岩石学报  2020, Vol. 36 Issue (1): 77-84, doi: 10.18654/1000-0569/2020.01.09   PDF    
斑岩型钼矿床的形成机制与地球化学过程
李聪颖1,2,3, 廖仁强1,3,4     
1. 中国科学院海洋研究所, 深海研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
3. 中国科学院海洋大科学研究中心, 青岛 266071;
4. 中国科学院大学, 北京 100049
摘要: 斑岩型钼矿床是世界钼矿床中最重要的种类,其中90%以上的钼矿床都和斑岩有关。斑岩型钼矿床主要分布于环太平洋成矿带和特提斯成矿带上,主要与板块俯冲过程有关,可以分为斑岩铜钼矿床、高氟型斑岩钼矿床和低氟型斑岩钼矿床。我们通过对全球斑岩型钼矿床的时空分布与钼元素地球化学性质分析,认为斑岩型钼矿床的物质来源是钼元素通过表生地球化学作用进行初始富集后形成的富钼沉积物。新元古代晚期(750~542Ma)大气氧再次升高之后,富钼的黑色页岩等才大量出现,因此斑岩型钼矿床主要形成于500Ma之后。富钼黑色页岩等沉积物在板块俯冲过程中脱水,形成富含Mo和Re的变质流体,同时两者发生分异。这种变质流体交代上覆地幔楔使Mo和Re留存在其中。随着俯冲洋壳的部分熔融,形成富Cu(Au)的岩浆,穿过富含Re(Mo)的上覆地幔楔,形成斑岩型铜钼矿床,因此这类矿床的辉钼矿Re含量更高。而随后出现的板块后撤,使软流圈上涌,板片上大量多硅白云母分解,形成了富含F的岩浆,穿过富含Mo的上覆地幔楔,进而形成高氟型斑岩矿床。低氟型钼矿床很可能与俯冲关系较小,富钼沉积物通过造山过程被深埋,在适当的条件下形成低氟型斑岩钼矿床。
关键词: 斑岩钼矿床    物质来源    俯冲作用    黑色沉积物    
Formation mechanism and geochemical process of porphyry molybdenum deposits
LI CongYing1,2,3, LIAO RenQiang1,3,4     
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Porphyry Mo deposits are the most important type of Mo deposits, which account for over 90% of Mo reserves in the world. Porphyry Mo deposits can be classified as porphyry Cu-Mo deposits, high-fluorine porphyry Mo deposits and low-fluorine porphyry Mo deposits. They are mainly distributed on the convergent plate margins such as the circum-Pacific metallogenic belt, and closely related to plate subduction. Based on the statistical analysis of the spatial and temporal distribution of global porphyry Mo deposits and the geochemical properties of element Mo, we believe that the material source of porphyry Mo deposits is Mo-rich sediments formed by initial enrichment of Mo element through supergene geochemical processes. Since the Mo-rich black shale appeared in large quantities after the rise of atmospheric oxygen around 550Ma, the porphyry Mo deposits were mainly formed after 500Ma. During the process of plate subduction, sediments such as Mo-rich black shale dehydrated and form metamorphic fluids rich in Mo and Re. Then the metamorphic fluid metasomatized the overlying mantle wedge to retain Mo and Re. With the partial melting of the subduction oceanic crust, magma rich in Cu (Au) was formed and passed through the overlying mantle wedge and led to the formation of porphyry Cu-Mo deposits. In the process of plate retreat, the upwelling of asthenospheric mantle would cause the decomposition of polysilicate muscovite. The magma then passed through the overlying mantle wedge rich in Mo, forming high fluorine porphyry deposits. However, the formation of low fluorine molybdenum deposits is likely to have little relationship with plate subduction. Sediments rich in molybdenum formed by high chemical weathering would accumulate in areas such as paleo back arc basin, and then deeply buried during orogeny, forming low fluorine porphyry molybdenum ore under appropriate conditions.
Key words: Porphyry molybdenum deposit    Material source    Subduction    Black sediment    

世界钼矿床以斑岩型、矽卡岩型、热液脉型和沉积岩型为主,其中斑岩型是最重要的钼矿。美国地质调查局(USGS)将斑岩型钼矿床分为斑岩铜钼矿床、Climax型(高氟型)矿床和低氟型矿床。这些矿床主要分布在环太平洋成矿域和特提斯成矿域,其中包括有太平洋东海岸斑岩型铜钼矿带、沿东太平洋俯冲带北美科迪勒拉山脉分布的世界上著名的Climax-Henderson钼矿带以及中国的秦岭-大别钼矿带和兴-蒙钼矿带(Mao et al., 2008; 陈衍景等, 2012; 孙卫东等, 2015; Sun et al., 2016; Chen et al., 2017a, b)。前人对这些斑岩型钼矿床从成矿时代、矿床成因以及成矿的大陆动力学背景等方面进行了一系列的深入研究(杜安道等, 1994; 黄典豪等, 1996; Chen et al., 2000, 2017a, b; 李诺等, 2007; Mao et al., 2008; 李晓峰等, 2008; 陈衍景等, 2009; Li et al., 2012a, b; 2017, 范羽等, 2014; 黄凡等, 2014; 孙卫东等, 2015; Sun et al., 2016)。本文尝试以Mo的地球化学性质为切入点,结合斑岩型钼矿的时空分布规律以及相关地球化学数据,探讨斑岩型钼矿床的成矿物质来源与富集机制。

1 斑岩型钼矿床的时空分布特点

环太平洋成矿带是全球斑岩型钼矿床的主要分布区域,但是太平洋东西海岸的差异很大(Sun et al., 2015, 2016; 孙卫东等, 2015) (图 1)。中国已探明的钼金属储量是其它国家总储量的两倍多,约为2500万吨。美国约为540万吨,智利约为250万吨,加拿大约为91万吨,俄罗斯约为36万吨,其他国家为167万吨(Chen et al., 2017c)。太平洋东海岸主要发育斑岩型铜金钼矿床,这些矿床都会伴生有大量的钼资源。例如:世界上最大的三个斑岩铜金矿床,智利的埃尔特林特钼储量为250万吨,丘基卡马塔钼储量为181万吨和Río Blanco-Los Bronces钼储量为126万吨(Cooke et al., 2005)。美洲还有大量的斑岩型钼矿床,这些矿床不含铜和金,但其钼品位远远高于斑岩铜钼矿床,并且有很高的氟含量(Klemm et al., 2008)。沿东太平洋俯冲带北美科迪勒拉山脉分布的世界上著名的Climax-Henderson Mo矿带就属于典型的高氟型斑岩钼矿床。低氟型斑岩钼矿床被认为主要集中在加拿大的不列颠哥伦比亚省,大概占加拿大钼资源的80%左右。太平洋东海岸的斑岩型Mo矿床主要集中于新生代,Climax钼矿带主要形成于74~54Ma(肖萍等, 2011).

图 1 全球斑岩型Mo矿床分布图(据USGS, 2018) Fig. 1 Distribution of large molybdenum deposits in the world (from website of USGS)

① USGS. 2018. https://www.usgs.gov/centers/nmic/molybdenum-statistics-and-information

中国是全球钼资源最为丰富的国家,目前已发现钼矿床400余个(Li et al., 2012b; Zeng et al., 2013; 范羽等, 2014; Mi et al., 2017)。其中世界级规模的超大型Mo矿床包括有沙坪沟、金堆城、栾川、三道庄、上房沟、杨家仗子、曹四夭等斑岩型钼矿床(Zhang et al., 2014; 范羽等, 2014; 黄凡等, 2014)。从地区分布上看,国内钼资源主要集中在河南、陕西及吉林等地区,三省合计拥有全国钼资源储量的56.7% (Li et al., 2012b; 范羽等, 2014; Mi et al., 2015, 2017)。根据空间上的分布特征,中国斑岩型钼矿床可划分为秦岭大别钼成矿带、兴蒙钼成矿带、长江中下游钼成矿带、华南钼成矿带、青藏高原钼成矿带和天山-北山钼成矿带等六个主要钼成矿带(黄凡等, 2014)。其中,秦岭-大别斑岩钼矿带是我国最为重要的钼资源基地。这些斑岩型钼矿床的钼品位较高,与Climax-Henderson钼矿带接近,并且多数超大型矿床(例如金堆城)都有萤石出现,说明很可能属于高氟型斑岩钼矿床(郭保健等, 2006; 李永峰等, 2006; 郭波等, 2009; Li et al., 2012a, b)。但是也有研究者认为大别地区部分斑岩型钼矿床属于低氟型(Mi et al., 2015, 2017)。从成矿时代上看,中国的斑岩型钼矿床主要集中早古生代(480~420Ma)、晚古生代(412~260Ma)、中生代印支期(251~209Ma)、中生代燕山期(194~77Ma)和新生代(65~13Ma)。天山-北山以及部分北祁连、西昆仑和兴蒙地区的斑岩钼矿床主要形成与古生代;中国东部的兴蒙、秦岭-大别、长江中下游和华南四个地区的斑岩钼矿床主要形成于中生代;新生代斑岩钼矿床全都分布在青藏钼成矿带。130~170Ma是中国斑岩型钼矿床成矿作用的主要发育时段(范羽等, 2014)。

2 斑岩型钼矿床的形成与全球大氧化事件

综合全球数据可以发现,500Ma以前没有大规模形成斑岩型钼矿床(图 2e)。这很可能是因为钼是一个变价元素,受到大气氧的影响。

图 2 全球斑岩型钼矿床Re-O年龄分布与全球氧化事件时间(据黄凡等, 2014; Lyons et al., 2014; Liu et al., 2019修改) a) 3.0Ga到现在弧岩浆岩中Th/U变化;(b)富含有机质的页岩中U含量变化;(c)页岩中Mo含量变化;(d)地球大气氧随时间的变化;(e)全球斑岩型钼矿床Re-Os年龄直方图 Fig. 2 Re-O age distribution of global porphyry molybdenum deposits and time of global oxidation events (modified after Huang et al., 2014; Lyons et al., 2014; Liu et al., 2019) (a) Th/U evolution of worldwide arc igneous rocks from 3.0 to 0 Ga; (b) U concentrations in organic-rich shale; (c) Mo concentrations in shales; (d) evolution of Earth's atmospheric oxygen content through time; (e) histogram of molybdenite Re-Os isotope ages of molybdenum deposit

在地球形成的早期,大气圈中几乎没有氧气。大气氧是在地质历史时期经历了两次大规模的升高后逐渐演化至今天的含量的(Kasting, 2001; Holland, 2009; Lyons et al., 2014)。全球性氧化事件发生的时间一直是国际性的研究热点(Karhu and Holland, 1996; Farquhar et al., 2000; Bekker et al., 2004; Holland, 2006; Planavsky et al., 2012)。在元古代早期之前,海洋-大气系统基本上是缺氧的,大约在24亿年发了“大氧化事件”,当时大气中的氧气上升到了目前大气水平的0.1% (Karhu and Holland, 1996; Farquhar et al., 2000; Bekker et al., 2004; Holland, 2006; Planavsky et al., 2012)(图 2d)。研究者普遍认为,在新元古代(542~800Ma)发生了第二次显著的大气氧上升,这次大气中的氧气上升到了接近现在大气氧的水平(Canfield, 2005; Fike et al., 2006; Holland, 2006; Canfield et al., 2007; Scott et al., 2008; Sahoo et al., 2012; Planavsky et al., 2014; Thomson et al., 2015; Turner and Bekker, 2015; Reinhard et al., 2017)(图 2d)。由于沉积岩的元素含量和同位素组成可以直接受到大气-海水中氧含量的影响而发生变化,通过研究沉积岩的这些地球化学特征显示新元古代的氧化事件起始于750~800Ma (Sahoo et al., 2012; Thomson et al., 2015; Turner and Bekker, 2015; Reinhard et al., 2017)(图 2b, c)。弧岩浆岩中的Th和U也指示了新元古代氧化事件发生于~750Ma (Liu et al., 2019)。在氧化状态下,U元素在水中的溶解程度比Th元素要高,因此随着大气氧的升高,海水中的Th/U比值会降低,这种Th/U比值的变化特征会随着俯冲作用被带入到俯冲带上方的弧岩浆岩中。通过对30亿年前至今形成的所有中酸性弧岩浆岩Th/U比值进行统计发现,在~24亿年和~7.5亿年,弧岩浆岩的平均Th/U出现了两次大幅度降低,这刚好对应于两次全球性氧化事件的发生时间(Liu et al., 2019)(图 2a)。此外,沉积地层岩相学、古微生物证据以及稳定同位素的变化都表明580~750Ma大气氧含量是逐渐升高的,新元古代氧化事件是个渐变过程(Johnston et al., 2012; Tuner and Bekker, 2015; Pehr et al., 2018)。

全球海相氧化还原敏感元素储存量的大小主要受缺氧与缺氧海相条件的空间程度控制,特别是钼和钒(Scott et al., 2008)。Sahoo et al. (2012)研究发现,华南陡山沱组底部早埃迪卡拉纪有机质丰富的黑色页岩(630~635Ma)中钼和钒高度富集,这是黑色页岩记录的最早的钼元素富集的时间。当大气中的氧含量较低时,钼元素由于不能被氧化形成Mo6+,无法进入水体活动。随着大气氧的不断升高,大量Mo元素通过表生地球化作用进入到了水体中,在水体的还原环境中被沉积下来,形成富钼的黑色页岩等沉积物(Kump, 2008; Scott et al., 2008; Sahoo et al., 2012; Liu et al., 2019)。这些富钼沉积物为斑岩型钼矿床提供了物质来源。因此斑岩型钼矿床基本都形成于新元古代氧化事件之后。

3 斑岩型钼矿床的成矿物质来源

斑岩型钼矿床的成矿物质来源一直存在争议。这主要是因为,从地球化学性质上来说,Mo是一种稀有元素,在原始地幔中的丰度为50×10-9,仅为Cu的0.13% (McDonough and Sun, 1995)。Mo在大陆地壳中的丰度为0.8×10-6,为Cu的3% (Rudnick and Gao, 2003)。虽然Mo在原始地幔和陆壳中的丰度均很低,但与其它丰度很低的元素不同,它是一种重要的成矿元素。Mo还是亲Cu元素,在岩浆过程中的不相容性受到硫在岩浆中饱和程度的影响,与同为亲硫元素Cu、Re相比,Mo的不相容性略高(Sun et al., 2003a, b)。

通过原始地幔的岩浆作用,Mo在大陆地壳中的丰度上升到原始地幔中的15倍(McDonough and Sun, 1995; Rudnick and Gao, 2003)。而全球钼矿床的平均品位是0.14% (USGS统计数据),如果是斑岩型钼矿床的物质来源是大陆地壳,Mo需要富集1750倍;如果是原始地幔,则需要富集2.8万倍。Mustard et al. (2006)通过研究花岗岩侵入体中的流体包裹体发现,在岩浆结晶分异过程中,Au可以富集40倍,Cu可以富集3倍,而Mo可以富集6倍。这与形成矿床要求的至少>1000倍相差甚远。这些都说明Mo仅通过简单的岩浆作用是不能形成矿床的,必须要有一个预富集的过程。这个预富集过程很可能就是Mo在表生作用中的富集过程。通过统计可知全球海洋还原沉积物中Mo的平均丰度为50×10-6,如果它作为斑岩型钼矿的物质来源,那么只需要富集28倍就可以达到平均品位。随着冶炼技术的提升,对矿石品位的要求也在降低,现在一些斑岩型钼矿床的最低品位定在0.01%,那么富集程度仅为2倍,这通过岩浆的结晶分异过程就可以实现。

相关研究表明,在风化过程中,钼容易被氧化,在表生环境中形成水溶性的MoO42-(Helz and Dolor, 2012; 孙卫东等, 2015; Sun et al., 2016),并随地表径流进入海洋和湖泊中,然后通过生物富集有关与缺氧沉积物的相互作用沉淀并保留下来,形成稀土硫化物/络合物(Yang, 1991)。Re通过表生地球化学作用初次富集的过程与Mo非常相似,影响这一过程的关键因素有:高大气氧含量、高化学风化速率和还原性沉积环境(孙卫东等, 2015; Sun et al., 2016; Li et al., 2017)。这种预富集过程形成的高Re、Mo含量的沉积物很可能就是形成斑岩型钼矿床的物质来源(孙卫东等, 2015; Sun et al., 2016; Li et al., 2017)。

辉钼矿是含Re的主要富集矿物,Re常常在辉钼矿中呈类质同象出现并与Mo形成固溶体(Terada et al., 2008)。因此很多研究者认为辉钼矿中的Re含量可以对斑岩型钼矿床的成矿物质来源进行示踪(杨宗锋等, 2011)。Stein et al. (2001)提出辉钼矿中Re的含量主要与成矿的岩浆热液来源有关;Mao et al. (1999)则认为辉钼矿中Re的含量会随成岩成矿物质从幔源到壳幔混源再到壳源呈数量级下降。然而辉钼矿多型之间的转变并不会影响辉钼矿中Re含量的高低(Selby et al., 2001; Peng et al., 2006)。通过对斑岩型Cu-Mo矿床中辉钼矿样品的研究,Berzina et al. (2005)认为原始岩浆的地球化学成分、分异和结晶过程中物理化学条件的变化影响了辉钼矿中Re的含量。但也有研究者认为辉钼矿产出的岩石类型与共生矿物种类与Re含量的变化有着密切关系。当辉钼矿与白钨矿(或黑钨矿、方铅矿、闪锌矿、自然金和自然银)共生或产在长英质脉和花岗岩中可能促使其Re含量降低, 与黄铜矿、黄铁矿和磁铁矿(或磁黄铁矿)共生或产在矽卡岩和碳酸岩中可能促使其Re含量升高(杨宗锋等, 2011)。

通过对52个斑岩型钼矿床的辉钼矿中Re含量进行统计,可以看出辉钼矿中Re含量与矿床的成矿元素组合有一定相关关系:从斑岩型铜钼矿床→斑岩型钼铜矿床→斑岩型钼矿床→斑岩型钼钨矿床,辉钼矿中Re含量逐渐降低(图 3)。这也说明辉钼矿中Re的含量可能与铜的矿化程度有关,经过不同的岩浆过程,形成的斑岩钼矿床的矿物组合也不同,因此辉钼矿中的Re含量也不同。

图 3 不同成矿元素组合斑岩型Mo矿床中辉钼矿中铼含量图 数据来源于杜安道等, 1994; 黄凡等, 2012;范羽等, 2014 Fig. 3 Plot of Re contents in molybdenite of 48 deposits with various metal inventor Data from Du et al., 1994; Huang et al., 2012; Fan et al., 2014
4 斑岩型钼矿床的富集机制

全球的斑岩型钼矿床主要分布在环太平洋成矿带上,这说明通过预富集过程形成的富钼沉积物主要是通过板块俯冲过程进入了岩浆中,最后才能形成斑岩型矿床。在板块俯冲过程中,俯冲沉积物和蚀变玄武岩中的不相容元素和水通过流体或熔体部分进入到上覆地幔楔,随后发生变质和部分熔融作用(Poli and Schmidt, 2002),形成岛弧岩浆。俯冲板片的脱水和元素迁移是一个连续的过程,在一定的温度和压力范围内发生。因此,考虑到每种矿物的熔点不同,俯冲板块形成的流体或熔体的组成也不同(Ishikawa and Nakamura, 1994; Ishikawa and Tera, 1997),这也导致了弧岩浆的多样性。这些熔体或流体都含有丰富的挥发性物质,包括H2O、H2S和HCl,可以将亲铜和亲铁元素运移至上覆地幔楔(Keppler, 2017)。在绿片岩相向角闪岩相转变的过程中,绿泥石会释放出流体。同时,这一阶段也会有大量黄铁矿发生分解,这样就会形成富含S2-的变质流体。而沉积物含有丰富的水和泥质岩,因此在俯冲带条件下比玄武岩洋壳更容易发生脱水和部分熔融(Hermann and Spandler, 2008)。同时,实验岩石学结果表明,对于硅酸盐熔体,Mo和Re都更倾向于进入硫化物液体(Roy-Barman et al., 1994; Righter and Hauri, 1998; Righter et al., 1998, 2004)。因此,大量Re和Mo会在此时随变质流体交代上覆地幔楔,并且留存在地幔楔中。由于Mo在硫化物和硫酸盐熔体中的分配系数远小于Re (Li and Audétat, 2012),因此Re应该早于Mo进入变质流体,二者在地幔楔中富存的位置也是不同的(图 4a)。随后,俯冲洋壳发生部分熔融,形成了大量富Cu的初始岩浆,这些岩浆在通过上覆地幔楔时也会将Re和Mo带入岩浆,形成斑岩型铜钼矿床(Liao et al., 2019)。

图 4 斑岩型Mo矿床形成机制示意图 Fig. 4 Conceptual ore-deposit model for porphyry molybdenum deposits

典型的高氟型斑岩钼矿床可能与板块后撤有关,高氟含量可能与俯冲板片上多硅白云母分解有关(Li et al., 2012b)。可能的形成机制是板片后撤引发软流圈上涌,多硅白云母集中分解,由于距离俯冲带较远,岩浆穿过上覆交代地幔楔时,可能距离Re富集的位置较远,因此形成的斑岩钼矿中的辉钼矿Re含量相较于斑岩型铜钼矿床低(图 4b)。

典型的低氟型钼矿床多位于北美,很可能与俯冲关系较小,因此氟含量较低。推测这种钼矿床应该是形成于古弧后盆等曾经历过封闭、半封闭海盆的地区,这样的高化学风化的热带、亚热带和长期演化的造山带有利于形成富钼沉积物。这些富钼沉积物在造山过程中被深埋,在适当的条件下形成斑岩钼矿。这种钼矿床因为没有穿过富集Re的上覆地幔楔,因此形成的辉钼矿中Re含量在三种类型矿床中最低,并且与W和Sn容易形成共生矿床组合。

5 结论

全球斑岩型钼矿床主要分布在太平洋成矿带上,其形成机制主要与板块俯冲有着密切的关系。在500Ma之前,没有大规模斑岩型钼矿床形成,这说明大气氧的升高对于斑岩钼矿床的形成有着重要的作用。新远古代氧化事件后,由于大气氧升高至接近现代大气中氧气含量的水平,钼通过表生地球化学作用,在水体的还原环境中形成富钼沉积物。这种预富集过程为斑岩型钼矿床形成提供了物质来源。

富Mo的黑色页岩等沉积物在板块俯冲过程中,脱水形成变质流体,大量的Mo和Re进入变质流体,交代上覆地幔楔并且留存在地幔楔中。随后由于俯冲洋壳部分熔融,形成的富Cu或Au的岩浆,并且穿过上覆地幔楔将Mo和Re带走,形成斑岩铜钼矿床。而后期板块后撤,引发软流圈上涌,则可能是形成高氟型斑岩钼矿床的过程。低氟型钼矿床很可能与俯冲关系较小,因此氟含量较低。在古弧后盆等曾经历过封闭、半封闭海盆的地区,经过高化学风化会形成富钼沉积物,然后通过造山过程中被深埋,在适当的条件下形成低氟型斑岩钼矿。

致谢      感谢孙卫东研究员对本文的完善提供的建设性意见;感谢匿名审稿人对本文提出的宝贵意见和建议。

参考文献
Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL and Beukes NJ. 2004. Dating the rise of atmospheric oxygen. Nature, 427(6970): 117-120 DOI:10.1038/nature02260
Berzina AN, Sotnikov VI, Economou-Eliopoulos M and Eliopoulos DG. 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1-2): 91-113 DOI:10.1016/j.oregeorev.2004.12.002
Canfield DE. 2005. The early history of atmospheric oxygen:Homage to Robert A. Garrels. Annual Review of Earth and Planetary Sciences, 33: 1-36 DOI:10.1146/annurev.earth.33.092203.122711
Canfield DE, Poulton SW and Narbonne GM. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5808): 92-95 DOI:10.1126/science.1135013
Chen YJ, Li C, Zhang J, Li Z and Wang HH. 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (Series D), 43(S1): 82-94 DOI:10.1007/BF02911935
Chen YJ, Zhai MG and Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695-2726 (in Chinese with English abstract)
Chen YJ, Zhang C, Li N, Yang YF and Deng K. 2012. Geology of the Mo deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5): 1223-1246 (in Chinese with English abstract)
Chen YJ, Zhang C, Wang P, Pirajno F and Li N. 2017a. The Mo deposits of Northeast China:A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geology Reviews, 81: 602-640 DOI:10.1016/j.oregeorev.2016.04.017
Chen YJ, Wang P, Li N, Yang YF and Pirajno F. 2017b. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geology Reviews, 81: 405-430 DOI:10.1016/j.oregeorev.2016.03.025
Chen YJ, Pirajno F and Deng XH. 2017c. Molybdenum deposits in China. Ore Geology Reviews, 81: 401-404 DOI:10.1016/j.oregeorev.2016.11.002
Cooke DR, Hollings P and Walsh JL. 2005. Giant porphyry deposits:Characteristics, distribution and tectonic controls. Economic Geology, 100(5): 801-818 DOI:10.2113/gsecongeo.100.5.801
Du AD, He HL, Yin NW, Zou XQ, Sun YL, Sun DZ, Chen SZ and Qu WJ. 1994. A study on the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica, 68(4): 339-347 (in Chinese with English abstract)
Fan Y, Zhou TF, Zhang DY, Yuan F, Fan Y, Ren Z and White N. 2014. Spatial and temporal distribution and metallogical background of the Chinese molybdenum deposits. Acta Geologica Sinica, 88(4): 784-804 (in Chinese with English abstract)
Farquhar J, Savarino J, Jackson TL and Thiemens MH. 2000. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature, 404(6773): 50-52 DOI:10.1038/35003517
Fike DA, Grotzinger JP, Pratt LM and Summons RE. 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744-747 DOI:10.1038/nature05345
Guo B, Zhu LM, Li B, Xu J, Wang JQ and Gong HJ. 2009. Isotopic and element geochemical study of Jinduicheng superlarge porphyry Mo deposit in East Qinling area. Mineral Deposits, 28(3): 265-281 (in Chinese with English abstract)
Guo BJ, Mao JW, Li HM, Qu WJ, Qiu JJ, Ye HS, Li MW and Zhu XL. 2006. Re-Os dating of the molybdenite from the Qiushuwan Cu-Mo deposit in the East Qinling and its geological significance. Acta Petrologica Sinica, 22(9): 2341-2348 (in Chinese with English abstract)
Helz GR and Dolor MK. 2012. What regulates rhenium deposition in euxinic basins?. Chemical Geology, 304-305: 131-141 DOI:10.1016/j.chemgeo.2012.02.011
Hermann J and Spandler CJ. 2008. Sediment melts at sub-arc depths:An experimental study. Journal of Petrology, 49(4): 717-740 DOI:10.1093/petrology/egm073
Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B:Biological Sciences, 361(1470): 903-915 DOI:10.1098/rstb.2006.1838
Holland HD. 2009. Why the atmosphere became oxygenated:A proposal. Geochimica et Cosmochimica Acta, 73(18): 5241-5255 DOI:10.1016/j.gca.2009.05.070
Huang DH, Du AD, Wu CY, Liu LS, Sun YL and Zou XQ. 1996. Metallochronology of molybdenum (-copper) deposits in the North China platform:Re-Os age of molybdenite and its geological significance. Mineral Deposits, 15(4): 365-373 (in Chinese with English abstract)
Huang F, Wang DH, Wang CH, Chen ZH, Yuan ZX and Liu XX. 2014. Resources characteristics of molybdenum deposits and their regional metallogeny in China. Acta Geologica Sinica, 88(12): 2296-2314 (in Chinese with English abstract)
Ishikawa T and Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370(6486): 205-208 DOI:10.1038/370205a0
Ishikawa T and Tera F. 1997. Source, composition and distribution of the fluid in the Kurile mantle wedge:Constraints from across-arc variations of B/Nb and B isotopes. Earth and Planetary Science Letters, 152(1-4): 123-138 DOI:10.1016/S0012-821X(97)00144-1
Johnston DT, Poulton SW, Goldberg T, Sergeev VN, Podkovyrov V, Vorob'eva NG, Bekker A and Knoll AH. 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters, 335-336: 25-35 DOI:10.1016/j.epsl.2012.05.010
Karhu JA and Holland HD. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24(10): 867-870 DOI:10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2
Kasting JF. 2001. The rise of atmospheric oxygen. Science, 293(5531): 819-820 DOI:10.1126/science.1063811
Keppler H. 2017. Fluids and trace element transport in subduction zones. American Mineralogist, 102(1): 5-20 DOI:10.2138/am-2017-5716
Klemm LM, Pettke T and Heinrich CA. 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533-552 DOI:10.1007/s00126-008-0181-7
Kump LR. 2008. The rise of atmospheric oxygen. Nature, 451(7176): 277-278 DOI:10.1038/nature06587
Li CY, Wang FY, Hao XL, Ding X, Zhang H, Ling MX, Zhou JB, Li YL, Fan WM and Sun WD. 2012a. Formation of the world's largest molybdenum metallogenic belt:A plate-tectonic perspective on the Qinling molybdenum deposits. International Geology Review, 54(9): 1093-1112 DOI:10.1080/00206814.2011.623039
Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012b. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110 DOI:10.1016/j.lithos.2012.04.001
Li CY, Hao XL, Liu JQ, Ling MX, Ding X, Zhang H and Sun WD. 2017. The formation of Luoboling porphyry Cu-Mo deposit:Constraints from zircon and apatite. Lithos, 272-273: 291-300 DOI:10.1016/j.lithos.2016.12.003
Li N, Chen YJ, Zhang H, Zhao TP, Deng XH, Wang Y and Ni ZY. 2007. Molybdenum deposits in East Qinling. Earth Science Frontiers, 14(5): 186-198 (in Chinese with English abstract)
Li XF, Watanabe Y, Hua RM and Mao JW. 2008. Mesozoic Cu-Mo-W-Sn mineralization and ridge/triple subduction in South China. Acta Geologica Sinica, 82(5): 625-640 (in Chinese with English abstract)
Li Y and Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355-356: 327-340 DOI:10.1016/j.epsl.2012.08.008
Li YF, Mao JW, Liu DY, Wang YB, Wang ZL, Wang YT, Li XF, Zhang ZH and Guo BJ. 2006. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication. Geological Review, 52(1): 122-131 (in Chinese with English abstract)
Liao RQ, Li CY, Liu H, Chen Q and Sun WD. 2019. Rhenium enrichment in the northwest Pacific arc. Ore Geology Reviews, 115: 103-176
Liu H, Zartman RE, Ireland TR and Sun WD. 2019. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proceedings of the National Academy of Sciences of the United States of America, 116(38): 18854-18859 DOI:10.1073/pnas.1902833116
Lyons TW, Reinhard CT and Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307-315 DOI:10.1038/nature13068
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818 DOI:10.1016/S0016-7037(99)00165-9
Mao JW, Xie GQ, Bierlein F, Qü WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626 DOI:10.1016/j.gca.2008.06.027
McDonough WF and Sun SS. 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
Mi M, Li CY and Sun WD. 2015. Qian'echong low-F porphyry Mo deposits in the Dabie Mountains, central China. Lithos, 239: 157-169 DOI:10.1016/j.lithos.2015.10.013
Mi M, Li CY, Sun WD, Li DF and Zhu CH. 2017. Yaochong Mo deposit, a low-F porphyry Mo deposit from the Qinling-Dabie orogenic belt. Ore Geology Reviews, 88: 188-200 DOI:10.1016/j.oregeorev.2017.03.029
Mustard R, Ulrich T, Kamenetsky VS and Mernagh T. 2006. Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology, 34(2): 85-88 DOI:10.1130/G22141.1
Pehr K, Love GD, Kuznetsov A, Podkovyrov V, Junium CK, Shumlyanskyy L, Sokur T and Bekker A. 2018. Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nature Communications, 9: 1807 DOI:10.1038/s41467-018-04195-8
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41: 661-669 DOI:10.1007/s00126-006-0084-4
Planavsky NJ, Bekker A, Hofmann A, Owens JD and Lyons TW. 2012. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proceedings of the National Academy of Sciences of the United States of America, 109(45): 18300-18305 DOI:10.1073/pnas.1120387109
Planavsky NJ, Reinhard CT, Wang XL, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW and Lyons TW. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638 DOI:10.1126/science.1258410
Poli S and Schmid MW. 2002. Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30: 207-235 DOI:10.1146/annurev.earth.30.091201.140550
Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ, Lyons TW, Fischer WW, Wang CJ, Cole DB and Konhauser KO. 2017. Evolution of the global phosphorus cycle. Nature, 541(7637): 386-389 DOI:10.1038/nature20772
Righter K and Hauri EH. 1998. Compatibility of rhenium in garnet during mantle melting and magma genesis. Science, 280(5370): 1737-1741 DOI:10.1126/science.280.5370.1737
Righter K, Chesley JT, Geist D and Ruiz J. 1998. Behavior of Re during magma fractionation:An example from Volcán Alcedo, Galápagos. Journal of Petrology, 39(4): 785-795 DOI:10.1093/petroj/39.4.785
Righter K, Campbell AJ, Humayun M and Hervig RL. 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta, 68(4): 867-880 DOI:10.1016/j.gca.2003.07.005
Roy-Barman M, Wasserburg GJ and Rapanastassiou DA. 1994. Osmium isotopic composition of sulfides from basaltic glasses. ICOG-8, US geological Survey Circular 1107, 272
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Heinrich DH and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Pergamon, 1-64
Sahoo SK, Planavsky NJ, Kendall B, Wang XQ, Shi XY, Scott C, Anbar AD, Lyons TW and Jiang GQ. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489(7417): 546-549 DOI:10.1038/nature11445
Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X and Anbar AD. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186): 456-459 DOI:10.1038/nature06811
Selby D and Creaser RA. 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96(1): 197-204
Stein HJ, Markey RJ, Morgan JW, Hannah JL and Schersten A. 2001. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova, 13(6): 479-486 DOI:10.1046/j.1365-3121.2001.00395.x
Sun WD, Bennett VC, Eggins SM, Kamenetsky VS and Arculus RJ. 2003a. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature, 422(6929): 294-297 DOI:10.1038/nature01482
Sun WD, Bennett VC, Eggins SM, Arculus RJ and Perfit MR. 2003b. Rhenium systematics in submarine MORB and back-arc basin glasses:Laser ablation ICP-MS results. Chemical Geology, 196(1-4): 259-281 DOI:10.1016/S0009-2541(02)00416-3
Sun WD, Ding X, Ling MX, Zartman RE and Yang XY. 2015. Subduction and ore deposits. International Geology Review, 57(9-10): ⅲ-ⅵ
Sun WD, Li CY, Ling MX, Ding X, Yang XY, Liang HY, Zhang H and Fan WM. 2015. The geochemical behavior of molybdnum and mineralization. Acta Petrologica Sinica, 37(1): 1807-1817 (in Chinese with English abstract)
Sun WD, Li CY, Hao XL, Ling MX, Ireland T, Ding X and Fan WM. 2016. Oceanic anoxic events, subduction style and molybdenum mineralization. Solid Earth Sciences, 1(2): 64-73 DOI:10.1016/j.sesci.2015.11.001
Terada K, Osaki S, Ishihara S and Kiba T. 2008. Distribution of rhenium in molybdenites from Japan. Geochemical Journal, 4(3): 123-141
Thomson D, Rainbird RH, Planavsky N, Lyons TW and Bekker A. 2015. Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada:A record of ocean composition prior to the Cryogenian glaciations. Precambrian Research, 263: 232-245 DOI:10.1016/j.precamres.2015.02.007
Turner EC and Bekker A. 2015. Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada). Geological Society of America Bulletin, 128(1-2): 203-222
Xiao P, Wang YB and Yang GL. 2011. Comparison between the monometallic high fluorine porphyry Mo deposits in East Qinling Mo belt and the Climax-type Mo deposits. China Mining Magazine, 20(10): 62-66 (in Chinese with English abstract)
Yang JS. 1991. High rhenium enrichment in brown algae:A biological sink of rhenium in the sea?. Hydrobiologia, 211(3): 165-170 DOI:10.1007/BF00008532
Yang ZF, Luo ZH, Lu XX, Cheng LL and Huang F. 2011. Discussion on significance of Re content of molybdenite in tracing source of metallogenic materials. Mineral Deposits, 30(4): 654-674 (in Chinese with English abstract)
Zeng QD, Liu JM, Qin KZ, Fan HR, Chu SX, Wang YB and Zhou LL. 2013. Types, characteristics, and time-space distribution of molybdenum deposits in China. International Geology Review, 55(11): 1311-1358 DOI:10.1080/00206814.2013.774195
Zhang H, Li CY, Yang XY, Sun YL, Deng JH, Liang HY, Wang RL, Wang BH, Wang YX and Sun WD. 2014. Shapinggou:The largest Climax-type porphyry Mo deposit in China. International Geology Review, 56(3): 313-331 DOI:10.1080/00206814.2013.855363
陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695-2726.
陈衍景, 张成, 李诺, 杨永飞, 邓轲. 2012. 中国东北钼矿床地质. 吉林大学学报(地球科学版), 42(5): 1223-1246.
杜安道, 何红蓼, 殷宁万, 邹晓秋, 孙亚利, 孙德忠, 陈少珍, 屈文俊. 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347. DOI:10.3321/j.issn:0001-5717.1994.04.005
范羽, 周涛发, 张达玉, 袁峰, 范裕, 任志, White N. 2014. 中国钼矿床的时空分布及成矿背景分析. 地质学报, 88(4): 784-804.
郭保健, 毛景文, 李厚民, 屈文俊, 仇建军, 叶会寿, 李蒙文, 竹学丽. 2006. 秦岭造山带秋树湾铜钼矿床辉钼矿Re-Os定年及其地质意义. 岩石学报, 22(9): 2341-2348.
郭波, 朱赖民, 李犇, 许江, 王建其, 弓虎军. 2009. 东秦岭金堆城大型斑岩钼矿床同位素及元素地球化学研究. 矿床地质, 28(3): 265-281. DOI:10.3969/j.issn.0258-7106.2009.03.004
黄典豪, 杜安道, 吴澄宇, 刘兰笙, 孙亚莉, 邹晓秋. 1996. 华北地台钼(铜)矿床成矿年代学研究——辉钼矿铼-锇年龄及其地质意义. 矿床地质, 15(4): 365-373.
黄凡, 王登红, 王成辉, 陈郑辉, 袁忠信, 刘新星. 2014. 中国钼矿资源特征及其成矿规律概要. 地质学报, 88(12): 2296-2314.
李诺, 陈衍景, 张辉, 赵太平, 邓小华, 王运, 倪智勇. 2007. 东秦岭斑岩钼矿带的地质特征和成矿构造背景. 地学前缘, 14(5): 186-198. DOI:10.3321/j.issn:1005-2321.2007.05.019
李晓峰, Watanabe Y, 华仁民, 毛景文. 2008. 华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲. 地质学报, 82(5): 625-640.
李永峰, 毛景文, 刘敦一, 王彦斌, 王志良, 王义天, 李晓峰, 张作衡, 郭保健. 2006. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义. 地质评论, 52(1): 122-131.
孙卫东, 李聪颖, 凌明星, 丁兴, 杨晓勇, 梁华英, 张红, 范蔚茗. 2015. 钼的地球化学性质与成矿. 岩石学报, 31(7): 1807-1817.
肖萍, 王延斌, 杨国良. 2011. 东秦岭单金属含氟斑岩型钼矿与Climax型钼矿对比. 中国矿业, 20(10): 62-66. DOI:10.3969/j.issn.1004-4051.2011.10.016
杨宗锋, 罗照华, 卢欣祥, 程黎鹿, 黄凡. 2011. 关于辉钼矿中Re含量示踪来源的讨论. 矿床地质, 30(4): 654-674. DOI:10.3969/j.issn.0258-7106.2011.04.006