岩石学报  2020, Vol. 36 Issue (3): 837-855, doi: 10.18654/1000-0569/2020.03.12   PDF    
黑龙江省完达山地区河口林场斑岩型锡多金属矿床花岗斑岩的形成年代、岩石成因及构造背景
郝宇杰1,2, 任云生1,3, 史雨凡1, 商青青1, 孙振明4, 高煜1, 王崇一1, 杨群1     
1. 吉林大学地球科学学院, 长春 130061;
2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061;
3. 防灾科技学院, 三河 065201;
4. 长春工程学院勘察与测绘工程学院, 长春 130021
摘要: 黑龙江省宝清县河口林场锡多金属矿床位于兴蒙造山带东段的完达山地体内,为东北地区东部首个斑岩型锡多金属矿床。该矿床锡、银、铅、锌的平均品位分别为0.27%、122.89g/t、0.84%、1.43%,其中锡、银资源量达到中型,铅锌可达小型矿床规模。锡多金属矿体与花岗斑岩体具有密切的空间和成因关系,多呈细脉状、网脉状产在花岗斑岩体内部及其与上三叠统大佳河组硅质岩的侵入接触带两侧。野外地质调查和室内研究表明,矿区内的含矿花岗斑岩为锡多金属矿化的成矿岩体。该花岗斑岩的LA-ICP-MS锆石U-Pb年龄为118.0±1.1Ma,表明其形成于早白垩世晚期。岩石地球化学特征研究表明,花岗斑岩中SiO2、K2O含量高,Fe2O3T、MgO、CaO以及过渡族元素含量低,属高钾-中钾钙碱性系列的Ⅰ型花岗岩。锆石εHft)为+3.4~+7.4,二阶段Hf模式年龄(tDM2)为701~956Ma。花岗斑岩的铅同位素组成为206Pb/204Pb=18.414~18.460、207Pb/204Pb=15.591~15.596、208Pb/204Pb=38.470~38.761,具有造山带及与俯冲过程相关的性质;Sr初始值(87Sr/86Sr)i比值为0.708136~0.708331,εNdt)值为-2.0~-3.0。根据岩石的元素地球化学和同位素地球化特征,判断河口林场含矿(成矿)花岗斑岩的初始岩浆源于基性新生下地壳物质的部分熔融,同时受到俯冲带浅部沉积物质的混染,结合区域构造演化资料分析认为,河口林场花岗斑岩及相关的斑岩型锡多金属矿化的构造背景可能与古太平洋板块向欧亚大陆板块的俯冲作用密切相关。
关键词: 河口林场斑岩型锡多金属矿床    花岗斑岩    锆石U-Pb年龄    岩石地球化学    Sr-Nd-Pb-Hf同位素    黑龙江完达山地区    
Geochronology, petrogenesis and tectonic setting of the granite porphyry related to Hekoulinchang tin polymetallic deposit in Wandashan area, Heilongjiang Province
HAO YuJie1,2, REN YunSheng1,3, SHI YuFan1, SHANG QingQing1, SUN ZhenMing4, GAO Yu1, WANG ChongYi1, YANG Qun1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation of Northeast Asia, Ministry of Natural Resources, Changchun 130061, China;
3. Institute of Disaster Prevention, Sanhe 065201, China;
4. School of Prospecting & Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China
Abstract: The Hekoulinchang tin polymetallic deposit in Baoqing County of Heilongjiang Province is the first one discovered in the eastern part of the Northeast China. Tectonically, this deposit is located in Wandashan Terrane of eastern Xing'an-Mongolian Orogenic Belt. Its average grades of tin, silver, lead and zinc are 0.27%, 122.89g/t, 0.84% and 1.43%, respectively. This deposit is a medium-sized tin-silver deposit, and small-sized lead-zinc deposit. The thin-vein and stockwork tin polymetallic ore bodies are dominantly hosted within the granite porphyry body and its contact zone with the Upper Triassic Dajiahe Formation. According to the detailed field geological survey and data analysis, the ore-hosting granite porphyry should be the metallogenic intrusion. LA-ICP-MS zircon U-Pb dating of the granite porphyry yields an age of 118.0±1.1Ma, indicating that the intrusion emplaced at late Early Cretaceous. Its petro-geochemical characteristics show that the granite porphyry belongs to Ⅰ-type granite and high-medium-K calc-alkaline series, characterized by high contents of SiO2 and K2O, low contents of Fe2O3T, MgO, CaO, and transition elements. The zircon Hf isotope compositions of the granite porphyry samples indicate that the zircon has positive εHf(t) values (+3.4~+7.4), and the two-stage Hf model age (tDM2) of 701~956Ma. The whole-rock lead isotope in granite porphyry has the characteristics of those in orogenic belt and subduction zone, as 206Pb/204Pb=18.414~18.460, 207Pb/204Pb=15.591~15.596, 208Pb/204Pb=38.470~38.761. The initial Sr value (87Sr/86Sr)i of the granite porphyry is 0.708136~0.708331, and the value of εNd(t) is -2.0~-3.0. Due to studies on the petro-geochemistry and Sr-Nd-Pb-Hf isotopes, it can be concluded that the original magma of the Hekoulinchang granite porphyry was mainly derived from partial melting of the basic juvenile lower crustal material and mixed with upper sedimentary materials in a subduction zone. Based on isotope dating and geochemical data in this paper, as well as knowledge of the regional tectonic evolution, it can be concluded that both the Hekoulinchang granite porphyry and associated tin polymetallic mineralization are closely related to the subduction of the Paleo-Pacific Plate to the Eurasian Plate.
Key words: Hekoulinchang porphyry tin polymetallic deposit    Granite porphyry    Zircon U-Pb age    Petro-geochemistry    Sr-Nd-Pb-Hf isotopes    Wandashan area in Heilongjiang Province    

中国是世界上锡矿资源最为丰富的国家,且集中分布于华南地区(毛景文等,2007)。近年来,东北地区西部的大兴安岭南段相继发现了道伦达坝、维拉斯托、大井、白音查干、安乐、毛登、边家大院等多个大型-超大型锡多金属矿床,已成为中国北方最重要的锡多金属成矿域(赵一鸣和张德全,1997欧阳荷根,2013陈春良,2015翟德高等,2016陈公正等,2018)。该区已知的锡多金属矿床的成因类型主要为热液脉型(赵一鸣和张德全,1997欧阳荷根,2013陈公正等,2018),其次为矽卡岩型和斑岩型(陈春良,2015翟德高等,2016)。东北地区东部的完达山地区与俄罗斯远东地区的锡霍特-阿林陆缘增生带中生代以来为同一大型地质单元,统称为完达山-锡霍特-阿林地体(Kojima,1989Zhang et al., 2013Wilde,2015Tang et al., 2016),该地体的俄罗斯境内产出规模不等的锡矿床500余个,提供了俄罗斯锡需求总量的近70%(Gonevchuk et al., 2010王硕等,2017),显示出巨大的锡成矿潜力,但在我国境内,目前仅在吉黑东部的完达山地体内的黑龙江省宝清县发现了河口林场中型锡多金属矿床。

对完达山地体西部的河口林场锡多金属矿床开展解剖性研究,可以弥补东北地区东部锡矿床成矿理论的空白,为寻找同类矿床提供理论指导。由于发现时间短,且地处森林覆盖区,河口林场锡多金属矿床勘查程度低,理论研究薄弱。前人通过成矿地质条件和矿床地质特征研究提出该矿床成因类型为斑岩型,获得成矿花岗斑岩的锆石U-Pb年龄为121.4±0.5Ma,并研究了花岗斑岩的岩石地球化学特征(王硕,2014王硕等,2017),但由于岩石样品的数量不足(仅3个样品),且具有较高烧失量(分别为2.49%、2.72%和6.94%),而据此得出的岩石成因和岩浆源区性质的认识尚有待进一步明确。为此,本文在地质研究基础上,对河口林场矿床成矿花岗斑岩体开展了LA-ICP-MS锆石U-Pb定年、全岩主微量元素与Sr-Nd-Pb同位素以及锆石Hf同位素分析,以期确定该岩体及相关锡多金属矿化的时代、岩石成因、岩浆源区性质及构造背景,为成矿机制和区域成矿理论研究奠定基础。

1 成矿地质背景

完达山地体位于黑龙江省东部,西接佳木斯地块,南邻兴凯地块,东部与俄罗斯锡霍特-阿林地体相连(图 1a)。该地体与东部锡霍特-阿林地体在地层古生物组合、岩相和构造特征等方面具有相似性(水谷伸治郎等,1989邵济安等,1991万阔,2017),而与其它相邻构造单元存在很大的差异性。现有资料表明,完达山地体是中国东部典型的外来地块,普遍缺失晚古生代之前的古老地层,而发育中生代和新生代地层。其中,中三叠统-中侏罗统地层与区域成矿关系最为密切,由老至新依次为:十八晌组(T2s)、大坝山北组(T2d)、大佳河组(T3dj)、大岭桥组(T3J1d)、永福桥组(J1y)和白鹤山组(J1b)等(图 1b)(张国宾,2014)。在完达山地体中,深海硅质岩、浅海灰岩、蛇绿岩系及陆源碎屑浊积岩等不同岩性、不同时代的岩块组成了混杂堆积体,它们被大量逆冲推覆断层和走滑断层所切割,形成一系列近平行的构造岩片,整体构成了叠瓦状逆冲推覆带。这些构造岩片在增生过程中受到持续的挤压作用,使地体中发育强烈变形的褶皱带,随后经历一系列构造活动改造后,构造线的形态和方向均发生了改变,形成北部构造线为NNE向,中部转为NNW向,南部转为NW向,在平面上整体呈向西凸出的弧形构造(万阔,2017)。

图 1 东北地区大地构造单元划分图(a,据Wu et al., 2011修改)和完达山地区地质矿产简图(b,据万阔,2017修改) Fig. 1 Tectonic divisions of the Northeast China (a, after Wu et al., 2011) and sketch geological map of the Wandashan area (b, after Wan, 2017)

完达山地体内的岩浆岩十分发育,主要有晚古生代和早中生代基性-超基性岩、晚中生代中酸性侵入岩和火山岩(张国宾,2014)。区内成矿地质条件优越,矿床(矿化点)数量较多(图 1b),但迄今只探明四平山金矿床(金资源量5.8t)和河口林场锡多金属矿床(锡金属量20000t)2个中型矿床(Zhang et al., 2013; 王硕,2014),其余均为小型矿床(矿化点)。

2 矿床地质特征

河口林场锡多金属矿区出露的地层主要包括以灰白色硅质岩夹硅质板岩、粉砂质板岩、细砂岩为主的上三叠统大佳河组(T3dj),以砂板岩夹硅质板岩为主的上三叠统-下侏罗统大岭桥组(T3J1d),以及主要由流纹岩组成的下白垩统皮克山组(K1p)(图 2a)(王硕等,2017)。由于经历了复杂的地质构造演变过程,矿区内岩石普遍经历了低级区域变质作用,在构造带附近可见糜棱岩化现象。区内褶皱、断裂构造非常发育,早期构造线方向以SN向及NNE向为主,晚期构造线方向则以NE、NW向为主。矿区内侵入岩不发育,仅在河口林场南部见呈NE向分布的花岗斑岩(图 3a)以及受NE向构造控制明显的辉长岩脉。其中,花岗斑岩与锡多金属矿体具有密切的时空关系,蚀变强烈,岩石呈斑状结构,块状构造,斑晶占30%,主要有长石、石英和黑云母,粒度在0.5~2.0mm;基质以长英质成分为主,细粒结构,粒度一般在0.02~0.10mm(图 3b)。

图 2 河口林场矿区地质略图(a)及40号勘探线剖面图(b)(据王硕等,2017修改) Fig. 2 Geological sketch map (a) and No.40 prospecting line profile map (b) of the Hekoulinchang deposit (after Wang et al., 2017)

图 3 河口林场花岗斑岩及其蚀变矿化特征 (a)花岗斑岩标本特征;(b)花岗斑岩显微特征(+);(c)方铅矿和黄铁矿交代毒砂(-);(d)锡石呈粗粒集合体被闪锌矿包裹(-);(e)包裹于闪锌矿中的黝锡矿(-);(f)方铅矿呈稠密浸染状分布;(g)板岩中的石英-多金属硫化物脉;(h)硅化(+);(i)绢云母化(+);(j)绿泥石化(+);(k)绿帘石化(-);(l)黑云母化(-). Ars-毒砂;Bt-黑云母;Cal-方解石;Chl-绿泥石;Cst-锡石;Ep-绿帘石;Gn-方铅矿;Pl-斜长石;Po-磁黄铁矿;Py-黄铁矿;Qtz-石英;Sp-闪锌矿;Srt-绢云母;Stn-黝锡矿 Fig. 3 Characteristics of granite porphyry, ore and altered wall-rock in the Hekoulinchang deposit (a) hand specimen of granite porphyry; (b) microscopic photograph of granite porphyry (+); (c) arsenopyrite replaced by galena and pyrite (-); (d) sphalerite encapsulated cassiterite (-); (e) sphalerite encapsulated stannite (-); (f) dense disseminated galena; (g) quartz-polymetallic sulfide vein cutting the slate; (h) silicification (+); (i) sericitization (+); (j) chloritization (+); (k) epidotization (-); (l) biotitization (-).Ars-arsenopyrite; Bt-biotite; Cal-calcite; Chl-chlorite; Cst-cassiterite; Ep-epidote; Gn-galena; Pl-plagioclase; Po-pyrrhotite; Py-pyrite; Qtz-quartz; Sp-pyrrhotite; Srt-sericite; Stn-stannite

河口林场矿区地表出露矿体有5条(图 2a)。矿体由近平行的薄脉状矿体群组成,走向与区域构造线方向一致,倾向280°±,倾角40°~65°(图 2b)。地表以锡、铅矿体为主,厚度一般在1~3m之间,最厚可达11m;深部以锡、铅、锌、铜等多金属矿体为主,厚度一般在5~8m。经普查工作估算该矿床资源量(333+334级)中,锡金属量可达20000t、银236t、铅15000t和锌38000t,锡、银、铅和锌的平均品位分别为0.27%、122.89g/t、0.84%和1.43%(王硕等,2017)。

矿石中主要金属矿物有磁黄铁矿、黄铁矿、黝锡矿、锡石等,次要金属矿物为毒砂、方铅矿、闪锌矿和黄铜矿等(图 3c-g),金属矿物主要为自形-半自形晶粒结构、他形晶粒结构、固溶体分离结构、骸晶结构和交代残余结构等;非金属矿物主要有石英、斜长石、绿泥石、绿帘石和方解石等(图 3h-l)。矿石主要呈稀疏浸染状构造、稠密浸染状构造(图 3f)、细脉状和网脉状构造(图 3g)。

矿体及围岩中普遍发育硅化、黑云母化、绢云母化、绿泥石化、绿帘石化和碳酸盐化等蚀变现象(图 3h-l)。其中硅化和绢云母化与成矿作用关系最为密切。蚀变具有面型分带特征,表现为从深至浅、从中心到边缘,依次为硅化-黑云母化-绢云母化-绿泥石化(绿帘石化)-方解石化。

根据矿石中的矿物组合、矿物交生关系以及围岩蚀变特征,可将河口林场锡多金属矿床的形成过程划分为3个阶段:石英-黄铁矿-毒砂阶段、石英-锡多金属硫化物阶段(主成矿阶段)以及碳酸盐-多金属硫化物阶段。石英-黄铁矿-毒砂阶段主要矿物为自形粒状的黄铁矿及毒砂;石英-锡多金属硫化物阶段主要矿物为磁黄铁矿、闪锌矿、黄铁矿、黄铜矿、黝锡矿和锡石,其中黄铁矿呈他形填隙结构分布在岩石裂隙中,黝锡矿和锡石主要呈浸染状被闪锌矿包围或与闪锌矿呈共生边结构;碳酸盐-多金属硫化物阶段形成晚期的方解石-黄铁矿-磁黄铁矿-方铅矿细脉切穿早期生成的矿物。

3 样品与测试方法

在河口林场锡多金属矿区ZK07钻孔岩心的210m处,选取新鲜且矿化和蚀变较弱的花岗斑岩样品,开展锆石的LA-ICP-MS U-Pb法测年和Hf同位素分析、全岩主微量元素及Sr-Nd-Pb同位素分析。

3.1 LA-ICP-MS锆石U-Pb分析方法

锆石单矿物分选由北京锆年领航科技有限公司完成。通过阴极发光(CL)图像对比和分析,选择晶形完好、无裂隙及包裹体、环带清晰、形态相似锆石颗粒用于U-Pb年龄和Hf同位素测试的。

锆石U-Pb测年在自然资源部东北亚矿产资源评价重点实验室利用LA-ICP-MS分析完成。具体实验测试过程参见Yuan et al.(2004)。测试和数据处理的主要流程及仪器主要技术参数为:(1)激光剥蚀系统为COMPEx GeoLas Pro型193nm ArF准分子激光器,与激光器联用的是Agilent 7900型ICP-MS仪器;(2)实验采用He作为剥蚀物质的载气,仪器最佳化采用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST 610,采用91500标准锆石外部校正法进行锆石原位U-Pb分析(Geng et al., 2017);(3)采用直径为32μm、频率为7Hz的激光束斑进行样品分析;(4)用GLITTER软件计算同位素比值和207Pb/206Pb、206Pb/238U、207Pb/235U的年龄值;(5)采用Andersen(2002)的方法对结果进行普通铅校正;(6)采用Isoplot程序计算其年龄。

3.2 岩石地球化学分析

岩石地球化学分析在自然资源部东北亚矿产资源评价重点实验室完成。主量元素化学分析利用日本理学PrimusⅡX射线荧光光谱仪(XRF)分析完成,分析精度(相对误差)除H2O外为1%;微量元素与稀土元素分析采用Agilent 7500a型电感耦合等离子质谱仪(ICP-MS)测定,误差小于5%。

3.3 全岩Sr-Nd-Pb同位素分析

花岗斑岩全岩Sr-Nd-Pb同位素分析的前处理与质谱测定在南京聚谱检测科技有限公司完成。岩石粉末经高压密闭溶样弹消解后,先经过阳离子-锶特效联合树脂,分离出Sr和总稀土;总稀土组分再经过LN特效树脂,分离出Nd。Sr、Nd淋洗液被蒸干后,先用1.0mL 2%稀硝酸溶解,将其作为母液;取其中50mL,稀释成500mL,在Agilent 7700x四极杆型ICP-MS上测定Sr、Nd准确含量。再用2%稀硝酸将Sr、Nd母液稀释成50×10-9 Sr、50×10-9 Nd。同位素溶液经CetacAridus Ⅱ膜去溶系统引入,在Nu Plasma Ⅱ MC-ICP-MS上测定同位素比值。

Sr同位素比值测定过程中,采用86Sr/88Sr=0.1194校正仪器质量分馏,用Sr同位素国际标准物质NIST SRM 987作为外标,校正仪器漂移。Nd同位素比值测定过程中,采用146Nd/144Nd=0.7219校正仪器质量分馏,Nd同位素国际标准物质JNdi-1作为外标,校正仪器漂移,中国地质科学院地质所研发的Nd同位素标准溶液(GSB 04-3258-2015)作为质控盲样,经过以上化学前处理与质谱测定,质控盲样的Sr-Nd同位素比值实测值均值146Nd/144Nd=0.512435(n=6)在误差范围内与推荐值一致(Li et al., 2017)。将岩石样品粉末用与微量元素分析相同的方法溶解并通过离子交换法分离提纯Pb,并在Nu Plasma Ⅱ MC-ICP-MS上测定Pb同位素比值。NBS 981未校正结果:208Pb/206Pb=2.16655±26、207Pb/206Pb=0.914500±36、206Pb/204Pb=16.94078±68,全程本底Pb<100pg。

3.4 锆石Lu-Hf同位素测试

锆石Hf同位素组成分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。采用Neptune多接收MC-ICP-MS配套的COMPEx GeoLas Pro型193nm ArF准分子激光剥蚀系统。激光束斑直径根据锆石的大小选择44μm,激光脉冲频率为8Hz,剥蚀时间为26s,以He气作为载气,采用锆石91500和MT作为外部标样,本次实验获得的上述2个标样的176Hf/177Hf比值分别为0.282317±0.000018(n=15)和0.282487±0.000012(n=10),在误差范围内均与推荐值一致(Griffin et al., 2007)。为了校正176Lu和176Yb对176Hf的干扰,取176Lu/175Lu=0.02658和176Yb/173Yb=0.796218作为定值,分别采用172Yb/173Yb=1.35274,179Hf/177Hf=0.7325对Yb,Hf同位素比值进行指数归一化质量歧视校正,Lu质量歧视和Yb一致。详细分析步骤可参见Wu et al.(2005)侯可军等(2007)

通过详细对比锆石透反射光和阴极发光图后,所选择锆石形态相似,结构发育完整,内部结构清晰,振荡环带发育,呈自形-半自形长柱状、粒状。U-Pb、Lu-Hf同位素测试锆石部分均无包裹体、无裂隙及无杂质。此外,为了保证Lu-Hf同位素分析数据的代表性,选择测试点时尽量接近U-Pb同位素测试点。

4 测试结果 4.1 锆石U-Pb测年

河口林场矿床含矿(成矿)花岗斑岩(样品编号HK-61)锆石U-Pb同位素分析结果见表 1

表 1 河口林场花岗斑岩锆石LA-ICP-MS U-Pb测试结果 Table 1 Zircon LA-ICP-MS U-Pb data of the granite porphyry from the Hekoulinchang deposit

花岗斑岩中锆石颗粒粒度介于80~200μm之间,具有良好的晶形和明显的岩浆振荡环带。30个测试分析点的数据中,除了3颗锆石(测点号:-12、-18、-29)表面年龄存在明显偏差外,其余27个测点的表面年龄具有很好的一致性(图 4a)。238U含量变化于350×10-6~1321×10-6232Th含量介于142×10-6~799×10-6232Th/238U比值范围介于0.41~0.72,均远大于0.1,结合CL图像特征判断,所测锆石为典型的岩浆成因锆石(Bowring and Schmitz, 2003)。27粒锆石的206Pb/238U年龄变化范围115±3Ma~120±3Ma,加权平均年龄为118.0±1.1Ma (MSWD=0.17)(图 4b),代表了该岩体的结晶年龄,表明河口林场矿区花岗斑岩形成于早白垩世。

图 4 河口林场花岗斑岩LA-ICP-MS锆石U-Pb年龄谐和图(a)及加权平均年龄(b) Fig. 4 Concordant (a) and weighted (b) diagrams of the zircon U-Pb age of the granite porphyry in Hekoulinchang deposit
4.2 主微量元素特征

河口林场花岗斑岩的主量和微量元素分析结果见表 2。鉴于HK-61-10样品在镜下观察其发生一定程度硅化等蚀变,因此与其余9件样品主微量数据存在一定差异,故该样品主微量数据仅做参考。与典型的花岗岩相比,河口林场花岗斑岩以低硅(SiO2=66.67%~68.37%)、高铝(Al2O3=14.93%~15.62%)、富钛(TiO2=0.40%~0.50%)及铁(Fe2O3T=3.06%~3.85%)与相似的碱含量(Na2O+K2O=6.35%~7.34%)为特征,Na2O含量为3.36%~4.29%,K2O含量为2.69%~3.08%,CaO含量为2.42%~3.47%,Na2O/K2O比值为1.12~1.46,铝过饱和指数(A/CNK)介于1.01~1.05之间,A/NK为1.49~1.74,里特曼指数(δ)介于1.62~2.12之间,属钙碱性系列。在A/CNK-A/NK图(图 5a)上,样品落入准铝质到弱过铝质区域,显示其具有Ⅰ型花岗岩的地球化学特征。在SiO2-K2O图解(图 5b)上,样品落入钙碱性系列与高钾-钙碱性岩石系列的分界线处,且多数样品偏向高钾-钙碱性岩石系列。

表 2 河口林场花岗斑岩主量(wt%)、微量(×10-6)元素含量 Table 2 Major (wt%) and trace (×10-6) element compositions of the Hekoulinchang granite porphyry

图 5 河口林场花岗斑岩主量元素地球化学特征图解 (a)A/CNK-A/NK图解(据Maniar and Piccoli, 1989);(b)SiO2-K2O岩石系列判别图解(据Peccerillo and Taylor, 1976) Fig. 5 Major elements classification diagrams of Hekoulinchang granite porphyry (a) ACNK vs. ANK diagram (after Maniar and Piccoli, 1989). (b) SiO2 vs. K2O diagram (after Peccerillo and Taylor, 1976)

河口林场花岗斑岩的稀土元素(REEs)总含量较低(∑REE=33.17×10-6~71.29×10-6,平均值为58.56×10-6),轻、重稀土分馏不明显[(La/Yb)N=3.39~5.61],除1个样品无Eu异常外,其他样品均显示弱的负Eu异常(δEu=0.63~0.94)。球粒陨石标准化稀土元素配分曲线显示(图 6a),所有样品的轻稀土相对富集(LEEs),显示轻微右倾的稀土配分模式。原始地幔标准化微量元素蛛网图解上(图 6b),样品显示富集不相容元素Th、U和K,相对亏损高场强元素Nb、Ta、Hf和Ti的特征,且Eu和Sr呈现耦合的特征。

图 6 河口林场花岗斑岩球粒陨石标准化稀土元素配分模式图(a, 标准化值据Sun and McDonough, 1989)及原始地幔标准化微量元素蛛网图(b, 标准化值据McDonough and Sun, 1995) Fig. 6 Chondrite-normalized REE distribution patterns (a, normalization values after Sun and McDonough, 1989) and primitive mantle-normalized spider diagrams (b, normalization values after McDonough and Sun, 1995) of the Hekoulinchang granite porphyry
4.3 Sr-Nd-Pb同位素组成

河口林场花岗斑岩Sr-Nd-Pb同位素组成见表 3。4件样品的初始Sr、Nd同位素组成用其对应的锆石U-Pb年龄值118Ma进行校正计算。由表 3可知,河口林场花岗斑岩全岩Sr-Nd同位素相对较均一,其同位素值较接近。其中,全岩初始(87Sr/86Sr)i比值为0.708124~0.708331,平均值0.708189;初始(143Nd/144Nd)i值为0.512332~0.512381,平均值0.512363;εNd(t)值为-2.0~-3.0,平均值-2.4;二阶段模式年龄tDM2介于1082~1161Ma,平均值1112Ma。4件样品206Pb/204Pb值为18.414~18.460,207Pb/204Pb值为15.591~15.596,208Pb/204Pb值为38.470~38.761。根据成岩年龄118Ma,计算μ值为9.44~9.45,△β值为17.23~17.58,△γ值为31.74~39.55。

表 3 河口林场花岗斑岩全岩Sr-Nd-Pb同位素分析结果 Table 3 Sr-Nd-Pb isotopic data of the Hekoulinchang granite porphyry
4.4 锆石Lu-Hf同位素

河口林场花岗斑岩的锆石Lu-Hf同位素测试结果列于表 4。15个锆石测点的176Lu/177Hf值均较低(均值为0.0013),表明锆石在形成后具有极低的放射性成因Hf积累,因此测定的176Hf/177Hf值可以代表锆石结晶时体系的Hf同位素组成(Amelin et al., 1999)。花岗斑岩锆石εHf(t)值变化范围为3.4~7.4,平均值为5.4;Hf同位素单阶段模式年龄(tDM1)和二阶段模式年龄(tDM2)分别为488~647Ma和701~956Ma(表 4)。

表 4 河口林场花岗斑岩锆石Lu-Hf同位素组成 Table 4 Zircon Lu-Hf isotope data of Hekoulinchang granite porphyry
5 讨论 5.1 矿床成因及形成时代

本文及前人研究资料(王硕,2014王硕等,2017)表明,河口林场锡多金属矿床具有斑岩型矿床的地质背景、成矿地质条件、矿体和矿石特征以及围岩蚀变特征。具体表现为:(1)矿体主要赋存于花岗斑岩体及其内外接触带附近,与花岗斑岩具有密切的空间及成因关系;(2)矿体规模大,品位较低,锡最高品位0.46%,平均品位为0.27%;(3)矿石中金属矿物有黄铁矿、毒砂、磁黄铁矿、黄铜矿、闪锌矿、黝锡矿、锡石和方铅矿等,其中,毒砂、磁黄铁矿、黄铜矿、锡石和黝锡矿均为典型的中高温矿物;(4)矿石具有典型的浸染状构造、细脉状和细脉-浸染状构造;(5)花岗斑岩体发育斑岩型矿床的标志性面型蚀变分带,从深至浅,从中心向外,围岩蚀变主要为硅化-黑云母化-绢云母化-绿泥石化(绿帘石化)-方解石化;(6)河口林场矿床上述特征与国内典型斑岩型锡矿床地质特征具有很好的可比性(表 5)。

表 5 河口林场矿床矿化特征与国内典型斑岩型锡矿床的地质特征对比表 Table 5 Geological characteristics of the Hekoulinchang compared with those of the typical porphyry tin deposits in China

鉴于河口林场锡多金属矿床成因为斑岩型,且成矿岩体花岗斑岩,花岗斑岩成岩年龄可基本代表该矿床形成时代(或略晚于成岩时代)。本文测得花岗斑岩LA-ICP-MS锆石U-Pb年龄为118.0±1.1Ma,与前人测年结果(121.4±0.5Ma;王硕等,2017)在误差范围内基本一致。因此,本文认为河口林场锡多金属矿床的成岩成矿时代为早白垩世。东北地区目前已发现的锡多金属矿床除河口林场矿床外,其余均产于大兴安岭南段,成矿时代主要集中在129~144Ma,如维拉斯托矿床锡石U-Pb年龄为136.0±6.1Ma(刘瑞麟等,2018);黄岗梁矿床花岗斑岩锆石U-Pb年龄为136.8±0.57Ma(刘伟等,2007);大井矿床锡石U-Pb年龄为144±16 Ma(廖震等,2014);东山湾矿床辉钼矿Re-Os年龄为140.5±3.2Ma(王承洋,2015);查木罕矿床辉钼矿Re-Os年龄为139.3±3.2Ma(王明艳和何玲,2013);白音诺尔矿床石英斑岩锆石U-Pb年龄为129.2±1.4Ma(江思宏等,2011);边家大院矿床黑云母花岗斑岩锆石U-Pb年龄为143.2±1.5Ma(阮班晓等,2013);白音查干矿床石英斑岩锆石U-Pb年龄为141.7±0.8Ma(姚磊等,2017)。鉴于河口林场矿床明显晚于大兴安岭南段锡多金属矿床约10~25Myr,且明显早于完达山地块东部锡霍特-阿林地体锡成矿作用的峰期(96Ma,63Ma和55Ma;Ognyanov,1986Rodionov, 2000, 2005Nokleberg,2010)约20Myr,本文初步认为,兴蒙造山带东段不仅存在129~144Ma和55~96Ma两期锡成矿作用,而且也具有寻找~120Ma锡矿床的潜力。

5.2 岩石成因及岩浆源区性质

花岗岩通常被分为Ⅰ型、S型和A型(Collins et al., 1982Whalen et al., 1987)。其中,Ⅰ型和S型花岗岩地球化学特征可以指示源区成分,而A型花岗岩为高硅、贫水、富碱的非造山型花岗岩,主要形成于高温和拉张的环境(Whalen et al., 1987King et al., 1997)。河口林场花岗斑岩属于弱过铝质(A/CNK=1.01~1.05),具有高的全碱含量(K2O+Na2O=6.35%~7.34%),类似于Ⅰ型花岗岩的地球化学特征。此外,在P2O5-SiO2判别图解中(图 7a)中,河口林场花岗斑岩的10件样品中的SiO2和P2O5具有负相关性,这与S型花岗岩趋势不一致。结合矿物学上含有黑云母,不含过铝质矿物(如白云母、堇青石),且在Na2O-K2O判别图解(图 7b)中,10件样品全落在Ⅰ型花岗岩的区域内,因此判断该岩石不属于S型花岗岩。在(Fe2O3T/MgO)/(Zr+Nb+Ce+Y)和(K2O+Na2O)/(Zr+Nb+Ce+Y)等判别图解(图 8)中,河口林场花岗斑岩样品点均落入了未分异的I & S & M型花岗岩区域,而非A型花岗岩。利用锆石饱和温度计估算的河口林场花岗斑岩结晶温度介于769~795℃,远低于A型花岗岩结晶温度(TZr>870℃,King et al., 1997)。此外,河口林场花岗斑岩具有低的Fe2O3T/MgO比值(2.16~2.40)和Fe2O3T/(Fe2O3T+MgO)比值(0.68~0.71),Zr、Nb、Ce、Y等高场强元素含量也较低,10000×Ga/Al以及(Ce+Zr+Y+Nb)值分别为1.72~1.93和166×10-6~237×10-6,远低于A型花岗岩的下限值(分别为2.6,350×10-6)。以上证据均表明,河口林场花岗斑岩属于Ⅰ型花岗岩。

图 7 河口林场花岗斑岩P2O5-SiO2(a, 据Chappell and White, 1992)和Na2O-K2O(b, 据Boynton, 1984)判别图解 Fig. 7 Trace elements classification diagrams of Hekoulinchang granite porphyry (a) P2O5 vs. SiO2 diagram (after Chappell and White, 1992); (b) Na2O vs. K2O diagram (after Boynton, 1984)

图 8 河口林场花岗斑岩A型花岗岩判别图解(据Whalen et al., 1987) Fig. 8 Discrimination diagrams for A-type granite from the Hekoulinchang granite porphyry (after Whalen et al., 1987)

众所周知,Ⅰ型花岗岩通常起源于火成岩或变火成岩源区。从主量元素特征上看,河口林场花岗斑岩属于准过铝-弱过铝质的高钾-中钾钙碱性系列(图 5),具有SiO2、K2O、Al2O3含量高,Fe2O3T、MgO、CaO以及过渡族元素含量低的地球化学特征(表 2),暗示其原始岩浆应起源于基性下部陆壳的部分熔融(Taylor and McLennan, 1985Roberts and Clemens, 1993Hofmann,1988吴福元等,2007张旗等,2008)。从稀土元素的组成以及稀土配分模式上看,河口林场花岗斑岩REEs总体较低、相对贫HREE(重稀土元素)、铕异常较弱,轻重稀土分馏中等(图 6a),并且相对亏损不相容元素Th、U和K,以及高场强元素Nb、Ta、Hf和Ti(图 6b)。基于河口林场花岗斑岩主微量成分的无规律变化,本文认为其原始岩浆的结晶分异在岩浆演化的过程中作用有限。因此,岩浆源区主要以角闪石残留相为主,同时存在铁铁矿,磁铁矿和辉石残留相。Nb/Ta比值为10.52~1.81,平均为10.98,与下地壳Nb/Ta的平均值11(Weaver,1991)一致,佐证花岗斑岩的壳源成因。河口林场花岗斑岩锆石Hf同位素研究结果表明,锆石的εHf(t)均为正值(+3.4~+7.4,平均值为+5.4),二阶段Hf模式年龄(tDM2)为701~956Ma,其特征与中亚造山带东部古生代以来的花岗质岩石相类似(图 9)(Yang et al., 2006吴福元等,2007Qiu et al., 2020),暗示岩浆的源区岩石可能为新元古代由亏损地幔增生的年轻地壳物质。

图 9 河口林场花岗斑岩的锆石Hf同位素特征(据Yang et al., 2006) Fig. 9 εHf(t) vs. age diagram of Hekoulinchang granite porphyry (after Yang et al., 2006)

表 3所示,河口林场花岗斑岩中206Pb/204Pb值为18.414~18.460,高于18.000;207Pb/204Pb值15.591~15.596,大于15.300,显示铀铅富集的特征;208Pb/204Pb=38.470~38.761,低于39.000,显示钍铅微弱亏损。河口林场花岗斑岩铅μ值为9.44~9.45,介于正常铅μ值(8.69~9.24)和地幔μ值(8.92)与造山带μ值(10.87,Doe and Zartman, 1979)之间。多数研究者认为,μ值的高低可在一定程度上说明铅源特征(朱上庆和黄华盛,1988吴开兴等,2002沈能平等,2008)。河口林场花岗斑岩具有低μ值(9.44~9.45<9.58),暗示有下部地壳或上地幔铅参与。然而,鉴于该岩体铅源物质成熟度较高,且相对富集铀铅,以及其Th/U比值(3.73~3.84)与全球上地壳Th/U比值(3.88,Zartman and Haines, 1988)相近,表明也存在一定程度上地壳铅或沉积物铅的贡献。以上证据表明,河口林场花岗斑岩Pb并非单一来源,具有混源铅的特征,其来源可能与区域内的下部地壳(或上地幔铅)与上地壳铅(或沉积物铅)混染有关。在Zartman and Haines(1988)206Pb/204Pb-207Pb/204Pb和206Pb/204Pb-208Pb/204Pb构造模式图解中,样品点均落在铅的造山带演化线上或造山带区域内(图 10a-c),同样表明其铅同位素具有混源铅特点。此外,利用朱炳泉(1998)Δβγ成因分类图解消除了时间因素的影响,具有一定的优越性,可以示踪铅的源区(图 10d),河口林场花岗斑岩的样品点投入地幔与上地壳混合的俯冲带铅区域,显示其铅同位素具有造山带及与俯冲带相关的性质,暗示岩浆形成于板块俯冲的构造背景。考虑到深部俯冲通常富集LREEs和Ba,Th和Sr等元素,基于本文中样品低的LREEs含量,本文认为发生混染的物质来源于浅部俯冲带沉积物。

图 10 河口林场花岗斑岩Pb同位素图解(a, 据Zartman and Haines, 1988; b、c, 据褚少雄等,2012;d, 据朱炳泉,1998) Fig. 10 Pb isotope composition diagram of Hekoulinchang granite porphyry (a, after Zartman and Haines, 1988; b, c, after Chu et al., 2012; d, after Zhu, 1998)

河口林场花岗斑岩的Sr同位素特征显示,其初始值(87Sr/86Sr)i比值为0.708136~0.708331,平均值为0.708189,可能代表了成岩时有地壳物质参与。结合该岩体εNd(t)值为-2.0~-3.0,平均值为-2.4,代表其来自地壳或富集地幔(邵济安等,2010)。鉴于在εNd(t)-(87Sr/86Sr)i图解中,河口林场花岗斑岩样品均落在完达山地体中生代火成岩壳源岩石和幔源岩石间,并靠近壳源岩石(图 11),以及该岩体的二阶段模式年龄tDM2介于1082~1161Ma,综合认为元古代的地壳物质对岩浆源区具明显贡献。

图 11 河口林场花岗斑岩Sr-Nd同位素组成(底图据Guo et al., 2010修改) Fig. 11 Sr-Nd isotope diagram of Hekoulinchang granite porphyry (after Guo et al., 2010)

基于以上岩石地球化学及Sr-Nd-Pb-Hf同位素研究,本文认为河口林场花岗斑岩属于属高钾-中钾钙碱性系列的Ⅰ型花岗岩,初始岩浆主要来源于基性新生下地壳物质的部分熔融,同时受到俯冲带浅部沉积物质的混染,其原始岩浆形成于活动大陆边缘环境。

5.3 成矿构造背景

增生杂岩作为板块俯冲过程中刮削与增生的特征性产物,可作为板块俯冲作用的直接记录(Karig and Sharman, 1975)。前人研究资料表明,完达山地体是典型的古太平洋板块俯冲拼贴的增生楔(水谷伸治郎等,1989田东江,2007张国宾,2014王硕等,2017王智慧,2017Wu et al., 2018张夺,2019)。在晚侏罗世,完达山地体就位于佳木斯地块东缘(田东江,2007Zhang et al., 2013万阔,2017),并于晚侏罗晚期-早白垩世与佳木斯地块发生俯冲拼贴作用,自此完达山地体与西侧布列亚-佳木斯-兴凯等复合地块的拼合,由此作为一个整体它们共同经了东亚大陆东缘的演化过程(Kojima,1989水谷伸治郎等,1989邵济安等,1991Mizutani and Kojima, 1992)。此外,放射虫硅质岩和其它区域地质证据也限定了完达山地体内的饶河增生杂岩就位时代为晚侏罗世-早白垩世(Kojima,1989)。结合最新研究资料显示,饶河杂岩的就位年龄由西向东逐渐变年轻,即具有由西向东增生物质逐渐变新的趋势,这与古太平洋板块的西向俯冲相对应(孟恩等,2011Zhou et al., 2014Sun et al., 2015Zhou and Li, 2017周建波等,2018)。综上所述,在晚侏罗-早白垩世,由于兴蒙造山带东部发生古太平洋板块俯冲挤压,在佳木斯地块东缘最终形成现有的完达山构造增生杂岩带(Zhang et al., 2013)。

大量研究资料证实,完达山地体白垩纪火成岩主要由中酸性火山岩与Ⅰ型和高分异Ⅰ型花岗质岩石和辉长岩组成(王智慧,2017),具有活动大陆边缘火成岩的地球化学特征(Wilson,1989Kelemen et al., 2007)。一般认为,Ⅰ型花岗岩主要形成于活动大陆边缘环境和碰撞后环境(Winter,2001),河口林场花岗斑岩属于Ⅰ型花岗岩,具有较高的SiO2含量,轻重稀土元素分异程度较大,同时富集大离子亲石元素,亏损高场强元素,显示出活动大陆边缘火成岩的地球化学特征。Rb-(Y+Nb)和Rb-(Yb+Ta)判别图解中(图 12),河口林场花岗斑岩样品均落入火山弧花岗岩区域。可见,在早白垩世,完达山地体大规模的岩浆-成矿作用与古太平洋板块向欧亚大陆板块下的俯冲作用密切相关(田东江,2007王硕等,2017王智慧,2017; Qiu et al., 2019张夺,2019)。

图 12 河口林场花岗斑岩的Rb-(Y+Nb)(a)及Rb-(Yb+Ta)判别图解(b)(底图据Pearce et al., 1984) Syn-COLG-碰撞花岗岩;WPG-板内花岗岩;VAG-火山弧花岗岩;ORG-洋脊花岗岩 Fig. 12 Tectonic discrimination diagrams of Hekoulinchang granite porphyry (after Pearce et al., 1984) (a) Rb vs. Y+Nb diagram; (b) Rb vs. Yb+Ta diagram. Fields for syn-collision (COLG), post-collision, volcanic arc (VAG), within plate (WPG) and ocean ridge (ORG) granites are indicated
6 结论

(1) 河口林场锡多金属矿床中的矿体多以细脉状、网脉状产在花岗斑岩体内及其与上三叠统大佳河组接触带附近,具有斑岩型矿床的矿物组合、矿石结构构造以及围岩蚀变特征,含矿花岗斑岩即为成矿岩体。

(2) 河口林场花岗斑岩LA-ICP-MS锆石U-Pb年龄为118.0±1.1Ma,表明该矿床的成岩成矿时代为早白垩世晚期,与大兴安岭南段和锡霍特-阿林地体内的锡多金属成矿的峰期具有明显时差,暗示着兴蒙造山带东段的吉黑东部地区具有~120Ma锡矿床的成矿潜力。

(3) 岩石的元素地球化学和同位素特征显示,河口林场花岗斑岩属高钾-中钾钙碱性系列的Ⅰ型花岗岩,初始岩浆主要来源于基性新生下地壳物质的部分熔融,同时受到俯冲带浅部沉积物质的混染。

(4) 根据岩石地球化学特征,并结合区域构造演化历史,判断河口林场花岗斑岩及相关的锡多金属成矿作用的构造背景与古太平洋板块向欧亚大陆板块下的俯冲作用密切相关。

参考文献
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the earth's earliest crust from hafnium in single detrial zircons. Nature, 399(6733): 252-255 DOI:10.1038/20426
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Bowring SA and Schmitz MD. 2003. High-precision U-Pb zircon geochronology and the stratigraphic record. Reviews in Mineralogy and Geochemistry, 53(1): 305-326 DOI:10.2113/0530305
Boynton WV. 1984. Cosmochemistry of the rare earth elements:Meteorite studies. Developments in Geochemistry, 2: 63-114 DOI:10.1016/B978-0-444-42148-7.50008-3
Chappell BW and White AJR. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2): 1-26 DOI:10.1017/S0263593300007720
Collins WJ, Beams SD, White AJ and Chappell BW. 1982. Nature and origin of A-type granite with particular reference to south eastern Australia. Contributions to Mineralogy and Petrology, 80: 189-200 DOI:10.1007/BF00374895
Chen CL. 2015. The study on the metallogenesis and prospecting of the Baiyinnuoer Pb-Zn deposit, Chifeng City, Inner Mongolia. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Chen GZ, Wu G, Li TG, Liu RL, Wu LW, Zhang PC, Zhang T and Chen YC. 2018. LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance. Mineral Deposits, 37(2): 225-245 (in Chinese with English abstract)
Chu SX, Liu JM, Xu JH, Wei H, Chai H and Tong KY. 2012. Zircon U-Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province. Acta Petrologica Sinica, 28(2): 433-450 (in Chinese with English abstract)
Doe BR and Zartman RE. 1979. Plumbotectonics: The Phanerozoic. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley & Sons, 509-567
Geng JZ, Qiu KF, Gou ZY and Yu HC. 2017. Tectonic regime switchover of Triassic Western Qinling Orogen:Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu, China. Geochemistry, 77(4): 637-651 DOI:10.1016/j.chemer.2017.05.001
Gonevchuk VG, Gonevchuk GA, Korostelev PG, Semenyak BI and Seltmann R. 2010. Tin deposits of the Sikhote-Alin and adjacent areas (Russian Far East) and their magmatic association. Australian Journal of Earth Sciences, 57(6): 777-802 DOI:10.1080/08120099.2010.503993
Guo F, Fan WM, Gao XF, Li CW, Miao LC, Zhao L and Li HX. 2010. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China:Constraints on tectonic framework and Phanerozoic crustal growth. Lithos, 120(3-4): 563-578 DOI:10.1016/j.lithos.2010.09.020
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
Hofmann AW. 1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314 DOI:10.1016/0012-821X(88)90132-X
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Jiang SH, Nie FJ, Bai DM, Liu YF and Liu Y. 2011. Geochronology evidence for Indosinian mineralization in Baiyinnuoer Pb-Zn deposit of Inner Mongolia. Mineral Deposits, 30(5): 787-798 (in Chinese with English abstract)
Karig DE and Sharman GF III. 1975. Subduction and accretion in trenches. GSA Bulletin, 86(3): 377-389 DOI:10.1130/0016-7606(1975)86<377:SAAIT>2.0.CO;2
Kelemen PB, Hanghøj K and Greene AR. 2007. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry, 3: 1-70
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granite from the Lachlan fold belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391 DOI:10.1093/petroj/38.3.371
Kojima S. 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology, 69: 213-232 DOI:10.1016/0031-0182(89)90165-X
Li J, Tang SH, Zhu XK and Pan CX. 2017. Production and certification of the reference material GSB 04-3258-2015 as a 143Nd/144Nd isotope ratio reference. Geostandards and Geoanalytical Research, 41(2): 255-262 DOI:10.1111/ggr.12151
Liao Z, Wang YW, Wang JB, Li HM and Long LL. 2014. Ages of LA-MC-ICP-MS cassiterite U-Pb dating of the Dajing deposit, Inner Monglia. Mineral Deposits, 33(Suppl.1): 421-422 (in Chinese)
Liu RL, Wu G, Li TG, Chen GZ, Wu LW, Zhang PC, Zhang T, Jiang B and Liu WY. 2018. LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing'an Range and their geological significance. Earth Science Frontiers, 25(5): 183-201 (in Chinese with English abstract)
Liu W, Pan XF, Xie LW and Li H. 2007. Sources of material for the Linxi granitoids, the southern segment of the Da Hinggan Mts.:When and how continental crust grew?. Acta Petrologica Sinica, 23(2): 441-460 (in Chinese with English abstract)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China:Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Mei YP, Li HQ, Wang DH, Lu YF, Yang HM, Xu JX and Zhang JQ. 2007. Rock-forming and ore-forming ages of the Yanbei porphyry tin deposit in Jiangxi Province and their geological significance. Acta Geoscientica Sinica, 28(5): 456-461 (in Chinese with English abstract)
Meng E, Xu WL, Yang DB, Qiu KF, Li CH and Zhu HT. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications. Acta Petrologica Sinica, 27(4): 1209-1226 (in Chinese with English abstract)
Mizutani S, Shao JA and Zhang QL. 1989. The Nadanhada terrane in relation to Mesozoic tectonics on continental margins of East Asia. Acta Geologica Sinica, 63(3): 204-216 (in Chinese with English abstract)
Mizutani S and Kojima S. 1992. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the eastern continental margin of Asia. Palaeogeography, Palaeoclimatology, Palacoecology, 96(1-2): 3-22 DOI:10.1016/0031-0182(92)90056-B
Nokleberg WJ. 2010. Metallogenesis and tectonics of northeast Asia. U.S. Geological Survey Professional Paper 1765
Ognyanov NV. 1986. Geology of tin districts and deposits of the Khingan-Okhotsk tin region. In: Geology of the USSR Tin Deposits. Moscow: Nedra, Book 1: 340-399
Ouyang HG. 2013. Metallogenesis of Bairendaba-Weilasituo silver-polymetallic deposit and its geodynamic setting, in the southern segment of Great Xing'an Range, NE China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Qiu KF, Yu HC, Wu MQ, Geng JZ, Ge XK, Gou ZY and Taylor RD. 2019. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. American Mineralogist, 104(10): 1487-1502 DOI:10.2138/am-2019-6890
Qiu KF, Yu HC, Deng J, McIntire D, Gou ZY, Geng JZ, Chang ZS, Zhu R, Li KN and Goldfarb R. 2020. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic- or metamorphic-hydrothermal origin? Mineralium Deposita, DOI: 10.1007/s00126-019-00937-w
Roberts MP and Clemens JD. 1993. Origin of high-potassium, calc-alkaline, Ⅰ-type granitoids. Geology, 21(9): 825-828 DOI:10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
Rodionov SM. 2000. Tin metallogeny of the Russian Far East. In: Kremenetsky A, Lehmann B and Seltmann R (eds.). Ore-bearing Granites of Russia and Adjacent Countries. Moscow: IMGRE, 237-262
Rodionov SM. 2005. Tin metallogeny of Far East Russia. In: Mao J and Bierlein FP (eds.). Mineral Deposit Research: Meeting the Global Challenge. Berlin: Springer-Verlag, 1175-1178
Ruan BX, Lü XB, Liu ST and Yang W. 2013. Genesis of Bianjiadayuan Pb-Zn-Ag deposit in Inner Mongolia:Constraints from U-Pb dating of zircon and multi-isotope geochemistry. Mineral Deposits, 32(3): 501-514 (in Chinese with English abstract)
Shao JA, Tang KD, Wang CY, Zang QJ and Zhang YP. 1991. The tectonic characteristics and evolution of Nadanhada terranes. Science in China (Series B), (7): 744-751 (in Chinese)
Shao JA, Mu BL, Zhu HZ and Zhang LQ. 2010. Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mts. Acta Petrologica Sinica, 26(3): 649-656 (in Chinese with English abstract)
Shen NP, Peng JT, Yuan SD, Zhang DJ and Hu RZ. 2008. Lead isotope compositions and its significance for ore-forming material of the Xujiashan antimony deposit, Hubei Province. Acta Mineralogica Sinica, 28(2): 169-176 (in Chinese with English abstract)
Sun MD, Xu YG, Wild SA and Chen HL. 2015. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China:Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific. Tectonics, 34(6): 1269-1289 DOI:10.1002/2015TC003870
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tang J, Xu WL, Niu YL, Wang F, Ge WC, Sorokin AA and Chekryzhov IY. 2016. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt:Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate. Lithos, 266-267: 202-212 DOI:10.1016/j.lithos.2016.09.034
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1-132
Tian DJ. 2007. The geological-geochemical composition and evolution of the Wandashan orogenic belt. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Wan K. 2017. Tectonic features, structures and accretionary processes of the Wandashan Terrane, NE China. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Wang CY. 2015. Lead-zinc polymetallogenic series and prospecting direction of Huanggangliang-Ganzhuermiao metallogenic belt, Inner Mongolia. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Wang MY and He L. 2013. Re-Os dating of molybdenites from Chamuhan W-Mo deposit, Inner Mongolia and its geological implications. Geotectonica et Metallogenia, 37(1): 49-56 (in Chinese with English abstract)
Wang S. 2014. Study on Phanerozoic magmatic evolution and metallogenesis in the eastern Jilin-Heilongjiang provinces. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Wang S, Sun FY, Wang G, Liu K, Li RH and Guo HL. 2017. Geological characteristics and genesis of the Hekoulinchang tin-polymetallic deposit in Baoqing, Heilongjiang Province. Acta Petrologica et Mineralogica, 36(3): 312-328 (in Chinese with English abstract)
Wang ZH. 2017. The Mesozoic-Early Cenozoic tectono-magmatic evolution of the Nadanhada Terrane. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381-397 DOI:10.1016/0012-821X(91)90217-6
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-A review of the evidence. Tectonophysics, 662: 345-362 DOI:10.1016/j.tecto.2015.05.006
Wilson M. 1989. Igneous Petrogenesis. Netherlands: Springer, 1-373
Winter JD. 2001. An Introduction to Igneous and Metamorphic Petrology. Upper Saddle River, New Jersey: Prentice Hall, 1-697
Wu FY, Lin JQ, Wilde SA, Zhang XO and Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119 DOI:10.1016/j.epsl.2005.02.019
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014
Wu KX, Hu RZ, Bi XW, Peng JT and Tang QL. 2002. Ore lead isotopes as a tracer for ore-forming material sources:A review. Geology-Geochemistry, 30(3): 73-81 (in Chinese with English abstract)
Wu MQ, Tian BF, Zhang DH, Xu GZ, Xu WX and Qiu KF. 2018. Zircon of the No. 782 deposit from the Great Xing'an Range in NE China:Implications for Nb-REE-Zr mineralization during magmatic-hydrothermal evolution. Ore Geology Reviews, 102: 284-299 DOI:10.1016/j.oregeorev.2018.09.006
Yan QH, Wang H, Qiu ZW, Wang M, Mu SL, Wang LM, Po A, Wang SM, Li SS, Wei XP and Li P. 2018. Zircon and cassiterite U-Pb ages and Lu-Hf isotopic compositions of Tashan tin-bearing porphyry in Guangdong Province, SE China and its geological significance. Geotectonica et Metallogenia, 42(4): 718-731 (in Chinese with English abstract)
Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352 DOI:10.1016/j.epsl.2006.04.029
Yao L, Lü ZC, Ye TZ, Pang ZS, Jia HX, Zhang ZH, Wu YF and Li RH. 2017. Zircon U-Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range, China. Acta Petrologica Sinica, 33(10): 3183-3199 (in Chinese with English abstract)
Yu CF, Zhao HJ, Xu LG, Sun J, Liu Y and Zhang LC. 2013. Characteristics of fluid inclusions and mineralization in Yanbei tin deposit, in Jiangxi Province. Mineral Deposits, 32(2): 280-288 (in Chinese with English abstract)
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Zartman RE and Haines SM. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs:A case for bi-directional transport. Geochimica et Cosmochimica Acta, 52(6): 1327-1339 DOI:10.1016/0016-7037(88)90204-9
Zhai DG, Liu JJ, Li JM, Zhang M, Li BY, Fu X, Jiang HC, Ma LJ and Qi L. 2016. Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its geological significance. Mineral Deposits, 35(5): 1011-1022 (in Chinese with English abstract)
Zhang D. 2019. Marginal accretion processes of Jiamusi Block in NE China: Evidences from Mesozoic clastic rocks of the Wandashan Terrane. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Zhang GB, Yang YC, Wang J, Wang KY and Ye SQ. 2013. Geology, geochemistry, and genesis of the hot-spring-type Sipingshan gold deposit, eastern Heilongjiang Province, Northeast China. International Geology Review, 55(4): 482-495 DOI:10.1080/00206814.2012.727572
Zhang GB. 2014. Study on metallogenic system of Wandashan Massif, Eastern Heilongjiang Province. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Zhang Q, Wang Y, Pan GQ, Li CD and Jin WJ. 2008. Sources of granites:Some crucial questions on granite study (4). Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract)
Zhao YM and Zhang DQ. 1997. Metallogeny and Prospective Evaluation of Copper-Polymetallic Deposits in the Da Hinggan Mountains and Its Adjacent Regions. Beijing: Seismological Press, 1-318 (in Chinese)
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion:Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466 DOI:10.1002/2014TC003637
Zhou JB and Li L. 2017. The Mesozoic accretionary complex in Northeast China:Evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145: 91-100 DOI:10.1016/j.jseaes.2017.04.013
Zhou JB, Pu XG, Hou HS, Han W, Cao JL and Li GY. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia. Acta Petrologica Sinica, 34(10): 2845-2856 (in Chinese with English abstract)
Zhu BQ. 1998. Study on chemical heterogeneities of mantle crustal systems and geochemical boundaries of blocks. Earth Science Frontiers, 5(1-2): 72-82 (in Chinese with English abstract)
Zhu SQ and Huang HS. 1988. The Geology of Strata-Bound Deposits. Beijing: China Metallurgical Industry Press, 1-348 (in Chinese)
陈春良. 2015.内蒙古赤峰市白音诺尔铅锌矿成矿规律及找矿方向研究.硕士学位论文.北京: 中国地质大学(北京)
陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义. 矿床地质, 37(2): 225-245.
褚少雄, 刘建明, 徐九华, 魏浩, 柴辉, 佟匡胤. 2012. 黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义. 岩石学报, 28(2): 433-450.
侯可军, 李延河, 邹天人, 曲晓明, 石若玉, 谢贵青. 2007. LA-MCICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
江思宏, 聂凤军, 白大明, 刘翼飞, 刘妍. 2011. 内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据. 矿床地质, 30(5): 787-798. DOI:10.3969/j.issn.0258-7106.2011.05.003
廖震, 王玉往, 王京彬, 李惠民, 龙灵利. 2014. 内蒙古大井锡多金属矿床锡石LA-MC-ICP-MS U-Pb测年及其意义. 矿床地质, 33(增1): 421-422.
刘瑞麟, 武广, 李铁刚, 陈公正, 武利文, 章培春, 张彤, 江彪, 刘文元. 2018. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义. 地学前缘, 25(5): 183-201.
刘伟, 潘小菲, 谢烈文, 李禾. 2007. 大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式. 岩石学报, 23(2): 441-460.
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. DOI:10.3969/j.issn.1000-0569.2007.10.002
梅玉萍, 李华芹, 王登红, 路远发, 杨红梅, 许建祥, 张家菁. 2007. 江西岩背斑岩锡矿的成岩成矿时代及其地质意义. 地球学报, 28(5): 456-461. DOI:10.3321/j.issn:1006-3021.2007.05.006
孟恩, 许文良, 杨德彬, 邱昆峰, 李长华, 祝洪涛. 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 27(4): 1209-1226.
水谷伸治郎, 邵济安, 张庆龙. 1989. 那丹哈达地体与东亚大陆边缘中生代构造的关系. 地质学报, 63(3): 204-216. DOI:10.3321/j.issn:0001-5717.1989.03.005
欧阳荷根. 2013.大兴安岭南段拜仁达坝-维拉斯托银多金属矿床成矿作用及动力学背景.博士学位论文.北京: 中国地质大学(北京)
阮班晓, 吕新彪, 刘申态, 杨梧. 2013. 内蒙古边家大院铅锌银矿床成因:来自锆石U-Pb年龄和多元同位素的制约. 矿床地质, 32(3): 501-514. DOI:10.3969/j.issn.0258-7106.2013.03.004
邵济安, 唐克东, 王成源, 臧启家, 张允平. 1991. 那丹哈达地体的构造特征及演化. 中国科学(B辑), (7): 744-751.
邵济安, 牟保磊, 朱慧忠, 张履桥. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景. 岩石学报, 26(3): 649-656.
沈能平, 彭建堂, 袁顺达, 张东亮, 胡瑞忠. 2008. 湖北徐家山锑矿床铅同位素组成与成矿物质来源探讨. 矿物学报, 28(2): 169-176. DOI:10.3321/j.issn:1000-4734.2008.02.009
田东江. 2007.完达山造山带的地质-地球化学组成及其演化.硕士学位论文.长春: 吉林大学
万阔. 2017.完达山地体构造特征、结构及增生过程.硕士学位论文.长春: 吉林大学
王承洋. 2015.内蒙古黄岗梁-甘珠尔庙成矿带铅锌多金属成矿系列与找矿方向.博士学位论文.长春: 吉林大学
王明艳, 何玲. 2013. 内蒙古查木罕钨钼多金属矿床辉钼矿Re-Os同位素年龄及其地质意义. 大地构造与成矿学, 37(1): 49-56. DOI:10.3969/j.issn.1001-1552.2013.01.006
王硕. 2014.吉黑东部显生宙岩浆演化与成矿作用研究.博士学位论文.长春: 吉林大学
王硕, 孙丰月, 王冠, 刘凯, 李睿华, 郭花利. 2017. 黑龙江河口林场锡多金属矿床地质特征及矿床成因. 岩石矿物学杂志, 36(3): 312-328. DOI:10.3969/j.issn.1000-6524.2017.03.003
王智慧. 2017.那丹哈达地体中生代-早新生代构造-岩浆演化.博士学位论文.长春: 吉林大学
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
吴开兴, 胡瑞忠, 毕献武, 彭建堂, 唐群力. 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 30(3): 73-81. DOI:10.3969/j.issn.1672-9250.2002.03.013
闫庆贺, 王核, 丘增旺, 王敏, 慕生禄, 汪礼明, 卜安, 王赛蒙, 李莎莎, 魏小鹏, 李沛. 2018. 粤东塌山斑岩型锡多金属矿床锆石及锡石U-Pb年代学、Hf同位素组成及其地质意义. 大地构造与成矿学, 42(4): 718-731.
姚磊, 吕志成, 叶天竺, 庞振山, 贾宏翔, 张志辉, 吴云峰, 李睿华. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义. 岩石学报, 28(2): 3183-3199.
余长发, 赵海杰, 徐林刚, 孙嘉, 柳勇, 张立成. 2013. 江西岩背锡矿床流体包裹体特征与成矿作用研究. 矿床地质, 32(2): 280-288. DOI:10.3969/j.issn.0258-7106.2013.02.005
翟德高, 刘家军, 李俊明, 张梅, 李泊洋, 付旭, 蒋胡灿, 马立军, 漆亮. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022.
张夺. 2019.佳木斯地块东缘完达山地体的增生过程: 来自中生代碎屑岩的证据.硕士学位论文.长春: 吉林大学
张国宾. 2014.黑龙江省东部完达山地块区域成矿系统研究.博士学位论文.长春: 吉林大学
张旗, 王焰, 潘国强, 李承东, 金惟俊. 2008. 花岗岩源岩问题:关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204.
赵一鸣, 张德全. 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社, 1-318.
周建波, 蒲先刚, 侯贺晟, 韩伟, 曹嘉麟, 李功宇. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约. 岩石学报, 34(10): 2845-2856.
朱炳泉. 1998. 壳幔化学不均一性与块体地球化学边界研究. 地学前缘, 5(1-2): 72-82.
朱上庆, 黄华盛. 1988. 层控矿床地质学. 北京: 冶金工业出版社, 1-348.