岩石学报  2020, Vol. 36 Issue (3): 741-758, doi: 10.18654/1000-0569/2020.03.07   PDF    
兴凯地块伊曼群的形成时代与物源:碎屑锆石与岩浆锆石U-Pb年代学证据
熊帅1, 许文良1,2, 王枫1, 葛文春1     
1. 吉林大学地球科学学院, 长春 130061;
2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061
摘要: 本文对出露在兴凯地块南部伊曼群的变沉积岩和侵入其中的火成岩进行了系统的锆石LA-ICP-MS U-Pb定年和Hf同位素研究,旨在查明伊曼群的形成时代与物源,并讨论侵入岩的成因和构造背景。伊曼群二云母片岩中锆石呈自形-半自形,显示典型的岩浆生长环带,暗示其岩浆成因。定年结果表明:100个碎屑锆石分析点给出了555~1322Ma的年龄区间,主要峰值年龄为555Ma、612Ma、700Ma、739Ma、769Ma、839Ma、936Ma;其中约533Ma的锆石εHft)值介于-4.1~+3之间,二阶段模式年龄tDM2介于1305~1755Ma之间;700~839Ma的锆石εHft)值介于-3.7~+7.8之间,二阶段模式年龄tDM2介于1246~1907Ma之间。侵入伊曼群的白云母二长花岗岩的定年结果显示为443±3Ma,此年龄对应εHft)值介于-17.6~-4.2之间,二阶段模式年龄tDM2介于1688~2529Ma之间。结合二云母片岩中碎屑锆石的最小年龄以及穿切其中花岗岩的形成时代,可以判定伊曼群二云母片岩的形成时代介于443~555Ma之间,应为新元古代晚期至晚奥陶世之间。基于伊曼群中碎屑锆石的年龄众数及与区域岩浆事件的对比,伊曼群的沉积物源主要来自松嫩地块和佳木斯地块的新元古代火成岩。此外,白云母二长花岗岩显示出埃达克岩的地球化学属性,岩浆源于加厚下地壳的部分熔融,暗示晚奥陶世研究区可能发生了陆壳加厚事件。
关键词: 兴凯地块    伊曼群    形成时代    物源    碎屑锆石    岩浆锆石    
Formation age and provenance of the Iman Group in the Khanka Massif: Evidence from U-Pb geochronology of detrital and magmatic zircons
XIONG Shuai1, XU WenLiang1,2, WANG Feng1, GE WenChun1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China
Abstract: In this paper, we present the zircon LA-ICP-MS U-Pb ages and Hf isotope compositions of detrital and magmatic zircons from the metasedimentary rocks and intrusive rocks within the Iman Group in the southern Khanka Massif to constrain the formation age and provenance of the Iman Group, and discuss the genesis and tectonic background of the intrusive muscovite monzogranites. The zircons separated from two-mica quartz schist in the Iman Group are euhedral-subhedral in shape, and display magmatic growth zones in their CL images, implying their magmatic origin. The dating results indicate that the 100 analytical spots over the detrital zirons yield a range of ages of 555~1322Ma. The main age populations are 555Ma, 612Ma, 700Ma, 739Ma, 769Ma, 839Ma and 936Ma. Their εHf(t) values and two-stage model ages (tDM2) of 533Ma vary from -4.1 to +3 and from 1305Ma to 1755Ma, respectively. Their εHf(t) values and two-stage model ages (tDM2) of 700~839Ma vary from -3.7 to +7.8 and from 1246Ma to 1907Ma, respectively. The zircons from the muscovite monzogranite that intruded into the Iman Group yield a weighted mean 206Pb/238U age of 443±3Ma, its εHf(t) values and two-stage model ages (tDM2) range from -17.6 to -4.2 and 1688Ma to 2529Ma, respectively. Combined with the youngest age of the two-mica quartz schist and the formation time of the intruding muscovite monzogranite in the Iman Group, we conclude that the Iman Group was formed between 443~555Ma, i.e., the Late Neo-Proterozoic to Late Ordovician. The age populations of the two-mica quartz schist, together with the regional magmatic events, indicate that the provenance of the Iman Group mainly come from the Neo-Proterozoic igneous rocks in the Songnen and Jiamusi massifs. Additionally, the muscovite monzogranites exhibit a geochemical affinity to adakitic rock, suggesting that its primary magma could be derived from partial melting of a thickened lower crustal material, which implies that the continental crust thickening might occur in the study area in the Late Ordovician.
Key words: Khanka Massif    Iman Group    Formation age    Provenance    Detrital zircon    Magmatic zircon    

中亚造山带(the Central Asian Orogenic Belt, CAOB)是世界上最大的增生型造山带,也是全球显生宙大陆地壳生长最显著的地区,具有约近750Ma的构造演化历史。多数学者认为,其演化起始于1.0Ga,在经历了多期次的俯冲和增生,随着古亚洲洋的闭合而最终结束于250Ma(Xiao et al., 2003Windley et al., 2007)。中亚造山带主要由一系列微陆块、岛弧、海山、增生杂岩及蛇绿混杂岩构成,记录了新元古代-晚古生代古亚洲洋演化过程,其复杂的多期次俯冲碰撞,并以广泛发育古生代-中生代花岗岩作为其显著特征,因而成为研究板块俯冲、陆壳增生的重要场所(Zonenshain et al., 1990Mossakovsky, 1993Khain et al., 2003Xiao et al., 2003, 2004, 2015Windley et al., 2007)。

兴蒙造山带位于中亚造山带东部,目前对于兴蒙造山带形成与演化的研究主要集中在两个方面:一是兴蒙造山带中微陆块的基底属性及其构造归属问题,传统上认为兴蒙造山带中的微陆块(自西向东包括额尔古纳地块、兴安地块、松嫩地块、佳木斯地块和兴凯地块)都具有古老的前寒武纪结晶基底(曹熹等,1992黑龙江省地质矿产局,1993吉林省地质矿产局,1997周建波等,2012),然而新的锆石U-Pb定年结果表明,所谓的古老前寒武纪结晶基底实际上只有少数形成于新元古代(Wang et al., 2015),多数地质体则形成于古生代和早中生代(Wilde et al., 2000; Zhou et al., 2009; Wang et al., 2012; Zhao et al., 2014; 郝文丽等,2014; 孙巍等, 2017许文良等,2019);二是兴蒙造山带花岗岩的形成时代与地壳增生,传统上认为兴蒙造山带中的花岗岩主体上形成于海西期,少量形成于加里东期和中生代(吉林省地质矿产局,1988黑龙江省地质矿产局,1993),然而近年来的锆石原位微区U-Pb定年结果显示,这些所谓的海西期花岗岩主体上形成于早中生代,只有少量是古生代花岗岩(Wu et al., 2011)。

值得注意的是,对于上述问题的研究目前主要集中在位于我国境内的佳木斯地块、松嫩地块、额尔古纳地块以及兴安地块,而对主体位于俄罗斯境内、小部分出露于吉黑东部的兴凯地块的研究则相对薄弱。前人对于兴凯地块上主要岩浆作用活动期次进行了划分,并推断与佳木斯地块、松嫩地块在构造、岩性、岩浆活动上具有相似性(Khanchuk et al., 2010; Wilde et al., 2010; Yang et al., 2017),认为兴凯地块、佳木斯地块以及俄罗斯的布列亚地块等相邻地块形成一个地壳单元(Khanchuk et al., 2010周建波等,2012),在晚三叠世由于局部裂谷作用而块体分裂,随后由于太平洋板块西向俯冲,又与CAOB重新结合(Zhou et al., 2010周建波等,2012Zhou and Wilde, 2013);此外,还初步确定了兴凯地块存在前寒武纪结晶基底(Khanchuk et al., 2010周建波等,2012; Xu et al., 2018; Zhang et al., 2018),并推断变质基底岩石为一套由于500Ma高级变质作用所形成的孔兹岩系,形成该岩系的泛非期变质事件广泛分布于兴安地块、松嫩地块、佳木斯地块等我国东北地区(周建波等,2012)。总体来看,对于兴凯地块中前寒武纪地质体的展布范围以及古生代岩浆作用的期次等研究较少。伊曼群作为兴凯地块中的一个重要地质单元,其形成时代和物源依然是没有得到解决的地质问题(邵济安和唐克东,1995Khanchuk et al., 2010郭洪宇,2010)。

鉴于此,本文选择了俄罗斯兴凯地块东南缘的伊曼群以及侵入到伊曼群的二长花岗岩,进行了系统的野外调查和室内岩相学研究,并对其进行了锆石U-Pb年代学、全岩地球化学分析和锆石Hf同位素研究,旨在查明伊曼群的形成时代和物源,并结合侵入岩成因的研究,进而揭示兴凯地块早古生代构造演化过程。

1 区域地质背景

兴凯地块位于兴蒙造山带东南端,绝大部分位于俄罗斯境内,其北部以敦化-密山断裂为界,与佳木斯地块相连,东部与锡霍特阿林增生杂岩为邻,西南与渤海地块之间为早中生代形成的碰撞缝合带(邵济安和唐克东,1995),其南部受到了古亚洲洋构造域和滨太平洋构造域的叠加影响(图 1a)。

图 1 东北亚大陆构造单元划分简图(a)和研究区详细地质图(b)(据Xu et al., 2018) Fig. 1 Simplified tectonic divisions of the northeast Asian continent (a) and detailed geological map of the study area in the Khanka Massif (b) (modified after Xu et al., 2018)

区内地层分布广泛,主要包括元古代角闪岩相的变质岩,其中发育少量变质的基性火山岩和酸性火山岩;新元古代-寒武纪为一套陆源碎屑岩和碳酸盐岩沉积;晚奥陶世-志留纪主要为陆源碎屑岩沉积;泥盆纪-石炭纪地层主要为浅海相及陆相沉积岩和火山岩。侵入岩主要发育早古生代花岗岩、闪长岩;海西期黑云母花岗岩、白岗质花岗岩和花岗闪长岩;晚印支期花岗岩、燕山晚期花岗岩和黑云母花岗岩等(图 1b)(郭洪宇,2010Xu et al., 2018)。

伊曼群为Mishkin于1969年建立的,在兴凯地块北部广泛展布。伊曼群的底部为Ruzhino组,为中高级变质的大理岩,其中有少量的黑云母片岩和钙硅酸盐岩夹层。顶部为Matveevo组,为富铝系列黑云母片岩、片麻岩等,其中有大理岩、钙硅酸盐岩、二辉角闪石片岩以及不同种类的石英岩(如:含石榴子石、含磁铁矿、含石墨等)的夹层(Khanchuk et al., 2010)。

伊曼群的岩石经历了中高级变质作用,变质达到角闪岩相和低麻粒岩相(邵济安和唐克东,1995)。前人对伊曼群麻粒岩相中二辉角闪片岩进行了第一个锆石LA-ICP-MS U-Pb测年,测定其受到了507Ma的变质作用的改造,与我国佳木斯地块麻山群麻粒岩相印证(Khanchuk et al., 2010),这与东北地区广泛分布的泛非期变质作用以及岩浆作用时间相同(Zhou et al., 2010周建波等,2012)。

2 样品特征

采样点GPS坐标为132°43′42″E、42°53′26″N(图 1b),为一处海滨基岩露头,有多种岩性的岩石出露:与佳木斯地块麻山群类似的二云母片岩呈小的褶皱产出;粗粒白云母二长花岗岩沿片麻理方向贯入片岩中,呈条带状、透镜状或细脉状,部分横切片理(图 2a),整体上看这些白云母二长花岗岩呈块状构造;晚期辉绿岩脉侵入到粗粒花岗岩及片岩中。

图 2 伊曼群中二云母石英片岩(14RF40-1)和白云母二长花岗岩(14RF39-1)的野外露头及镜下照片 (a)白云母二长花岗岩侵入二云母石英片岩中;(b)二云母石英片岩(正交偏光);(c、d)白云母二长花岗岩(正交偏光). Bt-黑云母;Ms-白云母;Or-正长石;Pl-斜长石;Qtz-石英 Fig. 2 Field occurrence and petrography of the two-mica quartz schist (14RF40-1) and muscovite monzogranite (14RF39-1) in the Iman Group (a) the muscovite monzogranite intrudes into the two-mica quartz schist; (b) two-mica quartz schist (crossed polars); (c, d) muscovite monzogranite (crossed polars). Bt-biotite; Ms-muscovite; Or-orthoclase; Pl-plagioclase; Qtz-quartz

样品14RF40-1采于此处海滨基岩露头,岩性为中细粒二云母石英片岩,中细粒鳞片粒状变晶结构,片状构造(图 2b)。主要矿物有黑云母、白云母、石英、斜长石等,并有锆石、黄铁矿等副矿物出现。其中黑云母单偏光镜下多色性明显,正中突起,粒度主要集中在0.4~1mm,含量约占15%;白云母具有一组极完全解理,闪突起明显,一般在0.5~1mm,含量约20%;石英他形,粒状,无解理,波状消光明显,粒度集中在0.5~0.7mm,含量约55%;斜长石板状,半自形,聚片双晶,表面混浊,绢云母化明显,粒度集中在0.8~1.2mm,含量约10%。

样品14RF39-1采于此处海滨基岩露头侵入二云母石英片岩的侵入岩,岩性为中粒白云母二长花岗岩,中粒半自形粒状结构,块状构造(图 2c, d)。矿物有石英、斜长石、正长石、白云母,并有锆石等副矿物出现。其中石英他形,粒状,无解理,波状消光明显,粒度集中在1~2mm,含量约25%;斜长石板状,半自形,聚片双晶,并且有大量的双晶弯曲变形,内部有大量细小白云母蚀变,微具定向,粒度主要集在1~2.5mm,含量约35%;正长石板状,半自形,表面混浊,具有明显的高岭土化,粒度主要在1~2mm,含量约35%;白云母片状,具有一组极完全解理,近平行消光,闪突起明显,一般在0.3~0.6mm,最大可达近1mm,含量约5%。

3 分析方法 3.1 锆石U-Pb同位素测年

测试样品在俄罗斯科学院远东分院地质和自然管理研究所采用常规方法进行粉碎,并采用浮选和电磁选技术从样品中分离出锆石,进而在双目显微镜下尽量挑选出颜色、晶型、大小、磨蚀程度不同的锆石颗粒。然后在透射光和反射光下用光学显微镜检查了手工挑选的锆石,并根据锆石阴极发光(CL)图像,选择相对包裹体少、裂隙少且吸收均匀的区域进行测试。

锆石U-Pb同位素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用LA-ICP-MS分析完成。实验室所用激光剥蚀系统为MicroLas公司生产的GeoLas2500,ICP-MS为日本生产的Agilent7500a。实验过程中所使用激光束直径为32μm,频率为8~10Hz,充分保证了激光束的灵敏稳定。详细仪器条件和分析细节见于Yuan et al. (2004)。实验获得同位素比值数据使用ICPMSDatacal程序进行普通铅校正(Liu et al., 2008, 2010),并使用Isoplot宏程序来完成锆石加权平均年龄和年龄谐和图的制作(Ludwig, 2003)。实验得出的同位素比值和同位素年龄的误差均在1σ水平,详细的实验步骤和数据处理流程见Liu et al.(2010)。为了保证统计的准确性,年龄小于1000Ma的锆石采用其206Pb/238U年龄,年龄大于1000 Ma的锆石采用其207Pb/206Pb年龄。年龄数据见表 1

表 1 兴凯地块伊曼群二云母石英片岩及白云母二长花岗岩的锆石U-Pb年龄 Table 1 Zircon LA-ICP-MS U-Pb data of two-mica quartz schist (14RF40-1) and muscovite monzogranite (14RF39-1) in the Iman Group of the Khanka Massif
3.2 主量、微量元素分析

在俄罗斯科学院远东分院地质与自然管理研究所使用X-荧光光谱法(XRF;日本理学Primusll X射线荧光光谱仪)分析样品的主要元素,在俄罗斯科学院远东分院构造与地球物理研究所使用ICP-MS分析微量元素(Agilent 7700e)。主量元素的分析精度高于3%,微量元素的分析精度高于10%。详细的分析过程见于Sorokin et al.(2009)。主量和微量元素数据见表 2

表 2 白云母二长花岗岩主量元素(wt%)和微量元素(×10-6)分析结果 Table 2 Major (wt%) and trace (×10-6) element compositions for the muscovite monzogranite
3.3 Hf同位素分析

锆石Hf同位素测试在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室完成。实验室配有Neptune多接收电感耦合等离子体质谱仪(MC-ICP-MS)。采用单点剥蚀模式,锆石国际标样91500作为外标,测试样品点和锆石标样交替测试。分析时激光束直径为63μm,所用的激光脉冲速率为6~8Hz,激光束脉冲能量为100mJ,Hf同位素分析点与U-Pb定年分析点为同一位置或为附近。MC-ICP-MS的操作方法和分析方法的详细信息可见于Xu et al. (2004)。通过测量不受干扰的172Yb同位素并使用176Lu/172Yb=0.5886(Wu et al., 2006)来校正176Yb对176Hf的干扰。同样,通过测量不受干扰的175Lu同位素并使用176Lu/175Lu=0.02655(Machado and Simonetti, 2001)校正176Lu对176Hf的干扰。分析数据使用ICPMSDatacal程序进行信号区间选择和同位素质量分馏校正(Liu et al., 2008, 2010)。详细的实验步骤和数据处理流程见Hu et al.(2012)。Hf同位素数据见表 3

表 3 伊曼群二云母石英片岩(14RF40-1)与白云母二长花岗岩(14RF39-1)锆石Hf同位素分析结果 Table 3 Zircon Hf isotopic data of the two-mica quartz schist (14RF40-1) and muscovite monzogranite (14RF39-1) in the Iman Group
4 分析结果 4.1 锆石测年结果

锆石的CL图像显示,来自二云母石英片岩(14RF40-1)的锆石大部分为半自形或他形晶体,呈现为短柱状或者浑圆状,颗粒中等,颗粒的长、宽分别介于40~100μm之间和30~50μm之间,部分具有震荡生长环带,显示出了碎屑锆石的特征,并在锆石外侧有变质增生边的发现。采自白云母二长花岗岩(14RF39-1)的锆石主要呈现为自形或半自形晶体,呈现为棱柱状或者短柱状,颗粒较大,颗粒的长、宽分别介于70~150μm之间和40~60μm之间,核边结构及震荡生长环带明显,部分有条痕状吸收的特点,总体上呈现为岩浆锆石的特点,因而所测定的最年轻的年龄代表侵入岩结晶的时间,而较老的年龄代表了捕获锆石的结晶年龄(图 3)。

图 3 兴凯地块伊曼群二云母石英片岩(14RF40-1) (a)和白云母二长花岗岩(14RF39-1) (b)代表性锆石阴极发光(CL)图像 红色及黄色圆圈分别代表了LA-ICP-MS U-Pb及Hf同位素测点位置 Fig. 3 Cathodoluminescence (CL) images of representative zircon grains from two-mica quartz schist (14RF40-1) (a) and muscovite monzogranite (14RF39-1) (b) in the Iman Group in the Khanka Massif Red and yellow circles indicate the locations of LA-ICP-MS U-Pb dating and Hf isotopic analyses, respectively

样品14RF40-1为采自伊曼群的二云母石英片岩。100个有效测点的年龄值介于555~1322Ma之间,形成了7个主要的206Pb/238U年龄峰值:555±6Ma(MSWD=2.6,n=8)、612±6Ma(MSWD=0.83,n=4)、700±5Ma(MSWD=0.13,n=10)、739±5Ma(MSWD=0.65,n=7)、769±5Ma(MSWD=0.085,n=10)、839±5Ma(MSWD=0.47,n=11)、936±11Ma(MSWD=5.8,n=18)。最小年龄组给出了555±6Ma(MSWD=2.6,n=8)的206Pb/238U加权平均年龄(图 4a)。

图 4 伊曼群二云母石英片岩(a)和白云母二长花岗岩(b)中锆石U-Pb年龄谐和图 Fig. 4 Concordian zircon U-Pb diagrams of two-mica quartz schist (a) and muscovite monzogranite (b) in the Iman Group

样品14RF39-1为采自侵入伊曼群的白云母二长花岗岩。34个有效测点的206Pb/238U年龄范围为443~984Ma,在U-Pb年龄谐和图上,形成了443±3Ma(MSWD=1.10,n=7)和488±3Ma(MSWD=1.9,n=7)两组206Pb/238U加权平均年龄峰值。其中,最小年龄组443±3Ma代表了该二长花岗岩的结晶年龄,即早志留世,该结果也得到了同地区同时代岩浆活动的印证(Xu et al., 2018);而488±3Ma应代表了捕获锆石的年龄;有六颗锆石具有529Ma、660Ma、793Ma、800Ma、894Ma、984Ma应也代表了捕获锆石的年龄(图 4b)。

4.2 白云母二长花岗岩的地球化学特征 4.2.1 主量元素

研究区白云母二长花岗岩的SiO2含量为73.5%~75.3%、Al2O3=14.4%~16.3%、Fe2O3T=1.0%~2.2%、MgO=0.3%~0.5%、CaO=0.9%~2.4%、Na2O=4.5%~4.8%、K2O= 1.9%~2.4%、TiO2=0.1%~0.2%、Mg#[Mg#=100Mg2+/(Mg2++TFe2+)]=18.4~22.3、Na2O+K2O= 6.5%~7.1%。在(Na2O+K2O)-SiO2(TAS)图解中显示样品属于亚碱性系列(图 5a),在A/NK-A/CNK图解中显示样品属于过铝质系列(图 5b)。

图 5 白云母二长花岗岩及黑云母二长花岗岩的主量元素图解 (a)SiO2-(Na2O+K2O)图解;(b)A/CNK-A/NK图解. A/CNK=摩尔Al2O3/(Na2O+K2O+CaO),A/NK=摩尔Al2O3/(Na2O+K2O).数据来源:14RF44-1黑云母二长花岗岩(Xu et al., 2018);后图文献数据来源同此图 Fig. 5 Major element diagrams of muscovite monzogranites and the biotite monzogranite (a) SiO2 vs. Na2O+K2O diagram; (b) A/CNK vs. A/NK diagram. A/CNK= molar Al2O3/(Na2O+K2O+CaO), A/NK= molar Al2O3/(Na2O+K2O). Data sources: 14RF44-1 biotite monzogranite(Xu et al., 2018); Data sources in following figures are the same as those in this figure
4.2.2 微量元素

研究区白云母二长花岗岩的稀土元素总量(ΣREE)介于45×10-6~165×10-6之间,在球粒陨石标准化稀土元素配分图中,显示富集轻稀土元素、贫重稀土元素的右倾斜型(图 6a),主体显示Eu的正异常(δEu=0.99~2.43),仅有1个样品为负Eu异常(δEu=0.67), 它们的(La/Yb)N比值介于33.5~116之间。原始地幔标准化微量元素蛛网图中显示,样品富集大离子亲石元素(如Rb、Ba、K)、强烈亏损高场强元素(如Nb、Ta、Zr、Hf、Ti)(图 6b)。

图 6 白云母二长花岗岩及黑云母二长花岗岩的的球粒陨石标准化稀土元素配分图(a、c, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b、d, 标准化值据Sun and McDonough, 1989) Fig. 6 Chondrite-normalized REE pattern (a, c, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spidergrams (b, d, normalization values after Sun and McDonough, 1989) for muscovite monzogranites and for biotite monzogranite
4.3 锆石Hf同位素组成

在对研究区二云母石英片岩中的锆石进行LA-ICP-MS U-Pb定年的基础上,对其中代表峰值年龄的碎屑锆石进行了锆石原位微区Hf同位素分析。结果显示,其中约533Ma的锆石的176Hf/177Hf比值介于0.282340~0.282540之间,相应的εHf(t)值介于-4.1~+3之间,二阶段模式年龄tDM2介于1305~1755Ma之间;年龄约700Ma的锆石的176Hf/177Hf比值介于0.282336~0.282531之间,相应的εHf(t)值介于-0.5~+5.9之间,二阶段模式年龄tDM2介于1247~1660Ma之间;约739Ma的锆石的176Hf/177Hf比值介于0.282285~0.282388之间,相应的εHf(t)值介于-2.6~+1.7之间,二阶段模式年龄tDM2介于1537~1825Ma之间;约769Ma的锆石的176Hf/177Hf比值介于0.282213~0.282445之间,相应的εHf(t)值介于-3.7~+5.1之间,二阶段模式年龄tDM2介于1387~1907Ma之间;约839Ma的锆石的176Hf/177Hf比值介于0.282292~0.282509之间,相应的εHf(t)值介于+0.7~+7.8之间,二阶段模式年龄tDM2介于1246~1686Ma之间(图 7a)。

图 7 兴凯地块二云母石英片岩(a)、白云母二长花岗岩和黑云母二长花岗岩(b)中锆石Hf同位素组成与年龄关系图 中亚造山带及华北克拉通数值参考Yang et al.(2006) Fig. 7 Plots of εHf(t) values and ages for zircons from two-mica quartz schist (a) and muscovite monzogranite and biotite monzogranite (b) in the Khanka Massif Fields for the Central Asian Orogenic Belt (CAOB) and the North China Craton (NCC) are from Yang et al.(2006)

研究区白云母二长花岗岩中,约443Ma的锆石的176Hf/177Hf比值介于0.282023~0.282414之间,相应的εHf(t)值介于-17.6~-4.2之间,二阶段模式年龄tDM2介于1688~2529Ma之间;约488Ma的锆石的176Hf/177Hf比值介于0.282246~0.282449之间,相应的εHf(t)值介于-8.4~-1.5之间,二阶段模式年龄tDM2介于1555~1987Ma之间(图 7b)。

5 讨论 5.1 伊曼群的形成时代

伊曼群为Mishkin于1969年建立的,在兴凯地块北部广泛展布。伊曼群可以分成底部的Ruzhino组和顶部的Matveevo组,主要发育有大理岩、片岩、片麻岩,并具有黑云母片岩、钙硅酸盐岩、二辉角闪石片岩等成分的夹层(Khanchuk et al., 2010)。目前我国和俄罗斯学者,对兴凯地块的研究较少,对于兴凯地块采用显生宙地层的研究方法,进行群组段的划分,地质年代学资料以K-Ar年龄数据居多,可信度不高,缺乏系统的年代学研究工作(徐公愉,1993)。

本文通过对伊曼群二云母石英片岩中碎屑锆石的LA-ICP-MS U-Pb测年分析,得到一组555±6Ma(MSWD=2.6,n=8)的最年轻年龄,这个年龄代表了伊曼群的最大沉积时代,即新元古代晚期。结合野外观测到的白云母二长花岗岩侵入到二云母石英片岩这一现象,可知伊曼群的形成时代应早于侵入体的形成时间。白云母二长花岗岩的锆石U-Pb定年结果为443±3Ma(MSWD=1.10,n=7),即晚奥陶世,此为伊曼群的沉积上限。综上所述,可以判定伊曼群的形成时代应介于443~555Ma,即新元古代晚期至晚奥陶世。

5.2 伊曼群的沉积物源

伊曼群的二云母石英片岩中碎屑锆石100个有效测点的年龄值介于555~1322Ma之间,获得了7个主要的206Pb/238U年龄峰值,对应的峰期为:555Ma (8%)、612Ma (4%)、700Ma (10%)、739Ma (7%)、769Ma (10%)、839Ma (11%)、936Ma (18%),同时还包括少量大于1.0Ga的锆石(图 8)。其中年龄约533Ma的锆石εHf(t)值介于-4.1~+3之间;约700Ma的锆石εHf(t)值介于-0.5~+5.9之间;约739Ma的锆石εHf(t)值介于-2.6~+1.7之间;约769Ma的锆石εHf(t)值介于-3.7~+5.1之间;约839Ma的锆石εHf(t)值介于+0.7~+7.8之间。整体上看,二云母石英片岩中碎屑锆石εHf(t)值大部分为正值,分布于-2~+8之间,在t-εHf(t)图解上,大部分落于1.8Ga地壳演化线与亏损地幔演化线之间(图 7a),表明物源区主要为新生的地壳物质并且物源区比较集中。将上述数据与已发现的松嫩地块东缘以及佳木斯地块的火成岩锆石年龄频谱进行对比,不难发现在700~900Ma它们的趋势有较好的吻合。

图 8 伊曼群二云母石英片岩中碎屑锆石以及邻区火成岩U-Pb年龄频谱图 (a)俄罗斯远东伊曼群碎屑锆石年龄频谱;(b)松嫩地块东缘火成岩年龄频谱(据刘建峰等,2008Wang et al., 2012, 2014Wu et al., 2011);(c)佳木斯地块火成岩年龄频谱(据Bi et al., 2014Buchko et al., 2012Sorokin et al., 2011Wang et al., 2012, 2014Wilde et al., 2000, 2003Wu et al., 2011Yang et al., 2014, 2015乔健,2015颉颃强等, 2008a, b);(d)兴凯地块火成岩年龄频谱(据Khanchuk et al., 2010Tsutsumi et al., 2014Wilde et al., 2010Yang et al., 2014, 2015Xu et al., 2018敬海鑫等,2015Zhou et al., 2010) Fig. 8 Relative probability of detrital zircon U-Pb ages for two-mica quartz schist in the Iman Group and zircon U-Pb ages from igneous rocks within the adjacent massifs (a) relative probability of detrital zircon U-Pb ages for the Iman Group, Russian Far East; (b) relative probability of zircon U-Pb ages for igneous rocks within the eastern margin of Songnen Massif (after Liu et al., 2015;Wang et al., 2012, 2014; Wu et al., 2011); (c) relative probability of zircon U-Pb ages for igneous rocks within the Jiamusi Massif (after Bi et al., 2014; Buchko et al., 2012; Sorokin et al., 2011; Wang et al., 2012, 2014; Wilde et al., 2000, 2003; Wu et al., 2011; Yang et al., 2014, 2015; Qiao, 2015; Jie et al., 2008a, b); (d) relative probability of zircon U-Pb ages for igneous rocks within the Khanka Massif (after Khanchuk et al., 2010; Tsutsumi et al., 2014; Wilde et al., 2010; Yang et al., 2014, 2015; Xu et al., 2018; Jing et al., 2015; Zhou et al., 2010)

碎屑锆石具有自形-半自形的形态学特征,表明伊曼群的沉积物源为新元古代火成岩,以早新元古代火成岩为主。其中555Ma锆石具有岩浆成因的特征,年龄与在松嫩地块东缘550±5Ma的岩浆活动相吻合(栾金鹏,2018);目前缺少对612Ma岩浆事件的报道,但对东北地区构造研究表明,新元古代佳木斯地块与松嫩地块间有古海洋板块的存在,在645~600Ma时,地块开始拼合,因而由于拼合消减产生的岩浆作用的产物可以作为沉积物源(曹熹等,1992李伟民等,2014);700Ma峰值年龄与兴凯地块结晶基底原岩年龄相吻合(695Ma),可能同期岩浆作用产物作为样品的沉积物源,使样品具有此峰值(周建波等,2012);739Ma的年龄与松嫩地块东缘展布的726Ma石英闪长岩形成时代相吻合(栾金鹏,2018)。此外,与佳木斯地块西北楞麻山杂岩出露的751Ma碱长花岗片麻岩原岩年龄相吻合(Yang et al., 2018);769Ma年龄与松嫩地块东缘英云闪长岩768Ma的结晶年龄基本对应(栾金鹏,2018);839Ma的碎屑锆石176Hf/177Hf比值介于0.282292~0.282509之间,相应的εHf(t)值介于+0.7~+7.8之间,这与展布于松嫩地块东缘出露的841Ma花岗闪长岩Hf同位素特征基本相似,暗示它们应是年龄为839Ma的碎屑锆石主要来源(栾金鹏,2018);936Ma锆石年龄与新元古代的一期岩浆作用相符合,其展布范围包括佳木斯地块南部以及松嫩地块(栾金鹏,2018)。

5.3 白云母二长花岗岩的岩石成因

研究区白云母二长花岗岩具有高的SiO2含量(73.50%~75.30%)、Al2O3含量(14.36%~16.25%)、Na2O含量(4.48%~4.83%)和Sr含量(428×10-6~689×10-6),较低的Fe2O3T(0.95%~2.18%)和MgO(0.26%~0.50%)含量,这表明它们的岩浆主要来源于地壳的部分熔融(Zen, 1986; Barbarin, 1999; Nabelek et al., 2001; Koepke et al., 2007; Xu et al., 2009)。此外,白云母二长花岗岩富集轻稀土元素和大离子亲石元素,亏损重稀土元素和高场强元素,显示埃达克岩的地球化学属性(图 9a)。目前对埃达克岩的成因主要有以下几种模式:俯冲大洋板块的部分熔融(Defant and Drummond, 1990; Martin, 1999; Martin et al., 2005);玄武质岩浆的分离结晶(Castillo et al., 1999);地幔来源和地壳来源的岩浆混合(Guo et al., 2007);拆沉下地壳的部分熔融(Kay and Kay, 1993; Xu et al., 2006)和加厚铁镁质下地壳的部分熔融(Atherton and Petford, 1993)等。俯冲大洋板片部分熔融形成的埃达克岩通常表现出高Mg#、Cr和Ni丰度,以及正的εHf(t)或εNd(t)值(Defant and Drummond, 1990; Martin, 1999; Martin et al., 2005),这与研究区晚奥陶世白云母二长花岗岩的特征并不吻合;此外,岩浆混合和拆沉陆壳物质熔融形成的埃达克质岩石均具有较高的Mg#、Cr和Ni含量(Guo et al., 2007),这与本文研究的白云母二长花岗岩的地球化学特征相矛盾,故也可以排除这两种成因模式。综上所述,可以判定本文研究的白云母二长花岗岩应是加厚陆壳物质部分熔融的产物(图 9b)。

图 9 伊曼群白云母二长花岗岩的Y-Sr/Y图解(a, 底图据Defant and Drummond, 1990)和SiO2-MgO图解(b, 底图据Lai and Qin, 2013) Fig. 9 Plots of Y vs. Sr/Y (a, base map after Defant and Drummond, 1990) and SiO2 vs. MgO (b, base map after Lai and Qin, 2013) of muscovite monzogranites in the Iman Group

Xu et al. (2018)统计了大量俄罗斯远东兴凯地块早古生代侵入岩的锆石年龄,并且分出了四个主要岩浆活动的时代,其中430Ma的时代与本文白云母二长花岗岩时代大致吻合。430Ma的二长花岗岩(14RF44-1)主要展布于兴凯地块东北缘,具有高SiO2含量,较低的Y含量和Yb含量,并且具有高Sr/Y值,显示出了埃达克岩的地球化学属性(图 5a, b图 6c, d),并结合εHf(t)特征(图 7b),推测原始岩浆来源于加厚下地壳的部分熔融,这与本文中白云母二长花岗岩的岩浆成因一致,因而该二长花岗岩与本文中白云母二长花岗岩的形成应与俯冲作用相关,属于活动大陆边缘环境(Wilson, 1989; Deering et al., 2007)。

前人的研究结果显示,新元古代至奥陶纪松嫩地块南部与佳木斯地块南部存在着海洋地壳(Li et al., 1999),而在早古生代兴凯地块位于松嫩地块南部,并与松嫩地块具有构造上的亲缘关系(Xu et al., 2018),故早古生代兴凯地块与佳木斯地块南部存在海洋地壳。在松嫩地块东部边缘有高钾钙碱性Ⅰ型花岗岩(Wang et al., 2017),以及兴凯地块东南缘的早古生代蛇绿岩的发现(Khanchuk et al., 1996; Ishiwatari and Tsujimori, 2003),指示形成在活动大陆边缘环境。因而基本可以判断在早古生代,松嫩地块及兴凯地块的东部分布有古海洋的存在,并向西俯冲。研究区白云母二长花岗岩的原始岩浆的形成过程为,兴凯地块东部古海洋板块的向西俯冲,俯冲大洋板片以及所携带沉积物脱水,交代、水化上部的地幔楔,使之形成原始的幔源铁镁质岩浆,岩浆上升提供热源等,使得由于挤压作用加厚的下地壳部分熔融形成花岗质原始岩浆。

6 结论

基于兴凯地块伊曼群二云母石英片岩和侵入其中白云母二长花岗岩的锆石U-Pb年代学、地球化学元素分析,并结合区域构造演化历史,可以得出以下认识:

(1) 伊曼群二云母石英片岩的形成时代应介于443~555Ma之间,即新元古代晚期至晚奥陶世。

(2) 伊曼群二云母石英片岩的物源主要来自于松嫩地块、佳木斯地块等研究区周边的新元古代地质体。

(3) 侵入伊曼群的白云母二长花岗岩形成于晚奥陶世晚期443±3Ma,岩浆形成于加厚陆壳的部分熔融,与俯冲作用相关。

致谢      感谢俄罗斯科学院远东分院地质和自然管理研究所在锆石的分选过程中给予的帮助;同时感谢中国地质大学(武汉)地质过程与矿产资源国家重点实验室、俄罗斯科学院远东分院地质和自然管理研究所、俄罗斯科学院远东分院构造与地球物理研究所以及中国科学院地质与地球物理研究所岩石圈演化国家重点实验室在锆石LA-ICP-MS U-Pb分析以及主量元素、微量元素及Hf同位素测试过程中给予的大力帮助。衷心感谢两名匿名审稿专家以及俞良军副主编提出的宝贵意见。

参考文献
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626 DOI:10.1016/S0024-4937(98)00085-1
Bi JH, Ge WC, Yang H, Zhao GC, Yu JJ, Zhang YL, Wang ZH and Tian DX. 2014. Petrogenesis and tectonic implications of Early Paleozoic granitic magmatism in the Jiamusi Massif, NE China:Geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences, 96: 308-331 DOI:10.1016/j.jseaes.2014.09.013
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Buchko IV, Sorokin AA and Kudryashov NM. 2012. Age and tectonic position of the Early Paleozoic Malyi Khingan Terrane in the eastern part of the Central Asian Fold Belt. Doklady Earth Sciences, 445(2): 929-933 DOI:10.1134/S1028334X12080028
Bureau of Geology and Mineral Resources of Jilin Province. 1988. Regional Geology of Jilin Province. Beijing: Geological Publishing House, 1-698 (in Chinese)
Bureau of Geology and Mineral Resources of Jilin Province. 1997. Stratigraphy (Lithostratic) of Jilin Province. Wuhan: China University of Geosciences Press, 1-324 (in Chinese)
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House, 1-734 (in Chinese)
Cao X, Dang ZX, Zhang XZ, Jiang JS and Wang HD. 1992. The Composite Jianmusi Terrane. Changchun: Jilin Publishing House of Science and Technology, 37-44 (in Chinese)
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51 DOI:10.1007/s004100050467
Deering CD, Vogel TA, Patino LC and Alvarado GE. 2007. Origin of distinct silicic magma types from the Guachipelín Caldera, NW Costa Rica:Evidence for magma mixing and protracted subvolcanic residence. Journal of Volcanology and Geothermal Research, 165(3-4): 103-126 DOI:10.1016/j.jvolgeores.2007.05.004
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Guo F, Nakamuru E, Fan WM, Kobayoshi K and Li CW. 2007. Generation of Palaeocene adakitic andesites by magma mixing, Yanji area, NE China. Journal of Petrology, 48(4): 661-692 DOI:10.1093/petrology/egl077
Guo HY. 2010. Division and correlation of tectonic units in the adjacent region of China Northeast and Far East of Russian. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Hao WL, Xu WL, Wang F, Tang J, Xu MJ and Gao FH. 2014. Geochronology of the "Neoproterozoic" Yimianpo Group in the Zhangguangcai Range, NE China:Constraints from U-Pb ages of detrital and magmatic zircons. Acta Petrologica Sinica, 30(7): 1867-1878 (in Chinese with English abstract)
Hu ZC, Liu YS, Gao S, Xiao SQ, Zhao LS, Günther D, Li M, Zhang W and Zong KQ. 2012. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78: 50-57 DOI:10.1016/j.sab.2012.09.007
Ishiwatari A and Tsujimori T. 2003. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia:A synthesis. Island Arc, 12(2): 190-206 DOI:10.1046/j.1440-1738.2003.00390.x
Jing HX, Sun DY, Gou J, Wu PF, Wang TH, Guo HY, Liu XM and Hu ZC. 2015. Chronology, geochemistry and Hf isotope of granite from southern Xingkai Block. Earth Science, 40(6): 982-994 (in Chinese with English abstract)
Kay RW and Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3): 177-189 DOI:10.1016/0040-1951(93)90295-U
Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE and Fedotova AA. 2003. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122(1-4): 329-358 DOI:10.1016/S0301-9268(02)00218-8
Khanchuk AI, Ratkin VV, Ryazantseva MD, Golozubov VV and Gonokhova NG. 1996. Geology and Mineral Deposits of Primorsky Krai. Dalnauka, Vladivostok
Khanchuk AI, Vovna GM, Kiselev VI, Mishkin MA and Lavrik SN. 2010. First results of zircon LA-ICP-MS U-Pb dating of the rocks from the Granulite complex of Khanka massif in the Primorye region. Doklady Earth Sciences, 434(1): 1164-1167 DOI:10.1134/S1028334X10090059
Koepke J, Berndt J, Feig ST and Holtz F. 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153(1): 67-84
Lai SC and Qin JF. 2013. Adakitic rocks derived from the partial melting of subducted continental crust:Evidence from the Eocene volcanic rocks in the northern Qiangtang block. Gondwana Research, 23(2): 812-824 DOI:10.1016/j.gr.2012.06.003
Li JY, Niu BG, Song B, Xu WX, Zhang YH and Zha ZR. 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Beijing: Geological Publishing House, 1-137 (in Chinese with English abstract)
Li WM, Liu YJ, Takasu A, Zhao YL, Wen QB, Guo XC and Zhang L. 2014. Pressure (P)-Temperature (T)-time (t) paths of the blueschists from the Yilan area, Heilongjiang Province. Acta Petrologica Sinica, 30(10): 3085-3099 (in Chinese with English abstract)
Liu JF, Chi XG, Dong CY, Zhao Z, Li GR and Zhao YD. 2008. Discovery of Early Paleozoic granites in the eastern Xiao Hinggan Mountains, northeastern China and their tectonic significance. Geological Bulletin of China, 27(4): 534-544 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Luan JP. 2018. Chronology, geochemistry and tectonic implications of Neoproterozoic granitoids in the eastern Songnen-Zhangguangcai Range Massif. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Ludwig KR. 2003. Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, 4: 1-70
Machado N and Simonetti A. 2001. U-Pb dating and Hf isotopic composition of zircon by laser-ablation-MC-ICP-MS. Laser Ablation-ICPMS in the Earth Sciences:Principles and Applications, 29: 121-146
Martin H. 1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429 DOI:10.1016/S0024-4937(98)00076-0
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24 DOI:10.1016/j.lithos.2004.04.048
Mossakovsky A. 1993. Central Asian fold belt:Geodynamic evolution and history of formation. Geotectonics, 6: 3-33
Nabelek PI, Liu M and Sirbescu ML. 2001. Thermo-rheological, shear heating model for leucogranite generation, metamorphism, and deformation during the Proterozoic Trans-Hudson orogeny, Black Hills, South Dakota. Tectonophysics, 342(3-4): 371-388 DOI:10.1016/S0040-1951(01)00171-8
Qiao J. 2018. Age and provenance of Early Paleozoic sedimentary formation in northern Jiamusi Massif: Evidence from U-Pb ages and Hf isotope compositions of detrital and magmatic zircons. Master Degree Thesis. Changchun: Jilin University (in Chinese with English summary)
Shao JA and Tang KD. 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. Beijing: Seismological Press (in Chinese)
Sorokin AA, Sorokin AP, Ponomarchuk VA, Travin AV and Melnikova OV. 2009. Late Mesozoic volcanism of the eastern part of the Argun superterrane (Far East):Geochemistry and 40Ar/39Ar geochronology. Stratigraphy and Geological Correlation, 17(6): 645-658 DOI:10.1134/S0869593809060069
Sorokin AA, Kotov AB, Sal'nikova EB, Kudryashov NM, Velikoslavinskii SD, Yakovleva SZ, Fedoseenko AM and Plotkina YV. 2011. Early Paleozoic granitoids in the Lesser Khingan terrane, Central Asian Foldbelt:Age, geochemistry, and geodynamic interpretations. Petrology, 19(6): 601-617 DOI:10.1134/S0869591111060051
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saundern AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1):313-345
Sun W, Chi XG, Song WM, Zhao Z, Liu JF, Pan SY, Zhang R, Quan JY, Si XL, Na FC, Ma YF, Zang YQ and Liu YC. 2017. Zircon geochronology constraints on the age and nature of 'Precambrian Metamorphic Rocks' in the Xing'an Block of Northeast China. Geological Review, 63: 293-294 (in Chinese with English abstract)
Tsutsumi Y, Yokoyama K, Kasatkin SA and Golozubov VV. 2014. Zircon U-Pb age of granitoids in the Maizuru Belt, Southwest Japan and the southernmost Khanka Massif, Far East Russia. Journal of Mineralogical and Petrological Sciences, 109(2): 97-102 DOI:10.2465/jmps.131017
Wang F, Xu WL, Gao FH, Meng E, Cao HH, Zhao L and Yang Y. 2012. Tectonic history of the Zhangguangcailing Group in eastern Heilongjiang Province, NE China:Constraints from U-Pb geochronology of detrital and magmatic zircons. Tectonophysics, 566-567: 105-122
Wang F, Xu WL, Gao FH, Zhang HH, Pei FP, Zhao L and Yang Y. 2014. Precambrian terrane within the Songnen-Zhangguangcai Range Massif, NE China:Evidence from U-Pb ages of detrital zircons from the Dongfengshan and Tadong groups. Gondwana Research, 26(1): 402-413 DOI:10.1016/j.gr.2013.06.017
Wang W, Tang J, Xu WL and Wang F. 2015. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, Northeast China:Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt. Lithos, 218-219: 73-86 DOI:10.1016/j.lithos.2015.01.012
Wang ZW, Xu WL, Pei FP, Guo P, Wang F and Li Y. 2017. Geochronology and geochemistry of early Paleozoic igneous rocks from the Zhangguangcai Range, northeastern China:Constraints on tectonic evolution of the eastern Central Asian Orogenic Belt. Lithosphere, 9(5): 803-827 DOI:10.1130/L639.1
Wilde SA, Zhang XZ and Wu FY. 2000. Extension of a newly identified 500Ma metamorphic terrane in Northeast China:Further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 328(1-2): 115-130 DOI:10.1016/S0040-1951(00)00180-3
Wilde SA, Wu FY and Zhang XZ. 2003. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 122(1-4): 311-327 DOI:10.1016/S0301-9268(02)00217-6
Wilde SA, Wu FY and Zhao GC. 2010. The Khanka Block, NE China, and its significance for the evolution of the Central Asian Orogenic Belt and continental accretion. Geological Society, London, Special Publications, 338(1): 117-137 DOI:10.1144/SP338.6
Wilson M. 1989. Igneous Petrogenesis. Netherlands: Springer
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30 DOI:10.1016/j.jseaes.2010.11.014
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395 DOI:10.2475/ajs.304.4.370
Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M and Chen HL. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia:Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507 DOI:10.1146/annurev-earth-060614-105254
Xie HQ, Zhang FQ, Miao LC, Chen FK and Lin DY. 2008a. Zircon SHRIMP U-Pb dating of the amphibolite from "Heilongjiang Group" and the granite in Mudanjiang area, NE China, and its geological significance. Acta Petrologica Sinica, 24(6): 1237-1250 (in Chinese with English abstract)
Xie HQ, Miao LC, Chen FK, Zhang FQ and Liu DY. 2008b. Characteristics of the "Mashan Group" and zircon SHRIMP U-Pb dating of granite in Muling area, southeastern Heilongjiang Province, China:Constrains on crustal evolution of the southernmost of Jiamusi Massif. Geological Bulletin of China, 27(12): 2127-2137 (in Chinese with English abstract)
Xu GY. 1993. The tectonic evolution of Paleo-Asiatic Ocean in the Northeast Asia Area. Jilin Geology, 12(3): 1-8 (in Chinese with English abstract)
Xu P, Wu FY, Xie LW and Yang YH. 2004. Hf isotopic compositions of the standard zircons for U-Pb dating. Chinese Science Bulletin, 49(15): 1642-1648 DOI:10.1007/BF03184136
Xu T, Xu WL, Wang F, Ge WC and Sorokin AA. 2018. Geochronology and geochemistry of Early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East:Petrogenesis and tectonic implications. Lithos, 300-301: 105-120 DOI:10.1016/j.lithos.2017.12.004
Xu WL, Wang QH, Wang DY, Guo JH and Pei FP. 2006. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China:Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences, 27(4): 454-464 DOI:10.1016/j.jseaes.2005.03.010
Xu WL, Ji WQ, Pei FP, Meng E, Yu Y, Yang DB and Zhang XZ. 2009. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China:Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34(3): 392-402 DOI:10.1016/j.jseaes.2008.07.001
Xu WL, Sun CY, Tang J, Luan JP and Wang F. 2019. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract)
Yang H, Ge WC, Zhao GC, Dong Y, Bi JH, Wang ZH, Yu JJ and Zhang YL. 2014. Geochronology and geochemistry of Late Pan-African intrusive rocks in the Jiamusi-Khanka Block, NE China:Petrogenesis and geodynamic implications. Lithos, 208-209: 220-236 DOI:10.1016/j.lithos.2014.09.019
Yang H, Ge WC, Zhao GC, Yu JJ and Zhang YL. 2015. Early Permian-Late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications. Gondwana Research, 27(4): 1509-1533 DOI:10.1016/j.gr.2014.01.011
Yang H, Ge WC, Zhao GC, Bi JH, Wang ZH, Dong Y and Xu WL. 2017. Zircon U-Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan region, NE China:Constraints on the high-grade metamorphism and tectonic affinity of the Jiamusi-Khanka Block. Lithos, 268-271: 16-31 DOI:10.1016/j.lithos.2016.10.017
Yang H, Ge WC, Bi JH, Wang ZH, Tian DX, Dong Y and Chen HJ. 2018. The Neoproterozoic-Early Paleozoic evolution of the Jiamusi Block, NE China and its East Gondwana connection:Geochemical and zircon U-Pb-Hf isotopic constraints from the Mashan Complex. Gondwana Research, 54: 102-121 DOI:10.1016/j.gr.2017.10.002
Yang JH, Wu FY, Shao JA, Wilde SA, Xie LW and Liu XM. 2006. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352 DOI:10.1016/j.epsl.2006.04.029
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Zen EA. 1986. Aluminum enrichment in silicate melts by fractional crystallization:Some mineralogic and petrographic constraints. Journal of Petrology, 27(5): 1095-1117 DOI:10.1093/petrology/27.5.1095
Zhang XM, Xu WL, Sun CY, Xu T and Wang F. 2018. Crustal accretion and reworking within the Khanka Massif:Evidence from Hf isotopes of zircons in Phanerozoic granitoids. Journal of Earth Science, 29(2): 255-264
Zhao S, Xu WL, Wang W, Tang J and Zhang YH. 2014. Geochronology and geochemistry of Middle-Late Ordovician granites and gabbros in the Erguna Region, NE China:Implications for the tectonic evolution of the Erguna Massif. Journal of Earth Science, 25(5): 841-853 DOI:10.1007/s12583-014-0476-9
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China:Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246 DOI:10.1016/j.tecto.2009.08.009
Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Wang H and Zeng WS. 2010. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia:An intriguing dilemma. Journal of Geodynamics, 50(3-4): 300-317 DOI:10.1016/j.jog.2010.02.004
Zhou JB, Zeng WS, Cao JL, Han J and Guo XD. 2012. The tectonic framework and evolution of the NE China:From ~500Ma to ~180Ma. Journal of Jilin University (Earth Science Edition), 42(5): 1298-1316 (in Chinese with English abstract)
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377 DOI:10.1016/j.gr.2012.05.012
Zonenshain LP, Kuzmin MI, Natapov LM and Page BM. 1990. Geology of the USSR: A Plate-Tectonic Synthesis. Geodynamic Monograph, 21. Washington, DC: American Geophysical Union
曹熹, 党增欣, 张兴洲, 姜继圣, 王洪德. 1992. 佳木斯复合地体. 长春: 吉林科学技术出版社, 37-44.
郭洪宇. 2010.中国东北东部与俄罗斯毗邻地区大地构造单元划分与对比.硕士学位论文.长春: 吉林大学
郝文丽, 许文良, 王枫, 唐杰, 徐美君, 高福红. 2014. 张广才岭"新元古代"一面坡群的形成时代:来自岩浆锆石和碎屑锆石U-Pb年龄的制约. 岩石学报, 30(7): 1867-1878.
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社, 1-734.
吉林省地质矿产局. 1988. 吉林省区域地质志. 北京: 地质出版社, 1-698.
吉林省地质矿产局. 1997. 吉林省岩石地层. 武汉: 中国地质大学出版社, 1-324.
敬海鑫, 孙德有, 苟军, 武鹏飞, 王天豪, 郭洪宇, 柳小明, 胡兆初. 2015. 兴凯地块南部花岗岩年代学、地球化学及Hf同位素特征. 地球科学, 40(6): 982-994.
李锦轶, 牛宝贵, 宋彪, 徐文学, 张雨红, 赵子然. 1999. 长白山北段地壳的形成与演化. 北京: 地质出版社.
李伟民, 刘永江, Takasu A, 赵英利, 温泉波, 郭新传, 张丽. 2014. 黑龙江依兰地区蓝片岩的变质演化P-T-t轨迹. 岩石学报, 30(10): 3085-3099.
刘建峰, 迟效国, 董春艳, 赵芝, 黎广荣, 赵院冬. 2008. 小兴安岭东部早古生代花岗岩的发现及其构造意义. 地质通报, 27(4): 534-544. DOI:10.3969/j.issn.1671-2552.2008.04.010
栾金鹏. 2018.松嫩-张广才岭地块东缘新元古代花岗质岩石: 年代学、地球化学及其构造意义.硕士学位论文.长春: 吉林大学
乔健. 2015.佳木斯地块北部早古生代沉积建造的时代与物源: 来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约.硕士学位论文.长春: 吉林大学
邵济安, 唐克东. 1995. 中国东北地体与东北亚大陆边缘演化. 北京: 地震出版社.
孙巍, 迟效国, 宋维民, 赵芝, 刘建峰, 潘世语, 张蕊, 权京玉, 司秋亮, 那福超, 马永非, 臧延庆, 刘英才. 2017. 对兴安地块前寒武纪变质基底的质疑. 地质论评, 63: 293-294.
颉颃强, 张福勤, 苗来成, 陈福坤, 刘敦一. 2008a. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250.
颉颃强, 苗来成, 陈福坤, 张福勤, 刘敦一. 2008b. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约. 地质通报, 27(12): 2127-2137.
徐公愉. 1993. 东北亚地区古亚洲洋的构造演化特点. 吉林地质, 12(3): 1-8.
许文良, 孙晨阳, 唐杰, 栾金鹏, 王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学(中国地质大学学报), 44(5): 1620-1646.
周建波, 曾维顺, 曹嘉麟, 韩杰, 郭晓丹. 2012. 中国东北地区的构造格局与演化:从500Ma到180Ma. 吉林大学学报(地球科学版), 42(5): 1298-1316.