岩石学报  2020, Vol. 36 Issue (3): 665-684, doi: 10.18654/1000-0569/2020.03.03   PDF    
佳木斯地块构造演化
李伟民1,2, 刘永江1,3,4, 赵英利5, 冯志强6, 周建平1, 温泉波1,2, 梁琛岳1,2, 张夺1     
1. 吉林大学地球科学学院, 长春 130061;
2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130026;
3. 中国海洋大学海底科学与探测技术教育部重点实验室, 海洋高等研究院, 海洋地球科学学院, 青岛 266100;
4. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
5. 吉林大学古生物学与地层学研究中心, 长春 130026;
6. 太原理工大学地球科学与工程系, 太原 030024
摘要: 佳木斯地块位于中亚造山带东段,是我国东北地区一个重要的大地构造单元,古生代以来经历了复杂的多构造体系叠合的演化过程。本文在总结近二十年已报导的相关研究成果基础上,结合笔者近年工作,探讨了佳木斯地块的基底属性和来源,重塑了佳木斯地块西缘碰撞拼贴,以及东缘俯冲-增生的构造演化过程。研究表明,佳木斯地块具有亲冈瓦纳大陆的构造属性,裂离后经历了长距离的北漂。与松辽地块先后两次拼合,首次发生于中志留世(~425Ma),在晚二叠世前后(~250Ma)沿原缝合带位置发生裂解,拉张出新的有限洋盆(牡丹江洋),并于侏罗纪(185~145Ma)与松辽地块沿牡丹江-依兰构造带再次碰撞拼贴,形成了高压变质的黑龙江增生杂岩带。而佳木斯地块东缘受晚石炭世-晚三叠世(305~250Ma)泛大洋的俯冲-增生事件影响,形成了跃进山增生杂岩,随后于中侏罗世-早白垩世(165~128Ma)在古太平洋板块的西向俯冲作用下,形成了饶河增生杂岩。因此,佳木斯地块的构造演化既涉及了晚古生代古亚洲洋构造域的消亡,又经历了中生代古太平洋构造域的叠加与改造,而黑龙江杂岩的形成标志着古太平洋构造体制与古亚洲洋构造体制的转换始于晚三叠世(~210Ma)。
关键词: 佳木斯地块    中亚造山带    基底属性    俯冲-增生    古亚洲洋构造体制    古太平洋构造体制    
Tectonic evolution of the Jiamusi Block, NE China
LI WeiMin1,2, LIU YongJiang1,3,4, ZHAO YingLi5, FENG ZhiQiang6, ZHOU JianPing1, WEN QuanBo1,2, LIANG ChenYue1,2, ZHANG Duo1     
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. MNR Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Changchun 130026, China;
3. MOE Key Lab of Submarine Geoscience and Prospecting Techniques, Institute for Advanced Ocean Study, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China;
4. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
5. Research Center of Paleontology & Stratigraphy, Jilin University, Changchun 130026, China;
6. Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract: The Jiamusi Block, located in the eastern part of the Central Asian Orogenic Belt (CAOB), is one of the important tectonic units in Northeast China (NE China). It has experienced a complicated evolutional history corresponding to the overprinting processes of multiple tectonic regimes since Paleozoic. By systematically reviewing of the previous works in the past two decades, and combining with our recent work, this paper discusses the basement properties and origin of the Jiamusi Block, and reconstructs the tectonic model of amalgamation process in the western margin of the Jiamusi Block, as well as the subduction-accretion event developed in its eastern margin. The results presented here, show that the Jiamusi Block was likely a part of the Gondwana Super-continent and drifted a long distance to the north after dispersion of the Gondwana. The Jiamusi Block probably had been docked to the Songliao Block in the Mid-Silurian (ca.425Ma), but broken apart from the Songliao Block in the Late-Permian (ca.250Ma), forming a new narrow ocean basin (so-called Mudanjiang Ocean), and finally collided back again in the Jurassic (185~145Ma) along the Mudanjiang-Yilan suture zone, linking to the formation of the high-P/T metamorphic Heilongjiang Complex. In addition, the eastern margin of the Jiamusi Block involved two subduction-accretion processes, that are the Panthalassa Plate subduction occurred in the Late-Carboniferous to Late-Triassic (305~250Ma), forming the Yuejinshan accretionary complex, and followed by the Paleo-Pacific Plate subduction in the Mid-Jurassic to Early Cretaceous (165~128Ma), forming the Raohe accretionary complex. In summary, the tectonic evolution of the Jiamusi Block is not only related to the extinction of the Paleozoic Paleo-Asian tectonic domain, but also related to the superposition of the Mesozoic Paleo-Pacific tectonic domain. More significantly, the formation of the Heilongjiang Complex possibly reveals that the transformation of the Paleo-Pacific tectonic system and the Paleo-Asian tectonic system took place in the Late-Triassic (ca.210Ma).
Key words: Jiamusi Block    Central Asian Orogenic Belt    Basement properties    Subduction-accretion    Paleo Asian tectonic domain    Paleo-Pacific tectonic domain    

中亚造山带(Central Asian Orogenic Belt; CAOB)是西伯利亚克拉通与塔里木-华北克拉通之间一条巨型的EW向展布的增生型造山带,也是全球显生宙以来大陆增生与改造最显著的区域(Şengör et al., 1993, 2018; Şengör and Natal’in, 1996; Li, 2006; Xiao et al., 2009)。造山带全长约6000km,宽500~1100km,西起乌拉尔山地区,经哈萨克斯坦、中国西北、蒙古、中国东北,一直延伸至俄罗斯远东地区的鄂霍茨克海一带(图 1a)。中亚造山带蕴含着复杂的大陆增生和陆内改造等相关科学问题,使其成为探索大陆动力学问题的绝佳场所(Jahn et al., 2000; Xiao et al., 2003; 肖文交等, 2008, 2019; 徐备等, 2014; Wilde, 2015; Liu et al., 2017b; Zhou et al., 2018)。

图 1 中亚造山带构造简图(a, 据Şengör et al., 1993; Li, 2006)和中国东北地区大地构造单元划分(b, 据Liu et al., 2017b) EB-额尔古纳地块;XB-兴安地块;SB-松辽地块;JB-佳木斯地块;WT-完达山增生地体;NMNCC-华北北缘增生带;XXS-新林-喜桂图缝合带;HHS-黑河-贺根山缝合带;MYS-牡丹江-依兰缝合带;XCYS-西拉木伦-长春-延吉缝合带 Fig. 1 Tectonic map showing the subdivisions of the CAOB (a, after Şengör et al., 1993; Li, 2006) and NE China (b, after Liu et al., 2017b)

佳木斯地块位于黑龙江省东部,是我国东北地区一个重要的大地构造单元。大地构造属性上,佳木斯地块位于中亚造山带东段,挟持于西伯利亚克拉通,华北克拉通以及太平洋板块之间,是三大板块构造域相互作用的场所。该区域构造演化复杂多样,既受到古生代古亚洲洋构造域的影响,也经历了中生代古太平洋构造域的叠加与改造(Wu et al., 2007; Zhou et al., 2009; Liu et al., 2017b)。地块西侧为松辽地块(或松嫩地块、松嫩-张广才岭地块),东面与完达山地体(或那丹哈达地体)相连,向北延入俄罗斯境内的布列亚地块,周边以断层为界:西侧为牡丹江断裂,东侧为跃进山断裂,南东侧为敦化-密山断裂,北西侧佳木斯-依兰断裂(图 1),由此曹熹等(1992)也将其称之为“佳木斯复杂地体”。

佳木斯地块是一个具有典型基底-盖层双层结构的微陆块,出露的地质单元主要包括麻山杂岩(原“麻山群”)、黑龙江杂岩(原“黑龙江群”)、古-中生界花岗质岩石及沉积岩系(图 2; 白景文等, 1988; 黑龙江省地质矿产局, 1993; Wu et al., 2007; 周建波等, 2018)。其中,麻山杂岩被认为是佳木斯地块的变质基底部分,由一套以含石墨、含磷、富铝为特征,夹大理岩、钙硅酸盐岩及石英片岩并经历高角闪岩相至麻粒岩相变质的孔兹岩系组成(姜继圣, 1992, 1993; Guo et al., 2014)。锆石SHRIMP U-Pb年龄表明麻山杂岩存在500Ma的晚泛非期高级变质事件(Wilde et al., 2001; 吴福元等, 2001; Zhou et al., 2011)。而黑龙江杂岩是一套经蓝片岩相-绿帘角闪岩相-绿片岩相变质作用形成的泥质片岩、变质基性岩、超基性岩、变质硅质岩及大理岩并受强变形作用影响,一直被认为是佳木斯地块与松辽地块拼贴过程中形成的蛇绿构造混杂岩(张兴洲和Sklyarov, 1992; 叶慧文等, 1994; Wu et al., 2007; Li et al., 2009, 2010; Zhou et al., 2009)。

图 2 佳木斯地块地质简图 Fig. 2 Geological map of the Jiamusi Block

佳木斯地块岩浆活动强烈(图 2),早古生代花岗质岩石是泛非期(541~484Ma)岩浆产物,与麻山杂岩共同组成佳木斯地块的变质结晶基底。晚石炭世-二叠纪(305~250Ma)与晚三叠世-白垩纪(223~88Ma)岩浆岩被认为是地块不同演化阶段受古亚洲洋和古太平洋构造域分别作用的结果(Wu et al., 2011; 孙明道, 2013; Bi et al., 2014; Yang et al., 2015, 2018; Sun et al., 2015; Liu et al., 2017a; 毕君辉, 2018; 唐杰等, 2018)。古-中生界沉积盖层主要分布于佳木斯地块东缘,自下而上包括两个构造层,底部为下泥盆统-下石炭统海相、海陆交互相碎屑沉积直接不整合覆盖早古生代花岗岩,之上发育上石炭统-下白垩统陆相碎屑岩沉积和火山岩系(黑龙江省地质矿产局, 1993; 王成文等, 2008; 周建波等, 2018)。

近二十多年来基于板块构造理论为指导,对佳木斯地块的构造格架及演化过程前人已经开展了大量的研究并取得了丰硕成果,但仍存在一些争议未能解决,包括(1)佳木斯地块归属问题:~500Ma的泛非期基底为示踪地块的归属提供了可参考的线索,但其究竟是源自中亚造山带本身的微陆块(黑龙江省地质矿产局, 1993; Zhou et al., 2009; Meng et al., 2010),还是来自西伯利亚古板块南缘Sayang-Baikal增生造山带的一部分(Zhou et al., 2010a),甚至是冈瓦纳超大陆的一部分(Wilde et al., 2001; Wilde, 2003; Wu et al., 2007);(2)佳木斯地块与松辽地块的拼合时限与过程的争议:黑龙江杂岩的形成揭示了两地块缝合过程,目前存在的观点认为两地块可能于早古生代就已经形成统一陆块(曹熹等, 1992; 张兴洲和Sklyarov, 1992; 叶慧文等, 1994; 颉颃强等, 2008);或是在侏罗纪受古太平洋板块俯冲驱动下两地块才开始拼合(Wu et al., 2007; Li et al., 2009; Zhou et al., 2009);亦或是两者之间经历了复杂的拼合-裂解-再拼合的演化过程(许文良等, 2012; Liu et al., 2017b; Li et al., 2019b);(3)关于完达山增生地体的演化,跃进山-饶河增生杂岩的发现证实了佳木斯地块东缘俯冲-增生过程。但跃进山杂岩(270~311Ma)与饶河杂岩(130~170Ma)截然不同的就位时间,被认为可能形成于不同的构造背景。其中,跃进山杂岩是佳木斯与兴凯地块俯冲作用的结果(曾振等, 2018),或是古太平洋洋内俯冲形成的增生岛弧(Bi et al., 2015; Sun et al., 2015; 王继尧等, 2016)。然而饶河杂岩则普遍被认为是古太平洋板块向欧亚大陆东缘之下俯冲-增生的产物(程瑞玉等, 2006; Zhou and Li, 2017; 孙明道等, 2018; Zhang et al., 2020)。

上述诸多遗留地质问题严重地制约了对佳木斯地块构造演化过程,乃至中亚造山带东端复杂构造体系下古-中生代演化与叠加历史的认识。鉴于此,本文在收集、综述大量前人研究成果的基础上,结合笔者近年来的工作,分析了佳木斯地块的基底属性、归属问题;开展了佳木斯地块东、西两侧岩石-构造组合研究,确立了古-中生代佳木斯地块与其西侧松辽地块的拼贴演化及晚古生代以来东缘的俯冲-增生过程。该研究将为了解中亚造山带东段的构造演化提供重要线索。

1 佳木斯地块基底性质及归属

关于佳木斯地块基底岩石组成、构造样式、变质作用、地球化学特征及同位素地质年代学等方面都取得了长足进展,地质学者们一致认为麻山杂岩应作为佳木斯地块基底的重要物质组成(Wu et al., 2007; Zhou and Wilde, 2013; Liu et al., 2017b; 许文良等, 2019),下面对其进行简要的描述。

1.1 麻山杂岩组成

原称为“麻山群”或“麻山岩系”,现称为“麻山杂岩”的变质岩是一套与孔兹岩建造相当的高级变质-沉积岩系,主要分布在鸡西、勃利、桦南及萝北等地区(图 2)。曹瑞骥等(1982)最早建立了“麻山群”完整的沉积序列,将其至下而上依次分为西麻山组、柳毛组、建堂组和马家街组。随后Yan et al. (1989)认为“麻山群”与“黑龙江群”可能构成双变质带;曹熹等(1992)又将两群作为两个独立的地体,并认为两者于元古宙拼合形成佳木斯地体。Wilde et al.(1999, 2000, 2001)系统地分析了麻山群的岩石类型、变质作用和年代格架,提出简单的地层层序概念并不适用于麻山群,终将其命名为“麻山杂岩”,后被地质工作者广泛采纳。

麻山杂岩主要由含碳-富铝片麻岩系列(含墨石榴堇青片麻岩和石榴夕线片麻岩等)、大理岩系列(橄榄大理岩、透辉大理岩、石榴金云母大理岩和方柱透辉石岩)、麻粒岩-斜长角闪岩系列(二辉麻粒岩、紫苏麻粒岩和斜长角闪岩)、花岗质片麻岩及少量深成侵入岩组成。麻山杂岩经历了高角闪岩相-麻粒岩相的峰期变质作用(700~850℃和0.5~0.8GPa),并伴随着近等温降压(ITD)的退变质过程,代表了典型的造山型顺时针P-T演化轨迹(姜继圣, 1992; Wilde et al., 1999; 任留东等, 2012; Guo et al., 2014)。此外,对麻山杂岩开展了大量LA-ICP-MS和SHRIMP锆石U-Pb年龄分析(宋彪等, 1994; Wilde et al., 1999, 2000, 2003; Zhou et al., 2010b; 任留东等, 2012; Yang et al., 2014),认为麻山杂岩包含早古生代(530~510Ma)花岗质岩石,并于510~490Ma发生了麻粒岩相变质作用,受泛非期岩浆和变质事件共同影响。最近Yang et al.(2017, 2018)在麻山杂岩中发现了新元古代岩浆锆石(755~898Ma),认为可能与罗迪尼亚超大陆的裂解有关。同时Sorokina et al. (2016)在布列亚地块首次发现了933Ma的岩浆事件,推断佳木斯-布列亚地块的基底年龄可延伸至新元古代早期。上述精确的岩浆-变质事件地质年代学格架的建立,推翻了原本认为佳木斯地块存在古元古代基底的观点(党延松和李德荣, 1993),也为地质学者进一步通过全球对比开展佳木斯地块的归属研究,重建古板块构造格局提供了重要线索。

1.2 佳木斯地块的归属问题

Wilde et al.(1997, 1999, 2000)最早提出麻山杂岩中大面积发育的泛非期孔兹岩与冈瓦纳超大陆中的南极洲、西澳大利亚、印度与斯里兰卡板块的孔兹岩系具有明显相似特征,暗示了在冈瓦纳超大陆汇聚过程中上述板块可能曾拼接在一起并共同参与了泛非运动。Zhou et al. (2009)认为黑龙江杂岩中碎屑锆石U-Pb年龄(290~330Ma、420~530Ma、670~910Ma及>1065Ma)与CAOB的年龄组成几乎一致,提出了佳木斯可能是来自于CAOB内部,二叠纪时从松辽地块上裂解出来的原地微陆块。Wu et al. (2011)强调了发育在佳木斯地块上的一些新元古代花岗质岩石在兴安、松辽和辽源地块上并不存在,否定了佳木斯地块是从松辽地块上裂解下来的这一观点。随后Zhou et al. (2011)又系统的总结了分布于中国东北额尔古纳、兴安、松辽、佳木斯和兴凯地块上发育的泛非期高级变质岩及岩浆岩(结晶基底,图 1),发现其总体沿虎头、鸡西、萝北、兴华渡口和漠河一线断续分布,出露范围>1300km,命名为“中国东北泛非期孔兹岩带”。并将该带与西伯利亚克拉通南缘的Sayang-Baikal带进行对比,认为中国东北各微地块均具有西伯利亚板块的亲缘属性,伴随着蒙古-鄂霍茨克洋的打开,最终于450~300Ma才从西伯利亚南缘裂离出来(Zhou and Wilde, 2013; Wilde, 2015)。最近Yang et al. (2017)认为佳木斯地块上发育的新元古代岩浆活动,其形成构造背景和时代均与同属于冈瓦纳超大陆的印度南部岩浆活动类似,由此推断佳木斯地块新元古代时与印度南部相连。

关于地块的归属问题,古地磁资料可提供很好的佐证,杨惠心等(1998)认为东北地区几个主要地块在早古生代早期均位于南纬 < 20°区域,所处的古纬度与西伯利亚(Smethurst et al., 1998)、华北、塔里木(任收麦和黄宝春, 2002; Huang et al., 2018)、刚果和中澳大利亚板块(Meert et al., 1995)相似。Zhao et al. (2018)通过可靠的地质学、古地磁学及古生物学证据重塑了罗迪尼亚大陆裂解后东亚大陆各地块的古地理位置,认为新元古代-早寒武世时(580~520Ma)西伯利亚板块作为独立的构造单元处于冈瓦纳超大陆西北缘或西北距离不远的位置,而东北地块群(包括额尔古纳、兴安、松辽和佳木斯地块)挟持于西伯利亚板块与冈瓦纳超大陆之间,且更靠近西伯利亚板块。

松辽地块内西伯利亚寒武纪动物群勒那阶三叶虫Proerbia sinensis sp.化石的发现(段吉业和安素兰, 2001),也证实了西伯利亚板块的亲缘属性。此外,基于古大陆重建的认识(Kravchinsky et al., 2001; Torsvik and Cocks, 2017; Zhao et al., 2018),早寒武纪时西伯利亚板块与冈瓦纳大陆主体部分虽然存在古大洋的分割(古亚洲洋?),但在超大陆(冈瓦纳)形成过程的汇聚背景下共同经历~500Ma构造运动也是合理的,由此仅仅从相似的(泛非期)构造-岩浆-变质事件来确定其准确的古地理位置仍存在难度,但上述诸多的证据依然更支持佳木斯地块应归属于冈瓦纳超大陆体系。综上,本文认为佳木斯地块可能与华北、华南、塔里木板块,甚至西伯利亚板块一同位于冈瓦纳超大陆的西北缘,连接澳大利亚、印度和东南极洲大陆(图 3),上述板块共同经历了泛非期构造事件(在西伯利亚板块南缘称之为“萨拉伊尔运动”),随后伴随着冈瓦纳超大陆的裂解,依次裂离,并向北漂移。

图 3 早寒武纪冈瓦纳超大陆重建模型(据Zhou and Li, 2017; Torsvik and Cocks, 2017; Zhao et al., 2018; Huang et al., 2018修改) Fig. 3 Supercontinent reconstruction of the Gondwana during Early Cambrian (after Zhou and Li, 2017; Torsvik and Cocks, 2017; Zhao et al., 2018; Huang et al., 2018)
2 佳木斯地块与松辽地块的拼贴过程 2.1 缝合带位置

牡丹江断裂带传统上被认为是佳木斯地块与松辽地块的缝合线位置(黑龙江省地质矿产局, 1993),但在地表浅部构造层次并没有任何明确的构造证据。二十世纪九十年代后,地质学者先后发现了近SN向沿牡丹江断裂带以东萝北-嘉荫、依兰-桦南和牡丹江-穆棱一带断续出露的蓝片岩相高压变质-变形改造的黑龙江杂岩,被公认为是佳木斯地块与松辽地块碰撞拼贴过程中形成的类似蛇绿岩套的构造混杂岩(白景文等, 1988; 曹熹等, 1992; 张兴洲, 1992; Wu et al., 2007; Zhou et al., 2009)。随着深部地球物理探测工作的开展,依据重力异常(张兴洲等, 2012)、深反射地震(张兴洲等, 2015)和电法勘探(梁宏达等, 2017)等解译资料,不仅识别了平面上明显的SN向线性构造带与剖面上地壳的深层结构特点(图 4),也为两地块间俯冲板片的下插深度和俯冲极性提供很好的制约(后文详细讨论)。此外,电性结构剖面显示了以牡丹江断裂为界明显划分了两个不同的地壳结构单元,即松辽地块与佳木斯地块(图 4a)。本文将该缝合带称为牡丹江-依兰缝合带。

图 4 桦南-巴彦二维电性结构模型构造解译图(a, 据梁宏达等, 2017)及深反射地震剖面地质解译图(b, 据张兴洲等, 2015) 剖面位置见图 2所示.F1-佳木斯-依兰断裂;F2-牡丹江断裂;S1-白垩纪-新生代沉积层;S2-晚古生代沉积层及不同时代火成岩;S3-松辽地块变质结晶基底;S4-松辽地块岩石圈地幔;J1-佳木斯地块角闪岩相变质结晶岩;J2-佳木斯地块麻粒岩相变质结晶岩;J3-佳木斯地块岩石圈地幔;H-黑龙江俯冲增生杂岩;Moho-莫霍面;CM-异常莫霍面叠置区;LM-岩石圈地幔内加积楔.红色箭头代表为可能的俯冲极性 Fig. 4 Interpretations of the electrical structure model derived from 2D inversion of the MT data (a, after Liang et al., 2017) and deep reflection seismic profile (b, after Zhang et al., 2017) of Huanan-Bayan area

详细的野外宏观构造解析发现,牡丹江-依兰缝合带内构造线的形迹和地质体的展布方向总体呈NE走向,这与SN向缝合带的观点相悖。李锦轶等(2019)结合黑龙江杂岩的构造变形及黑龙江杂岩被260Ma花岗岩侵入这一特点,认为前人关于分隔松辽地块与佳木斯地块的中生代缝合带认识,是不符合实际情况的。众所周知,牡丹江-依兰缝合带被NE向展布的左行走滑断裂(佳木斯-依兰断裂和敦化-密山断裂)所截(图 2)。精确的低温热年代学证据表明敦化-密山断裂(~161Ma; 孙晓猛等, 2008)和佳木斯-依兰断裂(174~164Ma; 高万里等, 2018)的活动时间与黑龙江杂岩高压变质时间(145~184Ma; 赵英利等, 2010; Li et al., 2009, 2011)基本一致。由此我们认为中生代时佳木斯地块与松辽地块在古太平洋板块俯冲驱动下的拼合过程,可能同时促发了两走滑断裂的活动。此外,前人研究给出了两断裂的走滑错距为150~250km(李碧乐等, 2002; 王小凤等, 2005; Liu et al., 2017a)。如果扣除后期走滑错移量影响,那么原本NE走向的缝合带与现今带内构造线产状就基本吻合了。当然我们也不能排除缝合带内现今的构造形迹是混杂堆积形成后再受走滑断裂活动所控制,这些认识仍需要开展大量的研究工作。

2.2 佳木斯地块西缘构造带 2.2.1 黑龙江杂岩带

黑龙江杂岩最早被认为是一套中-上元古宙的变质-沉积地层(党延松和李德荣, 1993),与佳木斯地块麻粒岩相变质的麻山群构成花岗-绿岩带(赵春荆等, 1996),共同构成了佳木斯地块的前寒武纪结晶基底。但随着含放射虫硅质岩(张兴洲, 1992)和含几丁虫千枚岩(李锦轶等, 1999)的发现,证实了黑龙江群并非变质地层,终被认为是具有洋壳性质的蛇绿岩套岩石组合。区域调查研究表明黑龙江杂岩主要由蓝片岩、绿片岩、云母片岩、长英质糜棱岩、超基性岩、变质硅质岩及大理岩并受强变形作用改造的构造混杂岩组成(张兴洲和Sklyarov, 1992; 叶慧文等, 1994; Wu et al., 2007; Zhou et al., 2009)。通过传统的地质温压计(Zhou et al., 2009; 孔凡梅等, 2009; 赵英利等, 2010; 李伟民等, 2014)和变质视剖面图(韩晓萌等, 2018; Li et al., 2019b)方法均获得了绿帘-蓝片岩相的峰期变质条件(T=350~550℃,P=1.0~1.4GPa)和顺时针的造山带型P-T演化轨迹。Li et al. (2019b)认为这种P-T轨迹可能代表了相对年轻的大洋板片俯冲和随后的陆-陆碰撞过程。而黑龙江蓝片岩的地球化学特征也表明其原岩属性以亚碱性玄武岩为主,揭示了其形成环境为大洋板内的洋岛玄武岩(OIB)和大洋板块的洋中脊(E-MORB)构造环境(Zhou et al., 2009)。

关于黑龙江杂岩的形成时代,前人最早对带内蓝片岩全岩与蓝闪石单矿物的40Ar/39Ar年龄(600~645Ma)、全岩的Rb-Sr年龄(415Ma)以及斜长角闪岩和花岗岩中锆石U-Pb年龄(437Ma)的测试分析,认为这套构造岩形成于古生代(曹熹等, 1992; 叶慧文等, 1994; 张兴洲和Sklyarov, 1992; 颉颃强等, 2008)。但由于蓝闪石矿物本身不含有K,并不适用于Ar-Ar年代学测试,因此前人相关的年龄有待于商榷。最新一些多硅白云母与钙质角闪石40Ar/39Ar年龄的获得(Wu et al., 2007; Li et al., 2009, 2011; 赵亮亮和张兴洲, 2011; Zhu et al., 2017; Ge et al., 2017),准确的限定了侏罗纪(145~185Ma)是黑龙江杂岩的高压变质作用形成时代,原因在于云母与角闪石Ar同位素封闭体系的温度恰好与黑龙江杂岩蓝片岩相峰期变质的温度相当。而大量针对黑龙江杂岩中碎屑锆石U-Pb年龄的研究(Zhou et al., 2009; 李旭平等, 2010; 赵亮亮, 2011; Li et al., 2011; Zhu et al., 2015, 2017; Ge et al., 2016),表明其原岩具有捕获的古老锆石(>1000Ma)、麻山杂岩(~500Ma峰值年龄)以及佳木斯地块周边晚二叠-早三叠世花岗质岩石(~250Ma峰值年龄)的锆石年龄信息。同时最年轻的锆石年龄(213~199Ma; Zhou et al., 2009; Li et al., 2011)被认为至晚三叠世末期佳木斯地块与松辽地块之间古洋盆仍然存在。Zhu et al.(2015, 2017)获得了更为年轻的碎屑锆石U-Pb年龄(142~186Ma),甚至认为古洋盆在早白垩世早期仍未关闭,但目前尚存在较多质疑。此外,黑龙江杂岩中的一些变枕状玄武岩、变堆晶辉长岩等代表残余洋壳的岩石组合给出了250~220Ma的结晶年龄(吕长禄等, 2016),也证实了二叠纪末-早三叠世古洋盆的存在。

2.2.2 张广才岭构造混杂岩带

松辽地块东缘发育的原定义的“东风山群”、“张广才岭群”和“塔东群”并不是一套典型的元古界沉积-火山岩系,而被公认为一套由不同时代地质体(新元古-早中生代)混杂堆积而形成的构造杂岩带(邵济安等, 2013; 王枫, 2013; Yu et al., 2013; 高福红等, 2013; Wang et al., 2014),主要岩石组合包括二云母片岩、石英片岩、石英岩、大理岩、浅粒岩、花岗片麻岩、(斜长)角闪岩和绿片岩等。混杂岩带内碎屑锆石U-Pb年龄组成与黑龙江杂岩的碎屑锆石年龄基本相当,由此王枫(2013)认为这套混杂岩与松辽和佳木斯地块的碰撞-拼合有关,形成时代为晚三叠世-早侏罗世。邵济安等(2013)也认为张广才岭是一具有复杂基底的中生代造山带,包括了陆缘混杂带和陆缘弧岩浆岩带。其中,陆缘混杂带多保留了外来岩块(即高压-低温变质的玄武岩和残留的蛇绿岩块)和巨厚的浊积岩建造为主;而陆缘弧岩浆岩带以安山质火山活动为主,变质作用为低角闪岩相中压变质作用为主,脆-韧性变形作用较强,其上叠加了晚期NW向展布的流纹岩带。

目前许多地球化学特征和年代学证据表明,张广才岭一带至少发育早古生代和晚古生代-早中生代两期主要岩浆事件(图 5)。其中早古生代岩浆事件集中在510~420Ma(刘建峰等, 2008; Wang et al., 2016; 王志伟, 2017),主要为一套中-酸性侵入岩和少量火山岩,呈SN向出露于小兴安岭-张广才岭一带(图 2),包括石英二长岩-英云/花岗闪长岩-二长/正长花岗岩和英安岩-流纹岩组合,其成因与俯冲流体参与下地壳部分熔融相关,具有活动大陆弧岩浆特点,可能暗示了早古生代末的一次地体拼贴事件(王志伟, 2017)。相似的岩浆组合在牡丹江断裂另一侧的佳木斯地块内也零星出露(540~480Ma; Wilde et al., 2003; Wu et al., 2011; Bi et al., 2014; Yang et al., 2014)。然而,晚古生代-早中生代岩浆岩(290~180Ma)在小兴安岭-张广才岭一带分布面积更为广泛(Wu et al., 2011; Yu et al., 2012, 2013; Ge et al., 2017, 2019)。岩石组合复杂,即包括了高K钙碱性的石英二长岩-花岗闪长岩-二长/正长花岗岩和流纹岩组合,也包括了亚碱性基性-超基性岩组合(角闪石岩-橄榄/角闪辉长岩-辉长闪长岩)。值得关注的是,发育在早二叠世和晚三叠-早侏罗世的岩浆岩均具双峰式特点,被认为成因与伸展构造背景相关(Yu et al., 2012; 许文良等, 2012),但这两期岩浆事件的地球动力学机制尚存在较大分歧。

图 5 松辽地块、佳木斯地块及完达山增生地体内岩浆事件年龄 数据来源:程瑞玉等, 2006; 刘建峰等, 2008; Wu et al., 2011; Zhang et al., 2011; Li et al., 2011; Yu et al., 2013; 孙明道, 2013; Zhou et al., 2014; Wang et al., 2014, 2015, 2016; Sun et al., 2015; Yang et al., 2015; Zhu et al., 2015; Bi et al., 2015; 周丽云等, 2015; 吕长禄等, 2016; 王继尧等, 2016; Ge et al., 2016, 2017, 2019; Liu et al., 2017a; 曾振, 2017; 曾振等, 2018; 孙明道等, 2018; Ji et al., 2019; Dong et al., 2019 Fig. 5 Ages distribution of magmatism from the Songliao Block, Jiamusi Block and Wandashan accretionary terrane
2.3 拼贴时间及演化过程

佳木斯地块与松辽地块的拼合时限及演化过程,目前仍是争议的焦点问题。两地块的演化是经历了一次俯冲碰撞事件(Wu et al., 2007; 颉颃强等, 2008; Zhou et al., 2009)?还是经历了拼贴-裂解-再拼贴的演化过程(许文良等, 2012; Liu et al., 2017b)?此外,关于两地块之间洋-陆俯冲的极性问题,普遍观点认为古大洋是向松辽地块之下俯冲(张兴洲和Sklyarov, 1992; Wu et al., 2011)。但最新Dong et al. (2019)通过对黑龙江杂岩带中角闪岩的研究,提出了牡丹江洋双向俯冲于佳木斯与松辽地块之下,两地块最终于侏罗纪拼合。

针对上述争议,结合前人已取得的岩石学、沉积学、构造地质学、地质年代学和地球化学成果和近年来笔者在区域内开展的研究,认为佳木斯地块与松辽地块应经历了复杂的拼贴-裂解-再拼贴的演化过程。首先,两地块初次聚合可能发生在早古生代,其相关的支持证据包括:(1)王成文等(2008)发现佳木斯地块与松辽地块下泥盆统沉积类型、沉积环境和古生物化石极为相似,并认为两者可能已构成统一的陆块;随后Meng et al. (2010)Chen et al. (2019)分别对两地块内发育的泥盆系-上石炭统碎屑锆石进行了U-Pb年龄测定,结果表明中-下泥盆统沉积后两地块的碎屑物质组成基本一致,均含有大量泛非期(麻山杂岩)碎屑物质,也证实了两地块在早泥盆世之前可能已拼合在一起。(2)小兴安岭-张广才岭内SN向出露的同造山-后造山背景下形成的早古生代(485~425Ma)花岗质岩石组合(刘建峰等, 2008; 许文良等, 2012; Wang et al., 2016),暗示了两地块在中志留世(~425Ma)完成碰撞拼贴。随后420~330Ma两地块均表现为岩浆活动寂静期(图 5),进入了稳定地块内沉积盖层发展阶段。(3)Cocks and Torsvik (2013)Zhao et al. (2018)基于古地磁资料和岩石组合特点提出的古大陆重建方案也认为在晚志留世(~420Ma)时佳木斯地块就与松辽地块拼接成统一的整体,并长时间停留于北纬30°附近的位置。我们将这一次汇聚事件归功于古亚洲洋内局部分支洋的关闭,并将两地块之间的古大洋称之为“黑龙江洋”(刘永江等, 2019)。

许文良等(2012, 2019)在松辽地块东缘发现了SN向展布的三叠纪(250~210Ma)双峰式火山岩,指示了伸展构造环境,由此认为两地块在三叠纪早期(~250Ma)可能沿牡丹江断裂发生了裂解事件,并形成了有限的洋盆。这一事实很好的解译了黑龙江蓝片岩的原岩为~245Ma的E-MORB和OIB性质的洋底玄武岩(黄映聪等, 2008; Zhou et al., 2009)。另外,从中-上二叠统碎屑锆石U-Pb年龄组成来分析,两地块中二叠世时还保持相似的碎屑物质组成,均具有~500Ma泛非期麻山杂岩的物源信息,而松辽地块上二叠统红山组沉积时却缺少该物源,也证实两地块在晚二叠世可能存在古地理隔绝(Chen et al., 2019)。由此,两地块在早古生代汇聚后在中生代早期又经历了一次裂解事件,新裂解的大洋可能是古太平洋的一个分支洋盆,称之为“牡丹江洋”(刘永江等, 2019)。

黑龙江杂岩内最年轻的碎屑锆石U-Pb年龄(213~199Ma; Zhou et al., 2009; Li et al., 2011)暗示在晚三叠-早侏罗世两地块间的洋盆仍然存在。而蓝片岩的形成标志着两地块再一次俯冲-碰撞过程,多硅白云母40Ar/39Ar年龄限定了峰期变质或随后的快速折返时代,也明确了两地块的拼合应发生在侏罗纪(185~145Ma; Wu et al., 2007; Li et al., 2009, 2011; 赵亮亮和张兴洲, 2011; Zhu et al., 2017; Ge et al., 2017)。该俯冲-碰撞的驱动力应归功于古太平洋板块的西向俯冲(Wu et al., 2007)。因此,黑龙江蓝片岩的形成应作为典型构造域的转换节点,标志着古亚洲洋构造域的结束和古太平洋构造域的开始(Zhou et al., 2009; 沈其韩和耿元生, 2012)。从空间上分析,牡丹江地区蓝片岩的形成时代(175~165Ma)比依兰地区(~145Ma)略早一些(Li et al., 2009),视乎暗示了“剪刀式”的闭合过程。新生的牡丹江洋是一个短命洋(许文良等, 2019),自形成到夭折仅仅50~70Ma,这也与笔者得到的P-T轨迹指示的一个年轻洋壳的俯冲变质过程相吻合(Li et al., 2019b)。

关于俯冲极性的问题,地球物理资料为揭示岩石圈深部结构提供了重要的支撑。其中电法和深反射地震剖面(图 4)证实了在牡丹江断裂西侧深约35km的下地壳内存在明显的高导、高速楔形体,揭示了向张广才岭之下俯冲的洋壳残留体(张兴洲等, 2015; 梁宏达等, 2017)。因此,西向的单向俯冲模式可能更接近事实。

3 佳木斯地块东缘俯冲-增生过程

完达山增生地体位于佳木斯地块东缘,并与佳木斯地块有着截然不同的古地理环境和古构造背景(邵济安等, 1991),由先后增生于东北亚大陆边缘的两套构造混杂岩(跃进山杂岩和饶河杂岩)及白垩纪岩浆岩三部分组成,是探讨古大洋板块俯冲-增生构造演化的理想场所(Kojima, 1989; 程瑞玉等, 2006; Zhou et al., 2014; Li et al., 2018)。

3.1 跃进山增生杂岩

跃进山增生杂岩主体出露于黑龙江省东部东方红-跃进山-八五三-勤得利一带,呈NNE向展布于跃进山断裂以东(杨金中等, 1998),由强烈片理化改造的基质和弱变形的异地岩块组成,是一套典型的增生楔构造混杂堆积。杂岩中基质部分主要由长英质糜棱岩和长英质片岩组成,而异地岩块则主要由一套类似蛇绿岩组合的蛇纹石化橄榄岩、变辉长岩、变玄武岩、大理岩及硅质岩等组成(张旗和周国庆, 2001; Zhou et al., 2014)。跃进山增生杂岩中片理走向总体呈NW向,倾角变化较大,区域上表现出由东向西、由南向北褶皱构造逐渐增强的趋势(郭冶, 2016)。东方红蛇绿岩以辉长岩、变橄榄岩、辉石岩和玄武岩为主体岩性,具有典型的N/E-MORB和OIB玄武岩地球化学特征,形成于板块汇聚边界的活动大陆边缘或弧后构造环境(Zhou et al., 2014; 郭冶, 2016; 王继尧等, 2016; Bi et al., 2017; 曾振等, 2018)。锆石U-Pb年龄表明蛇绿岩的形成时代为晚石炭世-早二叠世(311~270Ma),然而其最终的就位时间可能持续至晚三叠世(~210Ma; Zhou and Li, 2017)。值得关注的是,Sun et al. (2015)曾振(2017)分别在东方红和勤得利地区识别出了早二叠世末(280~266Ma)的SSZ型蛇绿岩,是否代表了一次重要的洋内俯冲事件还值得考虑?

3.2 饶河增生杂岩

饶河增生杂岩位于跃进山杂岩以东,紧邻俄罗斯远东地区的锡霍特-阿林构造带,主体岩性包括晚三叠世-中侏罗世的含放射虫深海硅质岩、镁铁-超镁铁质杂岩和晚古生代-中生代的海相、陆相碎屑岩,是东北地区最为典型和完整的大洋板块地层(OPS),代表了俯冲-增生体系下的构造混杂岩组合(Kojima, 1989; 程瑞玉等, 2006; Zhou et al., 2014; 周建波等, 2018; Zhang et al., 2020)。其中,薄层状的硅质岩褶皱强烈,多为紧闭褶皱且轴面倾向近W,同时广泛发育的逆冲断层指示其上盘向E-SEE仰冲,证实了向西的洋-陆俯冲极性。Mizutani and Kojima (1992)张庆龙等(1997)认为硅质岩中放射虫形成于三叠纪-中侏罗世低纬度地区,为硅质岩的时代和沉积古地理提供了重要证据。镁铁-超镁铁质岩主要包括辉石岩、辉石橄榄岩、辉长岩和枕状玄武岩,是一套典型残余洋壳—蛇绿岩序列(Kojima, 1989)。但因其不发育地幔橄榄岩,且枕状熔岩富Fe、Ti、P,贪Al、LREE/HREE强分离指示板内成因机制,所以也有学者认为是洋岛杂岩(张旗和周国庆, 2001)。近年来发表的地球化学与年代学证据表明,该蛇绿岩均具有洋岛玄武岩(OIB)的特征(田东江等, 2006; Zhou et al., 2014; 孙明道等, 2018),构造属性类似夏威夷型洋岛,是古太平洋成熟洋盆存在的直接证据(何松等, 2016)。其原岩的形成年龄被限定在晚三叠世-中侏罗世(228~166Ma)(程瑞玉等, 2006; 张国宾, 2014; 王继尧等, 2016; 孙明道等, 2018)。因此,饶河地区不同时代的蛇绿岩块可能都是在广袤成熟大洋盆内的一个或多个洋岛的残片(李三忠等, 2017),并在洋-陆俯冲-增生过程中构造混杂堆积而成。

3.3 俯冲-增生过程 3.3.1 晚石炭世-晚三叠世增生事件

跃进山杂岩作为佳木斯地块东缘早期洋-陆俯冲-增生的产物已得到共识,但其成因究竟归属于古亚洲洋俯冲-增生的体系(曾振等, 2018)?还是古太平洋板块俯冲启动的标志(Zhou et al., 2014; Bi et al., 2017)?或是古太平洋洋内俯冲形成的增生岛弧(Bi et al., 2015; Sun et al., 2015; 王继尧等, 2016)?或与泛大洋俯冲相关(Li et al., 2019a; Zhang et al., 2020)?同时其就位的时间也存在晚石炭世-中二叠世(杨金中等, 1998; Sun et al., 2015; Bi et al., 2017)和晚三叠世(Zhou et al., 2014)两种主要分歧。

东方红蛇绿岩的原岩形成于晚石炭世-中二叠世,具有洋壳属性的N-MORB或E-MORB地球化学特征指示了当时古洋壳俯冲的存在。从时间角度,这一汇聚的洋盆对应于古亚洲洋体系,但众所周知,古亚洲洋在中亚造山带东段的缝合线呈EW向展布(Şengör and Natal’in, 1996; Xiao et al., 2010),这与跃进山增生杂岩NW或近SN向的构造线方向矛盾。因而从构造应力场分析,我们认为古亚洲洋的向北俯冲闭合过程应该不是跃进山杂岩形成的主控因素。从空间角度,跃进山杂岩的展布与古太平洋体系相匹配,那么就涉及了古太平洋板块在东北亚大陆东缘的俯冲何时启始?众多观点可归纳为泥盆纪(Li, 2006)、二叠纪(Sun et al., 2015; Bi et al., 2017; Liu et al., 2017b)和晚三叠世-早侏罗世(Zhou et al., 2009; 邵济安等, 2013; 李伟民等, 2014; Liu et al., 2017b; 唐杰等, 2018; 朱日祥和徐义刚, 2019)。但最新的地球物理研究表明,~200Ma泛大洋中央开始了新的RRR(洋中脊-洋中脊-洋中脊)三节点扩张,并将泛大洋分裂为三个大洋板块,即西北部的依泽奈崎板块(古太平洋板块)、东北部的法拉隆板块和南部的菲尼克斯板块(Seton et al., 2012; Boschman and van Hinsbergen, 2016; 李三忠等, 2019),三联点扩张分别推动着三大洋板块向大陆边缘之下俯冲。因此,从时间节点看,古太平洋(依泽奈崎)板块的俯冲应始于晚三叠世-早侏罗世,那么跃进山杂岩的形成就不能归功于现今所谓的“古太平洋构造体系”,应属于泛大洋的产物。

此外,沿佳木斯地块东缘广泛发育晚石炭世-中二叠世(305~250Ma)I型或A型花岗岩(Wu et al., 2011; Yang et al., 2015; Liu et al., 2017a; 毕君辉, 2018),其形成环境属于活动大陆边缘,暗示了二叠纪时期佳木斯地块东侧存在洋壳西向俯冲事件。Li et al. (2019a)从佳木斯地块东缘上古生界黑台组与珍子山组地化与碎屑锆石U-Pb年龄分析,认为该区域从晚古生代-早中生代(~310Ma)存在一次重要的由被动陆缘向活动大陆边缘转换的过程,可能是泛大洋俯冲的开始。沉积相方面,Sun et al. (2015)认为佳木斯地块东缘泥盆纪-晚石炭世浅海碳酸岩建造向早二叠世陆相含煤碎屑岩-火山岩建造的改变是被动陆缘向活动陆缘转变的标志,也说明古洋壳俯冲发生在早二叠世。曾振(2017)指出佳木斯地块东缘由于整体的挤压隆升环境而缺失中-下三叠统,但晚三叠世相对稳定的南双鸭山组海陆交互相地层不整合于二叠纪花岗岩之上,且碎屑锆石U-Pb年龄谱(峰值年龄~800Ma、~500Ma和~260Ma)与佳木斯地块内岩浆事件吻合,说明其物源来自地块内部。上述事实也说明活动陆缘的构造背景至少持续到晚三叠世,这与Zhou et al. (2014)确定的跃进山杂岩就位时间一致。

3.3.2 中侏罗世-早白垩世增生事件

饶河杂岩普遍被认为是古太平洋板块向欧亚大陆东缘之下俯冲-增生产物(程瑞玉等, 2006; Zhou and Li, 2017; 孙明道等, 2018),古生物和古地磁学资料也已经证实了杂岩带内蛇绿岩块具有“外来”属性(邵济安等, 1991; 张世红和施央申, 1992; Mizutani and Kojima, 1992; 李朋武等, 1997; 张庆龙等, 1997; 张雪锋等, 2014; 任收麦等, 2015)。李朋武等(1997)认为那丹哈达地区中三叠世(N8°)至早白垩世(N47°)纬度变化近40°,暗示了饶河增生杂岩的就位过程包含着大洋板块长距离(约4000km)的快速向北运移历史,也有学者认为仅晚侏罗世至早白垩世期间(~44Ma)那丹哈达地体就发生了2500km北向运移,速度达到了~57mm/y(邵济安等, 1991),还有观点认为中侏罗世后仅北移了2000km(任收麦等, 2015)。

关于蛇绿岩的最终就位时间,硅质岩中已发现的放射虫化石形成时间为165Ma(张庆龙等, 1997),表明饶河增生杂岩的就位时间应晚于中侏罗世。张雪锋等(2014)根据饶河三叠纪大佳河组层状燧石受古太平洋板块向西俯冲-增生过程中流体作用发生重磁化现象,推测完达山杂岩增生时间为晚侏罗世-早白垩世。Zhang et al. (2020)认为大岭桥组形成于饶河杂岩增生期,其沉积上限年龄(142Ma)暗示了杂岩尚未就位。程瑞玉等(2006)获得了杂岩带中最老的花岗质侵入体年龄(131Ma),确定为饶河杂岩就位上限时代。Zhou et al. (2014)也确定了一订合花岗岩的时代为128Ma,进一步限定了饶河增生杂岩的就位时代为136~128Ma之间。

4 东北亚陆缘侏罗纪-早白垩世俯冲-增生杂岩的启示

受古太平洋板块西向俯冲作用影响东北亚陆缘广泛发育增生楔物质,并呈近NNE向条带状分布于俄罗斯远东、中国东北以及西南日本一带(图 6; Isozaki, 1997)。邵济安和唐克东(2015)将该增生过程划分为两个阶段,即晚三叠世-早白垩世和晚白垩世-古新世。其中早期阶段的增生地体主要包括那丹哈达-比金-锡霍特阿林(Nadanhada-Bikin-Sikhote-Alin)地体和西南日本岛的丹波-美浓-秋吉(Tamba-Mino-Akiyoshi)地体。前人对上述增生地体开展了对比工作,从地层古生物学角度,那丹哈达、锡霍特-阿林、丹波-美浓地体均发育晚古生代浅海相火山-碳酸岩建造、早中生代深海沉积(硅质岩)组合和中中生代陆缘碎屑岩建造,以及相同的古生物种属分布,包括二叠纪珊瑚、三叠纪牙形石和侏罗纪放射虫(Kojima, 1989; 张庆龙等, 1997; 李三忠等, 2017)。从岩石组合、地化特征和年代学分析,佳木斯地块东侧的那丹哈达增生地体内出露了晚侏罗世-早白垩世(165~130Ma)饶河蛇绿岩带(Kojima, 1989; 程瑞玉等, 2006),其年龄组成与俄罗斯远东地区的锡霍特-阿林(Sikhote-Alin)变质带以及西南日本的美浓-丹波(Mino-Tamba)变质带年龄相似(Kojima, 1989; Zyabrev andMatsuoka, 1999)。根据古地磁研究(Hattori, 1982; Zheng et al., 1990),那丹哈达地体和美浓地体在白垩纪之前处于相近的古纬度,其中那丹哈达地体晚三叠世时位于北纬12°20′,美浓-丹波地体晚三叠世时位于北纬10°90′。因此,两地块早中生代应处于低纬地区,并随后迅速北移。

图 6 东亚大陆边缘中生代俯冲相关的岩浆岩与增生楔构造简图(据Isozaki, 1997; 邵济安和唐克东, 2015修改) Fig. 6 Tectonic sketch map of the East Asian continental margin, showing the subduction-related magmatic rocks and accretions (modified after Isozaki, 1997; Shao and Tang, 2015)

此外,Isozaki et al. (2010)将西南日本晚三叠世-早白垩世的增生杂岩带划分为~240Ma周防(Suo)高压变质带、~220Ma超丹波(Ultra-Tanba)增生杂岩带、~160Ma美浓-丹波-秩父(Mino-Tanba-Chichibu)增生杂岩带和~120Ma三波川(Sanbagawa)高压变质带。其中,周防变质带被证实是一套经蓝片岩相变质作用形成的晚三叠世-中侏罗世(230~160Ma)的构造混杂岩(Nishimura, 1998)。蓝片岩组合以绿帘蓝闪石片岩和石榴石冻蓝闪石片岩为主(Sengan, 1985),峰期变质条件、P-T轨迹及形成时代都与黑龙江蓝片岩极为相似(Li et al., 2017b; Kabir et al., 2018)。因此,笔者推断在日本海打开之前(~15Ma; Otofuji et al., 1994)黑龙江杂岩带可能与日本的周防变质带处于同一条俯冲增生带上(图 7),仅由于所处地理位置不同导致的俯冲不同步,所以两地区的蓝片岩在形成时间上稍有差异,恰好也符合“剪刀式”闭合模式,即南早北晚的过程。此后,随着古太平洋俯冲带的后撤,逐渐形成了饶河-锡霍特阿林-丹波-美浓-秩父变质带(165~130Ma)以及一系列更为年轻的俯冲相关的高压变质带(如三波川带、四万石带等)。

图 7 中生代东北亚大陆边缘俯冲-增生构造模式图(据Wu et al., 2007; 邵济安和唐克东, 2015修改) 日本海打开前日本岛位置参考(Otofuji et al., 1994).ISTL-丝鱼川-静冈构造带;TTL-棚仓构造带 Fig. 7 Mesozoic accretionary complexes along the northeastern Eurasian continental margin (modified after Wu et al., 2007; Shao and Tang, 2015)
5 讨论 5.1 佳木斯地块古生代-中生代构造演化

综述前人的资料,结合我们近几年的工作成果,重塑了佳木斯地块及其周缘地区古生代-中生代构造演化过程(图 8),包括以下几个阶段:

图 8 佳木斯地块早奥陶世-早白垩世构造演化模式图 Fig. 8 Tectonic evolutional model of the Jiamusi Block during the Early-Ordovician to Early-Cretaceous

(1) 早古生代早期(~500Ma),佳木斯地块、松辽地块同东北其它微地块(兴安、额尔古纳)同处于冈瓦纳超大陆西缘,共同经历泛非期岩浆及变质事件,形成了东北地块群相似的变质-结晶基底,伴随着冈瓦纳大陆的裂解,各微陆块分离并开始长距离的“北漂”。

(2) 早奥陶世-中志留世(480~425Ma),佳木斯地块与松辽地块之间古洋盆(黑龙江洋)开始汇聚消亡,洋壳向松辽地块之下俯冲形成大兴安岭-张广才岭早古生代岩浆弧,~425Ma同碰撞二长花岗岩的出现,标志着两地块最终拼合结束。弧岩浆北早南晚的分布规律暗示着由北及南的“剪刀式”闭合过程(王志伟, 2017)。

(3) 晚志留世-早石炭世(420~330Ma),区域处于构造-岩浆宁静期,主要表现为盖层发展阶段,发育下泥盆统-下石炭统陆相碎屑建造(黑龙宫组、宝泉组和黑台组),并且各组沉积碎屑物均具有泛非期麻山杂岩基底物源供给。

(4) 晚石炭世-早三叠世(305~250Ma),松辽地块东缘及佳木斯地块西缘发育的早二叠世双峰式火山岩代表了区域进入伸展阶段。此时佳木斯地块东缘开启了由被动陆缘向活动陆缘的转变过程,弧岩浆岩发育,象征着泛大洋俯冲-增生的开始。在泛大洋板内可能发育由地幔柱上涌形成的OIB玄武岩(跃进山蛇绿岩块)。高角度洋壳俯冲(或大洋板片断离-拆沉作用;毕君辉, 2018)可能造成沿佳木斯地块与松辽地块原缝合带位置的地壳减薄,进一步拉张形成新的有限洋盆(牡丹江洋)。事实正如Buiter and Torsvik (2014)综述文章指出,在强烈的伸展构造背景下,经常会沿原缝合带位置再次发生裂解而形成新的洋盆。Dai et al.(2017, 2018)利用二维数值模拟手段研究了秦岭-大别造山带西段先后发生的同向双俯冲拼贴过程的动力学机制,也认为后期俯冲洋壳断离后造成了软流圈地幔上涌,使早期已闭合的缝合带处发生伸展-撕裂。综合分析,牡丹江洋应属于泛大洋俯冲过程中形成的弧后洋盆。

(5) 晚三叠世-早侏罗世(210~190Ma),断离的大洋板片回弹及俯冲角度变缓,导致佳木斯地块西缘的伸展背景转为强烈挤压汇聚背景,牡丹江洋的西向俯冲形成了松辽地块西缘I型同造山期花岗岩;此时佳木斯地块东缘,跃进山杂岩已经就位完成。

(6) 侏罗纪-早白垩世(185~128Ma),黑龙江杂岩的形成标志着佳木斯与松辽地块最终拼合结束。而在佳木斯地块东缘,古太平洋板块持续俯冲-增生形成了饶河增生杂岩带和相应的岩浆活动。

综上分析,在漫长的构造演化历史时期佳木斯地块与松辽地块经历了拼合-裂解-再拼合的复杂过程。而佳木斯地块东缘的增生过程也是两期作用的结果,分别以晚石炭世-晚三叠世的跃进山增生杂岩和中侏罗世-早白垩世饶河增生杂岩为代表。中生代以来古太平洋构造域对早期的构造叠加、改造强烈,致使对早期的构造形迹的分析存在困难。早白垩世时古太平洋板块—依泽奈崎(Izanagi)板块NNW向快速俯冲至东亚大陆之下(Maruyama, 1997),产生了对东亚陆缘的侧向挤压作用(邵济安和唐克东, 2015; 周丽云等, 2015),形成了一系列NNE-NE向左行走滑断层(包括中国东北的嫩江-八里罕断裂、佳-依断裂、敦-密断裂、俄罗斯远东的中锡霍特-阿林断裂和日本中央构造带等),上述断裂的活动对东亚陆缘晚期构造演化扮演了重要的角色(李碧乐等, 2002; 韩国卿等, 2009; 周丽云等, 2015; 李三忠等, 2017)。这些断裂自西向东走滑错距逐渐增大,也体现了古太平洋板块挤压作用的增强。

此外,随着古太平洋板块俯冲持续进行,俯冲洋壳开始幕式地后撤(roll back)、前卷(roll forward)、后撤循环(Collins and Richards, 2008)。孙明道(2013)认为古太平洋西向平板俯冲可能超过1300km抵达大兴安岭地区下部的壳-幔转换带。因此,早白垩世松辽地块火山岩(120~110Ma)以及佳木斯地块岩浆岩带(104~100Ma)(图 5),且年龄由西向东逐渐变新,均可以用洋壳俯冲-堆积-后撤的模型来解释(Zhang et al., 2011; 孙明道, 2013)。

5.2 关于吉黑构造(高压)带的认识

周建波等(2013)对比分析了佳木斯地块西缘增生杂岩与长春-延吉增生杂岩的岩石学和年代学特征,认为两者可作为统一的构造单元来考虑,并结合该区发育有典型的高压变质带,命名为“吉林-黑龙江高压变质带,简称吉黑高压带”。观点提出后有学者产生了质疑,许文良等(2019)认为华北北缘长春-延吉缝合带变质时间明显早于黑龙江杂岩的就位时间,同时华北北缘近EW向展布的晚三叠世碱性岩和双峰式火成岩带不符合SN向闭合的佳木斯与松辽地块缝合带特点。本文综合对比东北亚陆缘晚三叠世-早白垩世的增生构造带,认为可能存在一条延伸更长的晚三叠世-晚侏罗世高压变质带(吉黑-日本周防高压带),其南部是组成日本岛的一些显生宙微陆块,如南北上(South Kitakami)和黑濑川(Kurosegawa)地体与华北板块东缘和飞弹地体拼合形成的周防变质带(Isozaki et al., 2010),中部是长春-延吉变质带,北部为黑龙江构造带(图 9)。虽然也有学者认为西南日本的领家变质带(Renge Belt)与长春-延吉带相对应(Oh, 2006),但其形成时代(330~280Ma)比长春-延吉带要早很多,因此我们认为这样对应可能不合适。总之,该晚三叠世-晚侏罗世高压变质带的形成存在南早北晚的时间差异,应符合“剪刀式”的闭合过程。

图 9 晚三叠世欧亚大陆东缘微陆块拼合模式图(据周建波等, 2013修改) 微陆块名称:JB-佳木斯-布列亚地块;SK-南北上地体;K-黑濑川地体;H-飞弹地体;S-松辽地块;X-兴安地块;E-额尔古纳地块;TM-图瓦-蒙古地块;T-吐鲁番地体;Q-柴达木地块.变质带名称:Suo-日本周防变质带;CY-长春-延吉变质带;HL-黑龙江变质带 Fig. 9 Late Triassic amalgamations of the micro blocks along the NE Asian margin (modified after Zhou et al., 2013)
5.3 关于弯山构造的认识

学者通过对比佳木斯地块、扬子、华夏、韩国岭南和京畿地块、日本飞弹地块的岩石组合、地球化学、年代学和地层古生物学等方面,认为佳木斯地块有亲华南属性,并提出可能存在一个更大规模“大华南”板块(Li et al., 2017a; 郭润华等, 2017)。同时他们还指出牡丹江洋可能是商丹洋东段的延伸或残余,于早二叠世-早侏罗世(280~180Ma)以飞弹地体为轴点,牡丹江洋(商丹洋东段)开始至南向北的逆时针旋转闭合,而西侧的勉略洋则自东向西的顺时针剪刀式闭合,其驱动力主要归功于古太平洋的NW向扩张。这种“弯山”构造合理的解释了吉黑-日本周防高压带至南向北的变质年龄变小的趋势,也解译了古地磁证据给出的佳木斯地块早白垩世相对华北-华南~46°逆时针旋转量的成因(张世红和杨惠心, 1996; 裴军令等, 2009)。但对于佳木斯地块与松辽地块早古生代拼合,并于晚二叠世裂解出新的有限洋盆这一演化过程却视乎存在矛盾。此外,其弯山过程的驱动力源自古太平洋板块NW俯冲,这意味着古太平洋板块起源至少要早于早二叠世,这与我们前面讨论的古太平洋板块起源时间不符。综上所述,“弯山”构造虽然有助于理解佳木斯地块中生代以来拼合过程中由于旋转所造成的差异,但也涉及了包括古生代的构造演化的一些矛盾,仍需要大量的研究基础作为佐证。

6 结论

本文在总结前人最新研究成果的基础上,根据岩石学、地球化学、同位素地质年代学、沉积学、构造特征、岩浆活动、地球物理资料、古生物及古地磁等证据,厘定了佳木斯地块古生代以来的构造演化过程,取得的认识如下:

(1) 佳木斯地块、东北地块群其它地块(兴安、额尔古纳)及西伯利亚板块均具有相似的~500Ma泛非期结晶基底,应同属南半球冈瓦纳超大陆构造体系,并在裂离后开启长距离的北漂。

(2) 佳木斯地块与其西侧松辽地块古生代以来经历复杂的构造演化过程。中志留世(~425Ma),佳木斯地块与松辽地块完成了首次碰撞拼贴形成统一陆块,并进入构造-岩浆宁静期和古生界盖层发展阶段;晚石炭世-早三叠世期间(305~250Ma),伸展背景下沿原缝合带位置拉张出新的有限洋盆(牡丹江洋);侏罗纪(185~145Ma),佳木斯地块与松辽地块再次拼合,形成黑龙江杂岩带

(3) 佳木斯地块东缘增生过程涉及了晚石炭世-晚三叠世(305~250Ma)泛大洋的俯冲-增生事件,形成跃进山增生杂岩;随后短暂的稳定后,中侏罗世-早白垩世(165~128Ma)受古太平洋板块的西向俯冲作用,形成饶河增生杂岩。

(4) 黑龙江杂岩的形成限定了古太平洋构造体制与古亚洲洋构造体制的转换始于晚三叠世(~210Ma)。

致谢      笔者对两位审稿人提出的宝贵修改意见和建议表示衷心的感谢。同时感谢吉林大学地球科学学院硕士研究生刘同君、张骞、高金晖对数据收集整理工作提供的帮助。

参考文献
Bai JW, Wang WX and Zhang HR. 1988. Character of glaucophane schists in metamorphic zone in Yilan, Mudanjiang, Heilongjiang. Acta Petrologica et Mineralogica, 7(4): 298-308 (in Chinese with English abstract)
Bi JH, Ge WC, Yang H, Zhao GC, Yu JJ, Zhang YL, Wang ZH and Tian DX. 2014. Petrogenesis and tectonic implications of Early Paleozoic granitic magmatism in the Jiamusi Massif, NE China:Geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences, 96: 308-331
Bi JH, Ge WC, Yang H, Zhao GC, Xu WL and Wang ZH. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi Massif, NE China:Petrogensis and tectonic implications. Lithos, 234-235: 27-46
Bi JH, Ge WC, Yang H, Wang ZH, Tian DX, Liu XW, Xu WL and Xing DH. 2017. Geochemistry of MORB and OIB in the Yuejinshan Complex, NE China:Implications for petrogenesis and tectonic setting. Journal of Asian Earth Sciences, 145: 475-493
Bi JH. 2018. Late Paleozoic tectonic-magmatic evolution of the eastern Jiamusi. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Boschman LM and van Hinsbergen DJJ. 2016. On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean. Science Advances, 2(7): e1600022
Buiter SJH and Torsvik TH. 2014. A review of Wilson Cycle plate margins:A role for mantle plumes in continental break-up along sutures?. Gondwana Research, 26(2): 627-653
Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House (in Chinese)
Cao RJ, Zhao WJ and Xiao ZY. 1982. Precambrian Classification and Correlation in China. Beijing: Science Press (in Chinese)
Cao X, Dang ZX, Zhang XZ, Jiang JS and Wang HD. 1992. Jiamusi Complex Terrain. Changchun: Jilin Science and Technology Press, 1-224 (in Chinese)
Chen ZX, Liu YJ and Guan QB. 2019. Convergence history of the Songliao and Jiamusi blocks in the eastern end of Central Asian Orogenic Belt:Evidence from detrital zircons of Late Paleozoic sedimentary rocks. Acta Geologica Sinica, 93(5): 1417-1433
Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM and Yang JH. 2006. Emplacement age of the Raohe Complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22(2): 353-376 (in Chinese with English abstract)
Cocks LRM and Torsvik TH. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews, 117: 40-79
Collins WJ and Richards SW. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36(7): 559-562
Dai LM, Li SZ, Li ZH, Somerville I and Liu XC. 2017. Dynamic processes and mechanisms for collision to post-orogenic extension in the western Dabie Orogen:Insights from numerical modeling. Geological Journal, 52(S1): 44-58
Dai LM, Li SZ, Li ZH, Somerville I, Suo YH, Liu XC, Gerya T and Santosh M. 2018. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems:Numerical modeling and implications for the Western Dabie Orogen. Earth-Science Reviews, 182: 68-84
Dang YS and Li DR. 1993. Discussion on isotopic geochronology of Precambrian Jiamusi Block. Journal of Changchun University of Earth Sciences, 23(3): 312-318 (in Chinese with English abstract)
Dong Y, Ge WC, Yang H, Liu XW, Bi JH, Ji Z and Xu WL. 2019. Geochemical and SIMS U-Pb rutile and LA-ICP-MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang Ocean from amphibolites of the Heilongjiang Complex, NE China. Gondwana Research, 69: 25-44
Duan JY and An SL. 2001. Early Cambrian Siberian Eauna from Yichun of Heilongjiang Province. Acta Palaeontologica Sinica, 40(3): 362-370 (in Chinese with English abstract)
Gao FH, Wang F, Xu WL and Yang Y. 2013. Age of the "Paleoproterozoic" Dongfengshan Group in the Lesser Xing'an Range, NE China, and its tectonic implications:Constraints from zircon U-Pb geochronology. Journal of Jilin University (Earth Science Edition), 43(2): 440-456 (in Chinese with English abstract)
Gao WL, Wang ZX, Li LL and Cui MM. 2018. The ductile shear deformation age of the Jiamusi-Yitong Fault and its geological significance. Journal of Geomechanics, 24(6): 748-758 (in Chinese with English abstract)
Ge MH, Zhang JJ, Liu K, Ling YY, Wang M and Wang JM. 2016. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China. Lithos, 261: 232-249
Ge MH, Zhang JJ, Li L, Liu K, Ling YY, Wang JM and Wang M. 2017. Geochronology and geochemistry of the Heilongjiang Complex and the granitoids from the Lesser Xing'an-Zhangguangcai Range:Implications for the Late Paleozoic-Mesozoic tectonics of eastern NE China. Tectonophysics, 717: 565-584
Ge MH, Zhang JJ, Li L and Liu K. 2019. Ages and geochemistry of Early Jurassic granitoids in the Lesser Xing'an-Zhangguangcai Ranges, NE China:Petrogenesis and tectonic implications. Lithosphere, 11(6): 804-820
Guo RH, Li SZ, Suo YH, Wang Q, Zhao SJ, Wang YN, Liu XG, Zhou ZZ, Li J, Lan HY, Wang PC and Guo LL. 2017. Indentation of North China Block in to Greater South China Block and Indosinian orocline. Earth Science Frontiers, 24(4): 171-184 (in Chinese with English abstract)
Guo XZ, Takasu A, Liu YJ and Li WM. 2014. Zn-rich spinel in association with quartz in the Al-rich metapelites from the Mashan khondalite series, NE China. Journal of Earth Science, 25(2): 207-223
Guo Y. 2016. The nature of the Yuejinshan complex in the eastern part of Heilongjiang Province and its evolution. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Han GQ, Liu YJ, Wen QB, Zou YX, Liang DJ, Zhao YL, Li W and Zhao LM. 2009. The characteristics of structural deformation for the Lingxia ductile shear zone of Nenjing-Balihan Fault Belt in northeastern China. Journal of Jilin University (Earth Science Edition), 39(3): 397-405 (in Chinese with English abstract)
Han XM, Zheng CQ, Xu XC, Han YB and Xu JL. 2018. Blueschist facies metamorphism and its evolution in the Yilan area, Heilongjiang Province. Acta Petrologica Sinica, 34(4): 1139-1153 (in Chinese with English abstract)
Hattori I. 1982. The Mesozoic evolution of the Mino Terrane, Central Japan:A Geologic and Paleomagnetic synthesis. Tectonophysics, 85(3-4): 313-340
He S, Sun XM, Zhang XQ, Wan K, Zheng H and Li DZ. 2016. Geological and geochemical characteristics of Raohe pillow basalts of Heilongjiang Province and its tectonic implication. Global Geology, 35(4): 942-954 (in Chinese with English abstract)
Huang BC, Yan YG, Piper JDA, Zhang DH, Yi ZY, Yu S and Zhou TH. 2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 186: 8-36
Huang YC, Zhang XZ, Xiong XS, Wang Y and Zhao LL. 2008. Geochemical characteristics of massive blueschist in Yilan area, Northeast China. Acta Petrologica et Mineralogica, 27(5): 422-428 (in Chinese with English abstract)
Isozaki Y. 1997. Jurassic accretion tectonics of Japan. Island Arc, 6(1): 25-51
Isozaki Y, Aoki K, Nakama T and Yanai S. 2010. New insight into a subduction-related orogen:A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18(1): 82-105
Jahn BM, Wu FY and Hong DW. 2000. Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from east-central Asia. Journal of Earth System Science, 109(1): 5-20
Ji Z, Meng QA, Wan CB, Ge WC, Yang H, Zhang YL, Dong Y and Jin X. 2019. Early Cretaceous adakitic lavas and A-type rhyolites in the Songliao Basin, NE China:Implications for the mechanism of lithospheric extension. Gondwana Research, 71: 28-48
Jiang JS. 1992. Regional metamorphism and evolution of Mashan khondalite series. Acta Petrologica et Mineralogica, 11(2): 97-110 (in Chinese with English abstract)
Jiang JS. 1993. Geochemistry of Mashan-Group khondalite series. Geochimica, 2(4): 363-372 (in Chinese with English abstract)
Kabir MF, Takasu A and Li WM. 2018. Metamorphic P-T evolution of the Gotsu blueschists from the Suo metamorphic belt in SW Japan:Implications for tectonic correlation with the Heilongjiang Complex, NE China. Mineralogy and Petrology, 112(6): 819-836
Kojima S. 1989. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions. Palaeogeography, Palaeoclimatology, Palaeoecology, 69: 213-232
Kong FM, Li XP, Jiao LX, Wang ZL and Wu QQ. 2009. Petrology and P-T conditions of stilpnomelane schist in the Yilan district, Heilongjiang Province. Acta Petrologica Sinica, 25(8): 1917-1923 (in Chinese with English abstract)
Kravchinsky VA, Konstantinov KM and Cogné JP. 2001. Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia: Was the Siberian platform assembled at this time? Precambrian Research, 110(1-4): 61-92
Li BL, Sun FY and Yao FL. 2002. Large scale sinistral strike slip movement of Dunhua-Mishan fracture zone and its control on gold metallogeny in the Mesozoic. Geotectonica et Metallogenia, 26(4): 390-395 (in Chinese with English abstract)
Li GY, Zhou JB, Wilde SA and Li L. 2019a. The transition from a passive to an active continental margin in the Jiamusi Block:Constraints from Late Paleozoic sedimentary rocks. Journal of Geodynamics, 129: 131-148
Li JY, Niu BG, Song B, Xu WX, Zhang YH and Zhao ZR. 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Beijing: Geological Publishing House (in Chinese with English abstract)
Li JY. 2006. Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207-224
Li JY, Liu JF, Qu JF, Zheng RG, Zhao S, Zhang J, Wang LJ and Zhang XW. 2019. Paleozoic tectonic units of Northeast China:Continental blocks or orogenic belts?. Earth Science, 44(10): 3157-3177 (in Chinese with English abstract)
Li PW, Zhang SH and Shen NH. 1997. The contrast of paleomagnetic results between Nadanhada area, Heilongjiang Province and Mino area, Japan, and its significance. Journal of Changchun University of Earth Sciences, 27(1): 63-67 (in Chinese with English abstract)
Li SZ, Jahn BM, Zhao SJ, Dai LM, Li XY, Suo YH, Guo LL, Wang YM, Liu XC, Lan HY, Zhou ZZ, Zheng QL and Wang PC. 2017a. Triassic southeastward subduction of North China Block to South China Block:Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270-285
Li SZ, Zhang Y, Guo LL, Suo YH, Cao HH, Li XY, Zhou ZZ, Wang PC and Guo RH. 2017. Mesozoic deformation and accretionary orogenic processes around the Nadanhada Terrane. Earth Science Frontiers, 24(04): 200-212 (in Chinese with English abstract)
Li SZ, Suo YH, Li XY, Wang YM, Cao XZ, Wang PC, Guo LL, Yu SY, Lan HY, Li SJ, Zhao SJ, Zhou ZZ, Zhang Z and Zhang GW. 2018. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone. Chinese Science Bulletin, 63(16): 1550-1593
Li SZ, Cao XZ, Wang GZ, Liu B, Li XY, Suo YH, Jiang ZX, Guo LL, Zhou J, Wang PC, Zhu JJ, Wang G, Zhao SJ, Liu YJ and Zhang GW. 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642-677 (in Chinese with English abstract)
Li WM, Takasu A, Liu YJ, Genser J, Neubauer F and Guo XZ. 2009. 40Ar/39Ar ages of the high-P/T metamorphic rocks of the Heilongjiang Complex in the Jiamusi Massif, northeastern China. Journal of Mineralogical and Petrological Sciences, 104(2): 110-116
Li WM, Takasu A, Liu YJ and Guo XZ. 2010. Newly discovered garnet-barroisite schists from the Heilongjiang Complex in the Jiamusi Massif, northeastern China. Journal of Mineralogical and Petrological Sciences, 105(2): 86-91
Li WM, Takasu A, Liu YJ, Genser J, Zhao YL, Han G and Guo XZ. 2011. U-Pb and 40Ar/39Ar age constrains on protolish and high-P/T type metamorphism of the Heilongjiang Complex in the Jiamusi Massif, NE China. Journal of Mineralogical and Petrological Sciences, 106: 326-331
Li WM, Liu YJ, Takasu A, Zhao YL, Wen QB, Guo XZ and Zhang L. 2014. Pressure (P)-temperature (T)-time (t) paths of the blueschists from the Yilan area, Heilongjiang Province. Acta Petrologica Sinica, 30(10): 3085-3099 (in Chinese with English abstract)
Li WM, Kabir MF, Liu YJ, Guo XZ and Takasu A. 2017b. Metamorphism of the blueschists in the Suo metamorphic belt, Gotsu area, SW Japan. Earth Science (Chikyu Kagaku), 71(1): 17-25
Li WM, Liu YJ, Takasu A, Zhao YL, Fazle KM, Wen QB, Liang CY, Feng ZQ and Zhang L. 2019b. Metamorphic evolution of the Heilongjiang glaucophanic rocks, NE China:Constraints from the P-T pseudosections in the NCKFMASHTO system. Geological Journal, 54(2): 698-715
Li XP, Kong FM, Zheng QD, Dong X and Yang ZY. 2010. Geochronological study on the Heilongjiang complex at Luobei area, Heilongjiang Province. Acta Petrologica Sinica, 26(7): 2015-2024 (in Chinese with English abstract)
Liang HD, Jin S, Wei WB, Gao R, Hou HC, Han JT, Han S and Liu GX. 2017. Deep electrical structures of the eastern margin of the Songnen massif and the western margin of the Jiamusi massif. Chinese Journal of Geophysics, 60(4): 1551-1520 (in Chinese with English abstract)
Liu JF, Chi XG, Dong CY, Zhao Z, Li GR and Zhao YD. 2008. Discovery of Early Paleozoic granites in the eastern Xiao Hinggan Mountains, northeastern China and their tectonic significance. Geological Bulletin of China, 27(4): 534-544 (in Chinese with English abstract)
Liu K, Zhang JJ, Wilde SA, Zhou JB, Wang M, Ge MH, Wang JM and Ling YY. 2017a. Initial subduction of the Paleo-Pacific Oceanic plate in NE China: Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Khanka Lake granitoids. Lithos, 274-275: 254-270
Liu YJ, Li WM, Feng ZQ, Wen QB, Neubauer F and Liang CY. 2017b. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148
Liu YJ, Feng ZQ, Jiang LW, Jin W, Li WM, Guan QB, Wen QB and Liang CY. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017-3047 (in Chinese with English abstract)
Lü CL, Xiao QH, Feng JL, Yu YJ, Yang FS and Deng CZ. 2016. LA-ICP-MS U-Pb ages of zircons from metamorphic basalt and metamorphic accumulated gabbro in Yilan area, Heilongjiang Province, and their geological implications. Geological Bulletin of China, 35(7): 1081-1094 (in Chinese with English abstract)
Maruyama S. 1997. Pacific-type orogeny revisited:Miyashiro-type orogeny proposed. Island Arc, 6(1): 91-120
Meert JG, van der Voo R and Ayub S. 1995. Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi complex, Tanzania and the assembly of Gondwana. Precambrian Research, 74: 225-244
Meng E, Xu WL, Pei FP, Yang DB, Yu Y and Zhang XZ. 2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1-4): 42-51
Mizutani S and Kojima S. 1992. Mesozoic radiolarian biostratigraphy of Japan and collage tectonics along the eastern continental margin of Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 96(1-2): 3-22
Nishimura Y. 1998. Geotectonic subdivision and areal extent of the Sangun belt, Inner Zone of Southwest Japan. Journal of Metamorphic Geology, 16(1): 129-140
Oh CW. 2006. A new concept on tectonic correlation between Korea, China and Japan:Histories from the Late Proterozoic to Cretaceous. Gondwana Research, 9(1-2): 47-61
Otofuji YI, Kambara A, Matsuda T and Nohda S. 1994. Counterclockwise rotation of Northeast Japan:Paleomagnetic evidence for regional extent and timing of rotation. Earth and Planetary Science Letters, 121(3-4): 503-518
Pei JL, Yang ZY, Zhao Y, Sun ZM, Wang XS and Liu J. 2009. Cretaceous paleomagnetism of the northeast China and adjacent regions and the geodynamic setting of block rotations. Acta Geologica Sinica, 83(5): 617-627 (in Chinese with English abstract)
Ren LD, Wang YB, Yang CH, Zhao ZR, Guo JJ and Gao HL. 2012. Two types of metamorphism and their relationships with granites in the Mashan Complex. Acta Petrologica Sinica, 28(9): 2855-2865 (in Chinese with English abstract)
Ren SM and Huang BC. 2002. Preliminary study on post-late Paleozoic kinematics of the main blocks of the Paleo-Asian Ocean. Progress in Geophysics, 17(1): 113-120 (in Chinese with English abstract)
Ren SM, Zhu RX, Qiu HJ, Zhou JB and Deng CL. 2015. Paleomagnetic study on Middle Jurassic lavas of Heilongjiang Province, NE China and its tectonic implications. Chinese Journal of Geophysics, 58(4): 1269-1283 (in Chinese with English abstract)
Sengan H. 1985. Petrography of the Sangun metamorphic rocks in the Hazumi area, Gotsu City, Shimane prefecture. Geological Report of Shimane University, 4: 41-59
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307
Şengör AMC and Natal'in BA. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 486-641
Şengör AMC, Natal'in BA and Sunal G and van der Voo R. 2018. The tectonics of the Altaids:Crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130Ma ago. Annual Review of Earth and Planetary Sciences, 46(1): 439-494
Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S and Chandler M. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3-4): 212-270
Shao JA, Tang KD, Wang CY, Zang QJ and Zhang YP. 1991. The tectonic characteristics and evolution of Nadanhada Terrane. Science in China (Series B), 21(7): 744-751 (in Chinese)
Shao JA, Li YF and Tang KD. 2013. Restoration of the orogenic processes of Zhangguangcai Range. Acta Petrologica Sinica, 29(9): 2959-2970 (in Chinese with English abstract)
Shao JA and Tang KD. 2015. Research on the Mesozoic ocean-continent transitional zone in the Northeast Asia and its implications. Acta Petrologica Sinica, 31(10): 3147-3154 (in Chinese with English abstract)
Shen QH and Geng YS. 2012. The tempo-spatial distribution, geological characteristics and gensis of blueschist belts in China. Acta Geologica Sinica, 86(9): 1407-1446 (in Chinese with English abstract)
Smethurst MA, Khramov AN and Torsvik TH. 1998. The Neoproterozoic and Palaeozoic palaeomagnetic data for the Siberian Platform:From Rodinia to Pangea. Earth-Science Reviews, 43(1-2): 1-24
Song B, Niu BG, Li JY and Xu WX. 1994. Isotope geochronology of granitoids in Mudanjiang-Jixi area. Acta Petrologica et Mineralogica, 13(3): 204-213 (in Chinese with English abstract)
Sorokin AA, Ovchinnikov RO, Kudryashov NM and Sorokina AP. 2016. An Early Neoproterozoic gabbro-granite association in the Bureya Continental Massif (Central Asian fold belt):First geochemical and geochronological data. Doklady Earth Sciences, 471(2): 1307-1311
Sun MD. 2013. Late Mesozoic magmatism and its tectonic implication for the Jiamusi Block and adjacent areas of NE China. Ph. D. Dissertation. Hangzhou: Zhejiang University (in Chinese with English summary)
Sun MD, Xu YG, Wilde SA, Chen HL and Yang SF. 2015. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China:Implications for Paleo-Pacific subduction. Tectonophysics, 659: 122-136
Sun MD, Xu YG and Chen HL. 2018. Subaqueous volcanism in the Paleo-Pacific Ocean based on Jurassic basaltic tuff and pillow basalt in the Raohe Complex, NE China. Science China (Earth Sciences), 61(8): 1042-1056
Sun XM, Liu YJ, Sun QC, Han GQ, Wang SQ and Wang YD. 2008. 40Ar/39Ar geochronology evidence of strike-slip movement in Dunhua-Mishan fault zone. Journal of Jilin University (Earth Science Edition), 38(6): 965-972 (in Chinese with English abstract)
Tang J, Xu WL, Wang F and Ge WC. 2018. Subduction history of the Paleo-Pacific slab beneath Eurasian continent:Mesozoic-Paleogene magmatic records in Northeast Asia. Science China (Earth Sciences), 61: 527-559
Tian DJ, Zhou JB, Zheng CQ and Liu JH. 2006. Geochemical characteristics and tectonics mechanism of the meta-basic rocks for ophiolite complex in Wandashan orogenic belt. Journal of Mineralogy and Petrology, 26(3): 64-70 (in Chinese with English abstract)
Torsvik TH and Cocks LRM. 2017. Earth History and Palaeogeography. Cambridge: Cambridge University Press
Wang CW, Jin W, Zhang XZ, Ma ZH, Chi XG, Liu YJ and Li N. 2008. New understanding of the Late Paleozoic tectonics in northeastern China and adjacent areas. Journal of Stratigraphy, 32(2): 119-136 (in Chinese with English abstract)
Wang F. 2013. Rock association and formation time of 'Proterozoic strata' in the eastern margin of the Songnen-Zhangguangcai Range Massif, NE China: implications for regional tectonic evolution. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Wang F, Xu WL, Gao FH, Zhang HH, Pei FP, Zhao L and Yang Y. 2014. Precambrian terrane within the Songnen-Zhangguangcai Range Massif, NE China:Evidence from U-Pb ages of detrital zircons from the Dongfengshan and Tadong groups. Gondwana Research, 26(1): 402-413
Wang JY, Yang YC, Huang YW, Hou YS, Tang Y and Zhang GB. 2016. Formation ages and tectonic significance of ophiolites in Wandashan Terrane of the eastern Heilongjiang. Journal of Earth Sciences and Environment, 38(2): 182-195 (in Chinese with English abstract)
Wang XF, Li ZJ and Chen BL. 2005. Tan-Lu Fault System. Beijing: Geological Publishing House (in Chinese)
Wang ZH, Ge WC, Yang H, Zhang YL, Bi JH, Tian DX and Xu WL. 2015. Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China:Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 111: 120-137
Wang ZW, Xu WL, Pei FP, Wang F and Guo P. 2016. Geochronology and geochemistry of Early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China:Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Lithos, 261: 144-163
Wang ZW. 2017. Petrology and geochemistry of Early Paleozoic igneous rocks in the Lesser Xing'an-Zhangguangcai Ranges: Constrains on the amalgamation history and crustal nature of the massifs. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Wilde SA, Dorsett-Bain HL and Liu JL. 1997. The identification of a Late Pan-African granulite facies event in Northeastern China: SHRIMP U-Pb zircon dating of the Mashan Group at Liumao, Heilongjiang Province, China. In: Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology, Vol. 17. VSP Amsterdam: International. Science Publishers, 59-74
Wilde SA, Dorsett-Bain HL and Lennon RG. 1999. Geological setting and controls on the development of graphite, sillimanite and phosphate mineralization within the Jiamusi Massif: An exotic fragment of Gondwanaland located in northeastern China? Gondwana Research, 2(1): 21-46
Wilde SA, Zhang XZ and Wu FY. 2000. Extension of a newly identified 500Ma metamorphic terrane in North East China:Further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 328(1-2): 115-130
Wilde SA, Wu FY and Zhang XZ. 2001. The Mashan Complex:SHRIMP U-Pb zircon evidence for a Late Pan-African metamorphic event in NE China and its implication for global continental reconstructions. Geochimica, 30(1): 35-50 (in Chinese with English abstract)
Wilde SA, Wu FY and Zhang XZ. 2003. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian Research, 122(1): 311-327
Wilde SA. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China:Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction:A review of the evidence. Tectonophysics, 662: 345-362
Wu FY, Wilde SA and Sun DY. 2001. Zircon SHRIMP U-Pb ages of gneissic granites in Jiamusi massif, northeastern China. Acta Petrologica Sinica, 17(3): 443-452 (in Chinese with English abstract)
Wu FY, Yang JH, Lo CH, Wilde SA, Sun DY and Jahn BM. 2007. The Heilongjiang Group:A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc, 16(1): 156-172
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
Xiao WJ, Shu LS, Gao J, Xiong XL, Wang JB, Guo ZJ, Li JY and Sun M. 2008. Continental dynamics of the Central Asian Orogenic Belt and its metallogeny. Xinjiang Geology, 26(1): 4-8 (in Chinese with English abstract)
Xiao WJ, Windley BF, Huang BC, Han CM, Yuan C, Chen HL, Sun M, Sun S and Li JL. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1219-1220
Xiao WJ, Huang BC, Han CM, Sun S and Li JL. 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253-273
Xiao WJ, Li JL, Song DF, Han CM, Wan B, Zhang JN, Ao SJ and Zhang ZY. 2019. Structural analyses and spatio-temporal constraints of accretionary orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract)
Xie HQ, Zhang FQ, Miao LC, Chen FK and Liu DY. 2008. Zircon SHRIMP U-Pb dating of the amphibolite from "Heilongjiang Group" and the granite in Mudanjiang area, NE China, and its geological significance. Acta Petrologica Sinica, 24(6): 1237-1250 (in Chinese with English abstract)
Xu B, Zhao P, Bao QZ, Zhou YH, Wang YY and Luo ZW. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857 (in Chinese with English abstract)
Xu WL, Wang F, Meng E, Gao FH, Pei FP, Yu JJ and Tang J. 2012. Paleozoic-Early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China:Evidence from igneous rock association and U-Pb geochronology of detrital zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract)
Xu WL, Sun CY, Tang J, Luan JP and Wang F. 2019. Basement nature and tectonic evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract)
Yan ZY, Tang KD, Bai JW and Mo YC. 1989. High pressure metamorphic rocks and their tectonic environment in northeastern China. Journal of Southeast Asian Earth Sciences, 3(1-4): 303-313
Yang H, Ge WC, Zhao GC, Dong Y, Bi JH, Wang ZH, Yu JJ and Zhang YL. 2014. Geochronology and geochemistry of Late Pan-African intrusive rocks in the Jiamusi-Khanka Block, NE China:Petrogenesis and geodynamic implications. Lithos, 208-209: 220-236
Yang H, Ge WC, Zhao GC, Yu JJ and Zhang YL. 2015. Early Permian-Late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications. Gondwana Research, 27(4): 1509-1533
Yang H, Ge WC, Zhao GC, Bi JH, Wang ZH, Dong Y and Xu WL. 2017. Zircon U-Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan region, NE China:Constraints on the high-grade metamorphism and tectonic affinity of the Jiamusi-Khanka Block. Lithos, 268-271: 16-31
Yang H, Ge WC, Bi JH, Wang ZH, Tian DX, Dong Y and Chen HJ. 2018. The Neoproterozoic-Early Paleozoic evolution of the Jiamusi Block, NE China and its East Gondwana connection:Geochemical and zircon U-Pb-Hf isotopic constraints from the Mashan Complex. Gondwana Research, 54: 102-121
Yang HX, Li PW and Yu HM. 1998. Palaeomagnetic study of the main terranes, northeast area, China. Journal of Changchun University of Science and Technology, 28(2): 202-205, 212 (in Chinese with English abstract)
Yang JZ, Qiu HJ, Sun JP and Zhang XZ. 1998. Yuejinshan complex and its tectonic significance. Journal of Changchun University of Science and Technology, 28(4): 380-385 (in Chinese with English abstract)
Ye HW, Zhang XZ and Zhou YW. 1994. The texture and evolution of Manzhouli-Suifenhe lithosphere-Study based on features of blueschist and ophiolites. In: M-SGT Geology Group (eds.). Geological Studies of Lithospheric Structure and Evolution of Manzhouli-Suifenhe Geotransect, China. Beijing: Seismic Press, 73-83 (in Chinese)
Yu JJ, Wang F, Xu WL, Gao FH and Pei FP. 2012. Early Jurassic mafic magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and its tectonic implications:Constraints from zircon U-Pb chronology and geochemistry. Lithos, 142-143: 256-266
Yu JJ, Wang F, Xu WL, Gao FH and Tang J. 2013. Late Permian tectonic evolution at the southeastern margin of the Songnen-Zhangguangcai Range Massif, NE China:Constraints from geochronology and geochemistry of granitoids. Gondwana Research, 24(2): 635-647
Zeng Z. 2017. The tectonic characteristics and evolution of Jiamusi Massif and Wandashan complex. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Zeng Z, Zhang XZ, Zhou JB, Zhang HT, Liu Y and Cui WL. 2018. Geochemistry and zircon U-Pb age of Permian metabasalts in the Yuejinshan complexes and its tectonic implications. Geotectonica et Metallogenia, 42(2): 365-378 (in Chinese with English abstract)
Zhang D, Liu YJ, Li WM, Li SZ, Iqbal MZ and Chen ZX. 2020. Marginal accretion processes of Jiamusi Block in NE China:Evidences from detrital zircon U-Pb age and deformation of the Wandashan Terrane. Gondwana Research, 78: 92-109
Zhang FQ, Chen HL, Yu X, Dong CW, Yang SF, Pang YM and Batt GE. 2011. Early Cretaceous volcanism in the northern Songliao Basin, NE China, and its geodynamic implication. Gondwana Research, 19(1): 163-176
Zhang GB. 2014. Study on metallogenic system of Wandashan Massif eastern Heilongjiang Province. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press (in Chinese)
Zhang QL, Shinjino M and Satoru K. 1997. Radiolaria and correlation study of terranes. Acta Palaeontologica Sinica, 36(2): 245-252 (in Chinese with English abstract)
Zhang SH and Shi YS. 1992. Paleomagnetism of terranes in eastern Heilongjiang Province. Journal of Nanjing University (Natural Sciences Edition), 28(2): 297-301 (in Chinese with English abstract)
Zhang SH and Yang HX. 1996. Paleomagnetism of the Jiamusi Terrane in the Late Jurassic Epoch and Cretaceous Period and its tectonic significance, NE China. Journal of Changchun University of Erath Sciences, 26(2): 206-210 (in Chinese with English abstract)
Zhang XF, Zhang SH, Meng XG, Li C and Wang YM. 2014. The identification of Mesozoic Pacific plate subduction: Evidence from paleomagnetism of the Late Triassic bedded cherts in Raohe area, eastern Heilongjiang Province. Geology in China, 41(6): 2019-2027 (in Chinese with English abstract)
Zhang XZ. 1992. Heilongjiang mélange: The evidence of Caledonian suture zone of the Jiamusi massif. Journal of Changchun University of Earth Sciences, 22(S1): 94-101 (in Chinese with English abstract)
Zhang XZ and Sklyarov EV. 1992. Tectonic significance of the blueschist belt in NE China and its adjacent areas. In: M-SGT Geology Group (eds.). Geological Studies of Lithospheric Structure and Evolution of Manzhouli-Suifenhe Geotransect, China. Beijing: Seismic Press, 99-106 (in Chinese with English abstract)
Zhang XZ, Ma YX, Chi XG, Zhang FX, Sun YW, Guo Y and Zeng Z. 2012. Discussion on Phanerozoic tectonic evolution in northeastern China. Journal of Jilin University (Early Science Edition), 42(5): 1269-1285 (in Chinese with English abstract)
Zhang XZ, Zeng Z, Gao R, Hou HM, Guo Y, Pu JB and Fu QL. 2015. The evidence from the deep seismic reflection profile on the subduction and collision of the Jiamusi and Songnen massifs in the northeastern China. Chinese Journal of Geophysics, 58(12): 4415-4424 (in Chinese with English abstract)
Zhao CJ, Peng YJ, Dang ZX and Zhang YP. 1996. Tectonic Framework and Crust Evolution of Eastern Jilin and Heilongjiang Provinces. Shenyang: Liaoning University Press (in Chinese with English abstract)
Zhao GC, Wang YJ, Huang BC, Dong YP, Li SZ, Zhang GW and Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262-286
Zhao LL. 2011. The evidence of petrology and geochronology on tectonic evolution of Heilongjiang Complex in eastern Heilongjiang Province, China. Ph. D. Dissertation. Changchun: Jilin University (in Chinese with English summary)
Zhao LL and Zhang XZ. 2011. Petrological and geochronological evidences of tectonic exhumation of Heilongjiang complex in the eastern part of Heilongjiang Province, China. Acta Petrologica Sinica, 27(4): 1227-1234 (in Chinese with English abstract)
Zhao YL, Liu YJ, Li WM, Wen QB and Han GQ. 2010. High-pressure metamorphism in the Mudanjiang area, southern Jiamusi massif: Petrological and geochronological characteristics of the Heilongjiang complex, China. Geological Bulletin of China, 29(2-3): 243-253 (in Chinese with English abstract)
Zheng Z, Kono M and Shao JA. 1990. The amalgamative history of Eastern Asia inferred from paleomagnetism of North China. Rock Magnetism and Paleogephysica, 17: 1-18
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ and Zhang XH. 2009. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4): 230-246
Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Wang H and Zeng WS. 2010a. Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma?. Journal of Geodynamics, 50(3): 300-317
Zhou JB, Wilde SA, Zhao GC, Zhang XZ, Zheng CQ, Wang HU and Zeng WS. 2010b. Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity. Geological Magazine, 147(5): 737-749
Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Liu FL, Qiao DW, Ren SM and Liu JH. 2011. A >1300km Late Pan-African metamorphic belt in NE China: New evidence from the Xing'an block and its tectonic implications. Tectonophysics, 509(3-4): 280-292
Zhou JB and Wilde SA. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1365-1377
Zhou JB, Han J, Wilde SA, Guo XD, Zeng WS and Cao JL. 2013. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt: Evidence and tectonic implications. Acta Petrologica Sinica, 29(2): 386-398 (in Chinese with English abstract)
Zhou JB, Cao JL, Wilde SA, Zhao GC, Zhang JJ and Wang B. 2014. Paleo-Pacific subduction-accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics, 33(12): 2444-2466
Zhou JB and Li L. 2017. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 145: 91-100
Zhou JB, Wilde SA, Zhao GC and Han J. 2018. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76-93
Zhou JB, Pu XG, Hou HS, Han W, Cao JL and Li GY. 2018. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia. Acta Petrologica Sinica, 34(10): 2845-2856 (in Chinese with English abstract)
Zhou LY, Wang Y and Wang N. 2015. Syn-tectonic magmatic emplacement in Wanda Mountain, Northeast China: A response to the Late Mesozoic sinistral strike slip motion. Geological Bulletin of China, 34(Suppl.1): 400-418 (in Chinese with English abstract)
Zhu CY, Zhao GC, Sun M, Liu Q, Han YG, Hou WZ, Zhang XR and Eizenhofer PR. 2015. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos, 216-217: 241-253
Zhu CY, Zhao GC, Ji JQ, Sun M, Han YG, Liu Q, Eizenhöfer PR, Zhang XR and Hou WZ. 2017. Subduction between the Jiamusi and Songliao blocks: Geological, geochronological and geochemical constraints from the Heilongjiang Complex. Lithos, 282-283: 128-144
Zhu RX and Xu YG. 2019. The subduction of the West Pacific plate and the destruction of the North China Craton. Science China (Earth Sciences), 62(9): 1340-1350
Zyabrev S and Matsuoka A. 1999. Late Jurassic (Tithonian) radiolarians from a clastic unit of the Khabarovsk complex (Russian Far East): Significance for subduction accretion timing and terrane correlation. Island Arc, 8(1): 30-37
白景文, 王文兴, 张海髍. 1988. 黑龙江依兰、牡丹江变质带蓝闪片岩特征. 岩石矿物学杂志, 7(4): 298-308.
毕君辉. 2018.佳木斯地块东缘晚古生代构造-岩浆演化.博士学位论文.长春: 吉林大学 http://cdmd.cnki.com.cn/Article/CDMD-10183-1018213491.htm
曹瑞骥, 赵文杰, 肖仲洋. 1982. 中国前寒武系的分层和对比. 北京: 科学出版社.
曹熹, 党增欣, 张兴洲, 姜继圣, 王洪德. 1992. 佳木斯复合地体. 长春: 吉林科学技术出版社, 1-224.
程瑞玉, 吴福元, 葛文春, 孙德有, 柳小明, 杨进辉. 2006. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报, 22(2): 353-376.
党延松, 李德荣. 1993. 关于佳木斯地块前寒武纪同位素地质年代学问题的讨论. 长春地质学院学报, 23(3): 312-318.
段吉业, 安素兰. 2001. 黑龙江伊春早寒武世西伯利亚型动物群. 古生物学报, 40(3): 362-370.
高福红, 王枫, 许文良, 杨扬. 2013. 小兴安岭"古元古代"东风山群的形成时代及其构造意义:锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 43(2): 440-456.
高万里, 王宗秀, 李磊磊, 崔明明. 2018. 佳木斯-伊通断裂韧性剪切变形时代及其地质意义. 地质力学学报, 24(6): 748-758.
郭润华, 李三忠, 索艳慧, 王倩, 赵淑娟, 王旖旎, 刘晓光, 周在征, 李瑾, 兰浩圆, 王鹏程, 郭玲莉. 2017. 华北地块揳入大华南地块和印支期弯山构造. 地学前缘, 24(4): 171-184.
郭冶. 2016.黑龙江省东部跃进山杂岩的性质及构造演化.博士学位论文.长春: 吉林大学
韩国卿, 刘永江, 温泉波, 邹运鑫, 梁道俊, 赵英利, 李伟, 赵立敏. 2009. 嫩江-八里罕断裂带岭下韧性剪切带变形特征. 吉林大学学报(地球科学版), 39(3): 397-405.
韩晓萌, 郑常青, 徐学纯, 韩玉宝, 徐久磊. 2018. 黑龙江依兰地区蓝片岩相变质作用及其演化. 岩石学报, 34(4): 1139-1153.
何松, 孙晓猛, 张旭庆, 万阔, 郑涵, 李多姿. 2016. 黑龙江饶河枕状玄武岩地质、地球化学特征及其构造属性. 世界地质, 35(4): 942-954.
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社.
黄映聪, 张兴洲, 熊小松, 王跃, 赵亮亮. 2008. 中国东北依兰地区块状蓝片岩的地球化学特征. 岩石矿物学杂志, 27(5): 422-428.
姜继圣. 1992. 麻山群孔兹岩系主期区域变质作用及演化. 岩石矿物学报, 11(2): 97-110.
姜继圣. 1993. 麻山群孔兹岩系的地球化学特征. 地球化学, 2(4): 363-342.
孔凡梅, 李旭平, 焦丽香, 王泽利, 武倩倩. 2009. 黑龙江依兰地区黑硬绿泥石片岩岩石学与P-T条件研究. 岩石学报, 25(8): 1917-1923.
李碧乐, 孙丰月, 姚凤良. 2002. 中生代敦化-密山断裂大规模左旋平移及其对金矿床形成的控制作用. 大地构造与成矿学, 26(4): 390-395.
李锦轶, 牛宝贵, 宋彪, 徐文喜, 张雨红, 赵子然. 1999. 长白山北段地壳的形成与演化. 北京: 地质出版社.
李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 王励嘉, 张晓卫. 2019. 中国东北地区古生代构造单元:地块还是造山带?. 地球科学, 44(10): 3157-3177.
李朋武, 张世红, 申宁华. 1997. 黑龙江省那丹哈达与日本美浓地区古地磁结果对比及意义. 长春地质学院学报, 27(1): 63-67.
李三忠, 张勇, 郭玲莉, 索艳慧, 曹花花, 李玺瑶, 周在征, 王鹏程, 郭润华. 2017. 那丹哈达地体及周缘中生代变形与增生造山过程. 地学前缘, 24(4): 200-212.
李三忠, 曹现志, 王光增, 刘博, 李玺瑶, 索艳慧, 姜兆霞, 郭玲莉, 周洁, 王鹏程, 朱俊江, 汪刚, 赵淑娟, 刘永江, 张国伟. 2019. 太平洋板块中-新生代构造演化及板块重建. 地质力学学报, 25(5): 642-677.
李伟民, 刘永江, Takasu A, 赵英利, 温泉波, 郭新传, 张丽. 2014. 黑龙江依兰地区蓝片岩的变质演化P-T-t轨迹. 岩石学报, 30(10): 3085-3099.
李旭平, 孔凡梅, 郑庆道, 董晓, 杨振毅. 2010. 黑龙江萝北地区黑龙江杂岩年代学研究. 岩石学报, 26(7): 2015-2024.
梁宏达, 金胜, 魏文博, 高锐, 侯贺晟, 韩江涛, 韩松, 刘国兴. 2017. 松嫩地块东缘和佳木斯地块西缘电性结构. 地球物理学报, 60(4): 1511-1520.
刘建峰, 迟效国, 董春艳, 赵芝, 黎广荣, 赵院冬. 2008. 小兴安岭东部早古生代花岗岩的发现及其构造意义. 地质通报, 27(4): 534-544.
刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017-3047.
吕长禄, 肖庆辉, 冯俊岭, 于跃江, 杨福深, 邓昌洲. 2016. 黑龙江依兰地区变玄武岩及变堆晶辉长岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 35(7): 1081-1094.
裴军令, 杨振宇, 赵越, 孙知明, 王喜生, 刘静. 2009. 中国东北及邻区白垩纪古地磁分析与块体旋转运动动力学背景. 地质学报, 83(5): 617-627.
任留东, 王彦斌, 杨崇辉, 赵子然, 郭进京, 高洪林. 2012. 麻山杂岩的两种变质作用及其与花岗岩的关系. 岩石学报, 28(9): 2855-2865.
任收麦, 黄宝春. 2002. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探. 地球物理学进展, 17(1): 113-120.
任收麦, 朱日祥, 邱海峻, 周建波, 邓成龙. 2015. 黑龙江省饶河枕状玄武岩古地磁学研究及其构造意义. 地球物理学报, 58(4): 1269-1283.
邵济安, 唐克东, 王成源, 臧启家, 张允平. 1991. 那丹哈达地体的构造特征及演化. 中国科学(B辑), 21(7): 744-751.
邵济安, 李永飞, 唐克东. 2013. 张广才岭造山过程的重构及其大地构造意义. 岩石学报, 29(9): 2959-2970.
邵济安, 唐克东. 2015. 东北亚中生代洋陆过渡带的研究及启示. 岩石学报, 31(10): 3147-3154.
沈其韩, 耿元生. 2012. 中国蓝片岩带的时空分布、地质特征和成因. 地质学报, 86(9): 1407-1446.
宋彪, 牛宝贵, 李锦轶, 徐文喜. 1994. 牡丹江-鸡西花岗岩类同位素地质年代学研究. 岩石矿物学杂志, 13(3): 204-213.
孙明道. 2013.中国东北佳木斯地块及邻区晚中生代岩浆作用和构造意义.博士学位论文.杭州: 浙江大学
孙明道, 徐义刚, 陈汉林. 2018. 中国东北饶河杂岩中的侏罗纪玄武质凝灰岩及枕状玄武岩:对古太平洋水下火山活动的启示. 中国科学(地球科学), 48(8): 1016-1032.
孙晓猛, 刘永江, 孙庆春, 韩国卿, 王书琴, 王英德. 2008. 敦密断裂带走滑运动的40Ar/39Ar年代学证据. 吉林大学学报(地球科学版), 38(6): 965-972.
唐杰, 许文良, 王枫, 葛文春. 2018. 古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录. 中国科学(地球科学), 48(5): 549-583.
田东江, 周建波, 郑常青, 刘建辉. 2006. 完达山造山带蛇绿混杂岩中变质基性岩的地球化学特征及其地质意义. 矿物岩石, 26(3): 64-70.
王成文, 金巍, 张兴洲, 马志红, 迟效国, 刘永江, 李宁. 2008. 东北及邻区晚古生代大地构造属性新认识. 地层学杂志, 32(2): 119-136.
王枫. 2013.松嫩-张广才岭地块东缘"元古界"的岩石组合与形成时代: 对区域构造演化的意义.博士学位论文.长春: 吉林大学
王继尧, 杨言辰, 黄永卫, 侯玉树, 谈艳, 张国宾. 2016. 黑龙江东部完达山地体蛇绿岩形成时代及其构造意义. 地球科学与环境学报, 38(2): 182-195.
王小凤, 李中坚, 陈柏林. 2005. 郯庐断裂带. 北京: 地质出版社.
王志伟. 2017.小兴安岭-张广才岭早古生代火成岩的岩石学与地球化学: 对块体拼合历史和地壳属性的制约.博士学位论文.长春: 吉林大学
Wilde SA, 吴福元, 张兴洲. 2001. 中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义. 地球化学, 30(1): 35-50.
吴福元, Wilde SA, 孙德有. 2001. 佳木斯地块片麻状花岗岩的锆石离子探针U-Pb龄. 岩石学报, 17(3): 443-452.
肖文交, 舒良树, 高俊, 熊小林, 王京彬, 郭召杰, 李锦轶, 孙敏. 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8.
肖文交, 李继亮, 宋东方, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687.
颉颃强, 张福勤, 苗来成, 陈福坤, 刘敦一. 2008. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
许文良, 王枫, 孟恩, 高福红, 裴福萍, 于介江, 唐杰. 2012. 黑龙江省东部古生代-早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389.
许文良, 孙晨阳, 唐杰, 栾金鹏, 王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646.
杨惠心, 李朋武, 禹惠民. 1998. 中国东北地区主要地体古地磁学研究. 长春科技大学学报, 28(2): 202-205, 212.
杨金中, 邱海峻, 孙加鹏, 张兴洲. 1998. 跃进山岩系及其构造意义. 长春科技大学学报, 28(4): 380-385.
叶慧文, 张兴洲, 周裕文. 1994.从蓝片岩及蛇绿岩特点看满-绥地学断面岩石圈结构与演化.见: M-SGT地质课题组编.中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究.北京: 地震出版社, 73-83
曾振. 2017.佳木斯地块与完达山杂岩的构造性质及其演化.博士学位论文.长春: 吉林大学
曾振, 张兴洲, 周建波, 张宏涛, 刘洋, 崔维龙. 2018. 跃进山杂岩中二叠纪变玄武岩的锆石U-Pb年代学、地球化学及其地质意义. 大地构造与成矿学, 42(2): 365-378.
张国宾. 2014.黑龙江省东部完达山地块区域成矿系统研究.博士学位论文.长春: 吉林大学
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社.
张庆龙, 水谷伸治郎, 小嶋智. 1997. 放射虫化石及地体对比研究. 古生物学报, 36(2): 245-252.
张世红, 施央申. 1992. 黑龙江省东部地体运动的古地磁证据. 南京大学学报(自然科学版), 28(2): 297-301.
张世红, 杨惠心. 1996. 佳木斯地体晚侏罗世-白垩纪古地磁研究及其构造意义. 长春地质学院学报, 26(2): 206-210.
张雪锋, 张世红, 孟宪刚, 李超, 王彦明. 2014. 太平洋板块中生代俯冲构造事件的响应:来自黑龙江东部饶河三叠纪层状燧石的古地磁证据. 中国地质, 41(6): 2019-2027.
张兴洲. 1992. 黑龙江岩系-古佳木斯地块加里东缝合带的证据. 长春地质学院学报, 22(S1): 94-101.
张兴洲, Sklyarov EV. 1992.中国东北及邻区蓝片岩带的构造意义.见: M-SGT地质课题组编.中国满洲里-绥芬河地学断面域内岩石圈结构及它的演化的地质研究.北京: 地震出版社, 99-105
张兴洲, 马玉霞, 迟效国, 张凤旭, 孙跃武, 郭冶, 曾振. 2012. 东北及内蒙古东部地区显生宙构造演化的有关问题. 吉林大学学报(地球科学版), 42(5): 1269-1285.
张兴洲, 曾振, 高锐, 侯贺晟, 郭冶, 蒲建彬, 付秋林. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据. 地球物理学报, 58(12): 4415-4424.
赵春荆, 彭玉鲸, 党增欣, 张允平. 1996. 吉黑东部构造格架及地壳演化. 沈阳: 辽宁大学出版社.
赵亮亮. 2011.黑龙江杂岩构造演化的岩石学与年代学证据.博士学位论文.长春: 吉林大学
赵亮亮, 张兴洲. 2011. 黑龙江杂岩构造折返的岩石学与年代学证据. 岩石学报, 27(4): 1227-1234.
赵英利, 刘永江, 李伟民, 温泉波, 韩国卿. 2010. 佳木斯地块南缘牡丹江地区高压变质作用:黑龙江杂岩的岩石学和地质年代学. 地质通报, 29(2-3): 243-253.
周建波, 韩杰, Wilde, S A, 郭晓丹, 曾维顺, 曹嘉麟. 2013. 吉林-黑龙江高压变质带的初步厘定:证据和意义. 岩石学报, 29(2): 386-398.
周建波, 蒲先刚, 侯贺晟, 韩伟, 曹嘉麟, 李功宇. 2018. 东北中生代增生杂岩及对古太平洋向欧亚大陆俯冲历史的制约. 岩石学报, 34(10): 2845-2856.
周丽云, 王瑜, 王娜. 2015. 中国东北完达山地区早白垩世同构造岩浆侵位——对晚中生代左行走滑作用的响应. 地质通报, 34.
朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学(地球科学), 49(9): 1346-1356.