2. 湖南工业大学, 株洲 412007;
3. 安徽省地勘局324地质队, 池州 247100
2. Hunan University of Technology, Zhuzhou 412007, China;
3. The 324 Geological Team, Anhui Bureau of Geology and Mineral Exploration, Chizhou 247100, China
长江中下游成矿带是我国重要的多金属成矿带,包含200多个Cu、Fe、Au、Mo等多金属矿床(点)(常印佛等, 1991; 翟裕生等, 1992; 周涛发等, 2012; Mao et al., 2006; Pan and Dong, 1999),一直是研究的热点地区(Sun et al., 2003; 毛景文等, 2009; 周涛发等, 2017; Xie et al., 2008, 2012, 2015; Yang and Lee, 2011; Ling et al., 2009, 2011; Deng et al., 2012, 2016; Gu et al., 2018; Jiang et al., 2018a, b),该成矿带自西向东依次可分为鄂东、九瑞、安庆-贵池、庐枞、铜陵、宁芜和宁镇等7个矿集区(常印佛等, 1991; 翟裕生等, 1992),这些矿集区的出现与广泛发育的燕山期岩浆活动有着密切关系。
近些年随着研究的深入以及研究方法的进步,整个安庆-贵池矿集区的找矿工作取得了十足的进展,如铜山铜矿、抛刀岭金矿、安子山铜矿、查册桥金矿以及朱家冲金矿等。宝树尖铜多金属矿床位于安庆-贵池矿集区的贵池地区(图 1b),该区基础地质研究相对薄弱。矿区普查工作始于2017年,目前仍然处于勘查阶段,尚未进行岩石地球化学和年代学研究。主要矿体位于花岗闪长岩与碳酸盐岩接触带,确定为矽卡岩型矿床。目前,整个安庆-贵池矿集区铜金矿床的形成还存在争议,主要集中在成矿时代和成矿期次上。如前人测得安庆-贵池矿集区铜金矿床的成矿时代为140±5Ma(毛景文等, 2006; Xie et al., 2007; Zhou et al., 2007; 张乐俊等, 2008; 段留安等, 2012),而宝树尖铜多金属矿床的成矿时代不在上述范围内,因此该矿床具有一定的研究意义。从4个钻孔的取样分析看,主要是铅锌矿和铜铅锌矿,以及少量的银矿。本文通过对该区进行矿床学、岩石地球化学和年代学研究,对宝树尖矿区的成岩过程和成矿作用进行探究和总结,进而填补安庆-贵池矿集区在成矿时间段145±5Ma上的空白,为宝树尖乃至整个安庆-贵池矿集区找矿工作提供理论支持。同时,对整个长江中下游的成矿时代划分具有一定的指示意义。
安庆-贵池矿集区区域大地构造位置位于扬子陆块北缘,处于江南地块与大别造山带之间的下扬子台褶带中。区域上大致以高坦断裂为界,划为下扬子前陆带和江南隆起带两个二级构造单元,区域褶皱和断裂构造发育,岩浆活动频繁(常印佛等, 2012)。
区域地层主要由江南地层和下扬子地层组成,区域上南华纪至志留纪早世地层皆有出露,总体呈北西-南东向展布。地层发育一套以碳酸盐建造为主、碎屑岩建造为辅的沉积盖层(段留安等, 2015)。古生代-早三叠世地层是本区W、Mo、Pb、Zn、Cu、Au、Ag等金属矿床主要的容矿层位(唐永成等, 1998),本区地层对矿床的控制作用主要表现在矿化类型上的差异,如志留系砂页岩地层易形成斑岩型、热液型矿化及蚀变岩型矿化(段留安等, 2013),奥陶系、石炭系碳酸盐岩地层易形成矽卡岩型和热液型矿化(董胜, 2006)。七都复背斜带为本区主要构造单元,南东方向隔江南断裂,与太平复向斜为邻,背斜北部以高坦断裂为界,同贵池复向斜相接。复背斜走向从西向东从70°渐变为55°,枢纽呈波状起伏,在平面上显示为数条“短轴”褶皱形态。背斜的核部从南向北逐渐由南华纪和震旦纪地层变为寒武纪地层,表明背斜向北东倾伏。本区北北东向断层大量发育,大多数为斜切褶皱轴向,断层性质基本为左旋平移断层。
该区岩浆岩较发育,尤其是青阳、谭山岩体规模较大,活动时间较长,对区域成矿作用有较大影响(Jiang et al., 2018a, b)。青阳复式岩体位于矿区东部约13km,呈近圆形的岩基侵位于七都复背斜北东段,总面积约506km2,年龄为139~142Ma,岩性主要为花岗闪长岩,九华岩体沿其中部侵入,将其切成南北两段,岩体侵入的围岩为中寒武统-下志留统。接触面一般外倾,倾角为30°~70°,局部则有超覆侵入及断层接触现象。谭山岩体位于矿区西部约4km,总面积约140km2,年龄为129~133Ma,岩性主要为二长花岗岩、钾长花岗岩。岩体外接触变质作用大量发育,砂岩通常角岩化。
1.2 矿区地质宝树尖矿区内出露地层为寒武系地层(图 2)。矿区位于石门高背斜中段近核部,檀山穹窿构造东缘,褶皱、断裂构造发育,区内主要发育宝树尖背斜及北东走向断层。宝树尖背斜属石门高背斜的一部分,为宽缓型近直立褶皱,轴向75°左右,核部为下寒武统黄柏岭组,产状10°~25°,两翼地层出露较完全,近对称分布上寒武统杨柳岗组至青坑组地层,地层产状30°~55°。区内出露长度4km褶皱,褶皱东段受F4断层影响向北东偏转并向桐子山方向延出区外,西部被F8断层切割,与乌沙岗向斜对接。区内主要发育F4、F8断层,它们具有共同的特征:断层主要形成或活动于燕山期,区域性特征明显,线性形迹清晰;斜切早期褶皱,造成褶皱轴迹不连续及不同时代的地层相抵;断面总体走向18°~40°,倾角一般较陡,倾向不固定;力学性质以压性、压扭性为主,属压扭性左旋平移断层。
矿区内出露面积约0.3km2的闪长岩岩体,沿围岩接触带及断裂构造带发育较强的硅化、黄铁矿化、绿帘石化等蚀变,并常伴有铅锌矿化、铜矿化。主要发育岩脉,岩脉分布范围广泛,规模不等,主要类型有花岗岩脉、花山岗闪长岩脉、花岗闪长斑岩脉及辉绿岩脉,主要沿断裂两侧发育,走向近东西。矿区内变质作用广泛发育,多见于岩体、岩脉与围岩接触带附近或沿断裂构造带发育。主要蚀变类型有矽卡岩化、大理岩化、硅化、绢云母化及黄铁矿化,伴随岩浆后期及期后的热液活动。岩石的蚀变和矿化强烈,主要有硅化、角岩化、大理岩化、矽卡岩化和黄铁矿化,并伴随有铅锌矿化、黄铜矿化等矿化作用,局部已形成铅锌为主的多金属矿体。矿区内各类矿石及野外地质现象如图 3。
矿区矿体工业类型有:铅锌矿、铜铅锌矿、铜钼铅锌矿、钼矿、银矿。矿体工业类型较多,主要矿体编号为Ⅰ、Ⅱ,均为铅锌矿体。铅锌矿体主要赋存在在花岗闪长斑岩(岩株)与杨柳岗泥质条带状灰岩接触带附近的透辉石矽卡岩中,属接触交代矽卡岩型铅锌矿床。矿体主要呈似层状,相互近平行分布,总体倾向北东,一般倾向30°~40°,倾角约45°~50°。Ⅰ号矿体真厚度为6.22m,Ⅱ号矿体真厚度为6.58m。矿石中闪锌矿呈他形晶粒状,方铅矿呈他形粒状,三角孔解理发育,分布于脉石矿物间或闪锌矿边部,并交代闪锌矿;矿石中黄铜矿呈微细乳浊状分布于闪锌矿内。闪锌矿、方铅矿星散浸染状分布。Ⅰ号矿体以铅锌为主,伴生少量银及铜。工业铅品位在0.069%~4.39%之间,平均品位为2.58%,工业锌品位在0.06%~4.56%之间,平均品位为2.39%。伴生银平均品位15g/t,伴生铜平均品位0.08%。Ⅱ号矿体以铅锌为主,伴生少量银。工业铅品位在0.98%~4.82%之间,平均品位为2.45%,工业锌品位在0.84%~4.71%之间,平均品位为2.37%。伴生银平均品位13.56g/t。
从区域成矿条件分析,宝树尖一带铜多金属具有较好的成矿前景。从前期勘查工作成果来看,矿区内主要的矿床类型为铅锌矿床,同时伴生银等多金属;主要的成因类型为接触交代矽卡岩型铅锌矿,主要的找矿标志有:矽卡岩化、含银矿(化)多金属铁帽、铜绿等。
1.3 岩相特征和成矿期次划分在野外采集新鲜典型的岩石样品和矿石样品进行镜下观察。岩石主要为透辉石石榴石矽卡岩、透辉石角岩、蚀变石英闪长玢岩和花岗闪长斑岩。
透辉石石榴石矽卡岩(图 4a)主要由透辉石和石榴石组成,粒状变晶结构,斑杂状构造。透辉石、石榴石粒状变晶,二者分别集中呈斑杂状分布,少量透辉石分布于石榴石间或包于石榴石内。透闪石纤维状变晶,集合体呈透辉石粒状假象。透辉石角岩(图 4b)主要由石英、钠长石、绿泥石、绢云母以及少量的绿帘石组成,粒状鳞片变晶结构,弱定向构造。绿泥石、绢云母显微鳞片变晶,多定向分布,二者部分集中呈斑点分布,点子形状不规则,边缘不平整;钠长石、石英多呈显微粒状变晶镶嵌或分布前二者间,少量呈微脉状穿插;绿帘石雏晶-显微粒柱状分布上述矿物间。
蚀变石英闪长玢岩(图 4c)主要由斜长石和暗色矿物组成,变余斑状结构、块状构造。斜长石斑晶半自形板状,几乎全被绢云母、绿帘石与少量绿泥石、钠长石集合体交代呈假象;暗色矿物已全被绿泥石、绿帘石集合体交代,保留柱状、片状假象。基质中的斜长石多被钠长石交代;暗色矿物蚀变同斑晶;石英、钾长石他形粒状分布于其他矿物间。花岗闪长斑岩(图 4d)主要由斜长石、角闪石、黑云母和石英组成,斑状结构、块状构造。斜长石斑晶半自行板状,弱绢云母化、绿帘石化;角闪石柱状,弱绿泥石化。黑云母片状,有的被绿泥石、绿帘石集合体交代呈残余、假象结构;石英斑晶他形-半自行粒状,多被次生石英集合体交代。基质中的斜长石、暗色矿物蚀变同斑晶;石英、钾长石他形粒状镶嵌。薄片中见石英、钾长石、绿帘石共生脉。
矿石的结构主要为显微粒柱状变晶结构,构造为条带状构造、星散浸染状构造和块状构造。金属硫化物以方铅矿、闪锌矿、黄铜矿和黄铁矿为主(图 4g, h),其中大量发育方铅矿和闪锌矿。非金属矿物有透辉石、石榴石、透闪石、石英、钠长石、方解石、绿泥石和绿帘石等(部分矿物见图 4e, f)。闪锌矿他形粒状镶嵌,方铅矿他形粒状分布闪锌矿粒间或边部,并交代闪锌矿,二者相对集中呈细脉状,有些闪锌矿和方铅矿呈星散浸染状分布,或分布在黄铁矿边部。黄铜矿微细乳浊状分布于闪锌矿内。黄铁矿半自形粒状零星分布,大颗粒内包裹细小绿帘石。透辉石、透闪石显微粒柱状变晶镶嵌;石榴石他形粒状、云雾状变晶不均匀分布于透辉石和透闪石间。石英、方解石他形粒状,集合体多呈脉状,或分布金属矿物脉两侧,少量分布于石榴石或透辉石间。绿泥石显微鳞片变晶分布于石英和方解石间。绿帘石粒柱状变晶镶嵌,或包于方解石内、绿泥石集合体中。钠长石显微粒状变晶镶嵌分布于绿帘石间。根据矿物的交代关系和共生组合并结合矿床类型划分出两个成矿期次:
① 矽卡岩期:这一成矿期主要形成透辉石、石榴石和绿帘石,矿物生成顺序为透辉石→石榴石→绿帘石。
② 石英-硫化物期:该期有大量的石英生成,并伴随有典型的热液矿物方解石和绿泥石,同时形成大量的金属硫化物。金属矿物大致生成顺序为黄铁矿→黄铜矿→闪锌矿→方铅矿。
2 样品采集、加工及测试方法为了探究矿区岩浆岩的地球化学特征及与铜多金属成矿作用的关系,本文对矿区内的闪长岩和闪长玢岩进行了全岩的主微量元素、单颗粒锆石U-Pb定年、全岩Sr-Nd-Pb同位素分析,并对矿石的黄铁矿硫同位素进行了分析。
全岩的主微量元素分析在广州澳实矿物实验室完成。其中主量元素采用ME-XRF06法,由X荧光光谱仪测定。稀土元素和微量元素分别采用ME-MS81法和ME-MS61法,由等离子体质谱测定,其中微量元素具体分析流程见Qi et al. (2000)。其中,主量元素测定采用的标样为中国国家标准岩石GSR-1和GSR-3,精度为0到1%之间。微量元素测定采用的标样为国际标样(BCR-1、BHVO-1、AGV-2和JB-1),含量小于10×10-6的元素测定精度控制在10%以内,含量大于10×10-6的元素测定精度控制在5%以内。
单颗粒锆石的分选由河北省地勘局廊坊实验室完成,在双目显微镜下挑选具有代表性的锆石80~100粒粘到双面胶上,加注环氧树脂,待固化后,将靶内锆石打磨至原尺寸一半大小,然后对样品靶进行抛光。锆石的透反射和阴极发光照相在中国科学技术大学壳-幔物质与环境重点实验室完成。
锆石的激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位U-Pb定年和微量元素分析是在合肥工业大学资源与环境工程学院矿床成因与勘查技术研究中心矿物微区分析实验室完成。激光剥蚀系统为CetacAnalyte HE,ICP-MS为Agilent 7900,波长193nm。激光剥蚀过程中采用氦气作载气、氩气作补偿气,束斑直径为32μm。详细的仪器操作条件和数据处理方法同宁思远等(2017)、汪方跃等(2017)。锆石的U-Pb年龄使用标准锆石91500校正,元素含量参考物使用NIST SRM610。计算采用ISOPLOT(3.00版)软件(Ludwig, 2003)。
全岩Sr-Nd-Pb分离和纯化在中国科学技术大学壳-幔物质与环境重点实验室完成。采用同位素稀释法,元素提纯和化学分离在超净实验室完成。仪器组成和详细实验步骤见Chen et al. (2000)。Sr-Nd同位素分析在天津地质调查中心同位素实验室完成,使用的仪器是TRITON质谱仪,标样JNDI标测试值为143Nd/144Nd=(0.512111±4)(2σ),标样NSB-987测试值为87Sr/86Sr=(0.710231±12)(2σ)。Pb同位素分析在中国科学技术大学壳-幔物质与环境重点实验室MAT-262进行。采用的标样为NSB981,精度在0.1%以内。
在进行详尽的野外调查的基础上,采集了具有代表性的6块矿石,并从中分离出黄铁矿,进行黄铁矿的硫同位素测试。黄铁矿的分离是在河北廊坊地球化学实验室进行的,在进行同位素分析之前,使用双目显微镜检查所有分离出的矿物,以确保99%的纯度。黄铁矿的硫同位素分析是在广州澳实矿物实验室进行的,采用MAT 253同位素质谱仪,标样为VCDT,分析结果用δ34S表示,测试精度为±0.2‰。
3 分析结果 3.1 主微量元素宝树尖矿区侵入岩主微量元素分析结果分别列于表 1、表 2。闪长岩具有较高的SiO2含量(59.58%~68.28%,),Fe2O3T的含量很低(3.04%~3.82%);全碱含量(K2O+Na2O)为6.46%~9.15%,平均为7.00%;CaO含量为2.89%~4.94%,平均为3.66%。在TAS图解当中,落入花岗闪长岩范围(图 5a),岩石属于高钾钙碱性系列和钙碱性系列(图 5b)。闪长玢岩也具有较高的SiO2含量(63.45%~71.71%),Fe2O3T的含量较高(2.38%~5.21%);全碱含量(K2O+Na2O)为6.07%~6.94%,平均含量为6.66%;CaO含量为2.99%~4.16%,平均为3.59%。在TAS图解当中,落入花岗闪长岩范围(图 5a),岩石属于橄榄粗玄岩系列和高钾钙碱性系列(图 5b)。闪长岩和闪长玢岩的A/CNK比值为0.78~1.09。表明岩石具有过铝质特征。通过Harker图解,可以看出随着SiO2含量的增加,Al2O3、TiO2、Fe2O3T、P2O5的含量在逐渐减少(图 6)。这说明在闪长岩和闪长玢岩形成过程中发生了斜长石、钛铁矿和辉石的分离结晶作用。
闪长岩稀土总量为99.4×10-6~129.8×10-6,平均值为112.9×10-6;其中LREE/HREE值为12.95~14.00,平均值为13.54;(La/Yb)N的值为18.76~22.25,平均值19.16。闪长玢岩稀土总量为78.88×10-6~160.8×10-6,平均值为128.7×10-6;其中LREE/HREE值为8.21~12.06,平均值为10.38;(La/Yb)N的值为10.46~17.04,平均值为13.91。闪长岩和闪长玢岩稀土总量不高,轻重稀土分异明显。在稀土元素配分图(图 7a)上,两者都显示出右倾模式,这表明他们都具有轻稀土富集,重稀土亏损的特点。岩石样品的Eu异常不明显,说明源区斜长石的结晶分异不明显。岩石稀土元素配分图明显不同于N-MORB,说明宝树尖花岗质岩浆源区可能是岩石圈地幔分离的产物。
在微量元素蛛网图上(图 7b)上,闪长岩和闪长玢岩都显示出强烈的K正异常,富集LREE和大离子亲石元素(Ba、U、Rb、Sr),亏损高场强元素(Nb、Ta、Pr、Ti)。钾长石和黑云母中富集Ba、斜长石和磷灰石富集Sr,因此宝树尖矿区侵入岩富集Ba、Sr和岩石富钙富碱的特点相一致。Nb、Ta、Ti的亏损则说明在岩浆演化过程中发生了富钛相矿物的分离结晶。闪长岩和闪长玢岩都具有高的La/Yb和Sr/Y比值,低的Yb和Y含量。在(La/Yb)N-YbN和Sr/Y-Y判别图解(图 8)上,依据地球化学特征所投的点大部分都落入了埃达克质岩范围内,指示该区侵入岩为埃达克质岩。
宝树尖矿区闪长岩和闪长玢岩的锆石U-Pb定年分析结果见表 3。18BSJ-1为闪长岩,18BSJ-12和18BSJ-13为闪长玢岩。阴极发光照片显示锆石自形到半自形,发育震荡环带,具有典型的岩浆锆石特征(图 9a)。206Pb/238U年龄变化范围很大,老的可达1830Ma,暗示了长江中下游地区存在古元古代基底。古元古代基底参与了长江中下游中生代花岗质岩浆的形成(Zhu et al., 2014)。
本文选取闪长岩和闪长玢岩年龄范围在140~160Ma的锆石U-Pb年龄,共12个。作出宝树尖矿区岩体锆石年龄图解(图 9b),其206Pb/238U年龄变化于142±1.7Ma~157±2.2Ma,加权平均年龄为148.6±3.2Ma,属于长江中下游燕山期岩浆活动(140±5Ma)的晚期产物。形成时代与整个贵池地区侵入岩保持一致。闪长岩和闪长玢岩中的继承锆石年龄主要集中在800Ma左右(图 9c),与1.2~0.8Ga扬子板块陆壳增生和再造事件(Zhang and Zheng, 2013; Guo et al., 2014)对应,说明花岗质岩浆在上升过程中可能与古老陆壳发生了一定程度的混染。
3.3 锆石微量元素锆石微量元素分析数据见表 4。宝树尖矿区岩石锆石稀土元素配分模式图显示出典型的轻稀土亏损,重稀土富集,Ce的正异常特征(图 10)。锆石稀土总量范围为434.3×10-6~2291×10-6,平均值为917.5×10-6。通过晶格应力模型计算锆石的Ce4+/Ce3+,比值的变化范围为62.5~1145,平均值为421.3。锆石的Ti温度计显示,变化范围为606.1~781.9℃,得出岩石形成的平均温度为674.3℃。岩石锆石Eu/Eu*变化范围为0.60~0.81,平均值为0.68。
宝树尖侵入岩Sr-Nd-Pb同位素测试结果见表 5。岩石具有高(87Sr/86Sr)i值,变化范围为0.7091~0.7108,εNd(t)变化范围为-5.17~-5.57(图 11)。宝树尖侵入岩具有很高的Pb同位素组成,(206Pb/204Pb)i=18.30~18.42,(207Pb/204Pb)i=15.60~15.61,(208Pb/204Pb)i=38.56~38.70,明显高于大别-苏鲁埃达克岩和郯庐断裂南段埃达克岩(图 12)。
宝树尖铜多金属矿床的黄铁矿硫同位素测试结果见表 6。6块矿石的黄铁矿δ34S值介于+7.6‰~+9.6‰,均表现出正值,分布比较集中。δ34S值的极差为2‰,平均值为+8.8‰,显著高于岩浆热液矿床中硫化物的δ34S值。
在锆石微量元素变异图解(图 13)中,宝树尖侵入岩锆石微量元素具有一定的相关关系,说明它们在成因上有联系。在Yb-U图解(图 14a)上,锆石的Yb和U具有正相关关系,而且比较集中,主要集中在陆壳锆石和镁铁质锆石重叠的区域,暗示宝树尖侵入岩形成的源区可能发生过岩浆的同化混染。锆石成分点几乎同时全部落入陆壳锆石区域,暗示陆壳成分在岩石形成的过程中可能占主导地位。
宝树尖侵入岩Sr、Ba、LREE含量高,Y、Yb、HREE含量低,以及高的Sr/Y、(La/Yb)N,与长江中下游早白垩世埃达克质岩的地球化学特征相似(Xie et al., 2008, 2012; Zhu et al., 2014; Deng et al., 2016; Gu et al., 2017)。在埃达克岩判别图解上(图 8),也指示其为埃达克质岩。长江中下游埃达克质岩Sr-Nd同位素组成变化很大(Li et al., 2009, 2013; Liu et al., 2010; 刘园园等, 2012; Wang et al., 2003, 2004; 王强等, 2004; Xie et al., 2008, 2012; Xu et al., 2014; Yan et al., 2015; Yang et al., 2014a, b; Zhu et al., 2014),从高(87Sr/86Sr)i、低εNd(t)到低(87Sr/86Sr)i、高εNd(t)。来源于洋壳的埃达克质岩初始Sr-Nd同位素组成通常是亏损的,(87Sr/86Sr)i < 0.7040(Defant and Drummond, 1990),而宝树尖埃达克质岩显示出轻微富集的特征((87Sr/86Sr)i=0.7091~0.7108,εNd(t)=-5.57~-5.17),这说明在岩石形成过程中有古老陆壳的贡献,其εNd(t)值显著高于崆岭群花岗片麻岩(图 11),表明岩石也不是直接由类似崆岭群的下地壳熔融而成。在Sr-Nd图解上(图 11),宝树尖埃达克质岩与大别-苏鲁埃达克岩和郯庐断裂带南段埃达克岩有着明显的区分,其(87Sr/86Sr)i与扬子下地壳变化区间一致,εNd(t)介于埃达克质熔体和扬子下地壳之间,表明岩石的形成可能是埃达克质岩浆和扬子下地壳混合的结果。岩石中发现的大量新元古代继承锆石进一步说明了扬子下地壳对于岩石形成的贡献。在Pb同位素图解上(图 12),宝树尖埃达克质岩铅同位素组成与大别-苏鲁埃达克岩和郯庐断裂带南段埃达克岩有着明显的差异(图 12),落在大洋沉积物和MORB的重叠区域,表明在形成岩石的源区中有大洋沉积物和俯冲洋壳的贡献。
综上所述,宝树尖侵入岩的形成可以解释为:太平洋板片向中国东部俯冲,导致板片部分熔融产生埃达克质岩浆,岩浆上升过程中同化混染新元古代扬子下陆壳,捕获古老锆石,最终冷却结晶形成埃达克质岩石。
4.2 构造背景宝树尖侵入岩在构造判别图解上(图 15)属于VAG(岛弧花岗岩区)。说明当时的源区受到了板片俯冲的影响,这与前文的分析一致。闪长岩(Al2O3+Fe2O3+MgO+TiO2)含量为19.72%~22.97%,Al2O3/(Fe2O3+MgO+TiO2)比值变化在2.64~3.33,表明熔体曾位于低压环境(Ling et al., 2011)。孙卫东等(2007)把中国东部岩浆活跃期与太平洋板块向西的具体俯冲方向进行比较,认为燕山期以来中国东部主要岩浆活动与太平洋板块的俯冲相关。而宝树尖地区侵入岩的侵位年龄在148Ma(图 9b)左右,岩石的形成温度大约674℃,因此可以认为宝树尖矿区侵入岩形成于早白垩世高温低压的板片俯冲环境。
硫同位素可以有效指示成矿物质来源,在矿床学的研究中得到了广泛应用。Hoefs (2009)认为影响热液矿床中的硫化物硫同位素组成的因素有:热液流体同位素组成、氧逸度、矿物形成温度和成矿期pH值。宝树尖铜多金属矿床主要以黄铁矿等硫化物为主,形成于中低温、弱酸性的还原环境(Zhang et al., 2017),说明到达地壳浅部的成矿流体中的硫主要以S2-和HS-形式存在,因而沉淀出的黄铁矿硫同位素组成与成矿流体硫同位素组成相近(Ohmoto and Goldhaber, 1997)。因此,成矿流体中的硫同位素组成可以用测得的黄铁矿δ34S值表示。宝树尖黄铁矿硫同位素测试结果显示,δ34S值介于+7.6‰~+9.6‰之间,平均值为+8.8‰,而岩浆热液δ34S值为-3‰~+3‰(图 16),表明成矿流体中的硫不止来源于岩浆热液,还有部分来源于地层。又由于宝树尖铜多金属矿床属于矽卡岩型矿床,是由含矿气水热液交代上覆碳酸盐岩形成的。综上所述,成矿物质来源于岩浆和地层,是二者共同作用的结果。
锆石难熔且不易受到后期低温热液蚀变的影响,因而通常用锆石的Ce4+/Ce3+比值和Eu/Eu*(Eu异常)比值表示岩浆的氧化状态,即Ce4+/Ce3+比值和Eu/Eu*比值越高,岩浆的氧逸度越高。高氧逸度有利于Cu、Au矿床的形成(Sun et al., 2010, 2015, 2017; Yang and Sun, 2018; Zhang et al., 2017; Deng et al., 2019),这一点已被学者广泛认同。这是因为在高氧逸度环境下,岩浆中的硫主要以SO2和SO42-等高价硫的形式存在,有利于成矿物质如Cu、Au、Zn的迁移,使得成矿物质能够随着岩浆到达地壳浅部,并最终富集成矿。宝树尖埃达克质岩具有高Ce4+/Ce3+比值和Eu/Eu*比值(表 4、图 17),表明岩石氧逸度高。岩石氧逸度显著高于智利贫矿岩石和郯庐断裂南段贫矿埃达克质岩,与贵池其它地区如朱家冲、老山等相似。通常认为熔体中水含量会影响埃达克质岩的氧逸度。郯庐断裂南段贫矿埃达克质岩是由加厚下陆壳部分熔融形成的,加厚下陆壳主要由麻粒岩相和榴辉岩相岩石组成,导致其产生的熔体水含量很低,进而造成岩石的氧逸度低。俯冲带熔体富水,因而具有比板内更高的氧逸度(Liu et al., 2010; Sun et al., 2004, 2010, 2011, 2015; Yang and Sun, 2018)。结合区域地质背景,宝树尖埃达克质岩高氧逸度特征说明该地区曾遭受过太平洋板块的向西俯冲,岩石的高氧逸度是俯冲板片携带的沉积物熔融的结果(Ling et al., 2009)。与此同时,氧逸度还可以用来指示岩体能否成矿(段留安等, 2015; Hu et al., 2018),该区侵入岩具有高氧逸度,说明该区具有一定的成矿潜力。整个长江中下游地区曾经历过燕山期的洋壳俯冲,残留洋壳的部分熔融为宝树尖铜多金属矿床的形成提供了物质来源。
通过对宝树尖矿区侵入岩进行岩石地球化学和年代学研究,得出以下结论:
(1) 岩石属于高钾钙碱性、钙碱性系列,地球化学特征显示为埃达克质岩;锆石U-Pb年代学研究表明,宝树尖岩体形成于148.6±3.2Ma,是长江中下游燕山晚期的产物,为本区内发现的最老的一个侵入体。
(2) 宝树尖含矿岩体起源于洋壳和沉积物的部分熔融,推测是残留洋壳与地幔物质相互作用并混染古老下陆壳的产物。
(3) 黄铁矿硫同位素特征表明成矿物质是岩浆热液和地层混合的结果,含矿岩体具有高氧逸度特征,有利于铜金成矿。
致谢 感谢安徽省地勘局324地质队提供基础的地质资料;同时也感谢赵壮、孙超、付露露在论文写作过程中给予的帮助。
Ballard JR, Palin MJ and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364 DOI:10.1007/s00410-002-0402-5 |
Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower-Middle Research of the Changjiang River. Beijing: Geological Publishing House, 294-312 (in Chinese)
|
Chang YF, Zhou TF and Fan Y. 2012. Polygenetic compound mineralization and tectonic evolution:Study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10): 3067-3075 (in Chinese with English abstract) |
Chen F, Hegner E and Todt W. 2000. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, 88(4): 791-802 DOI:10.1007/s005310050306 |
Chen JF, Yan J, Xie Z, Xu X and Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China:Constraints on sources. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10): 719-731 DOI:10.1016/S1464-1895(01)00122-3 |
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665 DOI:10.1038/347662a0 |
Deng JH, Yang XY, Sun WD, Huang Y, Chi YY, Yu LF and Zhang QM. 2012. Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China. International Geology Review, 54(6): 714-736 DOI:10.1080/00206814.2011.580628 |
Deng JH, Yang XY, Li S, Gu HL, Mastoi AS and Sun WD. 2016. Partial melting of subducted paleo-Pacific plate during the Early Cretaceous:Constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit, Lower Yangtze River Belt. Lithos, 262: 651-667 DOI:10.1016/j.lithos.2016.07.039 |
Deng JH, Yang XY, Qi HS, Zhang ZF, Mastoi AS, Berador AEG and Sun WD. 2019. Early Cretaceous adakite from the Atlas porphyry Cu-Au deposit in Cebu Island, Central Philippines:Partial melting of subducted oceanic crust. Ore Geology Reviews, 110: 102937 DOI:10.1016/j.oregeorev.2019.102937 |
Dong S. 2006. Regional geochemical characteristics of Guichi area in Anhui Province and their ore-prospecting significance. Geophysical & Geochemical Exploration, 30(3): 215-219, 223 (in Chinese with English abstract) |
Duan LA, Yang XY, Wang FY, Deng JH and Sun WD. 2012. Geochemistry and zircon U-Pb age of ore-bearing porphyry in the Paodaoling gold deposit in Guichi, Middle-Lower Yangtze metallogenic belt. Acta Petrologica Sinica, 28(10): 3241-3254 (in Chinese with English abstract) |
Duan LA, Yang XY, Liu XM and Sun WD. 2013. Discovery of gold deposit in the Silurian system in Shujiadian, Tongling ore cluster region and its significance. Geotectonica et Metallogenia, 37(2): 333-339 (in Chinese with English abstract) |
Duan LA, Gu HL, Yang XY, Yan ZZ and Sun WD. 2015. Chronology and Hf isotopic study of igneous rocks in the Liwan Cu-polymetal deposit in Guichi along the Middle-Lower Yangtze River. Acta Petrologica Sinica, 31(7): 1943-1961 (in Chinese with English abstract) |
Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S and Schwartz JJ. 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology, 158(6): 757-783 DOI:10.1007/s00410-009-0409-2 |
Gu HL, Yang XY, Deng JH, Duan LA and Liu L. 2017. Geochemical and zircon U-Pb geochronological study of the Yangshan A-type granite:Insights into the geological evolution in South Anhui, eastern Jiangnan Orogen. Lithos, 284-285: 156-170 DOI:10.1016/j.lithos.2017.04.007 |
Gu HL, Yang XY, Nie ZX, Deng JH, Duan LA, Hu Q, Abdul Shakoor M, Gao EG and Jasmi Hafiz AA. 2018. Study of Late-Mesozoic magmatic rocks and their related copper-gold-polymetallic deposits in the Guichi ore-cluster district, Lower Yangtze River Metallogenic Belt, East China. International Geology Review, 60(11-14): 1404-1434 DOI:10.1080/00206814.2017.1422442 |
Guo JL, Gao S, Wu BY, Li M, Chen K, Hu ZC, Liang ZW, Liu YS, Zhou L, Zong KQ, Zhang W and Chen HH. 2014. 3.45Ga granitic gneisses from the Yangtze Craton, South China:Implications for Early Achaean crustal growth. Precambrian Research, 242: 82-95 DOI:10.1016/j.precamres.2013.12.018 |
Hoefs J. 2009. Stable Isotope Geochemistry. 6th Edition. Berlin, Heidelberg: Springer, 123-136
|
Hofmann AW. 2007. Sampling mantle heterogeneity through oceanic basalts:Isotopes and trace elements. Treatise on Geochemistry, 2: 1-44 |
Hu ZL, Yang XY and Lee I. 2018. Geochemical study of Cretaceous magmatic rocks in Chuzhou region, Low Yangtze River Metallogenic Belt:Implications for petrogenesis and Cu-Au mineralization. International Geology Review, 60(11-14): 1479-1506 DOI:10.1080/00206814.2017.1373606 |
Jiang XY, Li H, Ding X, Wu K, Guo J, Liu JQ and Sun WD. 2018a. Formation of A-type granites in the Lower Yangtze River Belt:A perspective from apatite geochemistry. Lithos, 304-307: 125-134 DOI:10.1016/j.lithos.2018.02.005 |
Jiang XY, Ling MX, Wu K, Zhang ZK, Sun WD, Sui QL and Xia XP. 2018b. Insights into the origin of coexisting A1-and A2-type granites:Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China. Lithos, 318-319: 230-243 DOI:10.1016/j.lithos.2018.08.008 |
Langmuir CH, Vocke Jr RD, Hanson GN and Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380-392 DOI:10.1016/0012-821X(78)90053-5 |
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750 DOI:10.1093/petrology/27.3.745 |
Li JW, Zhao XF, Zhou MF, Ma CQ, De Souza ZS and Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409 DOI:10.1007/s00410-008-0341-x |
Li XH, Li ZX, Li WX, Wang XC and Gao YY. 2013. Revisiting the "C-type adakites" of the Lower Yangtze River Belt, central eastern China:In-situ zircon Hf-O isotope and geochemical constraints. Chemical Geology, 345: 1-15 DOI:10.1016/j.chemgeo.2013.02.024 |
Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River belt, eastern China. Economic Geology, 104(2): 303-321 |
Ling MX, Wang FY, Ding X, Zhou JB and Sun WD. 2011. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China:Geochemical constraints. International Geology Review, 53(5-6): 727-740 DOI:10.1080/00206814.2010.482349 |
Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178 DOI:10.1016/j.gca.2010.09.003 |
Liu YY, Ma CQ, Lv ZY and Huang WP. 2012. Zircon U-Pb age, element and Sr-Nd-Hf isotope geochemistry of Late Mesozoic magmatism from the Guichi metallogenic district in the Middle and Lower Reaches of the Yangtze River Region. Acta Petrologica Sinica, 28(10): 3287-3305 (in Chinese with English abstract) |
Ludwig KR. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 1-70
|
Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324 DOI:10.1016/j.oregeorev.2005.11.001 |
Mao JW, Zheng RF, Ye HS, Gao JJ and Chen W. 2006. 40Ar/39Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong'ershan area, western Henan Province, and its significance. Mineral Deposits, 25(4): 359-368 (in Chinese with English abstract) |
Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2): 109-119 (in Chinese with English abstract) |
Mao JW, Duan C, Liu JL and Zhang C. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1): 1-14 (in Chinese with English abstract) |
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution. Lithos, 79: 1-24 DOI:10.1016/j.lithos.2004.04.048 |
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4 |
Middlemost EAK. 1985. Magmas and Magmatic Rocks. An Introduction to Igneous Petrology. London: Longman, 1-266
|
Ning SY, Wang FY, Xue WD and Zhou TF. 2017. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt. Geochimica, 46(5): 397-412 (in Chinese with English abstract) |
Ohmoto H and Goldhaber MB. 1997. Sulfur and carbon isotopes. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York: John Wiley, 517-612
|
Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242 DOI:10.1016/S0169-1368(99)00022-0 |
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956 |
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745 |
Qi L, Hu J and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513 DOI:10.1016/S0039-9140(99)00318-5 |
Seal II RR. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677 DOI:10.2138/rmg.2006.61.12 |
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
|
Sun WD, Xie Z, Chen JF, Zhang X, Chai ZF, Du AD, Zhao JS, Zhang CH and Zhou TF. 2003. Os-Os dating of copper and molybdenum deposits along the Middle and Lower Reaches of the Yangtze River, China. Economic Geology, 98(1): 175-180 |
Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978 DOI:10.1038/nature02972 |
Sun WD, Ling MX, Wang FY, Ding X, Hu YH, Zhou JB and Yang XY. 2007. Pacific plate subduction and Mesozoic geological event in eastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 27(3): 218-225 (in Chinese with English abstract) |
Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization:An overview. Science China (Earth Sciences), 53(4): 475-484 DOI:10.1007/s11430-010-0024-0 |
Sun WD, Zhang H, Ling MX, Ding X, Chung SL, Zhou JB, Yang XY and Fan WM. 2011. The genetic association of adakites and Cu-Au ore deposits. International Geology Review, 53(5-6): 691-703 DOI:10.1080/00206814.2010.507362 |
Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE and Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97-131 DOI:10.1016/j.oregeorev.2014.09.004 |
Sun WD, Wang JT, Zhang LP, Zhang CC, Li H, Ling MX, Ding X, Li CY and Liang HY. 2017. The formation of porphyry copper deposits. Acta Geochimica, 36(1): 9-15 DOI:10.1007/s11631-016-0132-4 |
Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-351 (in Chinese)
|
Wang FY, Liu SA, Li SG and He YS. 2013. Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China:Implications for genetic relation to Cu-Au mineralization. Lithos, 156-159: 97-111 DOI:10.1016/j.lithos.2012.10.017 |
Wang FY, Ge C, Ning SY, Nie LQ, Zhong GX and White NC. 2017. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrologica Sinica, 33(11): 3422-3436 (in Chinese with English abstract) |
Wang Q, Xu JF, Zhao ZH, Xiong XL and Bao ZW. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China (Series D), 46(8): 801-815 DOI:10.1007/BF02879524 |
Wang Q, Xu JF, Zhao ZH, Bao ZW, Xu W and Xiong XL. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of East China:Adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38(5): 417-434 DOI:10.2343/geochemj.38.417 |
Wang Q, Zhao ZH, Xu JF, Bai ZH, Wang JX and Liu CX. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(Delaminated) lower crustal melting and the genesis of porphyry copper deposit. Acta Petrologica Sinica, 20(2): 351-360 (in Chinese with English abstract) |
Xie GQ, Mao JW, Li RL, Qü WJ, Pirajno F and Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China. Mineralogy and Petrology, 90(3-4): 249-270 DOI:10.1007/s00710-006-0176-y |
Xie GQ, Mao JW, Li RL and Bierlein FP. 2008. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, Eastern China:Petrogenesis and tectonic setting. Lithos, 104(1-4): 216-230 DOI:10.1016/j.lithos.2007.12.008 |
Xie GQ, Mao JW, Zhu QQ, Yao L, Li YH, Li W and Zhao HJ. 2015. Geochemical constraints on Cu-Fe and Fe skarn deposits in the Edong district, Middle-Lower Yangtze River metallogenic belt, China. Ore Geology Reviews, 64: 425-444 DOI:10.1016/j.oregeorev.2014.08.005 |
Xie JC, Yang XY, Sun WD and Du JG. 2012. Early Cretaceous dioritic rocks in the Tongling region, eastern China:Implications for the tectonic settings. Lithos, 150: 49-61 DOI:10.1016/j.lithos.2012.05.008 |
Xu YM, Jiang SY, Zhu ZY, Yang SY and Zhou W. 2014. Petrogenesis of Late Mesozoic granitoids and coeval mafic rocks from the Jiurui district in the Middle-Lower Yangtze metallogenic belt of eastern China:Geochemical and Sr-Nd-Pb-Hf isotopic evidence. Lithos, 190-191: 467-484 DOI:10.1016/j.lithos.2013.12.022 |
Yan J, Liu JM, Li QZ, Xing GF, Liu XQ, Xie JC, Chu XQ and Chen ZH. 2015. In situ zircon Hf-O isotopic analyses of Late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China:Implications for petrogenesis and geodynamic evolution. Lithos, 227: 57-76 DOI:10.1016/j.lithos.2015.03.013 |
Yang XY and Lee IS. 2011. Review of the stable isotope geochemistry of Mesozoic igneous rocks and Cu-Au deposits along the Middle-Lower Yangtze Metallogenic Belt, China. International Geology Review, 53(5-6): 741-757 DOI:10.1080/00206814.2010.533881 |
Yang XY and Sun WD. 2018. Jurassic and Cretaceous (Yanshannian) tectonics, magmatism and metallogenesis in South China:Preface. International Geology Review, 60(11-14): 1321-1325 DOI:10.1080/00206814.2018.1479891 |
Yang YZ, Chen FK, Siebel W, Zhang H, Long Q, He JF, Hou ZH and Zhu XY. 2014a. Age and composition of Cu-Au related rocks from the Lower Yangtze River belt:Constraints on paleo-Pacific slab roll-back beneath eastern China. Lithos, 202-203: 331-346 DOI:10.1016/j.lithos.2014.06.007 |
Yang YZ, Long Q, Siebel W, Cheng T, Hou ZH and Chen FK. 2014b. Paleo-Pacific subduction in the interior of eastern China:Evidence from adakitic rocks in the Edong-Jiurui District. The Journal of Geology, 122(1): 77-97 DOI:10.1086/674423 |
Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Metallogeny of Iron and Copper Deposits in the Middle-Lower Yangtze River Region. Beijing: Geological Publishing House, 1-194 (in Chinese)
|
Zhang CC, Sun WD, Wang JT, Zhang LP, Sun SJ and Wu K. 2017. Oxygen fugacity and porphyry mineralization:A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363 DOI:10.1016/j.gca.2017.03.013 |
Zhang H, Ling MX, Liu YL, Tu XL, Wang FY, Li CY, Liang HY, Yang XY, Arndt NT and Sun WD. 2013. High oxygen fugacity and slab melting linked to Cu mineralization:Evidence from Dexing porphyry copper deposits, southeastern China. The Journal of Geology, 121(3): 289-305 DOI:10.1086/669975 |
Zhang LJ, Zhou TF, Fan Y and Yuan F. 2008. SHRIMP U-Pb zircon dating of Yueshan intrusion in the Yueshan ore field, Anhui, and its significance. Acta Petrologica Sinica, 24(8): 1725-1732 (in Chinese with English abstract) |
Zhang SB and Zheng YF. 2013. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research, 23(4): 1241-1260 DOI:10.1016/j.gr.2012.09.005 |
Zhou TF, Yuan F, Yue SC, Liu XD, Zhang X and Fan Y. 2007. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn-and vein-type deposits, Anhui Province, South China. Ore Geology Reviews, 31(1-4): 279-303 DOI:10.1016/j.oregeorev.2005.03.016 |
Zhou TF, Fan Y, Yuan F and Zhong GX. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10): 3051-3066 (in Chinese with English abstract) |
Zhou TF, Fan Y, Wang SW and White NC. 2017. Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372 (in Chinese with English abstract) |
Zhu ZY, Jiang SY, Hu J, Gu LX and Li JW. 2014. Geochronology, geochemistry, and mineralization of the granodiorite porphyry hosting the Matou Cu-Mo (±W) deposit, Lower Yangtze River metallogenic belt, eastern China. Journal of Asian Earth Sciences, 79: 623-640 DOI:10.1016/j.jseaes.2013.07.033 |
Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571 DOI:10.1146/annurev.ea.14.050186.002425 |
常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 294-312.
|
常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换——以长江中下游成矿带为例. 岩石学报, 28(10): 3067-3075. |
董胜. 2006. 安徽省贵池地区区域地球化学特征及找矿意义. 物探与化探, 30(3): 215-219, 223. DOI:10.3969/j.issn.1000-8918.2006.03.007 |
段留安, 杨晓勇, 汪方跃, 邓江洪, 孙卫东. 2012. 长江中下游成矿带贵池抛刀岭金矿含矿岩体年代学及地球化学研究. 岩石学报, 28(10): 3241-3254. |
段留安, 杨晓勇, 刘晓明, 孙卫东. 2013. 铜陵舒家店地区志留纪地层中金矿的发现及其意义. 大地构造与成矿学, 37(2): 333-339. DOI:10.3969/j.issn.1001-1552.2013.02.015 |
段留安, 古黄玲, 杨晓勇, 严志忠, 孙卫东. 2015. 长江中下游贵池李湾铜多金属矿区岩浆岩年代学及Hf同位素地球化学研究. 岩石学报, 31(7): 1943-1961. |
刘园园, 马昌前, 吕昭英, 黄卫平. 2012. 长江中下游贵池矿集区燕山期岩浆作用及其地质意义:年代学、地球化学及Sr-Nd-Hf同位素证据. 岩石学报, 28(10): 3287-3305. |
毛景文, 郑榕芬, 叶会寿, 高建京, 陈文. 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义. 矿床地质, 25(4): 359-368. DOI:10.3969/j.issn.0258-7106.2006.04.002 |
毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2): 109-119. DOI:10.3969/j.issn.0258-7106.2009.02.001 |
毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例. 岩石学报, 28(1): 1-14. |
宁思远, 汪方跃, 薛维栋, 周涛发. 2017. 长江中下游铜陵地区宝山岩体地球化学研究. 地球化学, 46(5): 397-412. DOI:10.3969/j.issn.0379-1726.2017.05.001 |
孙卫东, 凌明星, 汪方跃, 丁兴, 胡艳华, 周继彬, 杨晓勇. 2007. 太平洋板块俯冲与中国东部中生代地质事件. 矿物岩石地球化学通报, 27(3): 218-225. DOI:10.3969/j.issn.1007-2802.2007.03.003 |
唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1-351.
|
汪方跃, 葛粲, 宁思远, 聂利青, 钟国雄, White NC. 2017. 一个新的矿物面扫描分析方法开发和地质学应用. 岩石学报, 33(11): 3422-3436. |
王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004. 鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因. 岩石学报, 20(2): 351-360. |
翟裕生, 姚书振, 林新多, 周珣若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 1-194.
|
张乐骏, 周涛发, 范裕, 袁峰. 2008. 安徽月山岩体的锆石SHRIMP U-Pb定年及其意义. 岩石学报, 24(8): 1725-1732. |
周涛发, 范裕, 袁峰, 钟国雄. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28(10): 3051-3066. |
周涛发, 范裕, 王世伟, White NC. 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372. |