研究样品采自与小多宝山Fe-Cu矿床成矿密切相关的花岗闪长岩岩体,取样位置见图 1c。岩石表面呈灰白色,中细粒结构,块状构造。主要的造岩矿物为石英(10%~15%)、斜长石(~60%)、角闪石(~10%)和黑云母(~15%)(图 3)。其中,石英呈他形粒状,粒径为0.3~2.2mm;斜长石呈板状、不规则粒状,粒径0.5~1.8mm;角闪石呈短柱状,粒径0.2~1.2mm;黑云母呈叶片状,粒径0.4~2.5mm。此外,还存在少量榍石、锆石、磁铁矿等副矿物。

图 3 小多宝山花岗闪长岩显微照片 Bi-黑云母;Amp-角闪石;Pl-斜长石 Fig. 3 Photomicrographs of granodiorite in the Xiaoduobaoshan area

锆石U-Pb定年测试工作在吉林大学测试实验中心完成。实验中尽量选择无包裹体无裂纹的锆石,以高纯He作为剥蚀物质载气,采用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,锆石年龄以国际标样91500作为外标确保标准和样品的仪器条件一致。运用软件ICP-MS DataCal(Liu et al., 2008, 2010)对实验数据进行处理,用Andersen (2002)方法进行普通Pb校正,年龄的计算与协和图绘制均使用国际标准程序Isoplot(ver3.0)(Ludwig, 2003)得出,各点分析得出的同位素比值及年龄误差为1σ。本次测试锆石LA-ICP-MS U-Pb分析结果见表 1

表 1 小多宝山花岗闪长岩锆石LA-ICP-MSU-Pb分析结果 Table 1 Zircon LA-ICP-MSU-Pb data for granodiorite in the Xiaoduobaoshan area

主量、微量及稀土元素的测试选用研究区新鲜花岗闪长岩样品,粉碎研磨至200目以下,在吉林大学测试中心完成。主量元素分析采用X荧光光谱分析技术,精度优于5%;微量及稀土元素采用美国安捷伦科技公司Agilent 7500A型电感耦合等离子体质谱分析测试,国际标样BHVO-2、BCR-2和国家标样GBW07103、GBW07104为参考对象,当含量>10×10-6时,分析精度优于5%,< 10×10-6时则优于10%。本次全岩主、微量元素分析结果见表 2

表 2 小多宝山花岗闪长岩主量元素(wt%)、稀土和微量元素(×10-6)相关参数 Table 2 The relevant parameters of major elements (wt%) and trace elements (×10-6) of granodiorite in the Xiaoduobaoshan area

在LA-ICP-MS锆石U-Pb定年的基础上,参照锆石阴极发光(CL)图像,选择具有代表性的锆石进行微区Hf同位素测定工作。锆石Lu-Hf同位素原位分析测试在天津地质调查中心实验测试室完成,采用美国Thermo Fisher公司生产的NEPTUNE多接收器电感耦合等离子质谱仪和ESI公司生产的NEW WAVE 193nm FX ArF准分子激光器。实验选取国际标样GJ-1作为参考矿物。对仪器的操作条件和分析程序详见文献(耿建珍等, 2011)。GJ-1的平均176Hf/177Hf值为0.282001±15(2σ, n=29),与报道数据误差范围内一致(0.282003±18, Gerdes and Zeh, 2006; 0.282013±4, Yuan et al., 2008; 0.282006±24, 耿建珍等, 2011)。Lu-Hf同位素分析结果见表 3

表 3 小多宝山花岗闪长岩锆石Lu-Hf同位素分析结果 Table 3 Lu-Hf isotopic compositions of zircons from granodiorite in the Xiaoduobaoshan area
3 分析结果 3.1 锆石U-Pb定年

本次工作对矿区内与小多宝山矿床成矿关系密切的花岗闪长岩样品(GXDBS)进行锆石LA-ICP-MS U-Pb定年,选取的锆石均为自形-半自形粒状或他形粒状,核边结构明显且发育有良好的震荡生长环带(图 4),显示出岩浆锆石的基本特点。锆石的Th和U含量分别为97×10-6~378×10-6和280×10-6~654×10-6,Th/U比值介于0.30~0.62,与岩浆锆石属性一致。23个分析点曲线位置一致(图 5a),206Pb/238U年龄区间为175~178Ma,加权平均年龄为176±1Ma(MSWD=0.10, n=23)(图 5b),由此表明花岗闪长岩形成于早侏罗世。

图 4 小多宝山花岗闪长岩代表性锆石阴极发光图像 Fig. 4 CL images of the representative zircons from granodiorite in the Xiaoduobaoshan area

图 5 小多宝山花岗闪长岩锆石年龄协和图(a)和加权平均年龄图(b) Fig. 5 Diagram of zircons U-Pb concordia (a) and weighted average ages (b) for granodiorite in the Xiaoduobaoshan area
3.2 全岩地球化学特征 3.2.1 主量元素地球化学

研究区花岗闪长岩样品SiO2含量65.74%~66.20%,属酸性岩。Na2O含量为4.22%~4.44%,K2O含量为2.72%~2.91%,全碱含量(Na2O+K2O)范围为7.13%~7.14%,Na2O/K2O值介于1.45%~1.63%,表现出岩石相对富钠的特征。Al2O3含量为15.66%~15.86%,CaO含量为3.32%~3.68%,MgO含量为1.65%~1.68%,显示出岩石相对富铝贫钙、镁的特征。借助火成岩TAS分类图解(图 6),样品全部落入花岗闪长岩区域。A/CNK变化范围在0.92~0.97之间,铝饱和指数图解显示其为准铝质系列(图 7a)。里特曼指数σ范围为2.20~2.25,属于钙碱性系列。在SiO2-K2O图解上,岩石落入钙碱性系列与高钾-钙碱性系列的过渡区域,且多数偏向高钾-钙碱性岩石系列,因此可进一步确定小多宝山花岗闪长岩为准铝质-高钾钙碱性系列(图 7b)。

图 6 小多宝山、三矿沟花岗闪长岩TAS图解(底图据Irvine and Baragar, 1971) 小多宝山数据来源于本文;三矿沟数据来源于白令安(2013)褚少雄等(2012)Deng et al. (2018). 图 7图 8图 9图 11数据来源同此图 Fig. 6 TAS diagram for granodiorite in the Xiaoduobaoshan and Sankuanggou areas (base map after Irvine and Baragar, 1971) Data of Xiaoduobaoshan are from this study, and data of Sankuanggou are from Bai (2013), Chu et al. (2012) and Deng et al. (2018). Data of Fig. 7, Fig. 8, Fig. 9 and Fig. 11 are the same as Fig. 6

图 7 小多宝山、三矿沟花岗闪长岩A/CNK-A/NK图解(a, 底图据Maniar and Piccoli, 1989)和SiO2-K2O图解(b, 底图据Peccerillo and Taylor, 1976) Fig. 7 Diagrams of A/CNK vs. A/NK (a, base map after Maniar and Piccoli, 1989) and (b) SiO2 vs. K2O (b, base map after Peccerillo and Taylor, 1976) for granodiorite in the Xiaoduobaoshan and Sankuanggou areas A/NK-molar ratio Al2O3/(Na2O+K2O); A/CNK-molar ratio Al2O3/(CaO+Na2O+K2O)
3.2.2 稀土和微量元素地球化学

花岗闪长岩稀土元素总含量相对较低(∑REE=105.3×10-6~111.3×10-6),相对富集轻稀土元素(LREE/HREE=9.94~10.43),轻、重稀土分馏程度中等[(La/Yb)N=11.16~12.87],表现出弱的负Eu异常(δEu=0.85~0.92)。从球粒陨石标准化稀土元素配分曲线(图 8a)可明显看出,花岗闪长岩样品整体呈明显右倾式,表现出轻稀土元素明显富集,重稀土元素相对亏损的形势。原始地幔标准化蛛网图显示(图 8b),岩石相对富集Rb、Ba、Sr、K等大离子亲石元素,而相对亏损Ta、Nb、Ti等高场强元素。

图 8 小多宝山、三矿沟花岗闪长岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized rare earth element patterns (a) and primitive mantle-normalized trace element spidergrams (b) for granodiorite in the Xiaoduobaoshan and Sankuanggou areas (normalization values after Sun and McDonough, 1989)
3.3 锆石Lu-Hf同位素

选取花岗闪长岩样品(GXDBS)中10个能代表小多宝山成矿年龄的锆石,圈定其相同或近似区域进行Lu-Hf同位素测试,结果显示,176Lu/177Hf平均比值为0.0013,表明锆石形成后由Lu衰变为Hf的数量极少,因而所得的176Hf/177Hf值可以反映岩石结晶演化过程中Hf同位素的组成情况(吴福元等, 2007)。另外,锆石样品的fLu/Hf普遍较低,平均值为-0.961,说明实验锆石Lu-Hf同位素二阶段模式年龄(tDM2)指示源区物质在地壳中存留年限或从地幔中抽离的年限是合理的。10个点的Hf同位素分析结果表明,176Hf/177Hf值为0.282883~0.282990,通过其结晶年龄176Ma计算可得,εHf(t)为7.6~11.4,单阶段模式年龄(tDM1)为378~526Ma,二阶段模式年龄(tDM2)为492~732Ma。

4 讨论 4.1 成岩成矿时代

区域构造活动频繁,先后经历了多期构造运动,进而导致区内岩浆活动强烈,衍生了一系列内生热液金属矿床。综合本次研究及前人研究成果,多宝山-三矿沟矿集区主要矿床成岩成矿时代可分为以下三期:奥陶纪斑岩型Cu(Mo)矿化(Zhao et al., 2018; 佘宏全等, 2012; 向安平等, 2012; 崔根等, 2008; 葛文春等, 2007b; Zeng et al., 2014; 白令安, 2013; 赵焕利等, 2012; Wu et al., 2015; 郝宇杰, 2015; 赵一鸣等, 1997; Liu et al., 2012);三叠纪斑岩型Cu(Mo)-Au矿化(Hao et al., 2017; 郝宇杰, 2015; Zeng et al., 2014; 赵元艺等, 2011; 杜琦等, 1988);早侏罗世矽卡岩型Fe-Cu矿化(Chu et al., 2019; Deng et al., 2018; Hao et al., 2015; 郝宇杰, 2015; 吕鹏瑞等, 2012; 褚少雄等, 2012; 李德荣,2011李德荣等, 2010, 2011; 葛文春等, 2007a)。

小多宝山Fe-Cu矿体赋存于花岗闪长岩和多宝山组中性凝灰岩及大理岩接触带内,且在花岗闪长岩内广泛出露的由石榴子石、辉石、绿帘石组成的内矽卡岩,同时并未在花岗闪长岩体内发现石英硫化物矿脉,因此可以推断花岗闪长岩为小多宝山Fe-Cu矿的成矿岩体,其成岩年龄可以代表矿床的成矿年龄。本次工作得出小多宝山花岗闪长岩锆石U-Pb年龄为176±1Ma,白令安(2013)报道过小多宝山花岗闪长岩锆石LA-ICP-MS加权平均年龄为171.9±1.7Ma(MSWD=11.4, N=17),表明该矿床成矿与燕山期早侏罗世岩浆作用密切相关。三矿沟Fe-Cu矿床作为三矿沟-多宝山成矿带上矽卡岩型矿床的典型代表,在空间位置上与小多宝山矿床十分接近,另外,褚少雄等(2012)Deng et al. (2018)分别对三矿沟矿床花岗闪长岩的年龄进行测定,加权平均年龄分别为175.9±1.1Ma(MSWD=0.21, N=24)和177±1Ma(MSWD=1.01, N=26)。相较于171.9±1.7Ma,本文对小多宝山年代学的测定(176±1Ma)更接近矿床实际成矿时代。

4.2 岩浆源区特征与岩石成因

小多宝山花岗闪长岩主要矿物组成为石英、斜长石、角闪石和黑云母,符合I型花岗岩矿物组合的基本特征。在主量元素上表现出富硅(SiO2=65.74%~66.20%)、准铝(A/CNK=0.92~0.97)、中等镁值(Mg#=43.4~43.7)及较高的K2O含量的特征;在微量元素上表现出富集轻稀土(LREE)元素、大离子亲石元素(LILE: Rb、Ba、K)和地球化学性质活泼的不相容元素(U、Th、Pb),相对亏损高场强元素(HFSE: Nb、Ta、Ti)的特征。此外,Zr+Nd+Ce+Y的值介于200.5×10-6~219.2×10-6,低于A型花岗岩的下限值(350×10-6)(Whalen et al., 1987),在(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)和Ce-SiO2判别图解中,数据点均落入I型花岗岩区域(图 9a,b)。综合判断,小多宝山花岗闪长岩应属于准铝质高钾钙碱性I型花岗岩。

图 9 小多宝山、三矿沟花岗闪长岩(K2O+Na2O)/CaO-(Zr+Nb+Ce+Y)判别图解(a)和Ce-SiO2判别图解(b)(底图据Whalen et al., 1987) A-A型花岗岩;FG-分异的I型和S型花岗岩;OGT-未分异的I型、S型和M型花岗岩 Fig. 9 (K2O+Na2O)/CaO vs. Zr+Nb+Ce+Y diagram (a) and Ce vs. SiO2 (b) diagramof granodiorite in the Xiaoduobaoshan and Sankuanggou areas (base map after Whalen et al., 1987)

普遍认为,花岗岩类岩石主要起源于:(1)地壳物质的部分熔融作用(葛文春等, 2007b; Hofmann, 1988);(2)玄武质岩浆或安山质岩浆的分离结晶作用(Han et al., 1997);(3)酸性岩浆同玄武质岩浆的混合作用(Jahn et al., 2000; Yang et al., 2015)。Nb、Ta和Ti的负异常、弱的负Eu异常,Rb、Ba、K和Sr的正异常(图 8b)及LREEs和LILEs的相对富集均表明岩浆演化过程中发生了显著的结晶分异作用,并存在地壳物质的混染。小多宝山花岗闪长岩较高的SiO2和Al2O3(15.66%~15.86%)含量及较低的Ni(6×10-6~6.6×10-6)和Cr(18×10-6~22×10-6)也暗示了地壳物质的参与。此外,花岗闪长岩中可见闪长岩包体,且闪长岩包体的地球化学特征同花岗闪长岩表现出良好的谐和关系(白令安, 2013)亦暗示两者为同源岩浆分异作用的产物。而白令安(2013)提供的Sr-Nd同位素特征也表明亲地幔端元和少量地壳物质的混入。本次Hf同位素测试结果表明,εHf(t)=7.6~11.4,一阶段模式年龄(tDM1)为378~526Ma,二阶段模式年龄(tDM2)为492~732Ma,Hf同位素图解中(图 10a, b),所有数据点均落于球粒陨石与亏损地幔之间,进一步证明小多宝山花岗闪长岩岩浆源区为古生代新生地壳物质,即洋壳的熔融。

图 10 小多宝山、三矿沟花岗闪长岩锆石Hf同位素特征(底图据吴福元等, 2007; Wu et al., 2015) 数据来源于本文和Chu et al. (2019) Fig. 10 Zircon Hf isotopic compositions for granodiorite in the Xiaoduobaoshan and Sankuanggou areas (base map after Wu et al., 2007, 2015) Data from this study and Chu et al. (2019)
4.3 成矿构造背景

包括研究区在内的中国东北地区先后受到古亚洲洋、蒙古鄂霍茨克洋和古太平洋的俯冲作用影响,围绕其构造单元划分及演化历史,前人已开展过大量研究工作,综合起来可将其演化过程概括为:(1)早古生代期间,古亚洲洋向松辽地块及华北地块北缘发生双向俯冲作用(石玉若等, 2005; Shi et al., 2010; Liu et al., 2003);(2)至石炭纪,兴安地块与松辽地块拼合,并伴随大规模的岩浆活动(Chen et al., 2009; Liu et al., 2009; Zhang et al., 2007, 2009; 包志伟等, 1994; Zhou et al., 2015; 施光海等, 2004);(3)晚二叠世-早三叠世,松辽地块与华北地块北缘拼贴,古亚洲洋完成最终闭合,与此同时蒙古鄂霍茨克洋构造域开始向额尔古纳地块及西伯利亚板块俯冲(唐杰, 2016);(4)至早-中侏罗世开始,东部的古太平洋构造域持续俯冲作用在欧亚板块之下(Xu et al., 2013),至晚侏罗世-早白垩世,蒙古鄂霍茨克洋自西向东呈剪式闭合(Tomurtogoo et al., 2005)。

本次研究结果显示与Fe-Cu矿化有关的花岗闪长岩锆石U-Pb年龄为176±1Ma,这与古太平洋俯冲作用时间相吻合,同时蒙古鄂霍茨克洋仍处于俯冲环境。地球化学特征表明小多宝山花岗闪长岩属准铝质高钾钙碱性系列I型花岗岩,富集LREEs和LILEs(如Rb、Ba、Sr、K),亏损HREEs和HFSEs(如Nb、Ta、Ti)。Rb-Y+Nb、Nb-Y、Ta-Yb和Rb-Ta+Yb图解中(图 11a-d),花岗闪长岩样品点均落在火山弧花岗岩(VAG)区域内。以上研究结果与同期成矿事件的三矿沟花岗闪长岩(175.9±1.1Ma, 褚少雄等, 2012;177±1Ma, Deng et al., 2018)相比,两者在地球化学特征上表现出高度相似性(图 6-图 11)。

图 11 小多宝山、三矿沟花岗闪长岩Rb-(Y+Nb) (a)、Nb-Y (b)、Ta-Yb (c)和Rb-(Ta+Yb) (d)图解(底图据Batchelor and Bowden, 1985Pearce et al., 1984) Syn-COLG:同碰撞花岗岩;VAG:火山弧花岗岩;WPG:板内花岗岩;ORG:洋中脊花岗岩 Fig. 11 Rb vs. (Y+Nb) (a), Nb vs. Y (b), Ta vs. Yb (c) and Rb vs. (Ta+Yb) (d) tectonic diagrams of granodiorite in the Xiaoduobaoshan and Sankuanggou areas (base map after Batchelor and Bowden, 1985 and Pearce et al., 1984)

本次研究认为古太平洋和蒙古鄂霍茨克洋在中侏罗纪时期都处于俯冲构造环境。但Wu et al. (2011)Xu et al. (2013)认为与太平洋俯冲缝合带相平行的小兴安岭-张广才地区-吉林中部-延边地区的SN(190~169Ma)向侵入岩带(Zhang et al., 2004; Wu et al., 2007, 2011; 孙德有等, 2001, 2005; 苗来成等, 2003; 隋振民等, 2007)受古太平洋板块俯冲的影响,而同期的额尔古纳地块区域沿蒙古鄂霍茨克缝合带NE-SW向分布的侵入岩则往往受蒙古鄂霍茨克洋俯冲的影响。兴安地块的侵入岩分布形态不能支撑研究区受到了蒙古鄂霍茨克洋俯冲的显著影响的结论,此外在小兴安岭-张广才地区-吉林中部-延边地区侵入岩带的西侧存在一与之平行的145~120Ma的岩浆岩带,自西向东侵入岩呈逐渐年轻的变化趋势,也暗示了古太平洋板块的持续俯冲(Chu et al., 2019)。值得注意的是,Zhou et al. (2009)对黑龙江群中超高压变质带中的蓝片岩(165~180Ma)的变质作用年龄的研究也显示佳木斯地块与松嫩地块的拼合动力主要源于古太平洋西向俯冲增生作用;另外,Guo et al. (2015)认为图们地区与俯冲相关的早侏罗世镁铁质侵入杂岩也是源于古太平洋板块俯冲作用,这些都暗示了古太平洋板块对东亚大陆边缘的持续俯冲作用。Shu et al. (2016)总结了中国东北地区140~200Ma期间形成的45个矿床的时空分布,发现了一个向西北方向年龄逐步降低的趋势,由此认为侏罗纪时期岩浆热液作用是由古太平洋板块的平板俯冲引起的。因此,形成于火山弧环境的小多宝山矿床及其他同期矿床主要受早中侏罗世古太平洋俯冲作用的影响。

5 结论

(1) 小多宝山矽卡岩型Fe-Cu矿床成矿岩体锆石U-Pb加权平均年龄为176±1Ma,成矿时代属早侏罗世;

(2) 成矿花岗闪长岩属准铝质高钾-钙碱性I型花岗岩,起源于幔源岩浆结晶分异作用,并伴有地壳物质的混染;其εHf(t)为7.6~11.4,暗示岩浆源区为古生代新生地壳的熔融;

(3) 矿床形成于早侏罗世古太平洋板块俯冲形成的火山弧构造环境。

致谢      感谢吉林大学测试实验中心对本次锆石U-Pb测年过程中提供的帮助。感谢黑龙江多宝山铜业有限公司褚向辉、王宇晨对野外工作的大力支持。感谢项目组成员对室内工作的辅助支持。

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Bai LA, Sun JG, Zhang Y, Han SJ, Yang FC, Men LJ, Gu AL and Zhao KQ. 2012. Genetic type, mineralization epoch and geodynamical setting of endogenous copper deposits in the Great Xing'an Range. Acta Petrologica Sinica, 28(2): 468-482 (in Chinese with English abstract)
Bai LA. 2013. Study on metallogenic mechanism and resource forecast of hydrothermal Cu deposits in the central and north of the Great Xing'an Range, NE China. Ph. D. Dissertation. Changchun: Jilin University, 100-105 (in Chinese with English summary)
Bai LA, Sun JG, Gu AL and Zhao KQ. 2015. Geological characteristics and prospecting direction of Xiaoduobaoshan Skarn Cu-Fe Deposits, Heilongjiang Province. Gold, 6(36): 24-28 (in Chinese with English abstract)
Bai LA, Sun JG, Gu AL and Zhao KQ. 2016. Geochemical characteristics and evolution of ore-forming fluids of Xiaoduobaoshan copper deposit, Heilongjiang. Journal of Guilin University of Technology, 36(3): 411-417 (in Chinese with English abstract)
Bao ZW, Chen SH and Zhang ZT. 1994. Study on REE and Sm-Nd isotopes of Hegenshanophiolite, Inner Mongolia. Geochimica, 23(4): 339-349 (in Chinese with English abstract)
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55 DOI:10.1016/0009-2541(85)90034-8
Chen B, Jahn BM and Tian W. 2009. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257 DOI:10.1016/j.jseaes.2008.05.007
Chen YJ, Zhang C, Wang P, Pirajno F and Li N. 2017. The Mo deposits of Northeast China:A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geology Reviews, 81: 602-640 DOI:10.1016/j.oregeorev.2016.04.017
Chu SX, Liu JM, Xu JH, Wei H, Chai H and Tong KY. 2012. Zircon U-Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province. Acta Petrologica Sinica, 28(2): 433-450 (in Chinese with English abstract)
Chu SX, Zeng QD, Liu JM and Wang YB. 2019. Early-Middle Jurassic magmatism and skarn-porphyry mineralization in NE China:Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications. Journal of Geochemical Exploration, 200: 84-103 DOI:10.1016/j.gexplo.2019.01.013
Cui G, Wang JY, Zhang JX and Cui G. 2008. U-Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance. Global Geology, 27(4): 387-394 (in Chinese with English abstract)
Deng K, Li QG, Chen YJ, Zhang C, Zhu XF and Xu QW. 2018. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Jurassic granodiorite from the Sankuanggou intrusion, Heilongjiang Province, Northeastern China:Petrogenesis and geodynamic implications. Lithos, 296-299: 113-128 DOI:10.1016/j.lithos.2017.10.016
Deng K, Chen YJ, Zhang C, Xu QW and Zhu XF. 2018. Mineralogical characteristics and ore-forming physicochemical conditions of the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province. Earth Science Frontiers, 25(5): 167-182 (in Chinese with English abstract)
Du Q, Zhao YM, Lu BG, Ma DY, Li PL, Lü JK, Li WS, Ao LZ and Cui G. 1988. Duobaoshan Porphyry Copper Deposit. Beijing: Geological Publishing House, 1-335 (in Chinese)
Ge WC, Wu FY, Zhou CY and Zhang JH. 2007a. Porphyry Cu, Mo ore-forming age and its geodynamic implications in east of Xing-Meng orogenic belt. Chinese Science Bulletin, 52(20): 2407-2417 (in Chinese) DOI:10.1360/csb2007-52-20-2407
Ge WC, Sui ZM, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007b. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China. Acta Petrologica Sinica, 23(2): 423-440 (in Chinese with English abstract)
Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)
Gerdes A and Zeh A. 2006. Combined U-Pb and Hf isotope LA-(MC-)ICPMS analyses of detrital zircons:Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters, 249(1-2): 47-61 DOI:10.1016/j.epsl.2006.06.039
Guo F, Li HX, Fan WM, Li JY, Zhao L, Huang MW and Xu WL. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, 224-225: 46-60 DOI:10.1016/j.lithos.2015.02.014
Han BF, Wang SG, Jahn BM, Hong DW, Kagami H and Sun YL. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159 DOI:10.1016/S0009-2541(97)00003-X
Hao YJ, Ren YS, Zhao HL, Zou XT, Chen C, Hou ZS and Qu WJ. 2013. Re-Os isotopic dating of the molybdenite from the Cuihongshan W-Mo polymetallic deposit in Heilongjiang Province and its geological significance. Journal of Jilin University (Earth Science Edition), 43(6): 1840-1850 (in Chinese with English abstract)
Hao YJ. 2015. Mineralization and metallogenic regularity of Duobaoshan ore concentration area in Heilongjiang Province, Northeast China. Ph. D. Dissertation. Changchun: Jilin University, 133-158 (in Chinese with English summary)
Hao YJ, Ren YS, Duan MX, Tong KY, Chen C, Yang Q and Li C. 2015. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 97: 442-458 DOI:10.1016/j.jseaes.2014.08.007
Hao YJ, Ren YS, Duan MX, Zhao HL, Tong KY and Sun ZM. 2017. Tectonic setting of Triassic magmatic and metallogenic event in the Duobaoshan mineralization area of Heilongjiang Province, NE China. Geological Journal, 52(1): 67-91 DOI:10.1002/gj.2732
Hofmann AW. 1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314 DOI:10.1016/0012-821X(88)90132-X
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 DOI:10.1139/e71-055
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 DOI:10.1017/S0263593300007367
Li DR, Zhu ZL, Lu J and Cui G. 2010. Structural-magmatic mineralization of Sankuanggou-Duobaoshan metallogenic belt, Heilongjiang. China Mining Magazine, 19(Suppl.1): 142-146 (in Chinese)
Li DR. 2011. Metallogenic laws and prospecting direction in the Sankuanggou copper polymetalic mining area (deposit), Heilongjiang province. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 115-117 (in Chinese with English summary)
Li DR, Lü FL, Liu SY and Lu J. 2011. Geological features and prospecting orientation of the Sankuanggou Cu-Mo-Au deposit in Nenjiang County, Heilongjiang Province. Geology in China, 38(2): 415-426 (in Chinese with English abstract)
Li Y. 2018. Geochronology and geochemistry of the Mesozoic igneous rocks in the Xing'an Massif, NE China: Constraints on the evolution of the Mongol-Okhotsk tectonic regime. Ph. D. Dissertation. Changchun: Jilin University, 1-5 (in Chinese with English summary)
Liu DY, Jian P, Zhang Q, Zhang FQ, Shi YR, Shi GH, Zhang LQ and Tao H. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia:Evidence for the Early Paleozoic subduction. Acta Geologica Sinica, 77(3): 317-327 (in Chinese with English abstract)
Liu J, Wu G, Li Y, Zhu MT and Zhong W. 2012. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences, 49: 300-312 DOI:10.1016/j.jseaes.2011.10.014
Liu JF, Chi XG, Zhang XZ, Ma ZH, Zhao Z, Wang TF, Hu ZC and Zhao XY. 2009. Geochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance. Acta Geologica Sinica, 83(3): 365-376 (in Chinese with English abstract)
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148 DOI:10.1016/j.gr.2016.03.013
Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KR. 2003. User's Manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publications, 74
Lü PR, Li DR, Peng YW and Zhang MY. 2012. S-Pb isotopic characteristics of ore sulfides and U-Pb dating of zircon from the Sankuanggou skarn-type Cu-Fe-Mo deposit in Heilongjiang Province. Geology in China, 39(3): 717-728 (in Chinese with English abstract)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Meng QR. 2003. What drove Late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics,, 369(3-4): 155-174 DOI:10.1016/S0040-1951(03)00195-1
Miao LC, Fan WM, Zhang FQ, Liu DY, Jian P, Shi GH, Tao H and Shi YR. 2004. Zircon SHRIMP geochronology of the Xinkailing-kele complex in the northwestern Lesser Xing'an Range, and its geological implications. Chinese Science Bulletin, 49(7): 201-209
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Richards MA. 1999. Prospecting for Jurassic slabs. Nature, 397(6716): 203-204 DOI:10.1038/16574
Sengor AMC and Natal'in BA. 1996. Paleotectonics of Asia: Fragments of synthesis. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. London: Cambridge University Press, 486-640
She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594 (in Chinese with English abstract)
Shi GH, Miao LC, Zhang FQ, Jian P, Fan WM and Liu DY. 2004. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China. Chinese Science Bulletin, 49(4): 384-389 (in Chinese) DOI:10.1360/csb2004-49-4-384
Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ, Miao LC, Shi GH, Zhang LQ and Tao H. 2005. The petrogenesis and SHRIMP dating of the Baiyinbaolidao adakitic rocks in southern Suzuoqi, Inner Mongolia. Acta Petrologica Sinica, 21(1): 143-150 (in Chinese with English abstract)
Shi YR, Liu DY, Miao LC, Zhang FQ, Jian P, Zhang W, Hou KJ and Xu JY. 2010. Devonian A-type granitic magmatism on the northern margin of the North China Craton:SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632-641 DOI:10.1016/j.gr.2009.11.011
Shu QH, Chang ZS, Lai Y, Zhou YT, Sun Y and Yan C. 2016. Regional metallogeny of Mo-bearing deposits in northeastern China, with new Re-Os dates of porphyry Mo deposits in the northern Xilamulun district. Economic Geology, 111(7): 1783-1798 DOI:10.2113/econgeo.111.7.1783
Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC and Cheng RY. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract)
Sun DY, Wu FY, Lin Q and Lu XP. 2001. Petrogenesis and crust-mantle interaction of Early Yanshanian Baishishan plution in Zhangguangcai Range. Acta Petrologica Sinica, 17(2): 227-235 (in Chinese with English abstract)
Sun DY, Wu FY, Gao S and Lu XP. 2005. Confirmation of two episodes of A-type granite emplacement during Late Triassic and Early Jurassic in the central Jilin Province, and their constraints on the structural pattern of eastern Jilin-Heilongjiang area, China. Earth Science Frontiers, 12(2): 263-275 (in Chinese with English abstract)
Sun SS and Mcdonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tan CY, Wang GH and Li YS. 2010. New progress and significance on the mineral exploration in Duobaoshan mineralization area, Heilongjiang, China. Geological Bulletin of China, 29(2-3): 436-445 (in Chinese with English abstract)
Tang J. 2016. Geochronology and geochemistry of the Mesozoic igneous rocks in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk suture zone. Ph. D. Dissertation. Changchun: Jilin University, 150-157 (in Chinese with English summary)
Tomurtogoo O, Windley BF, Kröner A, Badarch G and Liu DY. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:Constraints on the evolution of the Mongol-Okhotsk Ocean, suture and orogen. Journal of the Geological Society, 162(1): 125-134 DOI:10.1144/0016-764903-146
Wang P, Chen YJ, Wang CM, Zhu XF and Wang SX. 2017. Genesis and tectonic setting of the giant Diyanqin'amu porphyry Mo deposit in Great Hingan Range, NE China:Constraints from U-Pb and Re-Os geochronology and Hf isotopic geochemistry. Ore Geology Reviews, 81: 760-779 DOI:10.1016/j.oregeorev.2016.03.017
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis. Lithos, 66(3-4): 241-273 DOI:10.1016/S0024-4937(02)00222-0
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
Wu G. 2006. Metallogenic setting and metallogenesis of nonferrous-precious metals in northern Da Hinggan Mountain. Ph. D. Dissertation. Changchun: Jilin University, 21-24 (in Chinese)
Wu G, Chen YJ, Sun FY, Li JC, Li ZT and Wang XJ. 2008. Geochemistry of the late Jurassic granitoids in the northern end area of Da Hinggan Mountains and their geological and prospecting implications. Acta Petrologica Sinica, 24(4): 899-910 (in Chinese with English abstract)
Wu G, Chen YC, Sun FY, Liu J, Wang GR and Xu B. 2015. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the Early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. Journal of Asian Earth Sciences, 97: 229-250 DOI:10.1016/j.jseaes.2014.07.031
Xiang AP, Yang YC, Li GT, She HQ, Guan JD, Li JW and Guo ZJ. 2012. Diagenetic and metallogenic ages of Duobaoshan porphyry Cu-Mo deposit in Heilongjiang Province. Mineral Deposits, 31(6): 1237-1248 (in Chinese with English abstract)
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract)
Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB and Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193 DOI:10.1016/j.jseaes.2013.04.003
Yang H, Ge WC, Zhao GC, Dong Y, Xu WL, Ji Z and Yu JJ. 2015. Late Triassic intrusive complex in the Jidong region, Jiamusi-Khanka Block, NE China:Geochemistry, zircon U-Pb ages, Lu-Hf isotopes, and implications for magma mingling and mixing. Lithos, 224-255: 143-159
Yang ZL, Zhang DQ, Li JW, She HQ, Feng CY and Dong YJ. 2009. Ore-forming types, metallogenic zoning and potential prospecting areas in southwestern sector of Deerbugan metallogenic belt. Mineral Deposits, 28(1): 53-62 (in Chinese with English abstract)
Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118 DOI:10.1016/j.chemgeo.2007.10.003
Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL and Qu WJ. 2014. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance. Journal of Asian Earth Sciences, 79: 895-909 DOI:10.1016/j.jseaes.2013.02.007
Zhang JH, Ge WC, Wu FY, Wilde SA, Yang JH and Liu XM. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an range, northeastern China. Lithos, 102(1-2): 138-157 DOI:10.1016/j.lithos.2007.08.011
Zhang SH, Zhao Y, Song B, Yang ZY, Hu JM and Wu H. 2007. Carboniferous granitic plutons from the northern margin of the North China block:Implications for a Late Palaeozoic active continental margin. Journal of the Geological Society, 164(2): 451-463 DOI:10.1144/0016-76492005-190
Zhang SH, Zhao Y, Kröner A, Liu XM, Xie LW and Chen FK. 2009. Early Permian plutons from the northern North China Block:Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441-1467 DOI:10.1007/s00531-008-0368-2
Zhang YB, Wu FY, Wilde SA, Zhai MG, Lu XP and Sun DY. 2004. Zircon U-Pb ages and tectonic implications of 'Early Paleozoic' granitoids at Yanbian, Jilin Province, Northeast China. Island Arc, 13(4): 484-505 DOI:10.1111/j.1440-1738.2004.00442.x
Zhao C, Qin KZ, Song GX, Li GM, Li ZZ, Pang XY and Wang L. 2018. Petrogenesis and tectonic setting of ore-related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 165: 352-370 DOI:10.1016/j.jseaes.2018.07.002
Zhao HL, Zhu CY, Liu HY and Liu BS. 2012. Zircon SHRIMP U-Pb dating and its tectonic implications of the granodiorite in Duobaoshan copper deposit, Heilongjiang province. Geology and resources, 21(5): 421-424 (in Chinese with English abstract)
Zhao YM, Bi CS, Zou XQ, Sun YL and Du AD. 1997. The Re-Os isotopic age of molybdenite from Duobaoshan and Tongshan porphyry copper (molybdenum) deposits. Acta Geoscientica Sinica, 18(1): 61-67 (in Chinese with English abstract)
Zhao YY, Wang JP, Zhao GJ and Cui YB. 2011. Metailogenic regularity and prospecting direction of Duobaoshan ore field, Heilongjiang Province, China. Journal of Jilin University (Earth Science Edition), 41(6): 1676-1688 (in Chinese with English abstract)
Zhao ZH, Zheng WZ, Qu H, Guo Y, Li CL, Wang Z and Zhang JF. 2012. Cu-Au mineralization and metallogenic regularity of Duobaoshan area, Heilongjiang Province. Mineral Deposits, 31(3): 601-614 (in Chinese with English abstract)
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246 DOI:10.1016/j.tecto.2009.08.009
Zhou JB, Han J, Zhao GC, Zhang XZ, Cao JL, Wang B and Pei SH. 2015. The emplacement time of the Hegenshan ophiolite:Constraints from the unconformably overlying Paleozoic strata. Tectonophysics, 662: 398-415 DOI:10.1016/j.tecto.2015.03.008
白令安, 孙景贵, 张勇, 韩世炯, 杨凤超, 门兰静, 古阿雷, 赵克强. 2012. 大兴安岭地区内生铜矿床的成因类型、成矿时代与成矿动力学背景. 岩石学报, 28(2): 468-482.
白令安. 2013.大兴安岭中北部热液铜矿床的成矿机制与资源预测.博士学位论文, 长春: 吉林大学, 100-105 http://cdmd.cnki.com.cn/Article/CDMD-10183-1013193263.htm
白令安, 孙景贵, 古阿雷, 赵克强. 2015. 黑龙江省小多宝山矽卡岩型铜铁矿床地质特征及找矿方向. 黄金, 6(36): 24-28.
白令安, 孙景贵, 古阿雷, 赵克强. 2016. 黑龙江小多宝山铜矿床成矿流体地球化学特征及演化. 桂林理工大学学报, 36(3): 411-417. DOI:10.3969/j.issn.1674-9057.2016.03.001
包志伟, 陈森煌, 张桢堂. 1994. 内蒙古贺根山地区蛇绿岩稀土元素和Sm-Nd同位素研究. 地球化学, 23(4): 339-349. DOI:10.3321/j.issn:0379-1726.1994.04.004
褚少雄, 刘建明, 徐九华, 魏浩, 柴辉, 佟匡胤. 2012. 黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义. 岩石学报, 28(2): 433-450.
崔根, 王金益, 张景仙, 崔革. 2008. 黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义. 世界地质, 27(4): 387-394. DOI:10.3969/j.issn.1004-5589.2008.04.006
邓轲, 陈衍景, 张成, 许强伟, 朱雪峰. 2018. 黑龙江省三矿沟夕卡岩型铁铜矿床矿物学特征及成矿物理化学条件. 地学前缘, 25(5): 167-182.
杜琦, 赵玉明, 卢秉刚, 马德友, 李佩兰, 律景凯, 李文深, 敖立志, 崔革. 1988. 多宝山斑岩铜矿床. 北京: 地质出版社, 1-335.
葛文春, 吴福元, 周长勇, 张吉衡. 2007a. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417.
葛文春, 隋振民, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007b. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义. 岩石学报, 23(2): 423-440.
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513. DOI:10.3969/j.issn.1671-2552.2011.10.004
郝宇杰, 任云生, 赵华雷, 邹欣桐, 陈聪, 侯召硕, 屈文俊. 2013. 黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义. 吉林大学学报(地球科学版), 43(6): 1840-1850.
郝宇杰. 2015.黑龙江省多宝山矿集区成矿作用与成矿规律研究.博士学位论文, 长春: 吉林大学, 133-158 http://cdmd.cnki.com.cn/Article/CDMD-10183-1015593140.htm
李德荣, 朱朝利, 吕军, 崔根. 2010. 黑龙江三矿沟-多宝山成矿带构造-岩浆成矿作用. 中国矿业, 19(增1): 142-146.
李德荣. 2011.黑龙江三矿沟铜多金属矿区(床)成矿规律及找矿方向.博士学位论文.北京: 中国地质大学(北京), 115-117 http://cdmd.cnki.com.cn/article/cdmd-11415-1011077541.htm
李德荣, 吕福林, 刘素颖, 吕军. 2011. 黑龙江省嫩江县三矿沟矿区地质特征及找矿方向. 中国地质, 38(2): 415-426. DOI:10.3969/j.issn.1000-3657.2011.02.016
李宇. 2018.兴安地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克构造体系演化的制约.博士学位论文.长春: 吉林大学, 1-5 http://cdmd.cnki.com.cn/Article/CDMD-10183-1018213492.htm
刘敦一, 简平, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据. 地质学报, 77(3): 317-327. DOI:10.3321/j.issn:0001-5717.2003.03.004
刘建峰, 迟效国, 张兴洲, 马志红, 赵芝, 王铁夫, 胡兆初, 赵秀羽. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义. 地质学报, 28(2): 365-376.
吕鹏瑞, 李德荣, 彭义伟, 张明洋. 2012. 黑龙江三矿沟矽卡岩型Cu-Fe-Mo矿床矿石硫化物硫、铅同位素特征及锆石U-Pb定年. 中国地质, 39(3): 717-728. DOI:10.3969/j.issn.1000-3657.2012.03.013
苗来成, 范蔚茗, 张福勤, 刘敦一, 简平, 施光海, 陶华, 石玉若. 2003. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义. 科学通报, 48(22): 2315-2323. DOI:10.3321/j.issn:0023-074X.2003.22.004
佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系. 岩石学报, 28(2): 571-594.
施光海, 苗来成, 张福勤, 简平, 范蔚茗, 刘敦一. 2004. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义. 科学通报, 49(4): 384-389. DOI:10.3321/j.issn:0023-074X.2004.04.015
石玉若, 刘敦一, 张旗, 简平, 张福勤, 苗来成, 施光海, 张履桥, 陶华. 2005. 内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究. 岩石学报, 21(1): 143-150.
隋振民, 葛文春, 吴福元, 张吉衡, 徐学纯, 程瑞玉. 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480.
孙德有, 吴福元, 林强, 路孝平. 2001. 张广才岭燕山早期白石山岩体成因与壳幔相互作用. 岩石学报, 17(2): 227-235.
孙德有, 吴福元, 高山, 路孝平. 2005. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约. 地学前缘, 12(2): 263-275. DOI:10.3321/j.issn:1005-2321.2005.02.028
谭成印, 王根厚, 李永胜. 2010. 黑龙江多宝山成矿区找矿新进展及其地质意义. 地质通报, 29(2-3): 436-445.
唐杰. 2016.额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约.博士学位论文.长春: 吉林大学, 150-157 http://cdmd.cnki.com.cn/Article/CDMD-10183-1016084522.htm
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
武广. 2006.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用.博士学位论文, 长春: 吉林大学, 21-24 http://cdmd.cnki.com.cn/Article/CDMD-10183-2006094308.htm
武广, 陈衍景, 孙丰月, 李景春, 李之彤, 王希今. 2008. 大兴安岭北端晚侏罗世花岗岩类地球化学及其地质和找矿意义. 岩石学报, 24(4): 899-910.
向安平, 杨郧城, 李贵涛, 佘宏全, 关继东, 李进文, 郭志军. 2012. 黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究. 矿床地质, 31(6): 1237-1248. DOI:10.3969/j.issn.0258-7106.2012.06.009
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
杨祖龙, 张德全, 李进文, 佘宏全, 丰成友, 董英君. 2009. 得尔布干成矿带西南段矿床类型、成矿分带及找矿方向. 矿床地质, 28(1): 53-62. DOI:10.3969/j.issn.0258-7106.2009.01.005
赵焕利, 朱春艳, 刘海洋, 刘宝山. 2012. 黑龙江多宝山铜矿床中花岗闪长岩锆石SHRIMP U-Pb测年及其构造意义. 地质与资源, 21(5): 421-424. DOI:10.3969/j.issn.1671-1947.2012.05.001
赵一鸣, 毕承思, 邹晓秋, 孙亚莉, 杜安道. 1997. 黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄. 地球学报, 18(1): 61-67.
赵元艺, 王江朋, 赵广江, 崔玉斌. 2011. 黑龙江多宝山矿集区成矿规律与找矿方向. 吉林大学学报(地球科学版), 41(6): 1676-1688.
赵忠海, 郑卫政, 曲晖, 郭艳, 李成禄, 王卓, 张俭峰. 2012. 黑龙江多宝山地区铜金成矿作用及成矿规律. 矿床地质, 31(3): 601-614. DOI:10.3969/j.issn.0258-7106.2012.03.017