岩石学报  2020, Vol. 36 Issue (1): 113-124, doi: 10.18654/1000-0569/2020.01.12   PDF    
板块俯冲与斑岩铜金成矿
张丽鹏1,2,3, 李贺1,2,3, 王鲲1,4     
1. 中国科学院海洋研究所, 深海研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
3. 中国科学院海洋大科学研究中心, 青岛 266071;
4. 中国科学院大学, 北京 100049
摘要: 绝大多数斑岩铜金矿床分布在汇聚板块边缘。研究表明高氧逸度和洋壳部分熔融是控制斑岩铜金矿床形成的两个关键因素。作为亲硫元素,铜金的性质主要受还原态的硫(S2-)控制,而硫的价态和性质则强烈受氧逸度的影响。矿床学家很早就发现氧逸度ΔFMQ+2是斑岩铜金矿床成矿的魔幻数字。研究发现其原因是硫的性质在此氧逸度附近发生巨变,在低氧逸度时,硫主要以硫化物的形式存在,但是当氧逸度在ΔFMQ+1.5以上时,硫主要以硫酸根的形式存在。硫酸盐在岩浆中的溶解度通常是硫化物的10倍左右,因此在部分熔融过程中,高氧逸度可以大幅度提高硫在岩浆中的溶解度,有利于源区硫化物被破坏,以硫酸根的形式被熔出,从而大幅度提高初始岩浆中的铜(金)含量;与此同时,硫化物在岩浆演化过程中可以保持不饱和状态,有利于作为中度不相容元素的铜(金)通过岩浆演化进一步富集。在磁铁矿结晶等过程中,岩浆体系的氧逸度降低,硫酸根被还原,还原态的硫(S2-)将岩浆中的铜金萃取,富集到流体相,从而形成斑岩铜金矿床。这种高氧逸度岩浆通常出现在汇聚板块边缘。由于洋壳铜、金、硫含量远高于陆壳和地幔,而且俯冲带氧逸度高出地幔和下地壳约2个数量级,因此俯冲洋壳部分熔融形成岩浆的初始铜、金、硫含量远高于陆内岩浆,有利于成矿。年轻洋脊的俯冲因其高热量是显生宙以来最容易发生俯冲洋壳部分熔融的地质过程,且同时具有高氧逸度,因此洋脊俯冲是形成大型、超大型斑岩铜金矿床的最佳途径。统计结果显示,全球主要超大型斑岩铜金矿床均与洋脊俯冲有关。
关键词: 板块俯冲    斑岩铜金矿床    氧逸度    埃达克岩    洋脊俯冲    
Plate subduction and porphyry Cu-Au mineralization
ZHANG LiPeng1,2,3, LI He1,2,3, WANG Kun1,4     
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Most porphyry Cu-Au deposits are distributed in convergence margins. Previous studies show that high oxygen fugacity and partial melting of subducted oceanic crust are two key factors for porphyry Cu-Au mineralization. Copper and Au as chalcophile elements are mainly controlled by reduced sulfur (S2-), while the valence and properties of sulfur are controlled by magma oxygen fugacity. ΔFMQ+2 as the magic magma oxygen fugacity number for porphyry Cu-Au mineralization had long been discovered. Studies found that the main reason is that the sulfur species change dramatically near this oxygen fugacity. Sulfur mainly exists in the form of sulfide at a low oxygen fugacity, but when the oxygen fugacity is above ΔFMQ+1.5, the sulfur mainly exists in the form of sulfate. The solubility of sulfate in magma is usually about 10 times that of sulfide. Therefore, high oxygen fugacity can greatly improve the solubility of sulfur in magma during partial melting, which is beneficial to the sulfide in the magma source being destructed and being melted in the form of sulfide, resulting in significantly improving the Cu(Au) contents in initial magma. At the same time, sulfides can remain unsaturated during magma evolution, which is favor of the further enrichment of Cu(Au) as moderately incompatible elements. When magnetite starts to crystallize as the magma evolution, the oxygen fugacity of magmatic system decreases, sulfate is reduced to sulfide, and reduced sulfur (S2-) extracts and concentrates Cu and Au from the magma into the fluid phase, forming porphyry Cu-Au deposits. The high oxygen fugacities commonly occur in the convergent plate margins. Given that the Cu, Au, S contents in oceanic crust are far higher than in continental crust and mantle, then the oxygen fugacity of subduction zone is about two orders of magnitude higher than that of the mantle and lower continental crust. Thus the magmas derived from partial melting of subducted oceanic crusts have far higher Cu, Au, S contents than that sourced from intraplate, which is beneficial to mineralization. Ridge subduction is the most likely geological process of partial melting of oceanic crust since Phanerozoic, and it has high oxygen fugacity. Therefore, ridge subduction is the optimal process for forming large, super-large scale porphyry Cu-Au deposits. Compiled data show that most super-large porphyry Cu-Au deposits are related to ridge subduction in the world.
Key words: Plate subduction    Porphyry Cu-Au deposit    Oxygen fugacity    Adakite    Ridge subduction    

板块俯冲是地球上最重要的物质循环过程之一,对大陆地壳的形成及矿产资源的形成具有重要的意义,被形象地称为“俯冲工厂”(Hacker et al., 2003a, b; Sun, 2003; Hacker and Abers, 2004, 2012; van Keken et al., 2011)。美国地质调查局所划分的全球三大成矿域(环太平洋成矿域、古亚洲成矿域、特提斯喜马拉雅成矿域)均属于板块汇聚俯冲带(图 1)。

图 1 全球斑岩铜(-金-钼)矿床分布图(数据来源于USGS, 1999) Fig. 1 Global distribution of porphyry Cu (-Au-Mo) deposits

① USGS. 1999. https://pubs.usgs.gov/of/1999/of99-556/

斑岩铜金矿床是最重要的一种斑岩矿床,其产出了全球约80%的铜资源量和约20%的金资源量(Sillitoe, 2010; Sun et al., 2015)。由于其重要性,斑岩铜金矿床的成因受到长期关注,取得了一系列研究成果。目前关于斑岩铜金矿床成因有以下几点共识:(1)成矿斑岩需要具有高氧逸度,通常高于ΔFMQ+1.5(Ballard et al., 2002; Mungall, 2002; Liang et al., 2009; Sun et al., 2013, 2015, 2017; Zhang et al., 2017a);(2)成矿斑岩富含挥发份,有利于成矿物质的萃取富集(Harris et al., 2004; Sillitoe, 2010);(3)受流体在岩浆中的溶解度控制,成矿深度通常小于5km,主要形成于2~4km的范围(Tosdal et al., 2009; Sillitoe, 2010);(4)受元素的活动性、矿物的稳定性、温压条件等的控制,矿体的蚀变、成矿元素分布均有明显的分带,从外向内,依次是青盘岩化带、黄铁绢云岩/硅化带、钾化带等(Sillitoe, 2010; Hu et al., 2015);(5)很多大型、超大型斑岩铜金矿床与非震洋脊(海岭、海山链)及扩张洋脊俯冲有关(Cooke et al., 2005; Ling et al., 2009; Sun et al., 2010; Xu et al., 2017; Zhang et al., 2017b)。但是由于斑岩铜金矿床的复杂性,很多科学问题长期存在争论。

本文从以下科学问题入手探讨斑岩铜金矿床的形成机理:斑岩铜金矿床的时空分布、高氧逸度与成矿的关系、磁铁矿与成矿的关系、成矿的最佳氧逸度及酸碱度、斑岩铜金矿床与埃达克岩的关系、斑岩铜金矿床与洋脊俯冲的关系及控制因素。

1 全球斑岩铜金矿床的时空分布规律

绝大多数斑岩铜金矿床分布在古生代以来的汇聚板块边缘,如:环太平洋成矿带、古亚洲成矿带和特提斯-喜马拉雅成矿带(图 1),古生代以前的此类矿床十分少见。在上述三个成矿带中,环太平洋成矿带的铜矿最多、储量最大。全球铜储量最大的25个斑岩铜金矿床中,20个分布在环太平洋成矿带,3个在古亚洲成矿带,2个分布在特提斯-喜马拉雅成矿带(Cooke et al., 2005; Sun et al., 2010)。从时代上看,这些超大型矿床中只有3个产自古亚洲成矿带的矿床形成于晚古生代,其余的均形成于新生代。

1.1 环太平洋成矿带

环太平洋的俯冲最早可能起始于侏罗纪甚至更早(Zhou and Li, 2000; Zhou et al., 2006; Li and Li, 2007; Seton et al., 2012; Wang et al., 2011),期间存在过多个板块,很多板块发生过多次漂移/俯冲方向的转变(Wessel and Kroenke, 1997; Koppers et al., 2001; Sharp and Clague, 2006; Sun et al., 2007a)。板块俯冲从约2亿年持续至今,形成了现存最大的斑岩铜金成矿带。但是环太平洋斑岩铜金矿床的时空分布很不均匀(图 1)。

从空间上,环太平洋成矿带的斑岩铜金矿床主要分布在美洲西海岸,全球最大的25个超大型斑岩铜金矿床中有20个分布在这条细长的成矿带上。其中,南美智利集中了全球40%以上的斑岩铜金矿床,有10个斑岩铜矿的储量排名全球前25的超大型矿床,如全球最大的斑岩铜矿厄尔特尼恩特(El Teniente)和丘基卡马塔(Chuquicamata)的储量都在9000万吨以上。研究发现,这些矿床中很多与正在俯冲的洋脊在空间上有对应关系(Cooke et al., 2005; Sun et al., 2010)。此外,这些矿床通常伴生大量的钼,如厄尔特尼恩特有250万吨钼金属量,而丘基卡马塔也有180万吨钼金属量。美洲西海岸的斑岩铜金矿床的铜金比值一般超过10万,远高于原始地幔值(约3万)(McDonough and Sun, 1995),部分矿床的金不够品位,其铜金比值更高。在特大型斑岩铜金矿床中,只有美国犹他州的宾汉姆(Bingham)的铜金比值小于10万,约为1.7万。

相比之下,西太平洋俯冲带斑岩铜金矿床数量少很多,单个矿床的储量也小很多,而且几乎没有含钼的斑岩铜矿(Cooke et al., 2005; Sun et al., 2010)。其中,从库页岛到台湾岛,以及日本九州到马里亚纳群岛的第二岛链(Sillitoe, 2018; Watanabe et al., 2018),只有中国台湾岛的奇美一个斑岩铜金矿床/矿化点(高振敏和李朝阳, 2000)。从菲律宾岛到东帝汶之间,有一些中型到大型的斑岩铜金矿床(Braxton et al., 2012)。这些矿床均是西南太平洋年轻弧后盆闭合的产物,金含量较高,很多矿床的铜金比在1万左右,但是没有钼。中国东部的德兴和长江中下游斑岩铜金矿床的地球化学特征显示可能与太平洋早期俯冲有关(Ling et al., 2009; Wang et al., 2011; Sun et al., 2012b; Zhang et al., 2013, 2017a)。

从时间上看,环太平洋的斑岩矿床主要形成于几个短暂的时期。其中,南美的斑岩铜金矿床主要形成于:41~34Ma和~5Ma两个时代。美国西南部和墨西哥也分布着多个巨型斑岩铜金矿床,除了犹他州的宾汉姆(Bingham)形成于38.8Ma以外(Parry et al., 2001),其它超大型矿均形成于61~57Ma之间。西南太平洋斑岩铜金矿床多小于5Ma。而东亚陆缘主要是侏罗纪、白垩纪的斑岩铜金矿床,但是总储量不足2000万吨。

1.2 古亚洲成矿域

古亚洲成矿域是三大成矿域中最老的。该成矿域隶属于古亚洲洋闭合形成的中亚造山带。这里曾经有过类似于太平洋的板块俯冲体系,俯冲起始于新元古代,在晚石炭世洋壳俯冲基本结束,是全球最大的增生型造山带(Khain et al., 2002, 2003; Xiao et al., 2003; Yuan et al., 2007, 2010; Cai et al., 2011)。中亚造山带的斑岩铜金矿床主要形成于板块俯冲的后期,洋盆即将闭合的志留纪、石炭纪(Cooke et al., 2005; Zhang et al., 2006; Tang et al., 2010; Wainwright et al., 2011; Xiao et al., 2017; Gao et al., 2018)。在全球最大的25个斑岩铜金矿床中,3个矿床产于古亚洲成矿域。这3个超大型矿床均以铜金为主,其中蒙古的奥玉特勒盖(Oyu Tolgoi)(Perello et al., 2001; Wainwright et al., 2011)和乌兹别克斯坦的卡马克(Kal'makyr)是斑岩铜金矿床(Zhao et al., 2017),铜金比分别约为2.5万和0.8万(Cooke et al., 2005),均低于原始地幔值。哈萨克斯坦的阿克头伽-爱得利(Aktogay-Aiderly)是“纯”的斑岩铜矿,金和钼均不够品位,类似智利的部分斑岩铜矿,但是该矿床的研究还比较薄弱,其成因有待进一步研究(陈宣华等, 2010; Li et al., 2018)。

1.3 特提斯-喜马拉雅成矿域

特提斯-喜马拉雅成矿域有多个巨型矿床,在全球最大的25个斑岩铜金矿床中,有2个分布在这个带上,即印尼的格拉斯伯格(Grasberg)和伊朗的撒差士买(Sar Cheshmeh)。其中,印尼的格拉斯伯格形成于~3Ma(Mathur et al., 2000),是世界上最大斑岩型金矿床,金平均品位为1g/t,铜金比值接近1万,显示俯冲晚期-碰撞早期斑岩铜矿的特点(Graham et al., 2004; Pollard et al., 2005)。与其附近的太平洋构造域的斑岩铜金矿床一样,格拉斯伯格基本不含钼(Cooke et al., 2005)。伊朗的撒差士买形成于~12.2Ma(张洪瑞等, 2013),是斑岩铜金钼矿,其铜金比值约为4.4万,低于东太平洋斑岩铜金矿床,高于西太平洋斑岩铜金矿床。由于研究程度相对较低,目前对该矿床的成因认识还有争议(Waterman and Hamilton, 1975; Hezarkhani, 2006; Aminzadeh et al., 2011; Shafiei and Shahabpour, 2012)。近些年,在青藏高原的冈底斯岩基取得了重大的找矿突破,大量的大型斑岩铜矿床被发现,如驱龙、甲玛、朱诺、邦铺等,构成冈底斯斑岩铜矿带(Hou et al., 2004, 2009; 芮宗瑶等, 2006; 侯增谦等, 2012; Hu et al., 2015)。大量的高精度年代学研究表明,这一成矿带的斑岩铜金矿床主要形成于20~12Ma(胡永斌等, 2015; Hu et al., 2017; Wang et al., 2018)。由于印度板块与欧亚板块之间的碰撞发生在~55Ma(莫宣学等, 2003; 丁林等, 2017; Zheng and Wu, 2018),通常认为这些斑岩铜金矿床均形成于后碰撞阶段。这不同于主要形成于板片俯冲阶段的环太平洋构造域的斑岩铜矿,对于其成因还存在不同的认识,主要有加厚/新生/改造下地壳部分熔融和洋壳部分熔融的观点(曲晓明等, 2004; Gao et al., 2007; Wang et al., 2014; Hou et al., 2015; Hu et al., 2015; Sun et al., 2018b)。在晚白垩世(~100Ma),冈底斯岩基、华南南部和菲律宾等地同时产生了埃达克质岩浆和斑岩铜矿化,我们研究认为它们形成于东西展布的新特提斯洋脊的向北俯冲(Deng et al., 2017; Li et al., 2017; Zhang et al., 2017b; Sun et al., 2018a; 孙卫东等, 2018)。

2 高氧逸度与成矿

很早人们就发现斑岩铜金矿床与氧化型岩浆有关(Thompson et al., 1999; Ballard et al., 2002; Mungall, 2002; Liang et al., 2006; Sillitoe, 2010),成矿斑岩通常含有大量的磁铁矿和石膏等矿物(Liang et al., 2006, 2009; Sun et al., 2013),一般属于磁铁矿岩浆系列,其氧逸度系统高于与钛铁矿岩浆系列相关的钨锡矿床(Zhang et al., 2017c, 2018, 2019)(图 2)。斑岩矿床之间也存在着氧逸度的系统差异,按照斑岩铜矿-斑岩铜钼矿-斑岩钼矿的顺序,氧逸度表现出降低的趋势(图 2)。研究发现岩浆氧逸度在ΔFMQ+1.5以上是斑岩铜(金)矿床成矿的关键(Mungall, 2002; Sun et al., 2013; Zhang et al., 2017a),其中FMQ是铁橄榄石-磁铁矿-石英(Fayalite-Magnetite-Quartz)氧逸度缓冲剂。

图 2 不同矿床类型相关岩浆岩的Fe含量与氧逸度特征(据Thompson et al., 1999修改) Fig. 2 The Fe contents and oxidation state (fO2) of magmas associated with different types of deposits (modified after Thompson et al., 1999)

高氧逸度控制斑岩铜金矿床的实质是通过对硫的价态和地球化学性质的控制,进而控制亲铜元素的地球化学性质和富集成矿过程(Sun et al., 2004, 2013, 2015)。氧逸度ΔFMQ+1.5是硫在岩浆中存在形式迅速发生变化的转折点(图 3),在ΔFMQ+1.5以上时,硫主要以硫酸根的形式存在,达到ΔFMQ+2时,基本全部转换为硫酸根。而在ΔFMQ+1以下,硫主要以还原态硫(S2-)的形式存在。在ΔFMQ+2处,氧逸度的降低会导致大量的硫由硫酸根向还原态的硫(S2-)转变。正是这种转变控制着铜、金、钼等亲硫元素的地球化学性质和成矿(Sun et al., 2013)。

图 3 硫的存在形式与岩浆氧逸度关系(据Jugo et al., 2010) MORB-洋中脊玄武岩;BABB-弧后盆玄武岩;OIB-洋岛玄武岩;IAB-岛弧玄武岩;Mantle wedge-地幔楔 Fig. 3 Sulfur speciation versus magma oxygen fugacity (after Jugo et al., 2010) MORB-Mid-Ocean Ridge Basalt; BABB-Back-Arc Basin Basalt; OIB-Oceanic Island Basalt

在部分熔融过程中,高氧逸度会使岩浆源区中的硫化物被氧化,以硫酸根的形式进入熔融岩浆,大幅度提高岩浆中亲硫元素的初始含量。实验表明,硫化物在岩浆中的溶解度随压力的减小而增大,随温度的增加而增加,但是对压力更敏感,在50kbar、1350℃条件下,硫(硫化物饱和)的溶解度是385×10-6(Mavrogenes and O'Neill, 1999)。原始地幔硫的丰度为200×10-6~250×10-6(McDonough and Sun, 1995; Mavrogenes and O'Neill, 1999),在50bar、1350℃,地幔部分熔融程度小于50%的情况下,残留相中都会有硫化物,控制着亲硫元素在地幔橄榄岩与熔体间的分配系数。即使岩浆源区在近地表情况下(硫的溶解度约为1000×10-6),也需要20%~25%的部分熔融方能去除源区的硫化物残留相,彻底释放亲铜元素。

地球化学研究表明铜为中度不相容元素(Sun et al., 2003a, 2004),原始地幔中铜的丰度为30×10-6(McDonough and Sun, 1995)。作为中度不相容元素,铜在亏损地幔中的丰度应该比原始地幔低。而大洋玄武岩中的铜含量在65×10-6~125×10-6之间(Hofmann, 1988; Sun et al., 2003a, b, 2004)。在岩浆氧逸度高于ΔFMQ+2时,岩浆中的硫主要以硫酸盐的形式存在,其在岩浆中的溶解度可以达到1000n×10-6(Jugo et al., 2005, 2010; Jugo, 2009),岩浆源区中的硫化物被大量破坏,亲硫元素大量进入熔体,也可以大幅度提高岩浆中铜金等亲硫元素的初始含量。

高氧逸度对于俯冲洋壳部分熔融的影响尤其明显。大洋玄武岩(MORB)中铜含量为~100×10-6、硫则为~1000×10-6,在不考虑氧逸度影响的情况下,洋壳部分熔融产物的铜含量比同样情况下地幔和陆壳部分熔融产物高约3倍,因此更有利于成矿(Sun et al., 2011)。在氧逸度高于ΔFMQ+1.5时,S6+占总硫的90%以上(图 3),而硫酸根形式的硫在岩浆中的溶解度可以高达1%~2%(Jugo et al., 2005; Jugo, 2009)。若部分熔融发生在~25kbar,硫化物形式的硫的饱和溶解度约为700×10-6(Mavrogenes and O'Neill, 1999),相应的硫酸根浓度达到6300×10-6(低于硫酸根在岩浆中的饱和浓度(Jugo et al., 2005; Jugo, 2009),总硫约为7000×10-6。假设俯冲洋壳的硫含量为1000×10-6,则~15%部分熔融形成的熔体就可以容纳俯冲洋壳中全部的硫仍处于硫不饱和状态。考虑到俯冲板片的辉长岩部分和地幔橄榄岩硫含量远低于大洋玄武岩,10%部分熔融产生的熔体可能就处于硫不饱和状态(Sun et al., 2017)。按照俯冲洋壳平均铜含量100×10-6计算,在氧逸度高于ΔFMQ+2、15%部分熔融的情况下,产生的初始岩浆铜含量达到500×10-6以上,显示巨大的成矿潜力(Sun et al., 2017)。

同时,由于高氧逸度岩浆中大量的硫是以硫酸根形式存在,而且硫在岩浆中的溶解度随压力的降低而升高(Mavrogenes and O'Neill, 1999),上述熔体在向上运移的过程中可以始终保持硫不饱和,亲硫元素不会因硫化物过饱和而随熔离硫化物离开岩体,因此可以保持其高铜金含量直至最后的热液成矿阶段(Sun et al., 2004, 2012a, 2013, 2015; Liang et al., 2009)。

3 磁铁矿、赤铁矿与成矿

斑岩铜(-金-钼)矿的成矿母岩通常是高氧化的,其中的硫主要以硫酸盐的形式存在,如硬石膏(Hedenquist et al., 1998; Ballard et al., 2002; Khashgerel et al., 2008; Valencia et al., 2008; Liang et al., 2009; Richards, 2011; Sun et al., 2013)。如前所述,这种高氧逸度可以提高初始岩浆中亲铜元素和硫的含量,为成矿提供物质基础。但是斑岩矿床的成矿元素都是以硫化物的形式存在,因此,成矿过程的一个关键是硫酸根的还原过程(Sun et al., 2004, 2013, 2015)。

归纳起来,高氧化岩浆中硫酸根的还原有两种主要过程,一是来自外部,即岩浆与围岩中还原性物质接触,引起还原作用。例如当高氧化岩浆与富含还原组分的围岩接触时,可以与围岩发生反应,形成局部富集的矿床。二是来自岩浆演化内部,通过矿物(如磁铁矿、赤铁矿等)结晶降低岩浆中Fe3+/Fe2+的比值,从而降低岩浆氧逸度(图 4)(Liang et al., 2009; Sun et al., 2004, 2013)。

图 4 氧逸度和pH与硫在水溶液中稳定区域的关系(据Sun et al., 2015修改) Fig. 4 Stability domains of sulfur in an aqueous solution as a function of oxygen fugacity (log10fO2) and acidity (pH) (modified after Sun et al., 2015)

磁铁矿是一种常见的铁氧化物,常常被用来指示岩体氧逸度。前人将花岗岩分类为高氧逸度的磁铁矿型和低氧逸度的钛铁矿型(Ishihara et al., 2000)。如前所述,斑岩铜(-金-钼)矿与高氧化的岩浆岩(氧逸度>ΔFMQ+2)有密切的成因联系,处于磁铁矿的稳定区间,因此成矿斑岩通常属于磁铁矿型花岗岩(图 2)(Thompson et al., 1999)。

对于斑岩铜钼矿这种全岩矿化的矿床,硫酸根的还原和矿化过程与围岩关系不大,磁铁矿、赤铁矿结晶是控制硫酸根还原的最主要的过程(Sun et al., 2004, 2013, 2015; Liang et al., 2009)。斑岩铜金矿床通常含有大量的磁铁矿,磁铁矿蚀变是斑岩铜金矿床常见的蚀变类型。

磁铁矿结晶造成硫酸根被还原,体系的pH值降低,氧逸度逐渐升高(图 4)(Sun et al., 2013)。简化的反应方程式如下:

12Fe2++SO42-+12H2O = 4Fe3O4+HS-+23H+(E1,图 4)

对大型和超大型斑岩铜矿,数百万吨乃至上亿吨的硫酸根被还原,成矿体系的pH会被显著降低,其结果是硫酸根的氧化还原电位逐渐升高,可以达到磁铁矿-赤铁矿氧逸度缓冲线(H-M,图 5),从而出现磁铁矿、赤铁矿共生的现象。中国的玉龙、德兴、紫金山、雄村、多不杂以及国外的很多斑岩铜矿都见到磁铁矿、赤铁矿共生的现象(Sun et al., 2013)。

图 5 硫酸盐还原与氧逸度缓冲区(据Mungall, 2002修改) CCO-二氧化碳-碳缓冲区;SSO-硫化物-硫缓冲区;MH-磁铁矿-赤铁矿缓冲区 Fig. 5 Sulfate reduction and oxygen buffers (modified after Mungall, 2002) CCO-carbon dioxide-carbon oxide buffer; SSO-sulfide-sulfur oxide buffer; MH-magnetite-hematite oxygen buffer

图 5可知,一氧化碳-二氧化碳缓冲线(CCO)低于硫化物-硫缓冲线(SSO),而水对硫酸根没有还原作用,这样在硅酸盐地球和岩浆中常见的主要变价元素(C、H、Fe、S)中,只有二价铁可以担当硫酸根还原的主力,因此磁铁矿、赤铁矿结晶是硫酸根还原的关键。由于硫酸根被还原是斑岩铜矿形成所不可或缺的,因此成矿岩浆的氧逸度不能超过磁铁矿-赤铁矿氧逸度缓冲线。

综上所述,斑岩铜金矿床碱性(pH>7)高氧化性岩浆是形成斑岩铜金矿床的最佳原岩。最佳氧逸度范围在ΔFMQ+2到+4(HM缓冲线)之间。

4 俯冲洋壳部分熔融与斑岩铜金矿床

俯冲带氧逸度普遍高于板内环境(Ballhaus, 1993; Arculus, 1994; Parkinson and Arculus, 1999; Kelley and Cottrell, 2009),但是俯冲带并不是到处都是斑岩铜矿。例如,从库页岛经日本列岛到我国的台湾省,没有一个具有规模的斑岩铜矿(图 1)。即使在美洲西海岸,绝大多数岩浆岩也并不成矿。另一方面,斑岩铜金矿床也不是俯冲带氧逸度最高的岩石。所谓“巧妇难为无米之炊”,仅靠高氧逸度并不能形成斑岩铜矿。

研究表明,斑岩铜矿主要与埃达克质侵入岩有关(Thiéblemont et al., 1997; Sajona and Maury, 1998; Oyarzun et al., 2001; 张旗等, 2004; Wang et al., 2006b; Ling et al., 2009; Sun et al., 2011, 2012a)。埃达克岩最初是指俯冲洋壳部分熔融形成的一类特殊的岩石。最初科学家认为俯冲洋壳部分熔融是形成岛弧火山岩的主要机制(Nicholls and Ringwood, 1973),但是进一步的研究很快就发现俯冲洋壳很难发生部分熔融。Kay et al. (1978)在研究阿留申群岛的埃达克岛上的火山岩时,发现了洋壳部分熔融的证据。Defant and Drummond (1990)系统研究了环太平洋地区的岛弧火山岩,发现了一系列有洋壳部分熔融特点的岩石,这些岩石往往与年轻(< 25Ma)的俯冲洋壳对应,由此提出埃达克岩的概念,用来指示与洋壳部分熔融有关的岛弧岩浆岩(喷出岩和相应的侵入岩)。

埃达克岩的原始定义只有地球化学限定,没有岩相学限定,原文中明确指出侵入岩和喷出岩都可以是埃达克岩(Defant and Drummond, 1990)。即,埃达克岩是根据地球化学特征判别的:通常SiO2≥56%, Al2O3≥15%, Y≤18×10-6, Yb≤1.9×10-6和Sr≥400×10-6等(Defant and Drummond, 1990)。由此带来的问题是,这些地球化学特征并非只有洋壳部分熔融才能形成,因此有关埃达克岩的争论一直很多。例如,很多埃达克岩被认为是陆壳部分熔融形成的(Xu et al., 2002; Chung et al., 2003; Gao et al., 2004; Wang et al., 2006a, b; Huang et al., 2008),理由往往是同位素组成比洋壳富集。但是,俯冲洋壳上往往有沉积物,其同位素组成应该比洋壳富集。另外,上覆岩石圈也可以通过同化混染等过程使埃达克岩的同位素组成偏离洋壳范围,而更像陆壳产物(Ling et al., 2009, 2011)。这些过程都使埃达克岩变得复杂。

值得庆幸的是,陆壳和洋壳的化学组成有着很大的差异,俯冲洋壳部分熔融和陆壳部分熔融成因的埃达克岩可以用地球化学特征区分(Liu et al., 2010; Ling et al., 2011; Sun et al., 2012a)。其中,埃达克岩的含矿性也可以作为判别俯冲洋壳部分熔融的指标(Sun et al., 2011, 2012a)。

如前所述,洋壳中铜含量在100×10-6左右(Sun et al., 2003a, b),是陆壳(26×10-6)(Rudnick and Gao, 2003)和地幔(30×10-6)(McDonough and Sun, 1995)的三倍左右,而俯冲带的氧逸度比板内高1~2个数量级(Ballhaus, 1993; Bryant et al., 2007; Sun et al., 2013),因此洋壳部分熔融的岩浆具有高的初始铜含量和高的氧逸度,有利于成矿。同时,俯冲洋壳中的硫含量达到1000×10-6,洋壳部分熔融可以产生含硫1000n×10-6的岩浆,有利于成矿。与俯冲洋壳部分熔融形成鲜明对比的是,陆壳的铜丰度值只有26×10-6左右(Rudnick and Gao, 2003),部分熔融形成的埃达克岩由于初始铜含量低、氧逸度低。因此,陆壳部分熔融产生的埃达克岩通常不成矿(Sun et al., 2011, 2012a)。最近,Zhang et al. (2017a)对目前认为的斑岩铜矿三个最可能的岩浆源区定量部分熔融模拟,结果表明高氧逸度条件下部分熔融产生的熔体具有更高的初始铜含量;洋壳部分熔融和下地壳部分熔融形成埃达克质岩浆时,其铜含量分别约为390×10-6和75×10-6(图 6)。Lee et al. (2012)对地幔楔进行部分熔融模拟,获得弧岩浆的铜含量低于150×10-6(图 6)。有学者提出硫化物堆晶形成的富铜层的部分熔融可能是斑岩铜矿的铜来源,如前所述,要破坏如此大量的硫化物需注入大量高度氧化的岩浆,并且在硫化物的氧化过程中,整个岩浆体系的氧逸度将降低,因此很难形成与斑岩铜矿密切相关的高氧化岩浆(Sun et al., 2017)。Sun et al. (2017)进一步的部分熔融模拟表明硫化物堆晶即使高氧逸度条件下的部分熔融也不能形成富铜岩浆。通过铜在流体和熔体中的分配系数和德兴斑岩铜矿初始流体包裹体中的铜含量,估算得到德兴斑岩铜矿的富铜岩浆中铜的含量至少160×10-6才能形成斑岩铜矿(Zhang et al., 2017a)。因此,俯冲洋壳的部分熔融是形成斑岩铜矿的最佳机制(图 6)。

图 6 俯冲洋壳、下地壳和地幔橄榄岩在不同氧逸度条件下分离部分熔融产生熔体中的铜含量(据Zhang et al., 2017a修改) 线上数字代表氧逸度ΔFMQ+x; 成矿所需熔体中最低铜含量约为160×10-6.阴影区A和C分别代表洋壳和下地壳部分熔融形成具有埃达克岩特征的岩浆岩时所具有的铜含量; 阴影区B代表地幔楔部分熔融形成岩浆中的铜含量; 地幔橄榄岩的部分熔融模拟引自Lee et al. (2012) Fig. 6 The Cu content in the accumulated melt during partial melting of subducted oceanic crust, lower continental crust and mantle wedge as a function of degree of melting under different oxygen fugacities (modified after Zhang et al., 2017a) Numbers on the lines represent the oxygen fugacities (ΔFMQ+x). Mineralization requires a minimum copper content of approximately 160×10-6 in the magma. The shadow areas A and C respectively represent the copper contents of adakitic magmas obtained by partial melting of the oceanic crust and lower continental crust. The shadow area B represents the copper content from mantle wedge partial melting to form an arc magma. Figure is modified from Zhang et al. (2017a) and mantle wedge partial melting model is cited from Lee et al. (2012)

很多超大型斑岩铜矿都与年轻洋脊俯冲有关,其中最典型的是智利地区的斑岩矿床。全世界已经探明的最大的10个斑岩铜矿中,5个分布在智利(包括前3名)。其中,厄尔特尼恩特和丘基卡马塔是世界上最大的两个斑岩铜金矿床,每个矿的铜储量都接近1亿吨,远超过了中国全部铜矿的总探明储量。研究表明,这些大矿往往与洋脊俯冲有关(Cooke et al., 2005; Sun et al., 2010),造成这种现象的主要原因是洋脊处产生年轻的洋壳,具有高热量、低密度,在俯冲时容易发生部分熔融(Sun et al., 2011, 2012a; Zhang et al., 2017b)。东南太平洋总体洋壳比较年轻,但是很多部分还是>25Ma,相比之下,扩张洋脊(spreading ridge)和年轻的非震洋脊(aseismic ridge)的俯冲是显生宙以来最容易发生俯冲洋壳部分熔融的地质过程。另一方面,由于年轻洋脊水深一般在2000m以内,小于碳酸盐补偿深度;同时,年轻洋脊没有经历全球大洋缺氧事件,有机物含量低;因此,洋脊俯冲引发的岩浆岩具有高氧逸度,容易产生高初始铜金含量的岩浆。上述因素决定了洋脊俯冲是形成大型、超大型斑岩铜金矿床的最佳途径。

5 讨论

成矿是复杂的元素异常富集过程,正如翟裕生院士指出的,需要“源、运、储、保、变”等成矿要素。其中一些问题看起来太过明显,以至于很少有文章系统讨论,结果被一些研究者忽略了。例如,一个强烈反对埃达克岩成矿的理由就是埃达克质火山岩或者深成岩往往不成矿(Richards, 2002; Richards and Kerrich, 2007)。事实上,火山岩和深成岩都不是斑岩,不会形成斑岩矿床。

俯冲洋壳部分熔融可以提供有利于成矿的富铜、富金埃达克岩,但是,全球斑岩铜矿的“脉冲式”成矿特点显然受控于大的构造体制转换。埃达克岩的初始铜含量可能远超过300×10-6,远高于其它构造环境中形成的岩浆(Sun et al., 2011),但是尚需要富集约10倍才能成矿。由于铜金均为中度不相容元素,单靠岩浆演化很难实现大幅的富集,需要有热液的参与(Sun et al., 2004)。对于喷出岩,由于热液大量散失,可以形成热液型矿床,但是不会形成斑岩型矿床。而深成岩,由于成岩压力很大,热液在岩浆中的溶解度高,不会形成成矿热液(Sun et al., 2007b),不能使铜金最后富集成矿。因此,在埃达克岩中,喷出岩和深成岩往往都不成矿,而只有浅成侵入的斑岩体顶部可以“全岩矿化”,形成斑岩矿床。即侵位深度是斑岩铜金矿床的一个重要控制因素。事实上,一些学者反对斑岩铜矿与埃达克岩之间成因联系的原因就是没有分清斑岩、深成岩和喷出岩。例如,有人提出太古代TTG岩石是洋壳部分熔融的产物,但是没有斑岩铜矿(Richards and Kerrich, 2007)。作为大陆地壳的主体,太古代TTG应该是俯冲洋壳部分熔融的产物(Foley et al., 2002; Rapp et al., 2003; Xiao et al., 2006; Ding et al., 2009; Xiong et al., 2011),但是TTG是深成岩,不是斑岩,所以不能形成斑岩铜矿。

斑岩铜矿的空间分布特点还受控于风化剥蚀。斑岩铜矿的形成深度在2~4km,矿体竖直方向延伸可以达到2km以上(Sillitoe, 2010),风化剥蚀控制着矿床的出露和保存。剥蚀深度低于2km,矿床往往表现为热液型或者矽卡岩型,剥蚀程度超过5km,斑岩矿往往就不复存在了,剥蚀的最佳深度在2~4km左右。

另外,对太古代形成的大量TTG岩石来说,在地球化学组成上与俯冲板块部分熔融形成的埃达克岩相似(Foley et al., 2002; Rapp et al., 2003; Xiao et al., 2006; Xiong et al., 2011)。但是,显生宙以前的大气氧化水平较低,海水中溶解氧有限(Scott et al., 2008; Sahoo et al., 2012),蚀变洋壳中Fe3+比例较低,其部分熔融不利于产生像现代弧氧化水平的岩浆来促进成矿。因此,这也可能是导致不能大规模成矿的原因。没有发现太古代TTG形成的斑岩铜矿(Richards and Kerrich, 2007)可能还与上面所述的太古代岩石剥蚀程度很深,绝大多数斑岩已经不复存在,出露的是大面积的深成岩TTG,自然也不可能发现斑岩矿床。

斑岩之所以成矿与流体的性质密切相关(Sun et al., 2007b)。隐爆角砾岩是斑岩矿床的一大特色,往往是流体压力超过围岩承受能力时出现的。斑岩的成矿深度一般在2~4km,但是往往接收深部岩浆房(约5~15km)的物质供应(Sillitoe, 2010; Nadeau, 2015)。这种特点主要是富水流体的性质决定的。在压力高于3kbar时,水在岩浆中的溶解度很大,不会形成独立的流体相;而压力小于3kbar时,水会随岩浆演化逐渐出溶,从而为成矿创造条件(Sun et al., 2007b; Sillitoe, 2010)。对于深成岩,由于水溶解在岩浆中,不能形成独立的流体相,因而不会形成斑岩矿床。而喷出岩,由于成矿物质大量散失在地表,也不容易成矿。

6 结论

斑岩铜金矿床成矿的关键控制因素是高氧逸度和洋壳部分熔融。氧逸度控制硫的价态进而控制亲硫元素铜(金)的性质;洋壳铜、金、硫含量是陆壳和地幔丰度的3倍左右,而俯冲带氧逸度高出板内环境2个数量级左右,因此俯冲洋壳部分熔融,有利于成矿。年轻洋脊的俯冲是最容易发生洋壳部分熔融的地质过程,全球主要超大型斑岩铜金矿床均与洋脊俯冲有关。

致谢      感谢孙卫东老师在成文过程中给予的指导和大力帮助; 感谢审稿专家对本文提出的意见和建议; 感谢编辑对本文格式的细致修改,这对本文的提高大有裨益。

参考文献
Aminzadeh B, Shahabpour J and Maghami M. 2011. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran. Resource Geology, 61: 290-295 DOI:10.1111/j.1751-3928.2011.00165.x
Arculus RJ. 1994. Aspects of magma genesis in arcs. Lithos, 33(1-3): 189-208 DOI:10.1016/0024-4937(94)90060-4
Ballard JR, Palin JM and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364 DOI:10.1007/s00410-002-0402-5
Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper-mantle. Contributions to Mineralogy and Petrology, 114(3): 331-348 DOI:10.1007/BF01046536
Braxton DP, Cooke DR, Dunlap J, Norman M, Reiners P, Stein H and Waters P. 2012. .3Ma:A high-resolution geochronological study of porphyry life cycles, Boyongan-Bayugo copper-gold deposits, Philippines. Geology, 40(5): 471-474 DOI:10.1130/G33125.1
Bryant JA, Yogodzinski GM and Churikova TG. 2007. Melt-mantle interactions beneath the Kamchatka arc:Evidence from ultramafic xenoliths from Shiveluch volcano. Geochemistry, Geophysics, Geosystems, 8(4): Q04007
Cai KD, Sun M, Yuan C, Zhao GC, Xiao WJ, Long XP and Wu FY. 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 127(1-2): 261-281 DOI:10.1016/j.lithos.2011.09.001
Chen XH, Yang N, Chen ZL, Han SQ, Wang ZH, Shi W and Ye BY. 2010. Geological characteristics and metallogenic model of super-large porphyry copper deposit in Aktogai ore field, Kazakhstan. Journal of Geomechanics, 16(4): 325-339 (in Chinese with English abstract)
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024 DOI:10.1130/G19796.1
Cooke DR, Hollings P and Walsh JL. 2005. Giant porphyry deposits:Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801-818 DOI:10.2113/gsecongeo.100.5.801
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Deng JH, Yang XY, Qi HS, Zhang ZF, Mastoi AS and Sun WD. 2017. Early Cretaceous high-Mg adakites associated with Cu-Au mineralization in the Cebu Island, Central Philippines:Implication for partial melting of the paleo-Pacific Plate. Ore Geology Reviews, 88: 251-269 DOI:10.1016/j.oregeorev.2017.05.006
Ding L, Maksatbek S, Cai FL, Wang HQ, Song PP, Ji WQ, Xu Q, Zhang LY, Muhammad Q and Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Science China (Earth Sciences), 60(4): 635-651 DOI:10.1007/s11430-016-5244-x
Ding X, Lundstrom C, Huang F, Li J, Zhang ZM, Sun XM, Liang JL and Sun WD. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. International Geology Review, 51(6): 473-501 DOI:10.1080/00206810902759749
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840 DOI:10.1038/nature00799
Gao J, Klemd R, Zhu MT, Wang XS, Li JL, Wan B, Xiao WJ, Zeng QD, Shen P, Sun JG, Qin KZ and Campos E. 2018. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain:A review. Journal of Asian Earth Sciences, 165: 7-36 DOI:10.1016/j.jseaes.2017.10.002
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892-897 DOI:10.1038/nature03162
Gao YF, Hou ZQ, Kamber BS, Wei RH, Meng XJ and Zhao RS. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105-120 DOI:10.1007/s00410-006-0137-9
Gao ZM and Li CY. 2000. Auriferous porphyry copper deposits in Taiwan. Geology-Geochemistry, 28(1): 87-91 (in Chinese with English abstract)
Graham S, Pearson N, Jackson S, Griffin W and O'Reilly SY. 2004. Tracing Cu and Fe from source to porphyry:In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chemical Geology, 207(3-4): 147-169 DOI:10.1016/j.chemgeo.2004.02.009
Hacker BR, Abers GA and Peacock SM. 2003a. Subduction factory:1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research:Solid Earth, 108(B1): 2029
Hacker BR, Peacock SM, Abers GA and Holloway SD. 2003b. Subduction factory:2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. Journal of Geophysical Research:Solid Earth, 108(1): 2030
Hacker BR and Abers GA. 2004. Subduction factory:3. An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, 5(1): Q01005
Hacker BR and Abers GA. 2012. Subduction factory:5. Unusually low Poisson's ratios in subduction zones from elastic anisotropy of peridotite. Journal of Geophysical Research:Solid Earth, 117(B6): B06308
Harris AC, Kamenetsky VS, White NC and Steele DA. 2004. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology, 54(3): 341-356 DOI:10.1111/j.1751-3928.2004.tb00210.x
Hedenquist JW, Arribas A and Reynolds TJ. 1998. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373-404 DOI:10.2113/gsecongeo.93.4.373
Hezarkhani A. 2006. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran:Evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6): 409-422 DOI:10.1016/j.jseaes.2005.11.003
Hofmann AW. 1988. Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314 DOI:10.1016/0012-821X(88)90132-X
Hou ZQ, Qu XM, Wang SX, Du AD, Gao YF and Huang W. 2004. Re-Os age for molybdenite from the Gangdese porphyry copper belt on Tibetan Plateau:Implication for geodynamic setting and duration of the Cu mineralization. Science in China (Series D), 47(3): 221-231 DOI:10.1360/01YD0487
Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25-51 DOI:10.1016/j.oregeorev.2008.09.006
Hou ZQ, Zheng YC, Yang ZM and Yang ZS. 2012. Metallogenesis of continental collision setting:Part Ⅰ. Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Mineral Deposits, 31(4): 647-670 (in Chinese with English abstract)
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250 DOI:10.1130/G36362.1
Hu YB, Liu JQ, Ling MX, Ding W, Liu Y, Zartman RE, Ma XF, Liu DY, Zhang CC, Sun SJ, Zhang LP, Wu K and Sun WD. 2015. The formation of Qulong adakites and their relationship with porphyry copper deposit:Geochemical constraints. Lithos, 220-223: 60-80 DOI:10.1016/j.lithos.2014.12.025
Hu YB, Liu JQ, Hu JR, Ding X, Sun WD, Liu Y and Ling MX. 2015. Geochemical studies on ore-bearing rocks in Bangpu porphyry Mo(Cu) deposit, Tibet:Implications on the magma source and metallogenic mechanism. Acta Petrologica Sinica, 31(7): 2038-2052 (in Chinese with English abstract)
Hu YB, Liu JQ, Ling MX, Liu Y, Ding X, Liu DY and Sun WD. 2017. Constraints on the origin of adakites and porphyry Cu-Mo mineralization in Chongjiang, Southern Gangdese, the Tibetan Plateau. Lithos, 292-293: 424-436 DOI:10.1016/j.lithos.2017.09.012
Huang F, Li SG, Dong F, He YS and Chen FK. 2008. High-Mg adakitic rocks in the Dabie orogen, central China:Implications for foundering mechanism of lower continental crust. Chemical Geology, 255(1-2): 1-13 DOI:10.1016/j.chemgeo.2008.02.014
Ishihara S, Hashimoto M and Machida M. 2000. Magnetite/ilmenite-series classification and magnetic susceptibility of the Mesozoic-Cenozoic batholiths in Peru. Resource Geology, 50(2): 123-129 DOI:10.1111/j.1751-3928.2000.tb00062.x
Jugo PJ, Luth RW and Richards JP. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimica et Cosmochimica Acta, 69(2): 497-503 DOI:10.1016/j.gca.2004.07.011
Jugo PJ. 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37(5): 415-418 DOI:10.1130/G25527A.1
Jugo PJ, Wilke M and Botcharnikov RE. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses:Implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta, 74(20): 5926-5938 DOI:10.1016/j.gca.2010.07.022
Kay RW, Sun SS and Leehu CN. 1978. Pb and Sr isotopes in volcanic rocks from the Aleutian islands and Pribilof islands, Alaska. Geochimica et Cosmochimica Acta, 42(3): 263-273 DOI:10.1016/0016-7037(78)90178-3
Kelley KA and Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325(5940): 605-607 DOI:10.1126/science.1174156
Khain EV, Bibikova EV, Kröner A, Zhuravlev DZ, Sklyarov EV, Fedotova AA and Kravchenko-Berezhnoy IR. 2002. The most ancient ophiolite of the central Asian fold belt:U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, eastern Sayan, Siberia, and geodynamic implications. Earth and Planetary Science Letters, 199(3-4): 311-325 DOI:10.1016/S0012-821X(02)00587-3
Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE and Fedotova AA. 2003. The palaeo-Asian ocean in the Neoproterozoic and Early Palaeozoic:New geochronologic data and palaeotectonic reconstructions. Precambrian Research, 122(1-4): 329-358 DOI:10.1016/S0301-9268(02)00218-8
Khashgerel BE, Kavalieris I and Hayashi K. 2008. Mineralogy, textures, and whole-rock geochemistry of advanced argillic alteration:Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi mineral district, Mongolia. Mineralium Deposita, 43(8): 913-932 DOI:10.1007/s00126-008-0205-3
Koppers AAP, Morgan JP, Morgan JW and Staudigel H. 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 185(3-4): 237-252 DOI:10.1016/S0012-821X(00)00387-3
Lee CTA, Luffi P, Chin EJ, Bouchet R, Dasgupta R, Morton DM, Le Roux V, Yin QZ and Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64-68 DOI:10.1126/science.1217313
Li CH, Shen P and Pan HD. 2018. Mineralogy of the Aktogai giant porphyry Cu deposit in Kazakhstan:Insights into the fluid composition and oxygen fugacity evolution. Ore Geology Reviews, 95: 899-916 DOI:10.1016/j.oregeorev.2018.03.027
Li CY, Hao XL, Liu JQ, Ling MX, Ding X, Zhang H and Sun WD. 2017. The formation of Luoboling porphyry Cu-Mo deposit:Constraints from zircon and apatite. Lithos, 272-273: 291-300 DOI:10.1016/j.lithos.2016.12.003
Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology, 35(2): 179-182 DOI:10.1130/G23193A.1
Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW and Zhang YQ. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159 DOI:10.1007/s00126-005-0047-1
Liang HY, Sun WD, Su WC and Zartman RE. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587-596 DOI:10.2113/gsecongeo.104.4.587
Ling MX, Wang FY, Ding X, Hu YH, Zhou JB, Zartman RE, Yang XY and Sun WD. 2009. Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China. Economic Geology, 104(2): 303-321 DOI:10.2113/gsecongeo.104.2.303
Ling MX, Wang FY, Ding X, Zhou JB and Sun WD. 2011. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China:Geochemical constraints. International Geology Review, 53(5-6): 727-740 DOI:10.1080/00206814.2010.482349
Liu SA, Li SG, He YS and Huang F. 2010. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178 DOI:10.1016/j.gca.2010.09.003
Mathur R, Ruiz J, Titley S, Gibbins S and Margotomo W. 2000. Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu-Au porphyry deposit. Earth and Planetary Science Letters, 183(1-2): 7-14 DOI:10.1016/S0012-821X(00)00256-9
Mavrogenes JA and O'Neill HSC. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180 DOI:10.1016/S0016-7037(98)00289-0
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Mo XX, Zhao ZD, Deng JF, Dong GC, Zhou S, Guo TY, Zhang SQ and Wang LL. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract)
Mungall JE. 2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918 DOI:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
Nadeau O. 2015. Ore metals beneath volcanoes. Nature Geoscience, 8(3): 168-170 DOI:10.1038/ngeo2379
Nicholls LA and Ringwood AE. 1973. Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment. Journal of Geology, 81(3): 285-300 DOI:10.1086/627871
Oyarzun R, Márquez A, Lillo J, López I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36(8): 794-798 DOI:10.1007/s001260100205
Parkinson IJ and Arculus RJ. 1999. The redox state of subduction zones:Insights from arc-peridotites. Chemical Geology, 160(4): 409-423 DOI:10.1016/S0009-2541(99)00110-2
Parry WT, Wilson PN, Moser D and Heizler MT. 2001. U-Pb dating of zircon and 40Ar/39Ar dating of biotite at Bingham, Utah. Economic Geology, 96(7): 1671-1683 DOI:10.2113/gsecongeo.96.7.1671
Perello J, Cox D, Garamjav D, Sanjdorj S, Diakov S, Schissel D, Munkhbat TO and Oyun G. 2001. Oyu Tolgoi, Mongolia:Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Economic Geology, 96(6): 1407-1428 DOI:10.2113/gsecongeo.96.6.1407
Pollard PJ, Taylor RG and Peters L. 2005. Ages of intrusion, alteration, and mineralization at the Grasberg Cu-Au deposit, Papua, Indonesia. Economic Geology, 100(5): 1005-1020 DOI:10.2113/gsecongeo.100.5.1005
Qu XM, Hou ZQ, Guo LJ and Xu WY. 2004. Source compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdise copper belt:Nd, Sr, Pb and O isotope constraints. Acta Geologica Sinica, 78(6): 813-821 (in Chinese with English abstract)
Rapp RP, Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605-609 DOI:10.1038/nature02031
Richards JP. 2002. Discussion on "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism" by Oyarzun et al. (Mineralium Deposita 36: 794-798, 2001). Mineralium Deposita, 37(8): 788-790
Richards JP. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits:Just add water. Economic Geology, 106(7): 1075-1081 DOI:10.2113/econgeo.106.7.1075
Richards JR and Kerrich R. 2007. Special paper:Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537-576 DOI:10.2113/gsecongeo.102.4.537
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
Rui ZY, Hou ZQ, Li GM, Liu B, Zhang LS and Wang LS. 2006. A genetic model for the Gandise porphyry copper deposits. Geological Review, 52(4): 459-466 (in Chinese with English abstract)
Sahoo SK, Planavsky NJ, Kendall B, Wang XQ, Shi XY, Scott C, Anbar AD, Lyons TW and Jiang GQ. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489(7417): 546-549 DOI:10.1038/nature11445
Sajona FG and Maury RC. 1998. Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l'Académie des Sciences (Serie IIA). Earth and Planetary Science, 326(1): 27-34
Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X and Anbar AD. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186): 456-459 DOI:10.1038/nature06811
Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik TH, Shephard G, Talsma A, Gurnis M, Turner M, Maus S and Chandler M. 2012. Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 113(3-4): 212-270 DOI:10.1016/j.earscirev.2012.03.002
Shafiei B and Shahabpour J. 2012. Geochemical aspects of molybdenum and precious metals distribution in the Sar Cheshmeh porphyry copper deposit, Iran. Mineralium Deposita, 47(5): 535-543 DOI:10.1007/s00126-011-0393-0
Sharp WD and Clague DA. 2006. 50Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science, 313(5791): 1281-1284 DOI:10.1126/science.1128489
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
Sillitoe RH. 2018. Why no porphyry copper deposits in Japan and South Korea?. Resource Geology, 68(2): 107-125 DOI:10.1111/rge.12156
Sun WD. 2003. The subduction factory: A perspective from rhenium and trace element geochemistry of oceanic basalts and eclogites. Ph. D. Dissertation. Canberra, Australia: Australian National University
Sun WD, Arculus RJ, Bennett VC, Eggins SM and Binns RA. 2003a. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea). Geology, 31(10): 845-848 DOI:10.1130/G19832.1
Sun WD, Bennett VC, Eggins SM, Arculus RJ and Perfit MR. 2003b. Rhenium systematics in submarine MORB and back-arc basin glasses:Laser ablation ICP-MS results. Chemical Geology, 196(1-4): 259-281 DOI:10.1016/S0009-2541(02)00416-3
Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978 DOI:10.1038/nature02972
Sun WD, Ding X, Hu YH and Li XH. 2007a. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542 DOI:10.1016/j.epsl.2007.08.021
Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization:An overview. Science China (Earth Sciences), 53(4): 475-484 DOI:10.1007/s11430-010-0024-0
Sun WD, Zhang H, Ling MX, Ding X, Chung SL, Zhou JB, Yang XY and Fan WM. 2011. The genetic association of adakites and Cu-Au ore deposits. International Geology Review, 53(5-6): 691-703 DOI:10.1080/00206814.2010.507362
Sun WD, Ling MX, Chung SL, Ding X, Yang XY, Liang HY, Fan WM, Goldfarb R and Yin QZ. 2012a. Geochemical constraints on adakites of different origins and copper mineralization. Journal of Geology, 120(1): 105-120 DOI:10.1086/662736
Sun WD, Yang XY, Fan WM and Wu FY. 2012b. Mesozoic large scale magmatism and mineralization in South China:Preface. Lithos, 150: 1-5 DOI:10.1016/j.lithos.2012.06.028
Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YL, Ireland TR, Wei QR and Fan WM. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275 DOI:10.1016/j.gca.2012.10.054
Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE and Ling MX. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97-131 DOI:10.1016/j.oregeorev.2014.09.004
Sun WD, Wang JT, Zhang LP, Zhang CC, Li H, Ling MX, Ding X, Li CY and Liang HY. 2017. The formation of porphyry copper deposits. Acta Geochimica, 36(1): 9-15 DOI:10.1007/s11631-016-0132-4
Sun WD, Liu LJ, Hu YB, Ding W, Liu JQ, Ling MX, Ding X, Zhang ZF, Sun XL, Li CY, Li H and Fan WM. 2018a. Post-ridge-subduction acceleration of the Indian plate induced by slab rollback. Solid Earth Sciences, 3(1): 1-7
Sun WD, Lin CT, Zhang LP, Liao RQ and Li CY. 2018. The formation of the South China Sea resulted from the closure of the Neo-Tethys:A perspective from regional geology. Acta Petrologica Sinica, 34(12): 3467-3478 (in Chinese with English abstract)
Sun XM, Tang Q, Sun WD, Xu L, Zhai W, Liang JL, Liang YH, Shen K, Zhang ZM, Zhou B and Wang FY. 2007b. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochimica et Cosmochimica Acta, 71(11): 2896-2905 DOI:10.1016/j.gca.2007.03.030
Sun XL, Sun WD, Hu YB, Ding W, Ireland T, Zhan MZ, Liu JQ, Ling MX, Ding X, Zhang ZF and Fan WM. 2018b. Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge. Acta Geochimica, 37(3): 395-401 DOI:10.1007/s11631-018-0262-y
Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH, Jia XH and Jiang ZQ. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt:Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300 DOI:10.1016/j.chemgeo.2010.08.012
Thiéblemont D, Stein G and Lescuyer JL. 1997. Epithermal and porphyry deposits:The adakite connection. Comptes Rendus de l'Academie des Sciences Serie Ⅱ Fascicule a:Sciences De La Terre Et Des Planetes, 325: 103-109
Thompson JFH, Sillitoe RH, Baker T, Lang JR and Mortensen JK. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34(4): 323-334 DOI:10.1007/s001260050207
Tosdal RM, Dilles JH and Cooke DR. 2009. From source to sinks in auriferous magmatic-hydrothermal porphyry and epithermal deposits. Elements, 5(5): 289-295 DOI:10.2113/gselements.5.5.289
Valencia VA, Eastoe C, Ruiz J, Ochoa-Landin L, Gehrels G, Gonzalez-Leon C, Barra F and Espinoza E. 2008. Hydrothermal evolution of the porphyry copper deposit at La Caridad, Sonora, Mexico, and the relationship with a neighboring high-sulfidation epithermal deposit. Economic Geology, 103(3): 473-491 DOI:10.2113/gsecongeo.103.3.473
van Keken PE, Hacker BR, Syracuse EM and Abers GA. 2011. Subduction factory:4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research:Solid Earth, 116(B1): B01401
Wainwright AJ, Tosdal RM, Wooden JL, Mazdab FK and Friedman RM. 2011. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia. Gondwana Research, 19(3): 764-787 DOI:10.1016/j.gr.2010.11.012
Wang FY, Ling MX, Ding X, Hu YH, Zhou JB, Yang XY, Liang HY, Fan WM and Sun WD. 2011. Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate. International Geology Review, 53(5-6): 704-726 DOI:10.1080/00206814.2010.503736
Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF and Bai ZH. 2006a. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4): 424-446 DOI:10.1016/j.lithos.2005.12.010
Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006b. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144 DOI:10.1093/petrology/egi070
Wang R, Richards JP, Hou ZQ, Yang ZM and DuFrane SA. 2014. Increased magmatic water content:The Key to Oligo-Miocene porphyry Cu-Mo +/-Au formation in the eastern Gangdese belt, Tibet. Economic Geology, 109: 1315-1339 DOI:10.2113/econgeo.109.5.1315
Wang R, Weinberg RF, Collins WJ, Richards JP and Zhu DC. 2018. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181: 122-143 DOI:10.1016/j.earscirev.2018.02.019
Watanabe Y, Sato R and Sulaksono A. 2018. Role of potassic alteration for porphyry Cu mineralization:Implication for the absence of porphyry Cu deposits in Japan. Resource Geology, 68(2): 195-207 DOI:10.1111/rge.12165
Waterman GC and Hamilton RL. 1975. The Sar Cheshmeh porphyry copper-deposit. Economic Geology, 70(3): 568-576 DOI:10.2113/gsecongeo.70.3.568
Wessel P and Kroenke L. 1997. A geometric technique for relocating hotspots and refining absolute plate motions. Nature, 387(6631): 365-369 DOI:10.1038/387365a0
Xiao B, Chen HY, Hollings P, Han JS, Wang YF, Yang JT and Cai KD. 2017. Magmatic evolution of the Tuwu-Yandong porphyry Cu belt, NW China:Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes. Gondwana Research, 43: 74-91 DOI:10.1016/j.gr.2015.09.003
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
Xiao YL, Sun WD, Hoefs J, Simon K, Zhang ZM, Li SG and Hofmann AW. 2006. Making continental crust through slab melting:Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimica et Cosmochimica Acta, 70(18): 4770-4782 DOI:10.1016/j.gca.2006.07.010
Xiong XL, Keppler H, Audétat A, Ni HW, Sun WD and Li YA. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673-1692 DOI:10.1016/j.gca.2010.06.039
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China:Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114 DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Xu W, Li C, Wang M, Fan JJ, Wu H and Li X. 2017. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet. Gondwana Research, 41: 128-141 DOI:10.1016/j.gr.2015.09.010
Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xia XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai:Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39 DOI:10.1016/j.chemgeo.2007.02.013
Yuan C, Sun M, Wilde S, Xiao WJ, Xu YG, Long XP and Zhao GC. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan:Evolving magmatism in response to extension and slab break-off. Lithos, 119(3-4): 269-288 DOI:10.1016/j.lithos.2010.07.004
Zhang CC, Sun WD, Wang JT, Zhang LP, Sun SJ and Wu K. 2017a. Oxygen fugacity and porphyry mineralization:A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363 DOI:10.1016/j.gca.2017.03.013
Zhang H, Ling MX, Liu YL, Tu XL, Wang FY, Li CY, Liang HY, Yang XY, Arndt NT and Sun WD. 2013. High oxygen fugacity and slab melting linked to Cu mineralization:Evidence from Dexing porphyry copper deposits, southeastern China. The Journal of Geology, 121(3): 289-305 DOI:10.1086/669975
Zhang HR, Yang ZM and Song YC. 2013. The study progress of Sar Cheshmeh Cu-Mo-Au Deposit, Iran. Geological Science and Technology Information, 32(5): 167-173 (in Chinese with English abstract)
Zhang LC, Xiao WJ, Qin KZ and Zhang Q. 2006. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China:Trace element and Sr-Nd-Pb isotope geochemistry. Mineralium Deposita, 41(2): 188-200 DOI:10.1007/s00126-006-0058-6
Zhang LP, Zhang RQ, Wu K, Chen YX, Li CY, Hu YB, He JJ, Liang JL and Sun WD. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China:Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 96: 115-129 DOI:10.1016/j.oregeorev.2018.04.012
Zhang LP, Zhang RQ, Chen YX, Sun SJ, Liang JL and Sun WD. 2019. Geochronology and geochemistry of the Late Cretaceous Xinpeng granitic intrusion, South China:Implication for Sn-W mineralization. Ore Geology Reviews, 113: 103075 DOI:10.1016/j.oregeorev.2019.103075
Zhang LP, Hu YB, Liang JL, Ireland T, Chen YL, Zhang RQ, Sun SJ and Sun WD. 2017b. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications. Acta Geochimica, 36(2): 132-150 DOI:10.1007/s11631-017-0146-6
Zhang LP, Zhang RQ, Hu YB, Liang JL, Ouyang ZX, He JJ, Chen YX, Guo J and Sun WD. 2017c. The formation of the Late Cretaceous Xishan Sn-W deposit, South China:Geochronological and geochemical perspectives. Lithos, 290-291: 253-268 DOI:10.1016/j.lithos.2017.08.013
Zhang Q, Qin KZ, Wang YL, Zhang FQ, Liu HT and Wang Y. 2004. Study on adakite broadened to challenge the Cu and Au exploration in China. Acta Petrologica Sinica, 20(2): 195-204 (in Chinese with English abstract)
Zhao XB, Xue CJ, Chi GX, Mo XX, Nurtaev B and Zhang GZ. 2017. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu-Au deposit, Almalyk district, Uzbekistan:Implications for mineralization processes. Ore Geology Reviews, 86: 807-824 DOI:10.1016/j.oregeorev.2017.04.008
Zheng YF and Wu FY. 2018. The timing of continental collision between India and Asia. Science Bulletin, 63(24): 1649-1654 DOI:10.1016/j.scib.2018.11.022
Zhou XM and Li WX. 2000. Origin of Late Mesozoic igneous rocks in southeastern China:Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287 DOI:10.1016/S0040-1951(00)00120-7
Zhou XM, Sun T, Shen WZ, Shu LS and Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes, 29(1): 26-33 DOI:10.18814/epiiugs/2006/v29i1/004
陈宣华, 杨农, 陈正乐, 韩淑琴, 王志宏, 施炜, 叶宝莹. 2010. 哈萨克斯坦阿克斗卡超大型斑岩型铜矿田地质特征与成矿模式. 地质力学学报, 16(4): 325-339. DOI:10.3969/j.issn.1006-6616.2010.04.001
丁林, Maksatbek S, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云, Muhammad Q, Upendra B. 2017. 印度与欧亚大陆初始碰撞时限、封闭方式和过程. 中国科学(地球科学), 47(3): 293-309.
高振敏, 李朝阳. 2000. 台湾含金斑岩铜矿床. 地质地球化学, 28(1): 87-91. DOI:10.3969/j.issn.1672-9250.2000.01.016
侯增谦, 郑远川, 杨志明, 杨竹森. 2012. 大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统. 矿床地质, 31(4): 647-670. DOI:10.3969/j.issn.0258-7106.2012.04.002
胡永斌, 刘吉强, 胡敬仁, 丁兴, 孙卫东, 刘焰, 凌明星. 2015. 西藏邦铺钼铜多金属矿床含矿斑岩的地球化学:对成岩源区与成矿机制的启示. 岩石学报, 31(7): 2038-2052.
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. DOI:10.3321/j.issn:1005-2321.2003.03.013
曲晓明, 侯增谦, 国连杰, 徐文艺. 2004. 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束. 地质学报, 78(6): 813-821. DOI:10.3321/j.issn:0001-5717.2004.06.012
芮宗瑶, 侯增谦, 李光明, 刘波, 张立生, 王龙生. 2006. 冈底斯斑岩铜矿成矿模式. 地质论评, 52(4): 459-466. DOI:10.3321/j.issn:0371-5736.2006.04.004
孙卫东, 林秋婷, 张丽鹏, 廖仁强, 李聪颖. 2018. 跳出南海看南海——新特提斯洋闭合与南海的形成演化. 岩石学报, 34(12): 3467-3478.
张洪瑞, 杨志明, 宋玉财. 2013. 伊朗萨尔切什梅铜-钼-金矿床研究新进展. 地质科技情报, 32(5): 167-173.
张旗, 秦克章, 王元龙, 张福勤, 刘红涛, 王焰. 2004. 加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面. 岩石学报, 20(2): 195-204.