岩石学报  2020, Vol. 36 Issue (1): 154-170, doi: 10.18654/1000-0569/2020.01.15   PDF    
滇东南都龙锡锌铟多金属矿床磁铁矿矿物化学组成特征及其对成矿作用的约束
牛浩斌1,2,3, 孙卫东4, 张斌辉3, 陈敏华3, 张彬3, 陆生林3     
1. 中国科学院广州地球化学研究所, 广州 510640;
2. 中国科学院大学, 北京 100049;
3. 中国地质调查局成都地质调查中心, 成都 610081;
4. 中国科学院海洋研究所深海研究中心, 青岛 266071
摘要: 都龙锡锌铟多金属矿床位于著名的滇东南钨锡多金属成矿区之老君山矿集区,成矿与白垩纪大规模花岗岩活动关系密切,沿隐伏花岗岩接触带周边发育石榴子石、透辉-透闪石等矽卡岩蚀变和条带状(似层状)、脉状(囊状)的锡石、闪锌矿及磁铁矿、辉钼矿、黄铁黄铜矿等矿化,形成超大规模的岩浆热液-矽卡岩成矿系统。野外观测及研究发现,早期(矽卡岩期)高温阶段形成的磁铁矿可分为Ⅰ阶段交代型磁铁矿(Ⅰ-Mag)和Ⅱ阶段充填型磁铁矿(Ⅱ-Mag)两类:前者多呈囊状、条带状,与矽卡岩矿物共生;后者为脉状,与金属硫化矿物共生。利用ICP-AES、ICP-MS对两类磁铁矿进行主、微量元素测试,从Ⅰ-Mag到Ⅱ-Mag,Si、Ca、Mn及ΣREE、Pb、Zn、Ti含量增加,Mg及Sn、W、In、V、Cr、Ga含量减少,REE配分型式也由平缓向右倾的逐渐变化。TiO2-Al2O3-(MgO+MnO)、(Ti+V)-(Ca+Al+Mn)、Ni/Cr-Ti、(Ti+V)-Ni/(Cr+Mn)成因判别图解表明,磁铁矿属岩浆热液-矽卡岩成因类型;Ti、V与Zr、Hf、Nb、Ta,以及Y/Ho(24~34.14)、Ni/Co(< 2→>2)、Ti/V(< 25→>25)、Hf/Zr(0.03~0.06→0.04~0.05)存在着线性关系和规律变化特征,指示两类型磁铁矿具有相同的物质来源,为同一成矿过程不同阶段的产物。而代表成矿流体REE组成的Ⅱ-Mag的REE组成继承了老君山花岗岩REE配分趋势和Eu负异常特征,表明磁铁矿与白垩纪老君山花岗岩具有一致的物质来源。Cr-V、(Ti+V)-(Al+Mn)、Ga-Mg及Ga-Sn图解显示相同的成因类型和一致的线性关系,指示磁铁矿主体形成于较高氧逸度和温度(约300℃)的成矿环境下,并且从Ⅰ-Mag到Ⅱ-Mag,存在着氧逸度逐渐升高、温度逐渐降低的演化趋势。
关键词: 磁铁矿    矿物化学    都龙锡锌铟多金属矿床    滇东南    
Mineral chemistry of magnetite and its constraints on ore-forming processes of the Dulong Sn-Zn-In polymetallic deposit, southeastern Yunnan Province
NIU HaoBin1,2,3, SUN WeiDong4, ZHANG BinHui3, CHEN MinHua3, ZHANG Bin3, LU ShengLin3     
1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Chengdu Center, China Geological Survey, Chengdu 610081, China;
4. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract: The Dulong Sn-Zn-In-polymetallic deposit lies in Laojunshan ore-concentrated area of the famous W-Sn polymetallic metallogenic zone in southeastern Yunnan. Mineralization in this deposit is closely related to the large-scale Cretaceous granite magma intrusion. It is a giant skarn (magmatic hydrothermal) mineralization system, whose skarn minerals include garnet, diopside, tremolite, actinolite, magnetite, wolframite, cassiterite, marmatite, molybdenite, chalcopyrite, pyrite, sphalerite and galenite. Based on field observation and study, the magnetite may be classified into two mineralization stages and types, including the early saccular (or banded) magnetite (Ⅰ-Mag) in the skarn and the later vein magnetite (Ⅱ-Mag) in the host rocks or early ore bodies. The analytical results show that from Ⅰ-Mag to Ⅱ-Mag, the concentrations of Si, Ca, Mn, ΣREE, Pb, Zn and Ti increase, whereas those of Mg, Sn, W, In, V, Cr and Ga decrease, and REE patterns are changed from slightly flat to right-dipping, with negative Eu anomalies. Magnetite genetic classification diagrams of TiO2 vs. Al2O3 vs. MgO+MnO, Ti+V vs. Ca+Al+Mn, Ni/Cr vs. Ti, Ti+V vs. Ni/(Cr+Mn) reveal that the magnetite is magmatic hydrothermal and skarn genetic type. The concentrations of Ti, V, Zr, Hf, Nb and Ta and the values of Y/Ho, Ni/Co, Ti/V and Hf/Zr show linear correlations. All of them show that the two types of magnetites have the same source with the Laojunshan granite intrusion, and they are products at different stages of the same mineralizing processes. The REE characteristics of Ⅱ-Mag are similar to the Laojunshan granite intrusion, indicating that magnetite is genetically related to the Laojunshan granite intrusion. Plotting of Cr vs. V, Ti+V vs. Al+Mn, Ga vs. Mg and Ga vs. Sn for two types magnetite indicate that the two types of magnetites are formed in an ore-forming fluid with higher oxygen fugacity and temperature (nearly 300℃), which show increasing temperatures with decreasing oxygen fugacity.
Key words: Magnetite    Mineral chemistry    Dulong Sn-Zn-In polymetallic deposit    Southeastern Yunnan    

石英、方解石、黄铁-黄铜矿、闪锌矿、磁铁矿等矿物化学组成可以间接反映成矿流体元素组成、性质(酸碱度、氧化还原性质等)演变特征,进而约束成矿作用过程和限定物质来源(Whitney and Olmsted, 1998; 范建国等, 2000; 双燕等, 2006; 李闫华等, 2007; 周涛发等, 2010; Ye et al., 2011; 叶霖等, 2016)。在闪锌矿、磁铁矿等热液矿物化学研究中,REE元素化学特征一般受矿物晶体结构和所处热液体系内REE元素络合物的稳定性控制(Morgan and Wandless, 1980; Michard, 1989);除变价元素(Sm2+、Eu2+、Yb2+、Ce4+)外,REE多以REE3+形式存在,其离子半径(1.06~0.848Å)与电负性(1.1~1.25)与Fe3+(0.645Å; 1.83)、Fe2+(0.76Å; 1.83)和Zn2+(0.74Å; 1.66)等离子半径和电负性差别较大,难以通过类质同像的形式进入矿物晶格中;由此,元素络合物的稳定性也控制着成矿流体元素的化学组成、迁移及沉淀过程(Terakado and Masuda, 1988; Wood, 1990; Lottermoser, 1992; Haas et al., 1995; 彭建堂等, 2004; Ding et al., 2018),而络合物的稳定性与其关键性控制因素——温度呈负相关关系(Wang et al., 1993; 何俊杰等, 2015a, b; Brugger et al., 2016),即高温下络合物稳定性低、不易形成,对流体组成的影响可降至最低。对磁铁矿(Fe3O4)等高温矿物来说,成矿流体组成主要决定于矿物内包裹体和晶体缺陷内流体成分,使利用磁铁矿的REE组成来进行成矿流体示踪研究成为可能。虽REE3+不易进入磁铁矿晶格内,但磁铁矿属AB2X4型的复杂氧化物(FexFexO4),Mg2+、Zn2+、Sn2+/4+、Cu1+/2+、Mn2+、Ni2+、Al3+、Ti4+、W6+、Cr3+等多种离子可以类质同象代替A与B,形成多种矿物化学标型特征及其对应的成因类型磁铁矿,从而可利用其标型特征的差异约束磁铁矿成因及其相关矿床的成矿作用过程(Lindsley, 1976; 徐国风和邵洁涟, 1979; 林师整, 1982; 陈光远等,1987; Deer et al., 1992; Singoyi et al., 2006; Dupuis and Beaudoin, 2011; Dare et al., 2014, 2015; Nadoll et al., 2014; Knipping et al., 2015; Broughm et al., 2017)。

随着锡石LA-ICPMS微区原位定年技术的发展(Li et al., 2016),许多锡矿床的成矿年龄都得到了确定(Zhang et al., 2017a, b; Guo et al., 2018a, b)。都龙锡锌铟多金属矿床(锡石U-Pb: 89.4±1.4Ma;Zhao et al., 2018a)位于著名的滇东南钨锡多金属成矿区之老君山矿集区,与北部泥盆纪-三叠纪右江裂谷盆地内的个旧铜锡(锡石U-Pb: 83.5±2.1Ma~85.1±1.0Ma;Guo et al., 2018a)、白牛厂银锡(锡石U-Pb: 87.4±3.7Ma和88.4±4.3Ma;李开文等, 2013)、大厂(锡石U-Pb: 90.3±1.8Ma~95.4±4.9Ma;Guo et al., 2018b)的高丰、高松等锡锌铅多金属矿床同为晚白垩世岩浆作用产物(Guo et al., 2018a, b; Zhao et al., 2018a)。目前,该矿床累计探明333类以上资源/储量>500万吨锌、>40万吨锡、>20万吨铜、>5万吨钨,以及伴生有>7000吨稀贵金属铟,达超大型规模,且铟规模居全国之首(李廷俊等,2016)。成因上,与区内白垩纪老君山花岗岩活动关系密切,成矿成岩存在时间和空间分布上的一致性(刘玉平等, 2007; 张斌辉等, 2012; 王小娟等, 2014),但紧邻加里东期片麻状花岗岩巨型岩体,并存在加里东、印支、燕山多期钨锡成矿事件(Feng et al., 2013; Du et al., 2015);成矿作用过程复杂,虽多数学者认为该矿床为岩浆热液成因(宋焕斌, 1989; Xu et al., 2015; 何芳等, 2015; 苏航等2016; 王金良等, 2016; 叶霖等, 2016, 2017, 2018; Zhao et al., 2018a; 李丕优等, 2018),但也有喷流沉积-多期叠加改造(周建平等, 1998; 贾福聚等, 2013, 2014)和沉积-变质-热液改造(刘玉平, 1998; 刘玉平等, 2000, 2007; 王雄军, 2008; 李忠烜等, 2016)成因之说。

本次工作选取早期高温阶段所形成的磁铁矿为研究对象,利用磁铁矿矿物化学示踪方法,通过系统的矿物化学(ICP-AES、ICP-MS)分析,探讨磁铁矿成因,并从物质来源和成矿流体性质方面进一步约束成矿作用过程。

1 地质概况

都龙锡锌铟多金属矿床位于特提斯构造域,是华夏、扬子、印支板块的结合部位(图 1),属前人提出的“越北古陆”边缘坳陷带(黄汲清, 1954)。“越北古陆”以“斋江隆起”为核心,主体在越南,境内亦称为“南温河(-Song Chay)穹窿”或“都龙(-Song Chay)穹窿”(Roger et al., 2000; Maluski et al., 2001; Yan et al., 2006; 中国地质调查局成都地质调查中心(后文简称成都地调中心), 2011),处于马关、文山-麻栗坡断裂所围限区域。其核部由新元古代猛洞岩群(Pt3M)变形变质杂岩——片岩、片麻岩、变粒岩、硅质岩及斜长角闪岩(锆石SHRIMP U-Pb:761±12Ma和829±10Ma;刘玉平等, 2006),志留纪S型片麻状花岗岩(锆石SHRIMP U-Pb:440~420Ma;刘玉平等, 2007)和白垩纪老君山S型花岗岩(锆石U-Pb:96±2Ma;张斌辉等, 2012)组成;盖层为围绕穹窿分布的一套早古生代浅海台地相碳酸盐岩夹碎屑岩建造(成都地调中心, 2011)。两者间多以断层构造接触,并成为区域上重要的成控矿构造(李东旭和许顺山, 2000)。

① 中国地质调查局成都地质调查中心. 2011. 1: 50000云南麻栗坡地区矿产远景调查报告

图 1 滇东南区域大地构造简图及都龙锡锌铟多金属矿床地质简图(据成都地调中心,2011; Lepvrier et al., 2011; 彭松柏等, 2016; 夏磊等, 2018; 朱光磊等, 2018修改) Fig. 1 Sketch tectonic map of the southeastern Yunnan area and simplified geological map of the Dulong Sn-Zn-In polymetal deposit area (modified after Lepvrier et al., 2011; Peng et al., 2016; Xia et al., 2018; Zhu et al., 2018)

区内出露地层由西向东有龙哈组(∈2l)、田蓬组(∈2t)、大寨组(∈1-2d)及浪木桥组(Z∈l)。其中,龙哈组(∈2l)为一套中厚至块状白云岩夹碎屑岩薄层。田蓬组(∈2t)可分2段:一段(∈2t1)为千枚岩、云母片岩夹大理岩、灰岩,于岩性界面发育矽卡岩化蚀变及锡锌矿化,为主要的赋矿层位;二段(∈2t2)为灰岩夹千枚岩、云母片岩及少量砂岩等。大寨组(∈1-2d)为页岩(千枚岩、片岩)夹少量(变)粉砂岩。浪木桥组(Z∈l)零星见于北侧铜街附近,岩性为页岩夹粉砂岩、大理岩,底部见复成份变质砾岩(图 1)。

与成矿密切相关的白垩纪花岗岩主体产于该矿床北侧,南北长约14km,东西宽约9km,出露面积约153km2,平面上呈椭圆状,深部向南倾伏呈隐伏岩体(Zhao et al., 2018a)。依据岩相学特征和同位素年龄,白垩纪老君山花岗岩属于复式岩体,可划分三个期次(Zhao et al., 2018a):Ⅰ期(Kηγ1)为主岩体边缘的中粗粒(3~7mm)含斑二云二长花岗岩,Ⅱ期(Kηγ2)为岩株状产出的中细-细粒(2~4mm)含斑二云母二长花岗岩,Ⅲ期(Kηγ3)多为花岗斑岩岩脉、岩枝。大量勘查资料表明,老君山地区钨锡矿产多与第二期花岗岩有关。

2 蚀变与矿化特征

矿床在平面和剖面上存在大规模的似层状矽卡岩蚀变带和锡锌铟矿体,主要赋存在中寒武统田蓬组一段(∈2t1)内及其两侧的差异岩性层间断裂附近(图 1图 2)。其中,顺主成控矿F1断裂,从岩体接触带向外,分带性明显:石榴子石、透辉石矽卡岩(干矽卡岩),阳起石、透闪石矽卡岩(湿矽卡岩),硅化、碳酸盐化带,特别是大范围的大理岩、大理岩化灰岩尤为发育(图 2图 3a);矿化方面也大致存在从高温向低温矿物、由氧化向硫化矿物过渡的分带特征,即依次出现黑钨矿、磁铁矿(花石头、铜街)→锡石、铁闪锌矿、辉钼矿、磁黄铁矿、黄铜矿(曼家寨、辣子寨)→闪锌矿、方铅矿等(五口洞、南当厂)。矿石类型多为交代成因的矽卡岩型磁铁矿、铁闪锌矿矿石和脉状充填成因的方铅矿、闪锌矿矿石,主要呈纹层-条带状、块状、稠密浸染状和脉状构造(图 3b-f);其中,金属矿物主要包括磁铁矿、(铁)闪锌矿、黄铜矿、方铅矿等,呈多种共生、嵌生结构,特别是(铁)闪锌矿内普遍存在黄铜矿、磁黄铁矿出溶体,形成出溶结构(图 3g, h)。

图 2 都龙锡锌铟多金属矿床曼家寨矿段EW向剖面图(据叶霖等, 2018修改) Fig. 2 EW vertical and horizontal profiles of the Dulong Sn-Zn-In polymetal deposit (modified after Ye et al., 2018)

图 3 都龙锡锌铟多金属矿床成矿及磁铁矿矿化特征 (a)露天采场内代表性的蚀变与矿化体宏观产出特征;(b)含透闪石阳起石的铁闪锌矿矿石;(c)磁铁矿矿石内透闪石穿插与透辉石交代残余结构(+);(d)含石榴子石透闪石的磁铁矿矿石;(e)透辉石矽卡岩内磁铁矿脉体穿插特征;(f)锡石与电气石呈粒状矿物为稠密浸染状的(铁)闪锌矿等硫化矿物所包裹;(g)稠密浸染状-团块状(铁)闪锌矿与磁铁矿、磁黄铁矿、黄铁矿相互包裹穿切,存在磁黄铁矿出溶体;(h)(铁)闪锌矿内的磁黄铁矿、黄铜矿出溶体;(i)透辉石化磁铁矿石内穿插的磁铁矿细脉.矿物代号:Mag-磁铁矿;Cst-锡石;(Fe)Sp-铁闪锌矿;Sp-闪锌矿;Ccp-黄铜矿;Py-黄铁矿;Po-磁黄铁矿;Grt-石榴子石;Di-透辉石;Tur-电气石;Tr-透闪石;Act-阳起石;Ep-绿帘石;Chl-绿泥石;Q-石英;Mb-大理岩(化) Fig. 3 Mineral alteration and magnetite characters of the Dulong Sn-Zn-In polymetal deposit
3 样品测试与分析结果 3.1 样品测试

本次采集18件花石头和铜街矿段的磁铁矿样品,为地表新鲜露头样品;从产状和成因上,大致可分为两种类型(图 3):Ⅰ阶段交代形成的团状、条带状磁铁矿(Ⅰ-Mag)和Ⅱ阶段充填形成的脉状-网脉状磁铁矿(Ⅱ-Mag)。其中,前者多与透辉石、石榴子石等矽卡岩矿物紧密共生,受后期流体作用,矽卡岩矿物多退变质为黑云母-白云母-方解石-萤石-绿泥石的矿物组合,相互间呈成鳞片状、粒状变晶结构(图 3);后者一般呈明显的细脉状、网脉状在不同围岩内穿插,部分呈细脉穿切早期交代形成的矽卡岩及磁铁矿矿石(图 3),常有后期浸染状的硫化物金属矿化叠加。

磁铁矿单矿物分选工作在广州市拓岩检测技术有限公司完成;用常规方法将岩石样品粉碎至200μm左右,经淘洗、重选富集,再经磁选和密度分选后,在双目镜下进一步分离和挑选磁铁矿单矿物,纯度达到99%以上,置于玛瑙研钵内研磨至200目以上粉末(≥2g)。样品测试在国家地质实验测试中心完成,采用美国PE(PerkinElmer)公司生产的高分辨全谱直读电感耦合等离子体发射光谱仪(ICP-AES,型号:PerkinElmer Optima 8300)和电感耦合等离子质谱仪(ICP-MS,型号:PerkinElmer NexIon 300Q)分析磁铁矿主、微量元素。其中,主量元素的测定,执行JY/T015-1996、LY/T 1253-1999(烧失量LOI)通则,用偏硼酸锂(LiBO2)碱熔法溶解样品,选择国家标准物质GBW07122(岩石)和“川铁2中”监控样品,采用ICP-AES系统分析,分析精度优于1%,除Al2O3(检测限0.1%)与K2O、CaO、Na2O(检测限0.05%)外,其余主量元素检测限均为0.01%。微量元素的测定,执行DZ/T0223-2001标准,采用密闭高压酸溶法(HNO3+HF)溶解样品,HNO3提取待测溶液,选择国家标准物质GBW07241(稀有稀散元素)和“川铁2中”监控样品,采用ICP-MS分析微量元素,分析精度优于5%,检测限为0.05×10-6。其中,微量元素分析过程中,高W样品(HST21、HST22)采用高压密闭酸溶法(HNO3+HF),不赶HF,利用耐HF的ICP-AES测定W;高Sn样品(DTS3-2),采用NaO2碱熔法,ICP-MS测定Sn。需要说明的是,ICP-AES、ICP-MS联合可对少量(几百毫克至数克)样品进行测试,并获得高质量的主、微量元素数据(李献华等, 2002);含量≤50%时,所获ICP-AES数据的准确度相当于或精于化学分析,而对于含量>50%的元素,其ICP-AES分析数据则稍低于化学分析,百分含量加和质量可控制在99.3%~100.7%之间(李冰等, 2011)。本文ICP-AES测试数据TFe2O3均达90%以上,高于50%;由于氧化亚铁(FeO)、氧化铁(Fe2O3)形式质量增加,我们对主量元素扣除烧失量后重新进行了计算。ICP-MS测试的微量数据中,DTS3-2、HST-3、HST-18、HST-20、HST-21多种稀土元素数据低于检测限值,在分析结果与探讨中未采用。

3.2 分析结果

从ICP-AES测试结果看(表 1图 4),磁铁矿总体上具有富Ca、Al、Si、Mg、Mn,低Ti、Na、K特征。其中,Ⅱ-Mag的SiO2(中位值2.59%)、CaO(中位值0.32%)、MnO(中位值0.13%)含量总体比Ⅰ-Mag的SiO2(中位值1.55%)、CaO(中位值0.18%)、MnO(中位值0.05%)含量稍高,而Ⅱ-Mag的MgO(中位值1.57%)含量则比Ⅰ-Mag的MgO(中位值0.64%)含量低,Ⅰ-Mag与Ⅱ-Mag的Al2O3(中位值为0.22%和0.19%)、P2O5(中位值为0.05%和0.05%)、TiO2(中位值为0.04%和0.06%)含量相近,K2O与Na2O含量多低于检测限值。

表 1 都龙锡锌铟多金属矿床磁铁矿ICP-AES、ICP-MS测试主量(wt%)、微量(×10-6)成分特征表 Table 1 Major (wt%) and trace (×10-6) elements composition of magnetite by ICP- AES and ICP- MS from the Dulong Sn-Zn-In polymetallic deposit

图 4 磁铁矿主量、微量元素成分特征 Fig. 4 Major and trace elements diagrams of magnetite

ICP-MS稀土元素分析结果来看(表 1),Ⅰ-Mag的ΣREE值变化于0.41×10-6~8.09×10-6,LREE/HREE值为1.04~2.60,(La/Yb)N=0.46~1.97,总体具较平缓的REE配分曲线(图 5a);Eu低于检测限值,δCe=0.94~1.05,未显示明显Eu、Ce异常,(La/Sm)N=0.92~1.89,(Gd/Yb)N=0.31~2.08,(Y/Ho)N=24.93~27.83(大多样品Ho低于检测限值),轻、重稀土分馏程度相似。Ⅱ-Mag的ΣREE值为12.49×10-6~37.41×10-6,LREE/HREE值为3.07~9.43,(La/Yb)N在2.19~9.94,轻稀土强烈富集,重稀土亏损,REE配分型式具明显右倾特征(图 5a);δEu=0.45~4.66,主体集中在0.45~0.56之间,δCe=0.90~1.04,存在强烈Eu负异常,未见明显Ce异常,(La/Sm)N=1.35~5.69,集中在2~2.63之间,(Gd/Yb)N=1.37~1.82,(Y/Ho)N=24~29.5,轻稀土较重稀土分馏程度略强。

图 5 磁铁矿球粒陨石标准化稀土元素配分图(a, 标准化值据Sun and McDonough, 1989)和平均的陆壳上部标准化微量元素蛛网图(b, 标准化值和排列据Rudnick and Gao, 2003Dare et al., 2014) 富铁榴石、老君山花岗岩配分型式王金良等(2016)Zhao et al. (2018a) Fig. 5 Chondrite-normalized REE patterns (a, normalization values after Sun and McDonough, 1989) and average upper continental crust-normalized trace elements spidergrams (b, normalization values and patterns after Rudnick and Gao, 2003; Dare et al., 2014) of magnetite Patterns of Fe-rich garnet and Laojunshan granite intrusion and marmatites are from Wang et al. (2016); Zhao et al. (2018a)

其他微量元素方面(表 1),相对整体陆壳组成(Rudnick and Gao, 2003),亏损Th、U、Zr、Hf、Nb、Ta、Ti、V等高场强元素(HFSE)与Rb、K、Ba、Sr等大离子亲石元素(LILE),富集Sn、W、In、Bi、Zn等(图 5b)。其中,Ⅰ-Mag内Pb、Zn、Ti含量中位值分别为1.81×10-6、174×10-6、188×10-6,Sn、W、In、V、Cr、Ga含量中位值分别为4031×10-6、23.1×10-6、2×10-6、12×10-6、3.69×10-6、29.1×10-6;Ⅱ-Mag内Pb、Zn、Ti含量中位值分别为12.5×10-6、3145×10-6、372×10-6,Sn、W、In、V、Cr、Ga含量中位值分别为503×10-6、12.2×10-6、0.25×10-6、8.71×10-6、2.16×10-6、5.53×10-6。从Ⅰ-Mag到Ⅱ-Mag,Pb、Zn、Ti总体含量增加,Sn、W、In、V、Cr、Ga含量则相对减少。

4 讨论 4.1 磁铁矿成因分析

Al2O3、MnO、CaO、MgO、TiO2、Ni、Cr、V、Ga等元素组成差异,对不同类型磁铁矿具有重要的指示意义(徐国风和邵洁涟, 1979; 林师整, 1982; 陈光远等,1987; Singoyi et al., 2006; Dupuis and Beaudoin, 2011; Dare et al., 2014; Nadoll et al., 2014; Huang and Beaudoin, 2019; Huang et al., 2019a, b)。徐国风和邵洁涟(1979)系统划分岩浆矿床、接触交代矿床、热液交代矿床、区域变质矿床等磁铁矿床成因类型,林师整(1982)进一步细分为侵入岩中副矿物型及岩浆型、火山岩型、接触交代型、矽卡岩型和沉积变质型,并利用约3000组磁铁矿数据绘制了TiO2-Al2O3-(MgO+MnO)成因图解(图 6a),陈光远等(1987)也相继提出TiO2-Al2O3-MgO成因图解。近年来,Dupuis and Beaudoin (2011)Nadoll et al. (2014)Dare et al. (2014)Knipping et al. (2015)Huang and Beaudoin (2019)Huang et al.(2019a, b)结合最新测试技术、分析方法及成因类型划分,建立了(Ti+V)-(Ca+Al+Mn)、Ni/Cr-Ti、(Ti+V)-Ni/(Cr+Mn)、Ti-V等一系列更为精细的磁铁矿成因分类图解(图 6b-d)。将本次所获得数据经TiO2-Al2O3-(MgO+MnO)、(Ti+V)-(Ca+Al+Mn)、Ni/Cr-Ti、(Ti+V)-Ni/(Cr+Mn)成因判别图解投点后,大多数样品落入“矽卡岩”、“(岩浆)热液型”区域(图 6),这与所采得矿石样品均共(伴)生有透辉石、石榴子石、透闪石、阳起石等矽卡岩矿物和金属硫化矿物相一致,主体应为岩浆热液-矽卡岩成因类型。其中,TiO2含量(0.01%~0.1%)总体与接触(0.07%~0.4%)、热液(0.107%~0.68%)交代成因矿床相似,与岩浆型(0.58%~2.97%)、火山岩型(0.92%~5.02%和3.55%~21.72%)明显不同(徐国风和邵洁涟, 1979);而Al2O3(< 0.1%~0.45%)也在热液型磁铁矿Al2O3(< 1%)含量范围内(Nadoll et al., 2014)。Fe2O3T与SiO2、MgO、MnO+CaO+Al2O3近似成反比,SiO2、MgO大体呈Ⅰ-Mag和Ⅱ-Mag两不同端元的变化趋势(图 4);表明成矿过程中,成矿流体与碳酸盐岩(含Ca、Mn、Mg等)、花岗岩(含Si、Al等)围岩之间存在着广泛的水岩反应和物质交换,并在Ⅱ阶段的成矿流体内富集,特别是大量透辉石、石榴子石等矽卡岩矿物的生成,造成Ⅱ-Mag比Ⅰ-Mag具有更高的Si、Ca、Mn(图 4)。

图 6 磁铁矿成因判别图解(a, 据林师整, 1982; b, 据Dare et al., 2014; c, d, 据Dupuis and Beaudoin, 2011) Fig. 6 Magnetite genetic classification diagrams (a, after Lin, 1982; b, after Dare et al., 2014; c, d, after Dupuis and Beaudoin, 2011)

Ni与Cr元素地球化学行为在硅酸盐岩浆显示相互耦合的,也即高温条件下,Cr比Ni具有更高的溶解度,形成的岩浆岩型磁铁矿Ni/Cr≤1;而在(岩浆)热液活动过程中,Ni与Cr元素显示出截然相反的解耦行为,表现为Ni的溶解度远高于Cr,造成热液成因类型的磁铁矿Ni/Cr≥1,与Ti结合用以区分岩浆岩型与热液型磁铁矿(Nadoll et al., 2014; Huang et al., 2019a),所有样品均投至热液型磁铁矿范围(图 6b);不过表 1中Ni/Cr变化较大(0.23~5.68),可能是因为流体中Cr同样呈现出较强活动性的缘故(Broughm et al., 2017),或是流体与岩体内硫化矿物交代作用的结果(Huang et al., 2019a)。Y与Ho具有相似的离子半径(0.90Å/0.89Å)和电负性(1.22/1.23),在多种地质成矿过程中具有一致的地球化学行为,Y/Ho值基本保持不变(Shannon, 1976),可用于成矿物质与流体示踪研究(Bau and Dulski, 1999; Douville et al., 1999; 毛光周等, 2006);Ⅰ-Mag与Ⅱ-Mag的Y/Ho值24~34.14,变化区间较窄(图 4),也指示着两类磁铁矿具有相同的物质来源,并为同一成矿过程的阶段性产物。另外,从Ⅰ-Mag到Ⅱ-Mag演化过程中,Zr、Hf、Nb、Ta与Ti、V等HFSE元素具有相似的线性变化特征(图 4),表现出一致的物质来源和成因(Nielsen et al., 1994; Nielsen and Beard, 2000; Nadoll, 2011),且低Ti、V则是矽卡岩成因磁铁矿的典型特征(Nadoll et al., 2015),特别是Ni/Co(< 2→>2)、Ti/V(< 25→>25)、Hf/Zr(0.03~0.06→0.04~0.05)比值规律变化,也反映了岩浆热液-矽卡岩成矿过程中所存在的水岩相互作用。

结合宏观露头上所出现的大规模石榴子石、透辉石、透闪石、阳起石等矽卡岩化蚀变,以及磁铁矿、黑钨矿、铁闪锌矿(伴生铟)、锡石、辉钼矿、黄铜矿、方铅矿等矿化分带现象。我们认为,两类磁铁矿具有一致的成矿物质来源,为成矿流体经交代、充填等成矿阶段和矿质沉淀方式富集成矿,两者存在发展继承关系,仍属于岩浆热液-矽卡岩成因范畴。

4.2 成矿作用的约束

磁铁矿作为早期高温成矿产物,具有重要的成矿作用研究意义,本文选取都龙锡锌铟多金属矿床中伴生的磁铁矿为研究对象,利用矿物化学标型及示踪方法,通过与不同阶段、期次的金属矿物及花岗岩体的对比,探讨成矿作用过程。

4.2.1 成矿物质示踪

从Ⅰ-Mag到Ⅱ-Mag,REE元素含量更高,并具有两种截然不同的REE配分型式(图 5)。这一特征反映了Ⅰ-Mag沉淀伴随着成矿流体与围岩(碳酸盐岩)间的水岩反应和矽卡岩化过程,与磁铁矿近同时形成的钙矽卡岩矿物(富铁石榴子石、透辉石等)势必会改变周围局限流体REE的组成,沉淀的磁铁矿ΣREE更低,LREE/HREE值小,并存在较为平坦的REE配分曲线低ΣREE、平坦配分曲线;这与区内石榴子石ΣREE总体偏高(8.39×10-6~117.97×10-6, 王金良等, 2016)形成明显对比(图 5),特别是成矿期的富铁石榴子石(钙铁榴石)具有与Ⅰ-Mag截然相反的右倾配分模式(王金良等, 2016),可能为Ⅰ-Mag低ΣREE和LREE/HREE值的原因。而Ⅱ-Mag沉淀时并未形成诸如石榴子石、透辉石等影响REE组成的矽卡岩矿物,对示踪成矿环境和流体(REE)组成、性质更有意义。

Ⅱ-Mag与白垩纪老君山花岗岩(贾福聚等, 2014; 刘艳宾等, 2014; 叶霖等, 2016; Zhao et al., 2018a; 徐容等, 2018)具有相似的REE配分趋势,以及明显的负Eu异常,表明两者存在相同的物质源区。从成岩成矿年代学上,已有该矿床锡石U-Pb(刘玉平等, 2007; 王小娟等, 2014)和辉钼矿Re-Os年龄(王礼兵和艾金彪, 2018)主要集中在82~89Ma之间,与老君山花岗岩成岩基本同期或稍晚(锆石U-Pb:92±1.9Ma; 刘玉平等, 2007; 张斌辉等, 2012)。结合矿石硫化物单矿物和白垩纪花岗岩长石、志留纪片麻状花岗岩长石及围岩大理岩、片岩的Pb同位素对比研究(何芳等, 2015; Zhao et al., 2018a),该矿床Pb同位素组成与老君山花岗岩较为一致,均为壳源或壳幔混合源。这也说明该矿床是深部岩浆结晶分异出的成矿流体在不同阶段、部位富集沉淀的结果,与白垩纪老君山花岗岩成岩具有相似的演化过程和物质来源。

4.2.2 成矿流体指示

磁铁矿的元素组成主要取决于成矿流体的元素组成、同时结晶矿物对元素的“争夺”和元素的分配系数,涉及到氧逸度及硫逸度、温度、共存晶体相态、硅酸盐及硫化物的活动性、赋矿围岩性质、再平衡过程、离子半径及电荷平衡等条件(Dupuis and Beaudoin, 2011; Dare et al., 2014; Nadoll et al., 2014; Broughm et al., 2017);因此,通过对不同阶段、类型的磁铁矿元素组成分析,特别是磁铁矿内与成矿流体氧逸度、温度关系密切的Al、Mn、Mg、Ti、V、Cr、Ga、Sn等元素,可反推成矿流体性质的演变过程(Toplis and Corgne, 2002; Dupuis and Beaudoin, 2011; Acosta-Góngora et al., 2014; Dare et al., 2014; Nadoll et al., 2014; Chen et al., 2015; Broughm et al., 2017)。

多价态元素Fe、Cr、V在氧化体系内多以Fe2+, 3+、Cr2+, 3+, 4+,以及V2+, 3+, 4+, 5+等阳离子存在(Schreiber et al., 1987; Kress and Carmichael, 1991; Simon et al., 2007; Bordage et al., 2011);已有元素分配系数或含量的实验结果表明,矿物内多价态元素含量的不同可作为衡量不同阶段成矿流体氧逸度变化(Mallmann and O'Neill, 2009; Bordage et al., 2011; Chen et al., 2015; Sun et al., 2017; Zhao et al., 2018b)。Cr3+, 4+是自然界中存在的主要氧化态,且Cr3+(0.69Å)与Fe3+(0.645Å)具有相似离子半径,易于类质同象进入磁铁矿晶格内(Righter et al., 2006),并随氧逸度增加转变为Cr4+,造成进入磁铁矿内Cr含量减少(Kotaś and Stasicka, 2000)。V2+仅在相对还原的条件下出现,而磁铁矿内多以V3+, 4+存在,且V3+(0.64Å)与Fe3+(0.645Å)离子半径相似,利于发生类质同象替代作用,使得磁铁矿内V含量增加,但随氧逸度增加,V3+转变为V4+,伴随磁铁矿内V含量降低(Acosta-Góngora et al., 2014)。如图 7a所示,Cr、V含量近似表现出线性关系,特别是V含量降低特征较为明显,指示着从Ⅰ-Mag到Ⅱ-Mag,成矿流体的氧逸度总体增大。结合区内同时或稍早于磁铁矿的富铁榴石形成于氧化环境(王金良等, 2016),判断磁铁矿主体在较高氧逸度流体环境下沉淀的,并且存在着氧逸度由Ⅰ到Ⅱ阶段逐渐升高的演化趋势。

图 7 磁铁矿Cr-V (a)、(Ti+V)-(Al+Mn) (b, 底图据Nadoll et al., 2014)、Ga-Mg (c)及Ga-Sn(d)图解 Fig. 7 Plots of Cr vs.V (a), Ti+V vs. Al+Mn (b, base map after Nadoll et al., 2014), Ga vs. Mg (c) and Ga vs. Sn (d) in magnetites to discriminate their oxygen fugacity and temperature of ore-forming fluids

温度在很大程度上决定着元素的分配系数,温度的升高有利于元素类质同象进入矿物晶格内,反之则不利于元素在矿物中富集(Mcintire, 1963)。磁铁矿内Al、Mn、Mg、V、Ga、Sn等相容元素含量随着温度的降低而减少,也是岩浆岩型向热液型磁铁矿变化的重要表征之一(Nadoll et al., 2014)。(Ti+V)-(Al+Mn)图解中(图 7b),所获得样品数据均落在岩浆热液型磁铁矿范围,主体成矿温度大约为300℃,但Ⅰ到Ⅱ阶段的温度变化趋势并不明显;原因可能是岩浆热液成因的磁铁矿常发育有流体或矿物包裹体(Nadoll et al., 2014; Chen et al., 2015; Zhao et al., 2018b),加之多价态元素V在氧逸度渐增(Ⅰ→Ⅱ)的趋势下,V含量趋于减少,而Ti在大规模水岩反应后相对富集于Ⅱ阶段的成矿流体内(陈应华等, 2018),以致磁铁矿内Ti的增加量(中位值188×10-6→372×10-6)也远超V含的减少量(中位值12×10-6→8.71×10-6)。再者,较高氧逸度下,Ga多以单价态(Ga3+)存在,其在磁铁矿中的分配系数或含量仅受温度控制,而与氧逸度无关(Mallmann and O'Neill, 2009)。高Ga、高Mg的磁铁矿趋向于高温的岩浆岩型,而低Ga、低Mg的磁铁矿则更趋向于低温的热液型(Broughm et al., 2017),利用Ga与Sn、Mg可衡量不同阶段和类型磁铁矿的温度变化趋势(Nadoll et al., 2014)。Ga-Sn、Ga-Mg图解中(图 7c, d),存在着较明显的线性关系,说明从Ⅰ-Mag到Ⅱ-Mag成矿温度逐渐降低,结合(Ti+V)-(Al+Mn)图解认识,总体温度变化范围在300℃左右。

5 结论

在详细的野外观测基础上,选取早期高温阶段所形成的磁铁矿为研究对象,利用ICP-AES、ICP-MS进行Ⅰ-Mag、Ⅱ-Mag元素组成分析,所得认识如下:

(1) 都龙锡锌铟多金属矿床发育早期(矽卡岩期)Ⅰ阶段的交代型磁铁矿(Ⅰ-Mag)和Ⅱ阶段的充填型磁铁矿(Ⅱ-Mag)两类型;前者多呈囊状、条带状,与透辉石、石榴子石等矽卡岩矿物共生,后者为脉状,与(铁)闪锌矿、黄铜矿等硫化矿物共生。

(2) 从Ⅰ-Mag到Ⅱ-Mag,主微量元素表现出规律性变化,代表成矿流体REE组成的Ⅱ-Mag继承了老君山花岗岩REE配分趋势和Eu负异常特征,指示磁铁矿与白垩纪老君山花岗岩具有一致的物质来源,为同一成矿过程的阶段性产物,经交代、充填成矿阶段和作用方式富集成矿,属于岩浆热液-矽卡岩成因范畴。

(3) 磁铁矿主体在较高氧逸度和较高温度(约300℃)流体环境下形成的,且从Ⅰ-Mag到Ⅱ-Mag,成矿流体存在着氧逸度逐渐升高、温度逐渐降低的演化趋势。

致谢      野外期间得到了云南华联锌铟股份有限公司勘查项目部、广州市拓岩检测技术有限公司在样品采集和样品处理方面所提供的支持;国家地质实验测试中心马金凤、周伟、马天芳等老师在测试方法和流程方面给予了指导;特别是匿名审稿人对本文提出了建设性意见;在此一并表示由衷的感谢!

参考文献
Acosta-Góngora P, Gleeson SA, Samson IM, Ootes L and Corriveau L. 2014. Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the great bear magmatic zone, NWT, Canada. Economic Geology, 109(7): 1901-1928 DOI:10.2113/econgeo.109.7.1901
Bau M and Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic ridge:Implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155(1-2): 77-90 DOI:10.1016/S0009-2541(98)00142-9
Bordage A, Balan E, de Villiers JPR, Cromarty R, Juhin A, Carvallo C, Calas G, Sunder Raju PV and Glatzel P. 2011. V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Physics and Chemistry of Minerals, 38(6): 449-458 DOI:10.1007/s00269-011-0418-3
Broughm SG, Hanchar JM, Tornos F, Westhues A and Attersley S. 2017. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks:Examples from Kiruna, Sweden, and El Laco, Chile. Mineralium Deposita, 52(8): 1223-1244 DOI:10.1007/s00126-017-0718-8
Brugger J, Liu WH, Etschmann B, Mei Y, Sherman DM and Testemale D. 2016. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?. Chemical Geology, 447: 219-253 DOI:10.1016/j.chemgeo.2016.10.021
Chen GY, Sun DS and Yin HA. 1987. Genetic Mineralogy and Prospecting Mineralogy. Chongqing: Chongqing Press, 1-867 (in Chinese)
Chen WT, Zhou MF, Gao JF and Hu RZ. 2015. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian Metallogenic Province, SW China. Mineralium Deposita, 50(7): 795-809 DOI:10.1007/s00126-014-0575-7
Chen YH, Lan TG, Wang H, Yang YW and Bai ZH. 2018. LA-ICP-MS trace element characteristics of magnetite from the Zhangjiawa iron deposit, Laiwu and contraints on metallogenic processes. Earth Science Frontiers, 25(4): 32-49 (in Chinese with English abstract)
Dare SAS, Barnes SJ, Beaudoin G, Méric J, Boutroy E and Potvin-Doucet C. 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7): 785-796 DOI:10.1007/s00126-014-0529-0
Dare SAS, Barnes SJ and Beaudoin G. 2015. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita, 50(5): 607-617 DOI:10.1007/s00126-014-0560-1
Deer WA, Howie RA and Zussman J. 1992. An Introduction to the Rock Forming Minerals. New York: Wiley, 1-696
Ding X, Harlov DE, Chen B and Sun WD. 2018. Fluids, metals, and mineral/ore deposits. Geofluids, 2018: 1452409
Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P and Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627-643 DOI:10.1016/S0016-7037(99)00024-1
Du SJ, Wen HJ, Qin CJ, Yan YF, Yang GS, Fan HF, Zhang WJ, Zhang L, Wang D, Li HK, Geng JZ and Meng GZ. 2015. Caledonian ore-forming event in the Laojunshan mining district, SE Yunnan Province, China:In situ LA-MC-ICP-MS U-Pb dating on cassiterite. Geochemical Journal, 49(1): 11-22 DOI:10.2343/geochemj.2.0326
Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4): 319-335 DOI:10.1007/s00126-011-0334-y
Fan JG, Ni P, Su WC, Qi L and Tian JH. 2000. Characteristics and significance of rare earth elements in quartz of Sidaogou hydrothermal gold deposit, Liaoning. Acta Petrologica Sinica, 16(4): 587-590 (in Chinese with English abstract)
Feng JR, Mao JW and Pei RF. 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China:Implications for W-Sn polymetallic ore deposits. Mineralogy and Petrology, 107(4): 573-589 DOI:10.1007/s00710-012-0253-3
Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Luo M and Zhang LC. 2018a. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China:Insights from cassiterite U-Pb ages and trace element compositions. Ore Geology Reviews, 95: 863-879 DOI:10.1016/j.oregeorev.2018.03.023
Guo J, Zhang RQ, Li CY, Sun WD, Hu YB, Kang DM and Wu JD. 2018b. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China:Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627-642 DOI:10.1016/j.oregeorev.2017.11.033
Haas JR, Shock EL and Sassani DC. 1995. Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59(21): 4329-4350 DOI:10.1016/0016-7037(95)00314-P
He F, Zhang Q, Liu YP, Ye L, Miao YL, Wang DP, Su H, Bao T and Wang XJ. 2015. Lead isotope compositions of Dulong Sn-Zn polymetallic deposit, Yunnan, China:Contraints on ore-forming metal sources. Acta Mineralogica Sinica, 35(3): 309-317 (in Chinese with English abstract)
He JJ, Ding X, Wang YR, Sun WD and Fu B. 2015a. The effect of temperature and concentration on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids:Constraints on titanium mobility in deep geological processes. Acta Petrologica Sinica, 31(3): 802-810 (in Chinese with English abstract)
He JJ, Ding X, Wang YR and Sun WD. 2015b. The effects of precipitation-aging-re-dissolution and pressure on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids and its geological implications. Acta Petrologica Sinica, 31(7): 1870-1878 (in Chinese with English abstract)
Huang JQ. 1954. On Major Tectonic Forms of China. Beijing: Geological Publishing House, 1-162 (in Chinese)
Huang XW and Beaudoin G. 2019. Textures and chemical compositions of magnetite from Iron Oxide Copper-Gold (IOCG) and Kiruna-type Iron Oxide-Apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes. Economic Geology, 114(5): 953-979 DOI:10.5382/econgeo.4651
Huang XW, Sappin AA, Boutroy é, Beaudoin G and Makvandi S. 2019a. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits:Relationship to deposit subtypes and magmatic affinity. Economic Geology, 114(5): 917-952 DOI:10.5382/econgeo.4648
Huang XW, Boutroy é, Makvandi S, Beaudoin G, Corriveau L and de Toni AF. 2019b. Trace element composition of iron oxides from IOCG and IOA deposits:Relationship to hydrothermal alteration and deposit subtypes. Mineralium Deposita, 54(4): 525-552 DOI:10.1007/s00126-018-0825-1
Jia FJ, Gao JG, Nian HL, Li X and Yan YP. 2013. REE geochemistry of ore-bearing rocks from Laojunshan tin poly-metallic metallogenic region, southeastern Yunnan Province, China. Acta Mineralogica Sinica, 33(4): 658-664 (in Chinese with English abstract)
Jia FJ, Nian HL, Li X, Wu W, Yan YF, Liu XW and Guo YJ. 2014. REE geochemistry of each metallogenic series in Laojunshan tin poly-metallic metallogenic region, southeastern Yunnan Province, China. Geological Journal of China Universities, 20(4): 549-557 (in Chinese with English abstract)
Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich CA, Holtz F and Munizaga R. 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171: 15-38 DOI:10.1016/j.gca.2015.08.010
Kotaś J and Stasicka Z. 2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107(3): 263-283 DOI:10.1016/S0269-7491(99)00168-2
Kress VC and Carmichael ISE. 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108(1-2): 82-92 DOI:10.1007/BF00307328
Lepvrier C, Faure M, Van VN, Vu TV, Lin W, Trong TT and Hoa PT. 2011. North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences, 41(1): 56-68 DOI:10.1016/j.jseaes.2011.01.002
Li B, Zhou JX and Zhan XC. 2011. Modern instrumental analysis of inorganic multi-elements. Acta Geologica Sinica, 85(11): 1878-1916 (in Chinese with English abstract)
Li CY, Zhang RQ, Ding X, Ling MX, Fan WM and Sun WD. 2016. Dating cassiterite using laser ablation ICP-MS. Ore Geology Reviews, 72: 313-322 DOI:10.1016/j.oregeorev.2015.07.016
Li DX and Xu SS. 2000. Rotation-shearing genesis of metamorphic core complex:Structural analysis of metamorphic core complex in Laojunshan, southeastern Yunnan Province. Geological Review, 46(2): 113-119 (in Chinese with English abstract)
Li KW, Zhang Q, Wang DP, Cai Y and Liu YP. 2013. LA-MC-ICP-MS U-Pb geochronology of cassiterite from the Bainiuchang polymetallic deposit, Yunnan Province, China. Acta Mineralogica Sinica, 33(2): 203-209 (in Chinese with English abstract)
Li PY, Yan YF, Yang GS, Jia FJ, Tian ZD, Cui DH, Tian ZW and Kang MM. 2018. Mineralogical characteristics of skarns from Dulong Sn-Zn polymetallic deposit in Yunnan Province and their geological significances. Acta Mineralogica Sinica, 38(3): 290-302 (in Chinese with English abstract)
Li TJ, Zhou L, Zhao YK, Zhu GS and Li HL. 2016. History and present situation of mineral resources exploitation and utilization in Dulong mine. Acta Mineralogica Sinica, 36(4): 463-470 (in Chinese with English abstract)
Li XH, Liu Y, Tu XL, Hu GQ and Zeng W. 2002. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS:A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica, 31(3): 289-294 (in Chinese with English abstract)
Li YH, Yan YF, Tan J and Li F. 2007. The application of rare earth elements in research of ore deposits. Contributions to Geology and Mineral Resources Research, 22(4): 294-298 (in Chinese with English abstract)
Li ZX, Liu YP, Ye L, Liao Z, Zhang Q and Wang B. 2016. Microanalysis of oolitic pyrite in Dulong Sn-Zn polymetallic deposit, Maguan, Yunnan Province, China. Acta Mineralogica Sinica, 36(4): 510-518 (in Chinese with English abstract)
Lin SZ. 1982. A contribution to the chemistry, origin and evolution of magnetite. Acta Mineralogica Sinica, (3): 166-174 (in Chinese with English abstract)
Lindsley DH. 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble Ⅲ D (ed.). Oxide Minerals. Washington: Mineralogical Society of America
Liu YB, Mo XX, Zhang D, Que CY, Di YJ, Pu XM, Cheng GS and Ma HH. 2014. Petrogenesis of the Late Cretaceous granite discovered in the Laojunshan region, southeastern Yunnan Province. Acta Petrologica Sinica, 30(11): 3271-3286 (in Chinese with English abstract)
Liu YP. 1998. Geochemistry of Dulong superlarge tin-zinc-polymetallic deposit, Yunnan. Bulletin of Mineralogy, Petrology and Geochemistry, 17(1): 24-26 (in Chinese with English abstract)
Liu YP, Li CY, Gu T and Wang JL. 2000. Isotopic constraints on the source of ore-forming materials of Dulong Sn-Zn polymetallic deposit, Yunnan. Geology Geochemistry, 28(4): 75-82 (in Chinese with English abstract)
Liu YP, Ye L, Li CY, Song B, Li TS, Guo LG and Pi DH. 2006. Discovery of the Neoproterozoic magmatics in southeastern Yunnan:Evidence from SHRIMP zircon U-Pb dating and lithogeochemistry. Acta Petrologica Sinica, 22(4): 916-926 (in Chinese with English abstract)
Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit:Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract)
Lottermoser BG. 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1): 25-41 DOI:10.1016/0169-1368(92)90017-F
Mallmann G and O'Neill HSC. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765-1794 DOI:10.1093/petrology/egp053
Maluski H, Lepvrierb C, Jolivetb L, Carterc A, Roquesc D, Beyssacd O, Tang TT, Nguyen DT and Avigadd D. 2001. Ar-Ar and fission-track ages in the Song Chay Massif:Early Triassic and Cenozoic tectonics in northern Vietnam. Journal of Asian Earth Sciences, 19(1-2): 233-248 DOI:10.1016/S1367-9120(00)00038-9
Mao GZ, Hua RM, Gao JF, Zhao KD, Long GM, Lu HJ and Yao JM. 2006. REE composition and trace element features of gold-bearing pyrite in Jinshan gold deposit, Jiangxi Province. Mineral Deposits, 25(4): 412-426 (in Chinese with English abstract)
Mcintire WL. 1963. Trace element partition coefficients:A review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27(12): 1209-1264 DOI:10.1016/0016-7037(63)90049-8
Michard A. 1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, 53(3): 745-750 DOI:10.1016/0016-7037(89)90017-3
Morgan J W and Wandless GA. 1980. Rare earth element distribution in some hydrothermal minerals:Evidence for crystallographic control. Geochimica et Cosmochimica Acta, 44(7): 973-980 DOI:10.1016/0016-7037(80)90286-0
Nadoll P. 2011. Geochemistry of magnetite from hydrothermal ore deposits and host rocks: Case studies from the Proterozoic belt supergroup, Cu-Mo-porphyry+skarn and climax-Mo deposits in the western United States. Ph. D. Dissertation. Auckland: The University of Auckland, 1-238
Nadoll P, Angerer T, Mauk JL, French D and Walshe J. 2014. The chemistry of hydrothermal magnetite:A review. Ore Geology Reviews, 61: 1-32 DOI:10.1016/j.oregeorev.2013.12.013
Nadoll P, Mauk JL, Leveille RA and Koenig AE. 2015. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita, 50(4): 493-515 DOI:10.1007/s00126-014-0539-y
Nielsen RL, Forsythe LM, Gallahan WE and Fisk MR. 1994. Major-and trace-element magnetite-melt equilibria. Chemical Geology, 117(1-4): 167-191 DOI:10.1016/0009-2541(94)90127-9
Nielsen RL and Beard JS. 2000. Magnetite-melt HFSE partitioning. Chemical Geology, 164(1-2): 21-34 DOI:10.1016/S0009-2541(99)00139-4
Peng JT, Hu RZ, Qi L, Zhao JH and Fu YZ. 2004. REE distribution pattern for the hydrothermal calcites from the Xikuangshan antimony deposit and its constraining factors. Geological Review, 50(1): 25-32 (in Chinese with English abstract)
Peng SB, Liu SF, Lin MS, Wu CF and Han QS. 2016. Early Paleozoic subduction in cathaysia (Ⅰ):New evidence from Nuodong ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract)
Righter K, Leeman WP and Hervig RL. 2006. Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts:Importance of spinel composition. Chemical Geology, 227(1-2): 1-25 DOI:10.1016/j.chemgeo.2005.05.011
Roger F, Leloup PH, Jolivet M, Lacassin R, Trinh PT, Brunel M and Seward D. 2000. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics, 321(4): 449-466 DOI:10.1016/S0040-1951(00)00085-8
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed.). Treatise on Geochemistry. Amsterdam: Elsevier, 1-64
Schreiber HD, Merkel Jr RC, Schreiber VL and Balazs GB. 1987. Mutual interactions of redox couples via electron exchange in silicate melts:Models for geochemical melt systems. Journal of Geophysical Research, 92(B9): 9233-9245 DOI:10.1029/JB092iB09p09233
Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751-767 DOI:10.1107/S0567739476001551
Shuang Y, Bi XW, Hu RZ, Peng JT, Li ZL, Li XM, Yuan SD and Qi YQ. 2006. REE geochemistry of hydrothermal calcite from tin-polymetallic deposit and its indication of source of hydrothermal ore-forming fluid. Journal of Mineralogy and Petrology, 26(2): 57-65 (in Chinese with English abstract)
Simon SB, Sutton SR and Grossman L. 2007. Valence of titanium and vanadium in pyroxene in refractory inclusion interiors and rims. Geochimica et Cosmochimica Acta, 71(12): 3098-3118 DOI:10.1016/j.gca.2007.03.027
Singoyi B, Danyushevsky L, Davidson GJ, Large R and Zaw K. 2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. Wealth Creation in the Minerals Industry. USA: Society of Economic Geologists, Keystone, 367-368
Song HB. 1989. Ore forming characteristics of the Dulong cassiterite sulfide type ore deposit in southeastern Yunnan. Mineral Deposits, 8(4): 29-38 (in Chinese with English abstract)
Su H, Wang XJ, Chen ZM and Li SZ. 2016. Discovery of vesuvianit in Dulong Sn-Zn polymetallic ore deposit, southeastern Yunnan Province, China and its geological significance. Acta Mineralogica Sinica, 36(4): 529-534 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1):313-345
Sun XM, Lin H, Fu Y, Li DF, Hollings P, Yang TJ and Liu ZR. 2017. Trace element geochemistry of magnetite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its implications for the ore forming processes. Ore Geology Reviews, 91: 477-490 DOI:10.1016/j.oregeorev.2017.09.007
Terakado Y and Masuda A. 1988. The coprecipitation of rare-earth elements with calcite and aragonite. Chemical Geology, 69(1-2): 103-110 DOI:10.1016/0009-2541(88)90162-3
Toplis MJ and Corgne A. 2002. An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144(1): 22-37 DOI:10.1007/s00410-002-0382-5
Wang YR, Gu F and Yuan ZQ. 1993. Partitioning and hydrolysis of Nb and Ta and their implications with regard to mineralization. Chinese Journal of Geochemistry, 12(1): 84-91 DOI:10.1007/BF02869048
Wang XJ, Liu YP, Miao YL, Bao T, Ye L and Zhang Q. 2014. In-situ LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta Petrologica Sinica, 30(3): 867-876 (in Chinese with English abstract)
Wang XJ. 2008. Research on the polygenetic compound metallogenic model and spatial information metallogenic prognosis of the deposit-accumulated area in Laojunshan, Yunnan. Ph. D. Dissertation. Changsha: Central South University, 1-166 (in Chinese with English summary)
Wang JL, Wang XJ, Liu YP, Wei WB and Su H. 2016. Geochemistry of garnet from ore-hosting skarn from Dulong Sn-Zn deposit, SE Yunnan Province, China and its mineralization and exploration significance. Acta Mineralogica Sinica, 36(4): 519-528 (in Chinese with English abstract)
Wang LB and Ai JB. 2018. The Re-Os isotope feature and significance of molybdenite in Dulong Sn deposit of Maguan. Yunnan Geology, 37(3): 292-297 (in Chinese with English abstract)
Whitney PR and Olmsted JF. 1998. Rare earth element metasomatism in hydrothermal systems:The Willsboro-lewis wollastonite ores, New York, USA. Geochimica et Cosmochimica Acta, 62(17): 2965-2977 DOI:10.1016/S0016-7037(98)00230-0
Wood SA. 1990. The aqueous geochemistry of the rare-earth elements and yttrium:1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82: 159-186 DOI:10.1016/0009-2541(90)90080-Q
Xia L, Yan QR, Xiang ZJ, Xia WJ, Shi SJ, Jiang W, Li XJ and Wei W. 2018. Olistotromes in the northern margin of the Napo forearc basin (Guangxi, South China):A special indicator for discriminating forearc domain. Acta Petrologica Sinica, 34(3): 685-700 (in Chinese with English abstract)
Xu B, Jiang SY, Wang R, Ma L, Zhao KD and Yan X. 2015. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China:Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos, 218-219: 54-72 DOI:10.1016/j.lithos.2015.01.004
Xu GF and Shao JL. 1979. The characteristic of magnetite and its practical significance. Geology and Exploration, 26(03): 30-37 (in Chinese with English abstract)
Xu R, Deng J, Cheng HY, Cui XL and Wang CB. 2018. Geochronology, geochemistry and geodynamic setting of Late Cretaceous magmatism and Sn mineralization in the western South China and Tengchong-Baoshan. Acta Petrologica Sinica, 34(5): 1271-1284 (in Chinese with English abstract)
Yan DP, Zhou MF, Wang CY and Xia B. 2006. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan Province, SW China. Journal of Asian Earth Sciences, 28(4-6): 332-353 DOI:10.1016/j.jseaes.2005.10.011
Ye L, Cook NJ, Ciobanu CL, Liu Y, Zhang Q, Liu T, Gao W, Yang Y and Leonid D. 2011. Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study. Ore Geology Reviews, 39(4): 188-217 DOI:10.1016/j.oregeorev.2011.03.001
Ye L, Bao T, Liu YP, Zhang Q, Wang XJ, He F, Wang DP and Lan JB. 2016. Mineralization stages and ore-forming fluid of Dulong Sn-Zn polymetal ore deposit, Yunnan Province, China. Acta Mineralogica Sinica, 36(4): 503-509 (in Chinese with English abstract)
Ye L, Liu YP, Zhang Q, Bao T, He F, Wang XJ, Wang DP and Lan JB. 2017. Trace and rare earth elements characteristics of sphalerite in Dulong super large Sn-Zn polymetallic ore deposit, Yunnan Province. Journal of Jilin University (Earth Science Edition), 47(3): 734-750 (in Chinese with English abstract)
Ye L, Bao T, Liu YP, He F, Wang XJ, Zhang Q, Wang DP and Lan JB. 2018. The trace and rare earth elements in scheelites and their implication for the mineralization in Dulong Sn-Zn polymetal ore deposit, Yunnan Province. Journal of Nanjing University (Natural Sciences), 54(2): 245-258 (in Chinese with English abstract)
Zhang LK, Zhang BH, Ren GM, Wang P, Shi HZ, Liu SS, Zhang B, Liao GY, Dai J, Jiao YJ, Wu SAL and Ouyang Y (not arranged in order). 2011. A Survey Report on Mineral Resource Prospect in Malipo, Yunnan Province. Beijing: Geological Publishing House, 1-436 (in Chinese)
Zhang BH, Ding J, Ren GM, Zhang LK and Shi HZ. 2012. Geochronology and geochemical characteristics of the Laojunshan granites in Maguan County, Yunnan Province, and its geological implications. Acta Geologica Sinica, 86(4): 587-601 (in Chinese with English abstract)
Zhang RQ, Lehmann B, Seltmann R, Sun WD and Li CY. 2017a. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems:The classic Erzgebirge Tin Province (Saxony and Bohemia). Geology, 45(12): 1095-1098 DOI:10.1130/G39634.1
Zhang RQ, Lu JJ, Lehmann B, Li CY, Li GL, Zhang LP, Guo J and Sun WD. 2017b. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284 DOI:10.1016/j.oregeorev.2016.10.039
Zhao ZY, Hou L, Ding J, Zhang QM and Wu SY. 2018a. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block:A case study of the Dulong Sn-dominant polymetallic deposit. Ore Geology Reviews, 93: 268-289 DOI:10.1016/j.oregeorev.2017.12.020
Zhao LD, Chen HY, Zhang L, Li DF, Zhang WF, Wang CM, Yang JT and Yan XL. 2018b. Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:Metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China. Ore Geology Reviews, 100: 422-440 DOI:10.1016/j.oregeorev.2016.07.022
Zhou JP, Xu KQ, Hua RM, Zhao YY and Zhu JC. 1998. Characteristics and genesis of exhalative sedimentary massive sulfides in southeastern Yunnan Province. Acta Mineralogica Sinica, 18(2): 158-168 (in Chinese with English abstract)
Zhou TF, Zhang LJ, Yuan F, Fan Y and Cooke DR. 2010. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Science Frontiers, 17(2): 306-319 (in Chinese with English abstract)
Zhu GL, Yu JH, Shen LW and Zhou XY. 2018. Detrital zircon components of Sinian-Cambrian sedimentary rocks in SE Yunnan:Constrain on the boundary between Yangtze and Cathaysia blocks. Geological Journal of China Universities, 24(5): 658-670 (in Chinese with English abstract)
陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学. 重庆: 重庆出版社, 1-867.
陈应华, 蓝廷广, 王洪, 唐燕文, 戴智慧. 2018. 莱芜张家洼铁矿磁铁矿LA-ICP-MS微量元素特征及其对成矿过程的制约. 地学前缘, 25(4): 32-49.
范建国, 倪培, 苏文超, 漆亮, 田京辉. 2000. 辽宁四道沟热液金矿床中石英的稀土元素的特征及意义. 岩石学报, 16(4): 587-590.
何芳, 张乾, 刘玉平, 叶霖, 缪应理, 王大鹏, 苏航, 鲍谈, 王小娟. 2015. 云南都龙锡锌多金属矿床铅同位素组成:成矿金属来源制约. 矿物学报, 35(3): 309-317.
何俊杰, 丁兴, 王玉荣, 孙卫东, 傅斌. 2015a. 温度、浓度对流体中氟钛络合物水解的影响:对深部地质过程中钛元素活动的制约. 岩石学报, 31(3): 802-810.
何俊杰, 丁兴, 王玉荣, 孙卫东. 2015b. 沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义. 岩石学报, 31(7): 1870-1878.
黄汲清. 1954. 中国主要地质构造单位. 北京: 地质出版社, 1-162.
贾福聚, 高建国, 念红良, 李星, 严永平. 2013. 滇东南老君山锡多金属成矿区含矿岩系稀土元素地球化学. 矿物学报, 33(4): 658-664.
贾福聚, 念红良, 李星, 伍伟, 燕永锋, 刘晓玮, 郭跃进. 2014. 滇东南老君山成矿区不同成矿系列稀土元素地球化学研究. 高校地质学报, 20(4): 549-557. DOI:10.3969/j.issn.1006-7493.2014.04.006
李冰, 周剑雄, 詹秀春. 2011. 无机多元素现代仪器分析技术. 地质学报, 85(11): 1878-1916.
李东旭, 许顺山. 2000. 变质核杂岩的旋扭成因——滇东南老君山变质核杂岩的构造解析. 地质论评, 46(2): 113-119. DOI:10.3321/j.issn:0371-5736.2000.02.001
李开文, 张乾, 王大鹏, 蔡伊, 刘玉平. 2013. 云南蒙自白牛厂多金属矿床锡石原位LA-MC-ICP-MS U-Pb年代学. 矿物学报, 33(2): 203-209.
李丕优, 燕永锋, 杨光树, 贾福聚, 田振东, 崔东豪, 田正伟, 康明敏. 2018. 云南都龙锡锌多金属矿床矽卡岩矿物学特征与地质意义. 矿物学报, 38(3): 290-302.
李廷俊, 周磊, 赵云魁, 朱国山, 李湖玲. 2016. 都龙矿区矿产资源开发利用历史与现状. 矿物学报, 36(4): 463-470.
李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比. 地球化学, 31(3): 289-294. DOI:10.3321/j.issn:0379-1726.2002.03.010
李闫华, 鄢云飞, 谭俊, 李飞. 2007. 稀土元素在矿床学研究中的应用. 地质找矿论丛, 22(4): 294-298. DOI:10.3969/j.issn.1001-1412.2007.04.010
李忠烜, 刘玉平, 叶霖, 廖震, 张乾, 王彪. 2016. 云南马关都龙锡锌多金属矿床鲕状黄铁矿微束分析. 矿物学报, 36(4): 510-518.
林师整. 1982. 磁铁矿矿物化学、成因及演化的探讨. 矿物学报, (3): 166-174. DOI:10.3321/j.issn:1000-4734.1982.03.002
刘艳宾, 莫宣学, 张达, 阙朝阳, 狄永军, 蒲兴明, 程国顺, 马慧慧. 2014. 滇东南老君山地区晚白垩世花岗岩的成因. 岩石学报, 30(11): 3271-3286.
刘玉平. 1998. 一个受后期改造和热液叠加的块状硫化物矿床——都龙超大型锡锌多金属矿床. 矿物岩石地球化学通报, 17(1): 24-26.
刘玉平, 李朝阳, 谷团, 王金良. 2000. 都龙锡锌多金属矿床成矿物质来源的同位素示踪. 地质地球化学, 28(4): 75-82. DOI:10.3969/j.issn.1672-9250.2000.04.013
刘玉平, 叶霖, 李朝阳, 宋彪, 李铁胜, 郭利果, 皮道会. 2006. 滇东南发现新元古代岩浆岩:SHRIMP锆石U-Pb年代学和岩石地球化学证据. 岩石学报, 22(4): 916-926.
刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
毛光周, 华仁民, 高剑峰, 赵葵东, 龙光明, 陆慧娟, 姚军明. 2006. 江西金山金矿床含金黄铁矿的稀土元素和微量元素特征. 矿床地质, 25(4): 412-426. DOI:10.3969/j.issn.0258-7106.2006.04.006
彭建堂, 胡瑞忠, 漆亮, 赵军红, 符亚洲. 2004. 锡矿山热液方解石的REE分配模式及其制约因素. 地质论评, 50(1): 25-32. DOI:10.3321/j.issn:0371-5736.2004.01.004
彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016. 华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778.
双燕, 毕献武, 胡瑞忠, 彭建堂, 李兆丽, 李晓敏, 袁顺达, 齐有强. 2006. 芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示. 矿物岩石, 26(2): 57-65. DOI:10.3969/j.issn.1001-6872.2006.02.009
宋焕斌. 1989. 云南东南部都龙锡石-硫化物型矿床的成矿特征. 矿床地质, 8(4): 29-38.
苏航, 王小娟, 陈智明, 李山志. 2016. 滇东南都龙锡锌多金属矿床中符山石的发现与地质意义. 矿物学报, 36(4): 529-534.
王金良, 王小娟, 刘玉平, 韦文彪, 苏航. 2016. 都龙锌锡矿床夕卡岩石榴子石地球化学特征与成矿-找矿意义. 矿物学报, 36(4): 519-528.
王礼兵, 艾金彪. 2018. 马关县都龙锡矿中辉钼矿铼-锇同位素特征及意义. 云南地质, 37(3): 292-297. DOI:10.3969/j.issn.1004-1885.2018.03.007
王小娟, 刘玉平, 缪应理, 鲍谈, 叶霖, 张乾. 2014. 都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义. 岩石学报, 30(3): 867-876.
王雄军. 2008.云南老君山矿集区多因复成成矿模式及空间信息成矿预测模型研究.博士学位论文.长沙: 中南大学, 1-166 http://cdmd.cnki.com.cn/Article/CDMD-10533-2008163875.htm
徐国风, 邵洁涟. 1979. 磁铁矿的标型特征及其实际意义. 地质与勘探, (3): 30-37.
徐容, 邓军, 程韩宇, 崔晓琳, 王传斌. 2018. 华南板块西缘和腾冲-保山地块晚白垩世岩浆活动及Sn成矿作用对比:年代学、地球化学和动力学背景. 岩石学报, 34(5): 1271-1284.
夏磊, 闫全人, 向忠金, 夏文静, 时上钧, 江文, 李晓剑, 卫巍. 2018. 广西那坡盆地火山岩-碳酸盐岩混杂型滑塌堆积:特殊的弧前域构造指相标志及其大地构造意义. 岩石学报, 34(3): 685-700.
叶霖, 鲍谈, 刘玉平, 张乾, 王小娟, 何芳, 王大鹏, 蓝江波. 2016. 云南都龙锡锌多金属矿床成矿阶段与成矿流体. 矿物学报, 36(4): 503-509.
叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 2017. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征. 吉林大学学报(地球科学版), 47(3): 734-750.
叶霖, 鲍谈, 刘玉平, 何芳, 王小娟, 张乾, 王大鹏, 蓝江波. 2018. 云南都龙锡锌矿床中白钨矿微量元素及稀土元素地球化学. 南京大学学报(自然科学), 54(2): 245-258.
张林奎, 张斌辉, 任光明, 王鹏, 石洪召, 刘书生, 张彬, 陈敏华, 廖光宇, 戴婕, 焦彦杰, 吾守艾力, 欧阳渊. 2011.1: 50000云南麻栗坡地区矿产远景调查报告.北京: 地质出版社, 1-436
张斌辉, 丁俊, 任光明, 张林奎, 石洪召. 2012. 云南马关老君山花岗岩的年代学、地球化学特征及地质意义. 地质学报, 86(4): 587-601. DOI:10.3969/j.issn.0001-5717.2012.04.005
周建平, 徐克勤, 华仁民, 赵懿英, 朱金初. 1998. 滇东南喷流沉积块状硫化物特征与矿床成因. 矿物学报, 18(2): 158-168. DOI:10.3321/j.issn:1000-4734.1998.02.007
周涛发, 张乐骏, 袁峰, 范裕, Cooke DR. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2): 306-319.
朱光磊, 于津海, 沈林伟, 周雪瑶. 2018. 滇东南震旦-寒武纪沉积岩的碎屑锆石组成和对扬子-华夏界线的限制. 高校地质学报, 24(5): 658-670.