岩石学报  2020, Vol. 36 Issue (1): 245-256, doi: 10.18654/1000-0569/2020.01.20   PDF    
柿竹园和香炉山W多金属矿床中硫化物微量元素特征:来自原位LA-ICP-MS分析
吴胜华1,2, 孙冬阳3, 李军4     
1. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
3. 中国地质科学院国家地质实验测试中心, 北京 100037;
4. 湖南柿竹园有色金属有限责任公司, 郴州 423037
摘要: 华南包括两个世界级的W矿带,分别是南岭和江南造山带W成矿带。柿竹园W多金属矿床位于南岭地区,香炉山W矿床位于江南造山带东北部。两个矽卡岩W矿床都发育硫化物成矿阶段。但硫化物和成矿元素组成存在显著的差异。前者由含Pb、Zn、Ag硫化物和黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿硫盐组成;后者主要为磁黄铁矿。柿竹园远接触带Pb-Zn-Ag矿脉中硫化物(闪锌矿、黄铜矿、方铅矿和磁黄铁矿)较富集B、Mn、Cr、Sb、Sn和Hg,香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物(磁黄铁矿、黄铜矿和闪锌矿)较富集W、Se和Bi。两个矿床中黄铜矿、闪锌矿和方铅矿较富集Ag,黄铜矿、闪锌矿富集In和Sn,闪锌矿还富集Cd。两个矿床中的硫化物微量元素分析表明与矽卡岩W矿成矿相关的硫化物可载有多种微量元素。这些元素参与到硫化物中程度由多种因素控制。具体如下,硫化物中B含量高低与成矿相关岩体中B含量相关;在相对高温和还原条件下,硫化物中W含量较高;闪锌矿中Mn和Cd与Zn发生取代作用;Cr可以一定程度进入到硫化物中,并受成矿流体中Cr含量影响;Se与S发生了一定程度的取代进入硫化物,并受流体中它的含量控制;Bi在闪锌矿与黄铜矿易形成固溶体;硫化物中Sb含量受初始流体中它的含量影响,方铅矿中易包裹一定的辉锑矿(Sb2S3)或含Sb的硫盐矿物;Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序;硫化物中Hg的含量受温度影响。
关键词: 微量元素    LA-ICP-MS    柿竹园    香炉山    华南    
Comparison of trace elements in sulfides from the Shizhuyuan and Xianglushan W polymetallic deposits: Constrained by LA-ICP-MS analysis
WU ShengHua1,2, SUN DongYang3, LI Jun4     
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China;
4. Hunan Shizhuyuan Nonferrous Metals Liability Co. Ltd., Chenzhou 423037, China
Abstract: South China contains two world-class W metallogenic belts:the Nanling Region and the Jiangnan Orogen.Two important W polymetallic deposits, the Shizhuyuan and Xianglushan deposits, are located in these two belts, respectively. Obvious differences in the sulfide assemblies and ore-forming elements of the two W deposits developed during the sulfide mineralization stages. The former contains distal Pb-Zn-Ag sulfide veins, also involving some Ag-, Sn-, and Bi-bearing sulfosalts; while the latter has layer-like sulfide-scheelite orebodies. The sulfides (sphalerite, chalcopyrite, galena, and pyrrhotite) from the Shizhuyuan distal Pb-Zn-Ag veins have obvious enrichments of B, Mn, Cr, Sb, Sn, and Hg. In contrast, sulfides (pyrrhotite, chalcopyrite, and sphalerite) within layer-like sulfide-scheelite and skarn W orebodies from the Xianglushan deposit have high concentrations of W, Se, and Bi. In both deposits, chalcopyrite, sphalerite, and galena are apt to carry Ag. Furthermore, chalcopyrite and sphalerite are In and Sn enriched, and major Cd is enriched in sphalerite. This study proves that sulfides from skarn W deposits can be enriched in some trace and minor elements with mining value, which participate in the sulfides depending on the initial element contents of hydrothermal fluids, substitutional reactions, or physico-chemical conditions. In detail, B contents within the sulfides are depended on them enriched by genetically related magma. Under relatively high temperatures and reducing conditions, W may participate in sulfides. The Zn of sphalerite is commonly substituted by Mn and Cd. The sulfides may capture the Cr, which is affected by the Cr contents in the hydrothermal fluids. When Se contents are high enough in fluids, it will be present as the replacement with S and participate in sulfides. Sphalerite and chalcopyrite may contain some Bi-bearing solid solution. The Sb-enriched ore-forming fluid is important to Sb participating in the sulfides, and galena is apt to involve inclusions of Sb2S3 and Sb-bearing sulfosalts. The Ag contents within the ore-forming fluids and precipitation sequences of sulfide minerals pay an important role on sulfides capturing Ag. Hg contents within sulfides are affected by temperatures.
Key words: Trace elements    LA-ICP-MS    Shizhuyuan    Xianglushan    South China    

与岩浆热液相关的W矿床,如矽卡岩、斑岩和石英脉型W矿床,具有重要经济价值(Mao et al., 2013b)。其中,矽卡岩W矿床还常常包括重要经济价值的硫化物脉,富集Pb-Zn-Ag-Au-Sb-In-Cd等成矿元素。矽卡岩W矿床常可划分为三个成矿阶段:(Ⅰ)矽卡岩阶段;(Ⅱ)云英岩阶段;和(Ⅲ)硫化物阶段(有时伴随含Ag、Bi、Sn等成矿元素的硫盐矿物)(Kwak, 1987; Lu et al., 2003; Wu et al., 2018)。然而硫化物阶段有时含多金属元素(如Pb-Zn-Ag-Au)硫化物,有时则主要由较单一黄铁矿或磁黄铁矿组成。硫化物的微量元素常常作为副产品开采,也可为找矿勘查提供指示作用,如硫化物中W、Ag、Bi、Se、Sn和In等可以考虑作为矿床中的副产品(Cook et al., 2011; George et al., 2015)。目前,对于矽卡岩W矿床中两类硫化物组合中微量元素富集特征和规律还不清楚。

华南是全球钨成矿强度最大的地区,包含南岭和江南造山带两个世界级的W成矿带(Li et al., 2012; Sun et al., 2012; Mao et al., 2013a; 蒋少涌等, 2015; Liu et al., 2019; 图 1a, b)。两者都形成于晚古生代,但是在成矿年龄、矿石类型、成矿元素组合和成矿相关的花岗岩等方面存在差异。南岭W成矿带具有的特征为:成矿年代160~150Ma;与黑云母花岗岩相关;矿石类型有W-Sn-Mo-Bi矽卡岩-云英岩、石英-黑钨矿脉和碳酸盐交代型的Pb-Zn-Ag矿石;W-Sn-Mo-Bi-Pb-Zn-Ag-Cu-Be-F成矿元素组合(Li et al., 2004; Mao et al., 2013a; Wu et al., 2018)。而江南造山带W成矿带的特征是:矿年龄150~125Ma;与花岗闪长岩、花岗岩和花岗斑岩相关;斑岩-矽卡岩W矿石;成矿元素组合W-Mo-Cu(Mao et al., 2013b; Dai et al., 2018; Wu et al., 2019)。因此,对比研究两个成矿带同类型的W多金属矿床中差异特征,可以理解与岩浆热液相关W多金属巨量聚集规律。

图 1 华南地区主要W成矿带地质简图 (a)南岭地区地质简图,包括晚中生代W多金属矿床分布(据Peng et al., 2006);(b)江南造山带地质简图,包括晚中生代W多金属矿床分布(据Mao et al., 2013b) Fig. 1 Simplified geological map of W polymetallic metallogenic belts located in South China (a) geological map of the central Nanling region, South China, and the locations of the Late Mesozoic W polymetallic deposits (after Peng et al., 2006); (b) geological map of the eastern area of the Jiangnan Orogen, displaying the distribution of W polymetallic deposits (after Mao et al., 2013b)

柿竹园多金属矿床位于湖南省南部郴州市,是南岭成矿带的重要矿床,主要由近接触带W-Sn-Mo-Bi矽卡岩和云英岩和远接触带Pb-Zn-Ag矿脉构成(吴胜华等, 2016; Wu et al., 2018)。香炉山矿床,位于江西省西北部修水县,是江南造山带东北部重要矿床,包括近平行的似层状矽卡岩W矿体、似层状硫化物(主要为磁黄铁矿)-白钨矿矿体和网脉状W云英岩(吴胜华等, 2014)。两个矽卡岩W多金属矿床在硫化物成矿阶段的硫化物组成有显著的差异,前者为Pb、Zn、Ag硫化物和Ag、Sn、Bi硫盐,后者主要为磁黄铁矿。本文对比研究柿竹园远接触带Pb-Zn-Ag矿脉与香炉山矽卡岩和硫化物-白钨矿矿体中主要硫化物微量元素组成特征,揭示了W矿床中硫化物成矿阶段微量元素的富集规律。

1 区域地质背景

华南板块由扬子板块和华夏板块在新元古代拼接形成,包括梅川-武夷山(0.9~1.0Ga)和四堡-益阳-九岭-富川(8.5~8.2Ga)两个造山带(张国伟等, 2013),之后沿钦杭带(钦州-杭州湾)裂解形成陆内盆地(图 1)。印支期(主要为三叠纪),沿钦杭带再次发生碰撞造山运动(舒良树等, 2008)。至晚侏罗世和白垩纪,古太平洋板块对华南板块俯冲作用显著,同时伴随着大规模的岩浆作用和相关的W-Sn-Cu-Mo-Pb-Zn成矿作用(Li et al., 2007; Mao et al., 2011; Li et al., 2012; Wu et al., 2015, 2018; Chen et al., 2016)。

南岭地区位于华夏板块西北部(舒良树等, 2006)。基底地层包括新元古代片岩和震旦纪至志留纪板岩,盖层由晚泥盆世至中三叠世海相碳酸盐岩、泥岩和砂岩和晚三叠世至古近纪陆相碎屑岩和火山碎屑岩组成(Peng et al., 2006)。大规模燕山期花岗岩侵入到这些地层中(Li et al., 2004),也出露少量早印支期和加里东期花岗岩(朱金初等, 2008)。燕山期造山运动形成南岭地区的盆岭构造。

江南造山带沿扬子板块东南部延伸~1500km。江南造山带初始碰撞一般认为发生在850~820Ma,形成华南板块(张国伟等, 2013)。江南造山带东北部基底地层包括新元古界双桥山群千枚岩和新元古界上溪群板岩,盖层包括志留纪至早三叠世海相碎屑岩、碳酸盐岩和中三叠世至早侏罗世滨海相碎屑岩(Mao et al., 2013b)。新元古代和燕山期花岗岩两期岩浆在该地区发育。九岭新元古代花岗岩侵入体出露面积>2000km2,为华南地区最大花岗岩杂岩体(钟玉芳等, 2005);有些新元古代花岗岩也伴随W成矿作用。燕山期花岗岩最为发育,并伴随大规模W-Mo成矿作用(Mao et al., 2013b)。

2 矿床地质 2.1 柿竹园近接触带W矽卡岩和云英岩及远接触带Pb-Zn-Ag矿脉

柿竹园地区位于东坡-乐梅复式向斜北段,茶岭-陵武NE向深断层从该矿床西北部经过。NE向断层是Pb-Zn-Ag矿脉主要控矿构造,也控制着千里山花岗岩体侵位。柿竹园地区主要出露中-上泥盆统砂岩和灰岩(图 2)。千里山杂岩体在该地区出露面积约~10km2,侵入到泥盆系砂岩和灰岩地层(图 2)。该杂岩体由似斑状或等粒黑云母花岗岩组成,其锆石SHRIMP U-Pb年龄为152±2Ma(Li et al., 2004),被NE向花岗斑岩脉切过(Mao and Li, 1995)。柿竹园矽卡岩W多金属矿床主要分布在千里山花岗岩体周围,包括近接触带形成柿竹园、金船塘和柴山W-Sn-Mo-Bi矽卡岩,而离岩体的远接触带(1~2km)形成蛇形坪、百步窿和横山岭Pb-Zn-Ag矿脉。大部分矿体形成在褶皱和断层的交汇部位(Lu et al., 2003)。

图 2 柿竹园矿田及千里山杂岩体地质图(据Wu et al., 2018) Fig. 2 Geological map of the Qianlishan granite and the Shizhuyuan polymetallic district (after Wu et al., 2018)

块状矽卡岩W-Sn-Mo-Bi矿体是主要开采对象,与千里山岩体接触,呈透镜状(图 3a)。脉状和网脉状矽卡岩W-Sn-Mo-Bi矿体沿透镜状矽卡岩W-Sn-Mo-Bi矿体向外延伸,常叠加在大理岩之上。脉石矿物包括石榴石、辉石、符山石和硅灰石组成(图 4a, b),矿石矿物由白钨矿、辉铋矿、辉钼矿和锡石组成(图 4a, b)。辉铋矿和辉钼矿常常分布在白钨矿颗粒之间。

图 3 巷道剖面图 (a)柿竹园地区500m标高柴山近接触带W-Sn-Mo-Bi矽卡岩和百步窿远接触带Pb-Zn-Ag矿脉之间空间分布关系;(b)香炉山地区22勘查线似层状W矽卡岩剖面图 Fig. 3 Geological map of tunnel sections (a) geological profile (at a level of 500m) showing the spatial relationships between proximal W-Sn-Mo-Bi skarns and distal Pb-Zn-Ag veins in the Shizhuyuan district; (b) geological profile of the No.22 exploration line in the Xianglushan district, displaying the characteristics of mineralization and alterations of layer-like W skarns

图 4 柿竹园(a-g)和香炉山(h-l)地区矿石手标本和显微照片 (a)块状W-Mo-Bi矽卡岩; (b)样品(a)在紫外光下; (c)脉状W云英岩穿切矽卡岩; (d)样品(c)在紫外光下; (e)远接触带~2m宽Pb-Zn-Ag矿脉,脉长几百米; (f)早期共生的黄铁矿和毒砂,中期闪锌矿和黄铜矿,晚期方铅矿、黄铜矿和含银黝铜矿; (g)早期黄铁矿,部分被闪锌矿交代,共生方铅矿和磁黄铁矿; (h)近平行的似层状W矽卡岩和硫化物-白钨矿矿体; (i)辉石石榴石矽卡岩中自形的白钨矿,少量浸染状的自然铋和黄铜矿; (j)白钨矿和共沉淀的石英、黑云母和磁黄铁矿; (k)样品(j)在反射光下; (l)自形的白钨矿和共生的黄铜矿和磁黄铁矿脉. Apy-毒砂; Bi-自然铋; Bt-黑云母; Ccp-黄铜矿; Gt-石榴石; Gn-方铅矿; Po-磁黄铁矿; Py-黄铁矿; Px-辉石; Qtz-石英; Sch-白钨矿; Sp-闪锌矿; Tt-黝铜矿 Fig. 4 Characteristics of mineralization and microstructural features of the ores from the Shizhuyuan (a-g) and Xianglushan (h-l) deposits (a) massive skarn with W-Mo-Bi mineralization; (b) the same location as (a) under ultraviolet light; (c) greisen W veins cutting the skarn; (d) the same location as (c) under ultraviolet light; (e) the Pb-Zn-Ag veins, having ~2 meter wide and several hundred meters long; (f) early-stage co-precipitated pyrite, arsenopyrite, and sphalerite, sphalerite containing exsolved chalcopyrite, and late-stage galena, chalcopyrite, and Ag-tetrahedrite; (g) sphalerite replacing early-stage pyrite, followed by co-precipitated galena and pyrrhotite; (h) parallel layer-like sulfide-scheelite orebodies and W skarns; (i) euhedral scheelite within pyroxene and garnet skarns, followed by some native bismuth and chalcopyrite; (j) scheelite, quartz, biotite, and pyrrhotite co-precipitated; (k) the same location as (j) under reflected light; (l) pyrrhotite veins with euhedral scheelite and co-precipitated chalcopyrite. Apy-arsenopyrite; Bi-native bismuth; Bt-biotite; Ccp-chalcopyrite; Gt-garnet; Gn-galena; Po-pyrrhotite; Py-pyrite; Px-pyroxene; Qtz-quartz; Sch-scheelite; Sp-sphalerite; Tt-tetrahedrite

块状W-Sn-Mo-Bi云英岩透镜体发育在千里山岩体内部或边部,厚度几米至几十米。脉状W-Sn-Mo-Bi云英岩沿着云英岩透镜体向外侧发育,脉厚度几厘米至几十厘米(图 3a图 4c, d)。矿石矿物由辉铋矿、辉钼矿、黑钨矿、锡石和黄铜矿组成。白钨矿常呈浸染状或细脉状分布。脉石矿物包括石英、白云母、长石、黄玉、萤石和黄铁矿组成。

远接触带Pb-Zn-Ag矿脉位于千里山岩体远端几百米至1~2km处(图 3a)。Pb-Zn-Ag矿脉常常呈平行的脉群,长度几十至几百米,宽度一般 < 2m(图 4e)。这些脉体与地层层理斜交或顺层,矿石矿物由方铅矿、闪锌矿、黄铜矿、辉银矿、黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿组成,含少量黄铁矿、毒砂、磁黄铁矿和磁铁矿(图 4f, g; Wu et al., 2018)。成矿相关的蚀变包括碳酸盐化和硅化,为2~40cm宽和几十米长的方解石和石英脉,并与Pb-Zn-Ag矿脉近乎平行。

2.2 香炉山似层状硫化物-白钨矿和W矽卡岩矿床

香炉山矽卡岩W矿床位于九江凹陷与九岭隆起交汇部位,香炉山-观音台背斜西南端,该地区NNE、NE和NW向断层发育。围岩包括寒武系灰岩和震旦系硅质岩和砂岩。任家山花岗岩体在矿区北部出露(图 5),岩体顶部为细粒黑云母花岗岩,下部为中粗粒黑云母花岗岩,LA-ICP-MS锆石U-Pb年龄123.8±0.8Ma(Dai et al., 2018)。香炉山矿床主要由似层状硫化物-白钨矿矿体和似层状矽卡岩W矿体组成,它们发育在岩体顶部。硫化物-白钨矿矿体常发育在上部,有时与似层状矽卡岩W矿体近平行产出(图 3b图 4h; 吴胜华等, 2014)。少量脉状W云英岩,脉宽1~3cm,叠加在任家山岩体顶部。

图 5 香炉山地区地质图及任家山花岗岩侵入体分布(据吴胜华等,2014) Fig. 5 Geological map showing the location of the Renjiashan granite and the Xianglushan district (after Wu et al., 2014)

W矽卡岩矿体呈似层状,长度为~1800m,宽度400~1000m,厚度为 < 45m。脉石矿物主要由辉石组成,辉石自型,板状,含少量石榴石、萤石和石英(图 4i)。矿石矿物包括白钨矿,伴随少量辉钼矿、黄铜矿、自然铋(图 4i)。白钨矿呈浸染状、细脉状和块状,与辉石相间生长,呈自形晶体。

似层状硫化物-白钨矿矿体沿层间发育,形成平行脉群,一般几十至几百米长,几十厘米至1~2m厚(图 4h)。矿石矿物为白钨矿、黄铜矿;脉石矿物主要由磁黄铁矿组成,具有少量石英、磷灰石和黑云母。白钨矿呈浸染状分布在脉中,常常呈复四方双锥晶型,在单偏光镜下为粉红色、灰色、浅蓝色和浅绿色(图 4j-l)。

3 样品准备和分析方法

柿竹园矿床的硫化物样品采自远接触带柴山、蛇形坪、横山岭采矿区400m标高巷道内脉状Pb-Zn-Ag矿体。香炉山矿床中似层状硫化物-白钨矿矿体和矽卡岩矿体样品采自22勘查线。样品经过打磨制备呈探针片,经过显微镜下观察和分析后,开展原位的LA-ICP-MS分析。

硫化物微量元素分析在中国地质科学院国家测试中心完成。使用的仪器为连接有New Wave UP 213的Thermo Element II单接收高分辨磁性扇区ICP-MS。剥蚀下来的物质采用He气运移。仪器工作条件为40μm宽度斑束,10Hz频率,激光流10~30J/cm2,能量为0.176mJ。在分析过程中,首先15秒背景值采集,之后45秒样品剥蚀,最后15秒清洗系统,具体分析流程和技术参考袁继海等(2015)。分析元素包括B、W、Mn、Cr、Se、Sb、Bi、Ag、Cd、In、Sn和Hg。分析计算校正采用国际标准标样Mass-1(Wilson et al., 2002),分析精度为0.1×10-6

4 分析结果 4.1 挥发分元素

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中B含量平均值5.1×10-6。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿B含量大部分低于检测线,平均值为0.3×10-6(除了1个高值73.2×10-6)(表 1)。本文只将具有明显含量差异元素列出和讨论,下文其它族元素按照同样的方法分析和讨论。

表 1 柿竹园远接触带Pb-Zn-Ag矿脉和香炉山似层状W矽卡岩和硫化物-白钨矿矿体中硫化物中微量元素含量(×10-6) Table 1 Trace element contents of sulfide from the Shizhuyuan distal Pb-Zn-Ag veins and the Xianglushan layer-like W skarn and sulfide-scheelite orebodies (×10-6)
4.2 钨钼族元素

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中W含量低,平均值为0.1×10-6。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿W含量较高,平均值为6.9×10-6(最高49.4×10-6)(表 1)。

4.3 铁族元素

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿中Mn含量较高(6060×10-6~45100×10-6),平均值为22700×10-6,方铅矿和磁黄铁矿Mn含量19.0×10-6~4340×10-6。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿Mn含量3.6×10-6~2440×10-6,平均值为340×10-6,其中黄铜矿和闪锌矿中Mn含量高(表 1)。

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中Cr含量较高(1.4×10-6~31.8×10-6),平均值为14.6×10-6。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿Cr含量 < 0.1×10-6~12.3×10-6,平均值为3.2×10-6(表 1)。

4.4 半金属族元素

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中Se含量较低(< 0.1×10-6~49.2×10-6,平均值12.0×10-6,磁黄铁矿1个高值104×10-6)。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿Se含量1.0×10-6~31.9×10-6,平均值为20.4×10-6

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿和磁黄铁矿中Sb含量较高(0.1×10-6~13.2×10-6,平均值6.1×10-6,除方铅矿1个高值14.4%)。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿Sb含量 < 0.1×10-6~1.9×10-6,平均值为0.3×10-6(表 1)。

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中Bi含量较低(大部分≤0.1×10-6,除方铅矿中1个高值26.5×10-6)。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿Bi含量 < 0.1×10-6~24.8×10-6,平均值为7.4×10-6,除矽卡岩闪锌矿中1个高值357×10-6和似层状硫化物矿体中黄铜矿1个高值1150×10-6(表 1)。

4.5 硫化矿床成矿元素族元素

柿竹园远接触带硫化物脉中黄铜矿和方铅矿中Ag含量分别为175×10-6和294×10-6,高于闪锌矿和磁黄铁矿中Ag含量(0.7×10-6~58.2×10-6)。香炉山似层状矽卡岩中黄铜矿和闪锌矿和硫化物-白钨矿矿体中黄铜矿Ag含量42.9×10-6~280×10-6,高于磁黄铁矿Ag含量0.2×10-6~9.0×10-6(表 1)。

柿竹园远接触带硫化物脉中闪锌矿中Cd含量较高(7350×10-6~14900×10-6),黄铜矿、方铅矿和磁黄铁矿Cd含量 < 0.1×10-6~14.5×10-6。香炉山矽卡岩中闪锌矿Cd含量10700×10-6,其他硫化物含量 < 0.1×10-6~15.8×10-6(表 1)。

柿竹园远接触带硫化物脉中黄铜矿和闪锌矿中In含量较高(1.1×10-6~970×10-6),方铅矿和磁黄铁矿In含量 < 0.1×10-6~0.5×10-6。香炉山似层状矽卡岩中黄铜矿和闪锌矿和硫化物-白钨矿矿体中黄铜矿In含量6.2×10-6~430×10-6,其他硫化物含量 < 0.1×10-6~2.7×10-6(表 1)。

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中Sn含量较高(0.5×10-6~288×10-6,平均值84.6×10-6)。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿的Sn含量 < 0.1×10-6~32.2×10-6,平均值为4.6×10-6(表 1)。

柿竹园远接触带硫化物脉中黄铜矿、闪锌矿、方铅矿和磁黄铁矿中Hg含量较高(0.3×10-6~62.2×10-6,平均值13.0×10-6)。香炉山似层状矽卡岩中磁黄铁矿、黄铜矿和闪锌矿和硫化物-白钨矿矿体中磁黄铁矿和黄铜矿的Hg含量0.3×10-6~11.5×10-6,平均值为1.5×10-6(表 1)。

5 讨论 5.1 B元素含量特征

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物B含量平均值远高于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物(图 6)。B和S可以形成B2S3,而B2S3可以和金属氧化物反应,形成硫化物(Wu and Seo, 2004)。柿竹园成矿相关的千里山黑云母花岗岩体为富B、F等挥发分的岩体(Mao and Li, 1995)。因此形成远接触带硫化物脉的成矿流体时,B可以与S一起进入热液流体,并参与反应进入硫化物中。目前,还未有香炉山成矿相关的任家山黑云母花岗岩体的B元素含量数据。其硫化物中低B含量暗示相关岩体具有低B的特点。

图 6 柿竹园远接触带Pb-Zn-Ag矿脉和香炉山似层状矽卡岩及硫化物-白钨矿矿体中硫化物的B、W、Mn、Cr、Se、Sb、Bi、Ag、Cd、In、Sn、Hg元素含量富集特征箱形图 其中绿色区域代表柿竹园远接触带Pb-Zn-Ag矿脉,红色区域代表香炉山似层状W矽卡岩,黄色区域代表香炉山似层状硫化物-白钨矿矿体 Fig. 6 Box diagrams illustrating variation in concentrations of B, W, Mn, Cr, Se, Sb, Bi, Ag, Cd, In, Sn, and Hg in sulfides from the Shizhuyuan distal Pb-Zn-Ag veins and the Xianglushan layer-like W skarns and sulfide-scheelite Green area represents the Shizhuyuan distal Pb-Zn-Ag veins, red area represents the Xianglushan layer-like W skarns, and yellow area represents the Xianglushan layer-like sulfide-scheelite
5.2 W元素含量特征

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物W含量平均值远低于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物W含量(图 6)。硫化物中W含量一般很低(Fleischer, 1955; George et al., 2015),因为W较难和硫化物一起从硅酸盐熔体中出熔(Mengason et al., 2011)。但是在相对还原条件下,W和S可以形成WS2,是一种重要的加氢活性催化剂(Rodríguez-Castellón et al., 2008)。香炉山矿床硫化物-白钨矿矿体中都含大量白钨矿,表明成矿热液流体在相对高温和还原条件下,部分W以正四价的形成进入硫化物中。

5.3 Mn和Cr元素含量特征

柿竹园远接触带Pb-Zn-Ag矿脉硫化物Mn含量平均值远高于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物Mn含量平均值(图 6)。而黄铜矿和闪锌矿中Mn含量远高于方铅矿和磁黄铁矿Mn含量。硫化物中金属元素之间的取代受离子半径控制,Mn和Zn的离子半径相近,因此Mn更多集中到闪锌矿中(Fleischer, 1955; Cook et al., 2011; Lin et al., 2011)。

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物Cr含量平均值远高于香炉山似层状矽卡岩和硫化物矿体中硫化物Cr含量(图 6)。硫化物中Cr含量一般很低(George et al., 2015)。Fleischer(1955)提出块状硫化物Cr含量较低,而脉状硫化物Cr含量较高,与本研究的一致。Cr与S形成CrS-CrS1.5非定比化合物,可以一定程度进入到硫化物中(Jellinek, 1957; Zouboulis et al., 1995)。柿竹园远接触带高Cr的含量源于成矿流体初始高Cr的含量。

5.4 Se、Sb、Bi元素含量特征

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物Se含量平均值低于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物Se含量平均值(图 6)。Se可以取代S,而矿床富集Se程度影响硫化物中Se含量变化(Bindi and Pratesi, 2005)。Se可参与到不同硫化物中,如黄铜矿、方铅矿等(Cabri et al., 1985; Cook et al., 2011; George et al., 2015)。方铅矿中有时具有n%的Se,这是由于温度高于300℃,PbSe和PbS可以形成固溶体(George et al., 2015)。但是也发现一些矿床中方铅矿中Se/S比值低于黄铜矿、闪锌矿和黄铁矿(Fleischer, 1955)。硫化物中高的Se/S比值受控于热液中原始硫化物体系中Se的含量(Holwell et al., 2015)。香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物高Se含量,表明成矿流体中较富Se,在硫化物沉淀过程中,Se与S发生了一定程度的取代进入硫化物晶格中。

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物Sb含量平均值远高于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物Sb含量平均值(图 6)。硫化物中高Zn和Pb的含量伴随着高Sb的含量(Fleischer, 1955)。柿竹园远接触带硫化物脉中硫化物具有高Sb含量,表明成矿流体具有高Sb的含量。柿竹园远接触带硫化物脉中方铅矿中具有高Sb含量(14.4%),未出现足够高的Bi和Ag含量,因此并非发生2(Bi, Sb)3++Ag+=3Pb2+取代作用,而是矿物颗粒中包裹一定的辉锑矿(Sb2S3)或含Sb的硫盐矿物(George et al., 2015)。

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物Bi含量平均值远低于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物Bi含量平均值(图 6)。香炉山似层状矽卡岩中闪锌矿和硫化物-白钨矿矿体中黄铜矿个别具有高Bi含量。Bi在硫化物矿床中即可形成含Bi的独立矿物相,又易进入到方铅矿、黄铜矿和闪锌矿中(Fleischer, 1955; Lueth et al., 2000)。Sugaki et al.(1981)提出,温度在300~420℃,流体中Cu-Fe-Bi-S体系控制含铜硫化物中Bi的含量。香炉山矿床似层状矽卡岩和硫化物-白钨矿矿体含有自然Bi,而柿竹园远接触带Pb-Zn-Ag矿脉少见含Bi的矿物。因此成矿流体中Bi含量的高背景值造成香炉山矿床中硫化物高Bi的含量。Bi又是亲铜元素(Cook et al., 2011),因此富集在黄铜矿中。闪锌矿与黄铜矿又可形成固溶体,因此也会富集Bi(Wu et al., 2018)。

5.5 Ag、Cd、In、Sn、Hg元素含量特征

柿竹园远接触带Pb-Zn-Ag矿脉中黄铜矿和方铅矿和香炉山矽卡岩中黄铜矿和闪锌矿和硫化物-白钨矿矿体中黄铜矿的Ag元素含量较高,高于磁黄铁矿Ag的含量(图 6)。Ag既可以形成辉银矿和银黝铜矿(Loucks and Petersen, 1988),又可进入黄铜矿、闪锌矿和方铅矿晶格中(Cabri et al., 1985; Cook et al., 2011; Wu et al., 2018)。柿竹园远接触带Pb-Zn-Ag矿脉,Ag即形成了含Ag矿物(辉银矿和银黝铜矿),又有部分参与到黄铜矿、闪锌矿和方铅矿中,而香炉山矿床少见含Ag矿物。此外,Ag和Pb的离子半径相近,Ag更多进入到方铅矿中(Fleischer, 1955),也有一些矿床黄铁矿中显示高Ag含量(Hawley and Nichol, 1961)。Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序(Bajwah et al., 1987; Wu et al., 2018)。

柿竹园远接触带Pb-Zn-Ag矿脉和香炉山似层状矽卡岩和硫化物-白钨矿矿体中闪锌矿Cd含量显著高于其它硫化物中Cd含量(图 6)。Cd可在方铅矿中形成固溶体,高Bi含量的方铅矿中具有高Cd的含量(George et al., 2015);另外一些闪锌矿中也会富集Cd(Fleischer, 1955)。本次研究表明Cd主要富集在闪锌矿中,是由Cd与Zn具有相似的离子半径,可以取代Zn进入闪锌矿晶格(Lin et al., 2011)。

柿竹园远接触带Pb-Zn-Ag矿脉和香炉山似层状矽卡岩和硫化物矿体中黄铜矿和闪锌矿In含量显著高于其它硫化物中In含量(图 6)。In易于富集在闪锌矿中,少量黄铜矿中也会富集In(George et al., 2015)。高温热液流体形成的闪锌矿常含高In含量,而低温热液流体形成的闪锌矿中In的含量低(Fleischer, 1955; Lin et al., 2011)。George et al.(2015)提出与岩浆热液相关的硫化物系统中In与Sn常常会具有一定的相关性,即同时富集,本次研究中并未出现该现象。

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物Sn含量平均值远高于香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物Sn含量平均值(图 6)。Sn的离子半径大小适合进入硫化物晶格中,方铅矿、闪锌矿、黄铁矿和黄铜矿有时具有高含量的Sn(Hawley and Nichol, 1961; George et al., 2015)。还原条件下Sn4+不易与硫化物中阳离子发生取代作用,而氧化条件下,闪锌矿和方铅矿中可发生Sn4++□=2(Zn, Pb)2+取代作用(George et al., 2015)。共生的黄铜矿和闪锌矿会同时富集Sn(George et al., 2015);硫化物中出现高含量Sn时,也常常伴随硫盐(黝铜矿)出现(Fleischer, 1955);与本次研究的结果一致。

柿竹园远接触带Pb-Zn-Ag矿脉中硫化物Hg含量平均值远高于香炉山似层状矽卡岩和硫化物矿体中硫化物Hg含量(图 6)。黄铁矿、闪锌矿、黄铜矿和磁黄铁矿中Hg含量一般很低(George et al., 2015)。具有高Hg的含量硫化物表明矿物形成的温度低(Fleischer, 1955)。因此,表明柿竹园远接触带Pb-Zn-Ag矿脉形成温度较香炉山似层状硫化物-白钨矿矿体形成的温度低。

6 结论

柿竹园和香炉山W多金属矿床中硫化物成矿阶段的硫化物组合和成矿元素有显著差异,前者主要包括Pb、Zn、Ag硫化物和黝铜矿、银黝铜矿、含Ag斜方辉铅铋矿和铁硫锡铜矿硫盐,后者磁黄铁矿-白钨矿组成。柿竹园远接触带Pb-Zn-Ag矿脉中硫化物较富集B、Mn、Cr、Sb、Sn、Hg,香炉山似层状矽卡岩和硫化物-白钨矿矿体中硫化物更富集W、Se、Bi。这两个矿床中黄铜矿、闪锌矿和方铅矿较富集Ag;黄铜矿、闪锌矿富集In;闪锌矿富集Cd。

矽卡岩W多金属矿床中硫化物中微量元素富集程度可由多种因素控制。比如,成矿相关岩体中B含量高低限制矿石中硫化物中B含量。在相对高温和还原条件下,W可以富集到硫化物中。闪锌矿中Mn和Cd与Zn常常发生取代作用。Cr富集到硫化物中的程度受成矿流体中Cr含量制约。Se可以一定程度的取代S进入硫化物,并受流体中它的含量控制。Bi在闪锌矿与黄铜矿易形成固溶体。硫化物中Sb含量受初始流体中它的含量影响,方铅矿中易包裹一定的辉锑矿(Sb2S3)或含Sb的硫盐矿物。Ag是否形成独立的矿物相和进入哪些硫化物中,取决于流体中Ag的初始含量和硫化物的沉淀次序。硫化物中Hg的含量受成矿流体温度制约。

致谢      在野外工作中,得到湖南柿竹园有色金属有限责任公司吴澜、尹斌和江西香炉山钨业有限责任公司的高涛、程冰冰和倪洪的支持和帮助,在此深表谢意。

参考文献
Bajwah ZU, Seccombe PK and Offer R. 1987. Trace element distribution, Co/Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22(4): 292-300
Bindi L and Pratesi G. 2005. Selenojalpaite, Ag3CuSe2, a new mineral species from the Skrikerum Cu-Ag-Tl selenide deposit, Smaland, southeastern Sweden. The Canadian Mineralogist, 43(4): 1373-1377 DOI:10.2113/gscanmin.43.4.1373
Cabri LJ, Campbell JL, Laflamme JHG, Leigh RG, Maxwell JA and Scott SD. 1985. Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits. The Canadian Mineralogist, 23(2): 133-148
Chen YX, Li H, Sun WD, Ireland TR, Tian XF, Hu YB, Yang WB, Chen C and Xu DR. 2016. Generation of Late Meosozic Qianlishan A2-type granite in Nanling Range, South China:Implications for Shizhuyuan W-Sn mineralization and tectonic evolution. Lithos, 266-267: 435-452 DOI:10.1016/j.lithos.2016.10.010
Cook NJ, Ciobanu CL, Danyushevsky LV and Gilbert S. 2011. Minor and trace elements in bornite and associated Cu-(Fe)-sulfides:A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 75(21): 6473-6496 DOI:10.1016/j.gca.2011.08.021
Dai P, Mao JW, Wu SH, Xie GQ and Luo XH. 2018. Multiple dating and tectonic setting of the Early Cretaceous Xianglushan W deposit, Jiangxi Province, South China. Ore Geology Reviews, 95: 1161-1178 DOI:10.1016/j.oregeorev.2017.11.017
Fleischer M. 1955. Minor elements in some sulfide minerals. Economic Geology, 50th Anniversary: 970-1024
George L, Cook NJ, Ciobanu CL and Wade BP. 2015. Trace and minor elements in galena:A reconnaissance LA-ICP-MS study. American Mineralogist, 100(2-3): 548-569 DOI:10.2138/am-2015-4862
Hawley JE and Nichol I. 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Economic Geology, 56(3): 467-487
Holwell DA, Keays RR, McDonald I and Williams MR. 2015. Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets:Evidence from LA-ICP-MS analysis of sulfides in the Skaergaard intrusion, East Greenland. Contributions to Mineralogy and Petrology, 170(5-6): 52-77 DOI:10.1007/s00410-015-1206-8
Jellinek F. 1957. The structures of the chromium sulphides. Acta Crystallographica, 10(10): 620-628 DOI:10.1107/S0365110X57002200
Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL and Dan XH. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639-655 (in Chinese with English abstract)
Kwak TAP. 1987. W-Sn Skarn Deposits and Related Metamorphic Skarns and Granitoids. Amsterdam: Elsevier, 1-451
Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110 DOI:10.1016/j.lithos.2012.04.001
Li XH, Liu DY, Sun M, Li WX, Liang XR and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225-231 DOI:10.1017/S0016756803008823
Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?. Lithos, 96(1-2): 186-204 DOI:10.1016/j.lithos.2006.09.018
Lin Y, Cook NJ, Ciobanu CL, Liu YP, Zhang Q, Liu TG, Gao W, Yang YL and Danyushevsky LV. 2011. Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study. Ore Geology Reviews, 39(4): 188-217 DOI:10.1016/j.oregeorev.2011.03.001
Liu H, Liao RQ, Zhang LP, Li CY and Sun WD. 2019. Plate subduction, oxygen fugacity, and mineralization. Journal of Oceanology and Limnology, doi: 10.1007/s00343-019-8339-y
Loucks RR and Peterson U. 1988. Polymetallic epithermal fissure vein mineralization, Topia, Durango, Mexico:Part Ⅱ. Silver mineral chemistry and high resolution patterns of chemical zoning in veins. Economic Geology, 83(8): 1529-1558 DOI:10.2113/gsecongeo.83.8.1529
Lu HZ, Liu YM, Wang CL, Xu YZ and Li HQ. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology, 98(5): 955-974 DOI:10.2113/gsecongeo.98.5.955
Lueth VW, Megaw PKM, Pingitore NE and Goodell PC. 2000. Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95(8): 1673-1687
Mao JW and Li HY. 1995. Evolution of the Qianlishan granite stock and its relation to the Shizhuyuan polymetallic tungsten deposit. International Geology Review, 37(1): 63-80 DOI:10.1080/00206819509465393
Mao JW, Pirajno F and Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings:An introduction to the special issue. Ore Geology Reviews, 43(1): 1-7
Mao JW, Cheng YB, Chen MH and Pirajno F. 2013a. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294 DOI:10.1007/s00126-012-0446-z
Mao ZH, Cheng YB, Liu JJ, Yuan SD, Wu SH, Xiang XK and Luo XH. 2013b. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews, 53: 422-433 DOI:10.1016/j.oregeorev.2013.02.005
Mengason MJ, Candela PA and Piccoli PM. 2011. Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt:Impact of sulfide segregation on arc magma evolution. Geochimica et Cosmochimica Acta, 75(22): 7018-7030 DOI:10.1016/j.gca.2011.08.042
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41(7): 661-669 DOI:10.1007/s00126-006-0084-4
Rodríguez-Castellón E, Jiménez-López A and Eliche-Quesada D. 2008. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel, 87(7): 1195-1206 DOI:10.1016/j.fuel.2007.07.020
Shu LS, Zhou XM, Deng P and Yu XQ. 2006. Principal geological features of Nanling tectonic belt, South China. Geological Review, 52(2): 251-265 (in Chinese with English abstract)
Shu LS, Yu JH, Jia D, Wang B, Shen WZ and Zhang YQ. 2008. Early Paleozoic orogenic belt in the eastern segment of South China. Geological Bulletin of China, 27(10): 1581-1593 (in Chinese with English abstract)
Sugaki A, Kitakaze A and Hayashi K. 1981. Synthesis of minerals in the Cu-Fe-Bi-S system under hydrothermal condition and their phase relations. Bulletin de Minéralogie, 104(4): 484-495 DOI:10.3406/bulmi.1981.7499
Sun WD, Yang XY, Fan WM and Wu FY. 2012. Mesozoic large scale magmatism and mineralization in South China:Preface. Lithos, 150: 1-5 DOI:10.1016/j.lithos.2012.06.028
Wilson SA, Ridley WI and Koenig AE. 2002. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. Journal of analytical atomic spectrometry, 17(4): 406-409 DOI:10.1039/B108787H
Wu LM and Seo DK. 2004. New solid-gas metathetical synthesis of binary metal polysulfides and sulfides at intermediate temperatures:Utilization of Boron sulfides. Journal of the American Chemical Society, 126(14): 4676-4681 DOI:10.1021/ja0392521
Wu SH, Wang XD and Xiong BK. 2014. Fluid inclusion studies of the Xianglushan skarn tungsten deposit, Jiangxi Province, China. Acta Petrologica Sinica, 30(1): 178-188 (in Chinese with English abstract)
Wu SH, Mao JW, Xie GQ, Geng JZ and Xiong BK. 2015. Geology, geochronology, and Hf isotope geochemistry of the Longtougang skarn and hydrothermal vein Cu-Zn deposit, North Wuyi area, southeastern China. Ore Geology Reviews, 70: 136-150 DOI:10.1016/j.oregeorev.2015.04.012
Wu SH, Dai P and Wang XD. 2016. C, H, O, Pb isotopic geochemistry of W polymetallic skarn-greisen and Pb-Zn-Ag veins in Shizhuyuan orefield, Hunan Province. Mineral Deposits, 35(3): 633-647 (in Chinese with English abstract)
Wu SH, Mao JW, Yuan SD, Dai P and Wang X. 2018. Mineralogy, fluid inclusion petrography, and stable isotope geochemistry of Pb-Zn-Ag veins at the Shizhuyuan deposit, Hunan Province, southeastern China. Mineralium Deposita, 53(1): 89-103 DOI:10.1007/s00126-017-0725-9
Wu SH, Sun WD and Wang XD. 2019. A new model for porphyry W mineralization in a world-class tungsten metallogenic belt. Ore Geology Reviews, 107: 501-512 DOI:10.1016/j.oregeorev.2019.02.035
Yuan JH, Zhan XC, Hu MY, Zhao LH and Sun DY. 2012. Characterization of matrix effects in microanalysis of sulfide minerals by laser ablation-inductively coupled plasma-mass spectrometry based on an element pair method. Spectroscopy and Spectral Analysis, 35(2): 512-518 (in Chinese with English abstract)
Zhang GW, Guo AL, Wang YJ, Li SZ, Dong YP, Liu SF, He DF, Chen SY, Lu RK and Yao AP. 2013. Tectonics of South China continent and its implications. Science China (Earth Sciences), 43(10): 1553-1582
Zhong YF, Ma CQ, She ZB, Lin GC, Xu HJ, Wang RJ, Yang KG and Liu Q. 2005. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi Province. Earth Science (Journal of China University of Geosciences), 30(6): 685-691 (in Chinese with English abstract)
Zhu JC, Chen J, Wang RC, Lu JJ and Xie L. 2008. Early Yanshanian NE trending Sn/W-bearing A-type granites in the western-middle part of the Nanling Mts Region. Geological Journal of China Universities, 14(4): 474-484 (in Chinese with English abstract)
Zouboulis AI, Kydros KA and Matis KA. 1995. Removal of hexavalent chromium anions from solutions by pyrite fines. Water Research, 29(7): 1755-1760 DOI:10.1016/0043-1354(94)00319-3
蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 2015. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨. 岩石学报, 31(3): 639-655.
舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征. 地质论评, 52(2): 251-265. DOI:10.3321/j.issn:0371-5736.2006.02.016
舒良树, 于津海, 贾东, 王博, 沈渭洲, 张岳桥. 2008. 华南东段早古生代造山带研究. 地质通报, 27(10): 1581-1593. DOI:10.3969/j.issn.1671-2552.2008.10.001
吴胜华, 王旭东, 熊必康. 2014. 江西香炉山矽卡岩型钨矿床流体包裹体研究. 岩石学报, 30(1): 178-188.
吴胜华, 戴盼, 王旭东. 2016. 柿竹园钨多金属矽卡岩-云英岩与铅锌银矿脉C、H、O、Pb同位素地球化学研究. 矿床地质, 35(3): 633-647.
袁继海, 詹秀春, 胡明月, 赵令浩, 孙冬阳. 2015. 基于元素对研究激光剥蚀-电感耦合等离子体质谱分析硫化物矿物的基本效应. 光谱学与光谱分析, 35(2): 512-518. DOI:10.3964/j.issn.1000-0593(2015)02-0512-07
张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题. 中国科学(地球科学), 43(10): 1553-1582.
钟玉芳, 马昌前, 佘振兵, 林广春, 续海金, 王人镜, 杨坤光, 刘强. 2005. 西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学. 地球科学(中国地质大学学报), 30(6): 685-691.
朱金初, 陈骏, 王汝成, 陆建军, 谢磊. 2008. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报, 14(4): 474-484. DOI:10.3969/j.issn.1006-7493.2008.04.002