岩石学报  2020, Vol. 36 Issue (1): 44-54, doi: 10.18654/1000-0569/2020.01.06   PDF    
锑的地球化学性质与华南锑矿带成因初探
张天羽1,2,3, 李聪颖1,2,3, 孙赛军1,2,3, 郝锡荦4     
1. 中国科学院海洋研究所, 深海研究中心, 青岛 266071;
2. 青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;
3. 中国科学院海洋大科学研究中心, 青岛 266071;
4. 自然资源部天然气水合物重点实验室, 青岛海洋地质研究所, 青岛 266071
摘要: 锑属亲铜元素,易与硫结合。锑在地核(0.14×10-6)、地幔(0.006×10-6)和地壳(0.02×10-6)中的丰度均很低,而在黑色页岩(5.0×10-6)中明显富集。锑是一种典型的低温成矿元素。我国华南地区低温成矿域拥有世界60%的锑探明储量。研究结果显示锑的成矿主要经历两阶段富集过程:一是与风化和沉积作用有关的表生过程;二是地球内部热驱动过程。寒武纪时华南位于赤道附近,受冈瓦纳大陆的造山带的影响,是全球地表风化最强烈的地区之一。在新元古代氧化事件的驱动下,锑在表生风化过程中被氧化为更易迁移的水溶性的SbO3-。因埃迪卡拉生物群所产生的有机质,有利于萃取水体中的锑并沉淀在还原性沉积物(黑色页岩)中。华南中生代岩浆活动烘烤表层富锑的寒武纪黑色页岩,产生的成矿流体向上迁移,淋滤黑色页岩中的Sb或与黑色页岩变质脱水或熔融产生成矿流体混合;而后搬运至远离岩体的有利位置沉淀,最终形成大规模的华南锑矿带。
关键词:     锑的地球化学    寒武纪黑色页岩    华南锑矿    
Geochemical characteristics of antimony and genesis of antimony deposits in South China
ZHANG TianYu1,2,3, LI CongYing1,2,3, SUN SaiJun1,2,3, HAO XiLuo4     
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4. MNR Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Qingdao 266071, China
Abstract: Antimony is a chalcophile element, which is easily combined with sulfur. The abundances of antimony in the core (0.14×10-6), the mantle (0.006×10-6) and the crust (0.02×10-6) are all very low, while it is enriched in black shale (5.0×10-6). The solubility of antimony is controlled by temperature, salinity, pH value and oxygen fugacity, but not to pressure. Rutile and omphacite are the main carriers of antimony in high-pressure to ultrahigh-pressure metamorphic rocks. Antimony is also a typical low-temperature metallogenic element. The low-temperature mineralization domain in South China, possesses 60% of the world's proven antimony reserves mostly formed in the Yanshanian Period. Our studies show that the mineralization of Sb mainly experienced two stages:One is the supergene process related to weathering and sedimentation, and the other is the hydrothermal process caused by magmatism. South China, located near the equator during the Cambrian, was affected by the Gondwana continental orogenic belt, and it is one of the most weathered areas in the world. The fertile source area is very important for the formation of antimony deposits in South China, whereas organic matter plays a positive role for the extraction and migration of antimony. As a result of Neoproterozoic Oxidation Event, antimony was oxidized to water-soluble SbO3- during supergene weathering. The organic matter, produced by the Ediacara biota is conducive to extracting antimony from water, and precipitating it in reduced sediments (black shale). The Mesozoic magmatic activity in South China baked the surface antimony-rich Cambrian black shale, and the ore-forming fluids produced by magma migrated upward, leaching Sb from black shales or mixing with other ore-forming fluids produced by metamorphic dehydration or melting of the black shale; and then it was transported to a favorable location far from the rock mass to deposit, eventually forming a large-scale antimony ore belt in South China.
Key words: Antimony    Geochemistry of antimony    Cambrian black shale    Antimony deposits in South China    

我国是世界上锑矿资源最丰富的国家,锑资源储量和产量长期保持世界第一。华南锑矿带是我国最大的锑矿带,占世界上已探明储量的60%。其中被誉为“世界锑都”的锡矿山是世界上最大的锑矿,其已采锑金属与资源储量超过200万吨,占迄今全球已探明储量的57%(USGS, 2017)。华南出现规模如此巨大的低温成矿域一直是国内外学者研究的热点,然而华南锑矿带的成因一直没有形成统一的认识,按矿床类型可划分为火山岩型(杨舜全, 1986; 彭渤和陈广浩, 2000)、沉积成岩型(谌锡霖等, 1983)、沉积喷流型(刘建明等, 2002)、沉积改造型(涂光炽, 1984; Wu, 1993)和密西西比河谷型(胡瑞忠等, 2010)等等。争论的原因之一是华南地质过程复杂,很多矿床受多期构造事件改造;另一个原因是锑作为低温成矿元素,矿床定年困难。更重要的是,由于锑元素在地球中的丰度很低,分析测试困难,及对锑的地球化学性质方面的了解不足。本文尝试以锑的地球化学性质为切入点,结合华南锑矿带最新的研究进展,分析锑的富集机制和成矿过程。

① U.S. Geological Survey. 2017. Mineral Commodity Summaries 2017

1 锑的地球化学特征

锑是一种亲铜元素,对硫元素和铜、铅、银等金属有很强的亲缘性。锑也可以与Cl、OH等阴离子结合。锑元素在自然界有三个价态0,+3和+5价,常见的电价是+3和+5价,与砷相似。目前存在100多种含锑矿物,包括锑的硫化物、硫盐、氧化物和锑酸盐等(Boyle and Jonasson, 1984)。Sb可以与卤素形成SbF3,SbF5,SbCl3,SbCl5等类型化合物,又可以形成SbF4-,SbF52-之类的络合阴离子团,还可以形成Sb(OH)6-,SbOCl之类的含氧基或羟基络合物。

锑在原始地幔中的含量为0.006×10-6,在大洋玄武岩中的含量介于0.02×10-6~0.05×10-6之间,而在洋岛玄武岩中的含量变化在0.05×10-6~0.8×10-6之间(Jochum and Hofmann, 1997)。锑在地壳的丰度为0.2×10-6(Rudnick and Gao, 2014),页岩为1.5×10-6(Li and Schoonmaker, 2003),其中黑色页岩的锑丰度最高,平均为5.0×10-6(Ketris and Yudovich, 2009)。锑在煤中富集,平均含量为0.92×10-6,而在煤灰中的平均含量为6.3×10-6,通常褐煤比硬煤的锑含量高(Ketris and Yudovich, 2009)。反映了氧化还原敏感元素的特点。

锑的溶解度与温度、盐度、pH值和氧逸度有关。通常未污染水中溶解锑的典型浓度 < 1×10-6,而在温泉、钻孔和地热水中的沉淀物中,锑的浓度可高达500×10-6(Filella et al., 2002)。另外,洋壳的热液蚀变也会起到富集锑的作用,太平洋钻孔中一些蚀变MORB样品的Sb含量可高达40×10-6(Jochum and Verma, 1996)。Pitcairn et al. (2006)在新西兰变质岩剖面上发现,Sb与As、Au、Hg、Mo、Ag和W等其他低温成矿元素的含量随变质等级的增加而显著减少。这是因为锑是低温元素,变质作用温度越高,转移到热液流体中的锑含量也更多。Zotov et al. (2003)Pokrovski et al. (2006)做过热液体系下锑溶解度的实验,研究表明锑在不同大气压下的纯水中,其溶解度确实随温度升高而显著(图 1)。当其他条件不变,加入一定NaCl和HCl后,锑的溶解度也会相应增加。前人根据热力学分析研究发现,锑与氧逸度的关系主要表现为三个阶段:1)在成矿前阶段,锑的溶解度随氧逸度增加而升高;2)在主成矿阶段,两者关系不大;3)在成矿晚期阶段,锑的溶解度随氧逸度的减少而降低(朱赖民和胡瑞忠, 1999)。总之,锑的溶解度主要受温度、盐度、pH值和氧逸度控制,而与压强关系不大。

图 1 热液体系下锑溶解度与温度的关系 Fig. 1 Solubility of antimony versus temperature in hydrothermal system

俯冲带的玄武质洋壳在深部地幔转变为榴辉岩相,钛以金红石形式存在,而锑在金红石中强烈相容,因此金红石是控制锑行为的主要矿物相。Zack et al. (2002)在研究榴辉岩和石榴石云母片岩时发现,金红石和绿辉石是锑的主要载体,其中金红石作为主要赋存相所占比例超过90%(图 2)。同时,Sb的优先级(金红石)仅略低于Nb、Ta、W和Ti,并且远高于Sn、Mo、Cr和Zr(Hf)等元素。另外,花岗岩的实验数据显示,在SiO2-Al2O3-Na2O-K2O-H2O系统下,锑在含水流体和熔体中的分配系数DSbf/m介于0.01±0.03~1.3±0.2(温度在800℃,压力在200MPa条件下)之间(Guo, 2008)。研究结果表明锑的分配系数主要与熔体的铝饱和指数有关,而与熔体的氧逸度和SiO2含量关系不大,其中过铝质熔体最高(1.3±0.7),其次为准铝质熔体(0.8±0.4)和过碱性熔体(0.1±0.01)。通常情况下过铝质花岗岩是以壳源沉积物为源岩,这可能暗示着锑在熔体中的富集程度主要受源岩(沉积物)影响。

图 2 榴辉岩中高场强元素的质量平衡(据Zack et al., 2002) Fig. 2 Mass balance of HFS elements in eclogite (modified after Zack et al., 2002)

锑是非常活动的元素,也是全球性的污染物,其在表生地球化学行为中扮演了重要的角色。锑可通过岩石风化、火山喷发、地表径流和人为活动进入水圈。前人研究显示Sb(Ⅲ)容易被水中溶解的氧气和过氧化氢氧化为Sb(Ⅴ),而悬浮颗粒物中的Fe、Mn的水合氧化物和藻类会产生协同作用加速氧化,最终水解成阴离子SbO3-(Vink, 1996; Ashley et al., 2003; Leuz and Johnson, 2005; Leuz et al., 2006; Li et al., 2006)。现代研究表明,水体中可测得的产物有无机锑和少量的有机锑(甲基锑和二甲基锑),其中水体上部为氧化层,Sb(Ⅴ)是主体,而水体下部为还原层,Sb(Ⅲ)是主要的存在形式。随着水体深度的增加(氧逸度下降),Sb(Ⅲ)所占比例会增加,但锑总量有明显减少。Andreae and Froelich (1984)在波罗的海表层水体中测得的数据显示,Sb(Ⅲ)占无机锑总量的44%,而在最深的样品中,这一比例飙升到93%。相似地,Cutter (1991)在黑海的硫化物界面附近发现,Sb(Ⅲ)的浓度可以占Sb总量的94%。尽管很难量化不同价态锑的溶解度与氧逸度的关系,但这至少表明在氧逸度高的水体中锑更稳定,溶解度更高。

2 华南锑矿时空分布特征

锑矿资源在全球分布较广,包括中国、俄罗斯、波维利亚、澳大利亚、土耳其、美国等国家,主要产出在环太平洋成矿域、特提斯成矿域和中亚天山成矿域,其中环太平洋成矿带经济价值最大,集中了全球约77%的锑储量(图 3)。锑一直是中国的传统优势矿产资源,截止2018年底,自然资源部公布的最新数据显示,锑矿查明总资源储量为319.76万吨,2017年新增查明资源储量14.04万吨,平均每年增幅比较稳定,维持在5%左右,与2012年底相比,锑矿总资源量增加了34.2%。

图 3 全球典型含锑矿床分布示意图(底图据USGS, 2017修改) Fig. 3 Global distribution map of representative antimony deposits (modified after USGS, 2017)

华南锑矿带位于华南板块内的扬子和华夏陆块交汇处,总体呈北东向展布,总长度近2000km,宽度近200km(张国林等, 1998)。中国目前已查明2个超大型锑矿床,16个大型锑矿床,68个中型锑矿床以及134个小型锑矿床等(张国林等, 1998; 王永磊等, 2014),其中的大多数大型-超大型锑矿床集中于此,包括湖南锡矿山和广西大厂等超大型锑矿床,湖南沃溪、湖南龙山、湖南渣宰溪、广西茶山、广西箭猪坡、贵州晴隆、贵州半坡、云南木利等大型锑矿床地(图 4)。湖南、广西、贵州和云南4省已查明资源的储量占全国的70%(丁建华等, 2013)。湖南锡矿山锑矿床更是世界上最大的锑矿,其锑矿资源总储量可达到249万吨(Hu et al., 2017),被誉为世界锑都。由此可见华南锑矿带分布范围广、数量多、规模大,是世界上锑矿最丰富的区域。华南锑矿床主要受缝合带或断裂带控制,具有线性分布的特征。

图 4 我国典型锑矿的分布图及其估计的锑资源储量(底图据王永磊等, 2014葛肖虹等, 2014修改) 锑矿数据来自王永磊等(2014);黑色页岩数据来自Xu et al. (2012) Fig. 4 Distribution map of typical antimony deposits in China and estimated antimony reserves (modified after Wang et al., 2014; Ge et al., 2014) Data of antimony from Wang et al. (2014); data of black shale from Xu et al. (2012)

华南锑矿带的成矿时代变化较大(表 1),但燕山期是锑矿床的爆发期。事实上无论是矿床的数量还是储量,中生代时期的锑矿均占有绝对优势。湖南锡矿山超大型锑矿床的形成时代为124~156Ma(Hu et al., 1996; Peng et al., 2003);贵州晴隆大型锑矿床的成矿时代介于142~148Ma(彭建堂等, 2003a; 王登红等, 2012);广西大厂超大型锡铅锌锑多金属矿床的成矿时代在93~95Ma之间(蔡明海等, 2006; 梁婷等, 2011)。另外,湖南沃溪、湖南龙山、贵州独山、广西马雄以及云南木利等锑矿床也形成于侏罗-白垩纪(韦文灼, 1993; 史明魁等, 1993; 胡瑞忠等, 2007; 王登红等, 2012; 肖宪国, 2014)。由此可见,华南锑矿床的主要成矿期应该在燕山期,但也存在加里东期和印支期的锑矿床。

表 1 华南锑矿带成矿年龄数据表 Table 1 Data table of mineralization age for antimony deposits in South China
3 华南锑矿成因

近几十年,前人对华南锑矿的地质特征、矿物地球化学、同位素地球化学以及流体包裹体等方面进行了大量细致的研究,并取得了一系列丰硕的成果(涂光炽, 1984; 华仁民和毛景文, 1999; 马东升, 1999; 毛景文等, 1999, 2008, 2009; 彭渤和陈广浩, 2000; Mao et al., 2002; 彭建堂等, 2003a, b; 王永磊等, 2014; 胡瑞忠等, 2016)。目前关于华南锑矿成因然而华南锑矿成因仍然存在分歧,它们在矿床类型上可被划分为火山岩型(杨舜全, 1986)、沉积成岩型(谌锡霖等, 1983)、沉积喷流型(刘建明等, 2002)、沉积-改造型(涂光炽, 1984; Wu, 1993)以及密西西比型(胡瑞忠等, 2010)等等。

火山岩型和沉积成岩型矿床的形成过程比较简单,顾名思义是由于玄武岩和碎屑岩中的锑含量较高,说明矿床早期的沉积作用占主要因素。这些成因模型主要根据残留的一些原生沉积特征,矿床受地层和岩性控制非常明显,继而被认为是主要矿源层(谌锡霖等, 1983; 陈豫等, 1984)。有学者解释玄武岩富锑的原因是下覆地层在遭受剥蚀后又沉降为半封闭的海盆,喷发的玄武岩流入海盆时带来大量成矿物质,最终形成矿源层。不过彭建堂等(2003a)通过对比锑矿和围岩的Sr-Nd同位素发现,玄武岩并不是矿源层。另外,前文也提及过锑并不在地幔中富集,故玄武岩不可能携带大量的锑。沉积岩中富集锑的观点获得越来越多学者的肯定(Mao et al., 2002; 张岳等, 2016),但是许多矿床的成矿时代与其围岩沉积时代有很大出入,例如锡矿山的成矿时代主要在侏罗-白垩纪,而围岩则为泥盆纪。沉积喷流型矿床属于同后生共生矿床,指示含矿热液与地层一起沉积。这种类型矿床与上述两种矿床的区别主要在于锑的存在形式,而其成矿时代和过程上没有本质上的区别,因此这种成因也重视早期沉积作用的影响(刘建明等, 2002)。沉积改造型矿床和密西西比河谷型的形成过程则比较类似,多数人倾向于认为,这类矿床在沉积和成岩时初步富集锑,源自沉积建造水或大气降水的成矿流体,经成矿过程演化为含矿热卤水,在富含锑的沉积地层中进行溶滤和运移并成矿。因此,这两种类型的矿床不仅强调后期改造的特点,同时也一致指出它们并不受岩浆活动的影响(涂光炽, 1984; Wu, 1993;胡瑞忠等, 2010)。不难看出,华南锑矿带的成因类型很复杂,锑的富集是否与沉积作用有关?锑矿形成时是否有岩浆活动的参与?解决这些问题的关键在于认识锑的表生富集过程和深部驱动力。

3.1 表生富集过程

在地表风化过程中,Sb很容易被氧化成SbO3-而溶解于水中随地表径流进入还原性沉积物中,这个过程与Mo相似(孙卫东等, 2014)。新元古代大气氧浓度的升高可能是华南寒武纪富有机质黑色页岩富集锑(1.0×10-6~34.3×10-6)的原因。

大气氧含量和生命史的关系密不可分(Anbar and Knoll, 2002)。大气氧浓度可以在塑造生物圈的结构和组成方面起主要作用(Wallace et al., 2017),同时生物圈也可以通过调节有机碳埋藏程度来控制大气氧含量(Watson et al., 1978)。地球历史上,出现过两次大规模的大气氧浓度升高事件,分别是大氧化事件和新元古代氧化事件(Fike et al., 2006; Liu et al., 2019)。在大气氧浓度升高的情况下,锑的迁移能力将会增强,那么地表上更多的锑会被氧化为Sb(Ⅴ)流入水体,并最终进入还原性沉积物中。

大气氧的上升时期与生物繁盛相对应。有研究认为新元古代氧化事件直接导致埃迪卡拉生物(575~542Ma)的出现,驱动了生物史上最重要的进化创新之一(Canfield et al., 2007)。埃迪卡拉生物群是地球历史上首次出现大型、结构复杂的有机体,它们的化石通常在几厘米到几十厘米的范围内,但有些个体超过一米(Narbonne, 2005)。Gehling (1999)清晰地阐明了微生物在保存埃迪卡拉类化石方面的重要作用。微生物细丝塑造了非矿化生物和菌落,形成了一个“死亡面具”,这样化石才能保持完好的形状。随后的研究进一步证明了这个结论,这些化石保存在碳质细碎屑岩(Narbonne, 1998)、席状牧游生物的痕迹(Seilacher, 1999),甚至在席状生物内保存的蓝藻细丝(Steiner and Reitner 2001)。随着埃迪卡拉生物群的爆发,这些有骨骼生物群死亡所产生的有机质会消耗更多的氧,而未分解的有机质将以有机碳的形式埋藏在海陆过渡区封闭、半封闭水域,从而形成还原性水体环境。前人研究表明,有机质对锑的萃取迁移具有积极作用。有机质与有机酸热裂解形成二氧化碳和甲烷,二氧化碳的增加会使水体酸化,更易使Sb溶解并淋入热卤水中(叶造军等, 1997及其文献)。叶造军等(1997)在右江盆地的油源岩中发现的液态烃和含液态烃的有机包裹体,其模拟的原油实验证实了液态烃对锑有很强的萃取迁移能力。一般认为在有烃类的情况下,Sb可能以HS-(S2-)形式迁移。这样在偏酸性的还原环境中,大量出现的甲烷会导致Sb主要以辉锑矿的形式沉淀。

新元古代末期冈瓦纳超大陆在内部隆起形成的造山带,并向印度、澳大利亚等板块运输大量的沉积物(Myrow et al., 2010; McQuarrie et al., 2013)。新的古地磁数据显示,华南地区在新元古代末-寒武纪初与位于赤道附近的澳大利亚板块很近(Zhang et al., 2013)。结合热带气候雨量大、风化剥蚀速率快的特点,华南地区可能当时全球化学风化最强烈的地区之一,相应地会输出大量的锑。华南地区应广泛分布着富含有机质的黑色页岩,它们主要沿北东向展布,长约1600km,而且沉积层位稳定,厚度几十米至数百米,个别地区近千米(Mao et al., 2002; 杨競红等, 2005)。这些发育在寒武系底部的黑色页岩(牛蹄塘组)因极富集Mo-Ni-Se-Re-Os-As-Hg-Sb-PGE等数十种金属成矿元素而闻名,是理想的矿源层(Mao et al., 2002; 杨競红等, 2005; Guo et al., 2007; Lehmann et al., 2007; Xu et al., 2013)。在这些黑色页岩中,Sb含量与有机碳的含量也具有一定的正相关(图 5)。

图 5 华南寒武纪黑色页岩中锑与有机碳含量的关系(数据来自Guo et al., 2007) Fig. 5 Antimony contents versus total organic contents for Cambrian black shales in South China (data from Guo et al., 2007)

塔里木盆地上也报道过同时期的有机质黑色页岩(Yu et al., 2009),这也进一步证实了我们的猜测。也就是说,华南与塔里木地区可能同属于一处相互连接的封闭或半封闭的海域,被动地接受陆源沉积物质。尽管锑来源,运输和集中机制可能因矿床类型而异,但肥沃的源区对华南锑矿床的形成至关重要。

3.2 岩浆热驱动活动

沉积物可以富锑,但很难直接富集成矿,岩浆活动可能是锑二次富集的关键。锑是典型的低温成矿元素,可以在热驱动下迁移、富集成矿(Goldfarb et al., 2001; Hu et al., 2017)。

华南锑矿带的主成矿期在侏罗-白垩纪,和区域上与花岗岩有关的钨锡多金属矿床时代相当(150~160Ma, 毛景文等, 2008)。与产出在花岗岩中钨锡矿床不同的是,锑矿床野外产状上并不与花岗岩直接接触,而且湘中盆地和右江盆地矿集区的岩浆活动均很微弱,很难将锑矿与岩浆活动联系在一起。但实际上,矿集区的周缘和局部零星有岩浆作用的报道。朱经经等(2016)在右江盆地的酸性脉体中发现了130~140Ma的继承锆石,并认为这组年龄来自深部的隐伏岩体;甘成势等(2016)根据锆石定年发现右江盆地存在159Ma的高镁安山岩,认为其是含金云母的富集岩石圈地幔部分熔融的产物;付山岭等(2016)在研究龙山锑矿床的年代学时提出,160Ma左右的岩浆活动对矿床的形成发挥了重要作用。同时遥感资料解译出的环状构造以及地球物理资料指示的异常特征,也支持在矿集区下部可能存在隐伏岩体(胡瑞忠等, 2016)。

从区域构造演化上看,太平洋板块至少从侏罗纪开始向华南俯冲(Sun et al., 2007, 2013; Wu et al., 2017),并在华南形成了大规模的中生代岩浆活动以及大型、超大型多金属矿床(Wang et al., 2011; Li et al., 2012, 2017; Sun et al., 2012; Chen et al., 2016; Zhang et al., 2017a, d; Guo et al., 2018a, b; Jiang et al., 2018a, b, c; Liu et al., 2020)。最近的研究还表明新特提斯对华南的影响一直持续到晚白垩世,也产生了大量的岩浆活动(Sun, 2016; Zhang et al., 2017b, c, 2018; Sun et al., 2018; 孙卫东等, 2018)。华南锑矿带受到岩浆活动影响的可能性很大。

前人对华南锑矿床的同位素和流体包裹体进行研究,并取得了相似的结果。晴隆锑矿床辉锑矿的硫同位素研究发现,δ34S变化区间很小,介于0~-3.22%之间,接近地幔来源的硫同位素组成,表明硫来自于幔源岩浆(陈豫等, 1984; 叶造军, 1996)。陈娴等(2016)对晴隆锑矿中成矿流体的He-Ar同位素进行了研究,结果显示成矿流体中不仅存在地壳He,还存在大量的地幔He,表明含地幔He的高温流体可能来自其深部隐伏岩体。钨锡矿床中的成矿流体也含有地幔的He,而与其相关的花岗岩是壳幔混合成因,这可能暗示着隐伏岩体与钨锡矿床相关的花岗岩的源区相似。靳晓野等(2016)基于沥青激光拉曼光谱分析结果计算的黔西南矿床早阶段成矿流体的温度为317~250℃,明显高于区域古地温温度(160~250℃)及区域古油藏储层流体温度(73~175℃),异常的温度可能是由深部隐伏岩体引起的,说明成矿流体可能起源于深部岩浆活动。可以看出,矿区深部隐伏岩体本身的热源(可能是壳幔成因的花岗岩)和其释放出的含S、He成矿热液是矿床不可忽视的重要因素。

前人根据C-H-O同位素研究发现,热液流体在向上运移和演化过程成中有大量循环大气降水和富有机质流体的加入,成矿流体具有多流体混合的特点(李伟等, 2016)。这说明热液流体在向上运移和演化过程成中有大量循环大气降水和富有机质流体的加入。值得指出的是,由于锑是低温成矿元素,在高温的驱使下,锑会被流体搬运至远离岩体的低温地带沉淀。目前关于锑以何种形式进行迁移的资料是很匮乏的,仍需要深入研究。

综上所述,华南寒武纪富有机质黑色页岩作为主要矿源层提供成矿物质,而深部隐伏的岩浆活动作为主要驱动力,提供热源与成矿流体,烘烤黑色页岩或与之反应最终形成华南锑矿带。

4 结语

(1) 锑在表生过程就会富集,新元古代氧化事件引起的大气氧含量升高和埃迪卡拉动物群消失产生的有机质,可能是华南寒武纪富有机质黑色页岩成为主要矿源层的关键。

(2) 中生代的岩浆活动驱动了华南锑矿带的二次富集,幔源岩浆释放出含S的成矿流体,可能穿过黑色页岩并淋滤掉里面的Sb或者可能与黑色页岩变质脱水/熔融所产生的中流体(循环的大气降水)混合,最终搬运至远离岩体的有利位置沉淀形成锑矿。

致谢      感谢孙卫东、张丽鹏、邓江洪、刘海洋、薛颖瑜、隋清霖在本文写作过程中给予的帮助。

参考文献
Anbar AD and Knoll AH. 2002. Proterozoic ocean chemistry and evolution:A bioinorganic bridge?. Science, 297(5584): 1137-1142 DOI:10.1126/science.1069651
Andreae MO and Froelich PN. 1984. Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus B:Chemical and Physical Meteorology, 36(2): 101-117 DOI:10.3402/tellusb.v36i2.14880
Ashley PM, Craw D, Graham BP and Chappell DA. 2003. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. Journal of Geochemical Exploration, 77(1): 1-14 DOI:10.1016/S0375-6742(02)00251-0
Boyle RW and Jonasson IR. 1984. The geochemistry of antimony and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 20(3): 223-302 DOI:10.1016/0375-6742(84)90071-2
Cai MH, Liang T, Wei KL, Huang HM and Liu GQ. 2006. Rb-Sr dating of the No.92 orebody of the Tongkeng-Changpo deposit in the Dachang Tin-polymetallic Ore Field, Guangxi, and its significance. Geology and Mineral Resources of South China, (2): 31-36 (in Chinese with English abstract)
Canfield DE, Poulton SW and Narbonne GM. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5808): 92-95 DOI:10.1126/science.1135013
Chen X, Su WC and Huang Y. 2016. He and Ar isotope Geochemistry of ore-forming fluids for the Qinglong Sb deposit in Guizhou Province, China. Acta Petrologica Sinica, 32(11): 3312-3320 (in Chinese with English abstract)
Chen XL, Jiang YH, Li SY and Liao HZ. 1983. A preliminary study on the origin of the Xikuangshan antimony deposit in Hunan. Geological Review, 29(5): 486-492 (in Chinese with English abstract)
Chen Y, Liu XC and Zhang QH. 1984. A tentative discussion on the genesis of the Dachang antimony deposit, Qinglong county, Guizhou province. Mineral Deposits, 3(3): 1-12 (in Chinese with English abstract)
Chen YX, Li H, Sun WD, Ireland T, Tian XF, Hu YB, Yang WB, Chen C and Xu DR. 2016. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China:Implications for Shizhuyuan W-Sn mineralization and tectonic evolution. Lithos, 266-267: 435-452 DOI:10.1016/j.lithos.2016.10.010
Cutter GA. 1991. Dissolved arsenic and antimony in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38(S2): S825-S843
Ding JH, Yang YH and Deng F. 2013. Resource potential and metallogenic prognosis of antimony deposits in China. Geology in China, 40(3): 846-858 (in Chinese with English abstract)
Fike DA, Grotzinger JP, Pratt LM and Summons RE. 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744-747 DOI:10.1038/nature05345
Filella M, Belzile N and Chen YW. 2002. Antimony in the environment:A review focused on natural waters: I. Occurrence.. Earth-Science Reviews, 57(1-2): 125-176 DOI:10.1016/S0012-8252(01)00070-8
Fu SL, Hu RZ, Chen YW and Luo JC. 2016. Chronology of the Longshan Au-Sb deposit in central Hunan Province:Constraints from pyrite Re-Os and zircon U-Th/He isotopic dating. Acta Petrologica Sinica, 32(11): 3507-3517 (in Chinese with English abstract)
Gan CS, Wang YJ, Zhang YZ, Liu HC and Zhang LM. 2016. The identification and implications of the Late Jurassic shoshonitic high-Mg andesite from the Youjiang basin. Acta Petrologica Sinica, 32(11): 3281-3294 (in Chinese with English abstract)
Ge XH, Liu JL, Ren SM and Yuan SH. 2014. The formation and evolution of the Mesozoic-Cenozoic continental tectonics in eastern China. Geology in China, 41(1): 19-38 (in Chinese with English abstract)
Gehling JG. 1999. Microbial mats in terminal Proterozoic siliciclastics:Ediacaran death masks. Palaios, 14(1): 40-57 DOI:10.2307/3515360
Goldfarb RJ, Groves DI and Gardoll S. 2001. Orogenic gold and geologic time:A global synthesis. Ore Geology Reviews, 18(1-2): 1-75 DOI:10.1016/S0169-1368(01)00016-6
Guo J, Zhang RQ, Li CY, Sun WD, Hu YB, Kang DM and Wu JD. 2018a. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China:Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geology Reviews, 92: 627-642 DOI:10.1016/j.oregeorev.2017.11.033
Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Luo M and Zhang LC. 2018b. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China:Insights from cassiterite U-Pb ages and trace element compositions. Ore Geology Reviews, 95: 863-879 DOI:10.1016/j.oregeorev.2018.03.023
Guo Q. 2008. Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt-Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier-Groundwater System. Ph. D. Dissertation. Ontario: University of Waterloo
Guo QJ, Shields GA, Liu CQ, Strauss H, Zhu MY, Pi DH, Goldberg T and Yang XL. 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216 DOI:10.1016/j.palaeo.2007.03.016
Hu RZ, Peng JT, Ma DS, Su WC, Shi CH, Bi XW and Tu GC. 2007. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif. Mineral Deposits, 26(6): 583-596 (in Chinese with English abstract)
Hu RZ, Mao JW, Fan WM, Hua RM, Bi XW, Zhong H, Song XY and Tao Y. 2010. Some scientific questions on the intra-continental metallogeny in the South China continent. Earth Science Frontiers, 17(2): 13-26 (in Chinese with English abstract)
Hu RZ, Fu SL and Xiao JF. 2016. Major scientific problems on low-temperature metallogenesis in South China. Acta Petrologica Sinica, 32(11): 3239-3251 (in Chinese with English abstract)
Hu RZ, Fu SL, Huang Y, Zhou MF, Fu SH, Zhao CH, Wang YJ, Bi XW and Xiao JF. 2017. The giant South China Mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137: 9-34 DOI:10.1016/j.jseaes.2016.10.016
Hu XW, Pei RF and Zhou S. 1996. Sm-Nd dating for antimony mineralization in the Xikuangshan deposit, Hunan, China. Resource Geology, 46(4): 227-231
Hua RM and Mao JW. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in East China. Mineral Deposits, 18(4): 300-308 (in Chinese with English abstract)
Jiang XY, Li H, Ding X, Wu K, Guo J, Liu JQ and Sun WD. 2018a. Formation of A-type granites in the Lower Yangtze River Belt:A perspective from apatite geochemistry. Lithos, 304-307: 125-134 DOI:10.1016/j.lithos.2018.02.005
Jiang XY, Ling MX, Wu K, Zhang ZK, Sun WD, Sui QL and Xia XP. 2018b. Insights into the origin of coexisting A1-and A2-type granites:Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China. Lithos, 318-319: 230-243 DOI:10.1016/j.lithos.2018.08.008
Jiang XY, Luo JC, Guo J, Wu K, Zhang ZK, Sun WD and Xia XP. 2018c. Geochemistry of I-and A-type granites of the Qingyang-Jiuhuashan complex, eastern China:Insights into early cretaceous multistage magmatism. Lithos, 316-317: 278-294 DOI:10.1016/j.lithos.2018.07.025
Jin XY, Li JW, Hofstra A, Marsh E, Liu JZ and Yang W. 2016. Relationship between Carlin-type gold deposits and Paleo-petroleum reservoirs in SW Guizhou, China:Evidence from gas compositions of fluid inclusions and Raman spectroscopic characteristics of bitumen. Acta Petrologica Sinica, 32(11): 3295-3311 (in Chinese with English abstract)
Jochum KP and Verma SP. 1996. Extreme enrichment of Sb, Tl and other trace elements in altered MORB. Chemical Geology, 130(3-4): 289-299 DOI:10.1016/0009-2541(96)00014-9
Jochum KP and Hofmann AW. 1997. Constraints on earth evolution from antimony in mantle-derived rocks. Chemical Geology, 139(1-4): 39-49 DOI:10.1016/S0009-2541(97)00032-6
Ketris MP and Yudovich YE. 2009. Estimations of clarkes for carbonaceous biolithes:World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135-148 DOI:10.1016/j.coal.2009.01.002
Lehmann B, Nägler TF, Holland HD, Wille M, Mao JW, Pan JY, Ma DS and Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 35(5): 403-406 DOI:10.1130/G23543A.1
Leuz AK and Johnson CA. 2005. Oxidation of Sb(Ⅲ) to Sb(Ⅴ) by O2 and H2O2 in aqueous solutions. Geochimica et Cosmochimica Acta, 69(5): 1165-1172 DOI:10.1016/j.gca.2004.08.019
Leuz AK, Mönch H and Johnson CA. 2006. Sorption of Sb(Ⅲ) and Sb(Ⅴ) to goethite:Influence on Sb (Ⅲ) oxidation and mobilization. Environmental Science and Technology, 40(23): 7277-7282 DOI:10.1021/es061284b
Li CY, Zhang H, Wang FY, Liu JQ, Sun YL, Hao XL, Li YL and Sun WD. 2012. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos, 150: 101-110 DOI:10.1016/j.lithos.2012.04.001
Li CY, Hao XL, Liu JQ, Ling MX, Ding X, Zhang H and Sun WD. 2017. The formation of Luoboling porphyry Cu-Mo deposit:Constraints from zircon and apatite. Lithos, 272-273: 291-300 DOI:10.1016/j.lithos.2016.12.003
Li SX, Zheng FY, Hong HS, Deng NS and Zhou XY. 2006. Photo-oxidation of Sb(Ⅲ) in the seawater by marine phytoplankton-transition metals-light system. Chemosphere, 65(8): 1432-1439 DOI:10.1016/j.chemosphere.2006.04.017
Li W, Xie GQ, Zhang ZY and Zhang XK. 2016. Constraint on the genesis of Gutaishan gold deposit in central Hunan Province:Evidence from fluid inclusion and C-H-O isotopes. Acta Petrologica Sinica, 32(11): 3489-3506 (in Chinese with English abstract)
Li YH and Schoonmaker JE. 2003. 7.01-chemical composition and mineralogy of marine sediments. Treatise on Geochemistry, 7: 1-35
Liang T, Wang DH, Li HQ, Huang HM, Wang DM, Yu P and Cai MH. 2011. REE geochemistry and Sm-Nd isotope age of garnet from the Dachang, Guangxi. Journal of Northwest University (Natural Science Edition), 41(4): 676-681 (in Chinese with English abstract)
Liu H, Zartman RE, Ireland TR and Sun WD. 2019. Global atmospheric oxygen variations recorded by Th/U systematics of igneous rocks. Proceedings of the National Academy of Sciences of the United States of America, 116(38): 18854-18859 DOI:10.1073/pnas.1902833116
Liu H, Liao RQ, Zhang LP, Li CY and Sun WD. 2020. Plate subduction, oxygen fugacity, and mineralization. Journal of Oceanology and Limnology, 38(1): 64-74 DOI:10.1007/s00343-019-8339-y
Liu JM, Ye J, He BB, Zhang RB and Li YB. 2002. Sedex-type antimony deposits in giant antimony metallogenic belt, South China. Mineral Deposits, 21(Suppl.1): 169-172 (in Chinese)
Ma DS. 1999. Regional pattern of element composition and fluid character in medium-Low Temperature Metallogenic province of South China. Mineral Deposits, 18(4): 347-358 (in Chinese with English abstract)
Mao JW, Hua RM and Li XB. 1999. A preliminary study of large-scale metallogenesis and large clusters of mineral deposits. Mineral Deposits, 18(4): 391-299 (in Chinese with English abstract)
Mao JW, Lehmann B, Du AD, Zhang GD, Ma DS, Wang YT, Zeng MG and Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology, 97(5): 1051-1061 DOI:10.2113/gsecongeo.97.5.1051
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Xie GQ, Cheng YB and Chen YC. 2009. Mineral deposit models of Mesozoic ore deposits in South China. Geology Review, 55(3): 347-354 (in Chinese with English abstract)
McQuarrie N, Long SP, Tobgay T, Nesbit JN, Gehrels G and Ducea MN. 2013. Documenting basin scale, geometry and provenance through detrital geochemical data:Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Research, 23(4): 1491-1510 DOI:10.1016/j.gr.2012.09.002
Myrow PM, Hughes NC, Goodge JW, Fanning CM, Williams IS, Peng SC, Bhargava ON, Parcha SK and Pogue KR. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. GSA Bulletin, 122(9-10): 1660-1670 DOI:10.1130/B30123.1
Narbonne GM. 1998. The Ediacara biota:A terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8(2): 1-6
Narbonne GM. 2005. The Ediacara biota:Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33: 421-442 DOI:10.1146/annurev.earth.33.092203.122519
Peng B and Chen GH. 2000. Phenomena and formational mechanism for metallogenetic explosion of Sb-Au ore deposits in Hunan Province, China. Geotectonica et Metallogenia, 24(4): 357-364 (in Chinese with English abstract)
Peng JT, Hu RZ and Burnard PG. 2003. Samarium-Neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China):The potential of calcite as a geochronometer. Chemical Geology, 200(1-2): 129-136 DOI:10.1016/S0009-2541(03)00187-6
Peng JT, Hu RZ and Jiang GH. 2003a. Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province:Constraints on the mineralizing age and ore-forming materials' sources. Acta Petrologica Sinica, 19(4): 785-791 (in Chinese with English abstract)
Peng JT, Hu RZ, Zhao JH, Fu YZ and Lin YX. 2003b. Scheelite Sm-Nd dating and quartz Ar-Ar dating for Woxi Au-Sb-W deposit, western Hunan. Chinese Science Bulletin, 48(23): 2640-2646 DOI:10.1360/03wd0001
Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R and Brewer TS. 2006. Sources of metals and fluids in orogenic gold deposits:Insights from the Otago and Alpine Schists, New Zealand. Economic Geology, 101(8): 1525-1546 DOI:10.2113/gsecongeo.101.8.1525
Pokrovski GS, Borisova AY, Roux J, Hazemann JL, Petdang A, Tella M and Testemale D. 2006. Antimony speciation in saline hydrothermal fluids:A combined X-ray absorption fine structure spectroscopy and solubility study. Geochimica et Cosmochimica Acta, 70(16): 4196-4214 DOI:10.1016/j.gca.2006.06.1549
Rudnick RL and Gao S. 2014. Composition of the continental crust. In: Holland HD and Turekian KK (ed.). Treatise on Geochemistry. 2nd Edition. Amsterdam: Elsevier, 1-51
Seilacher A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14(1): 86-93 DOI:10.2307/3515363
Shi MK, Fu BQ, Jin XX and Zhou XC. 1993. Antimony Metallogeny in Central Part of Hunan Province. Changsha:Hunan Press of Science and Technology: 1-110 (in Chinese)
Steiner M and Reitner J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29(12): 1119-1122 DOI:10.1130/0091-7613(2001)029<1119:EOOSIE>2.0.CO;2
Sun SJ, Zhang LP, Zhang RQ, Ding X, Zhu HL, Zhang ZF and Sun WD. 2018. Mid-Late Cretaceous igneous activity in South China:The Qianjia example, Hainan Island. International Geology Review, 60(11-14): 1665-1683 DOI:10.1080/00206814.2017.1402379
Sun WD, Ding X, Hu YH and Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542 DOI:10.1016/j.epsl.2007.08.021
Sun WD, Yang XY, Fan WM and Wu FY. 2012. Mesozoic large scale magmatism and mineralization in South China:Preface. Lithos, 150: 1-5 DOI:10.1016/j.lithos.2012.06.028
Sun WD, Li S, Yang XY, Ling MX, Ding X, Duan LA, Zhan MZ, Zhang H and Fan WM. 2013. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. International Geology Review, 55(3): 311-321 DOI:10.1080/00206814.2012.698920
Sun WD, Li CY, Ling MX, Ding X, Yang XY, Liang HY, Zhang H and Fan WM. 2015. The geochemical behavior of molybdnum and mineralization. Acta Petrologica Sinica, 31(7): 1807-1817 (in Chinese with English abstract)
Sun WD. 2016. Initiation and evolution of the South China Sea:An overview. Acta Geochimica, 35(3): 215-225 DOI:10.1007/s11631-016-0110-x
Sun WD, Lin QT, Zhang LP, Liao RQ and Li CY. 2018. The formation of the South China Sea resulted from the closure of the Neo-Tethys:A perspective from regional geology. Acta Petrologica Sinica, 34(12): 3467-3478 (in Chinese with English abstract)
Tu GC. 1984. Geochemistry of Strata-bound Ore Deposits in China. Beijing: Science Press (in Chinese)
Vink BW. 1996. Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chemical Geology, 130(1-2): 21-30 DOI:10.1016/0009-2541(95)00183-2
Wallace MW, Hood AV, Shuster A, Greig A, Planavsky NJ and Reed CP. 2017. Oxygenation history of the Neoproterozoic to Early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466: 12-19 DOI:10.1016/j.epsl.2017.02.046
Wang DH, Qin Y, Wang CH, Chen YC and Gao L. 2012. Mineralization pedigree for epithermal Hg, Sb, Au deposits in Guizhou Province:Taking the Dachang Sb deposit, the Zimudang Au deposit and the Luanyantang Hg deposit for examples. Geotectonica et Metallogenia, 36(3): 330-336 (in Chinese with English abstract)
Wang FY, Ling MX, Ding X, Hu YH, Zhou JB, Yang XY, Liang HY, Fan WM and Sun WD. 2011. Mesozoic large magmatic events and mineralization in SE China:Oblique subduction of the Pacific plate. International Geology Review, 53(5-6): 704-726 DOI:10.1080/00206814.2010.503736
Wang YL, Xu J, Zhang CQ, Wang CH, Chen ZH and Huang F. 2014. Summary of metallogenic regularities of antimony deposits in China. Acta Geologica Sinica, 88(12): 2208-2215 (in Chinese with English abstract)
Watson A, Lovelock JE and Margulis L. 1978. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems, 10(4): 293-298 DOI:10.1016/0303-2647(78)90012-6
Wei WZ. 1993. Geological characteristics of antimony deposit in the Maxiong. Mineral Geology of Southwestern China, (2): 8-16, 73 (in Chinese)
Wu JD. 1993. Antimony vein deposits of China. Ore Geology Reviews, 8(3-4): 213-232 DOI:10.1016/0169-1368(93)90017-S
Wu K, Ling MX, Sun WD, Guo J and Zhang CC. 2017. Major transition of continental basalts in the Early Cretaceous:Implications for the destruction of the North China Craton. Chemical Geology, 479: 93-106
Xiao XG. 2014. Geochronology, ore geochemistry and genesis of the Banpo antimony deposit, Guizhou Province, China. Ph. D. Dissertation. Kunming: Kunming University of Science and Technology (in Chinese with English summary)
Xu LG, Lehmann B, Mao JW, Nägler TF, Neubert N, Böttcher ME and Escher P. 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China:Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319: 45-59 DOI:10.1016/j.chemgeo.2012.05.016
Xu LG, Lehmann B and Mao JW. 2013. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China:Evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore Geology Reviews, 52: 66-84 DOI:10.1016/j.oregeorev.2012.06.003
Yang JH, Jiang SY, Ling HF and Chen YQ. 2005. Re-Os isotope tracing and dating of black shales and oceanic anoxic events. Earth Science Frontiers, 12(2): 143-150 (in Chinese with English abstract)
Yang SQ. 1986. On inquiry about the genesis of Hunan stibnite ore and the direction of ore search. Hunan Geology, 5(4): 12-25 (in Chinese with English abstract)
Ye ZJ. 1996. Studies of fluid inclusions and stable isotopes of the Dachang antimony deposit, Guizhou. Geology-Geochemistry, (5): 18-20 (in Chinese)
Ye ZJ, Shi JX and Hu RZ. 1997. Organic matter and its role in mineralization in Dachang antimony deposit, Guizhou, China. Acta Mineralogica Sinica, 17(3): 310-315 (in Chinese with English abstract)
Yu BS, Dong HL, Widom E, Che JQ and Lin CS. 2009. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China:Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 34(3): 418-436 DOI:10.1016/j.jseaes.2008.07.003
Zack T, Kronz A, Foley SF and Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1-2): 97-122 DOI:10.1016/S0009-2541(01)00357-6
Zhang CC, Sun WD, Wang JT, Zhang LP, Sun SJ and Wu K. 2017a. Oxygen fugacity and porphyry mineralization:A zircon perspective of Dexing porphyry Cu deposit, China. Geochimica et Cosmochimica Acta, 206: 343-363 DOI:10.1016/j.gca.2017.03.013
Zhang GL, Yao JY and Gu XP. 1998. Time and spatial distribution regularities and deposit types of antimony in China. Mineral Resources and Geology, 12(5): 306-312 (in Chinese with English abstract)
Zhang LP, Hu YB, Liang JL, Ireland T, Chen YL, Zhang RQ, Sun SJ and Sun WD. 2017b. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications. Acta Geochimica, 36(2): 132-150 DOI:10.1007/s11631-017-0146-6
Zhang LP, Zhang RQ, Hu YB, Liang JL, Ouyang ZX, He JJ, Chen YX, Guo J and Sun WD. 2017c. The formation of the Late Cretaceous Xishan Sn-W deposit, South China:Geochronological and geochemical perspectives. Lithos, 290-291: 253-268 DOI:10.1016/j.lithos.2017.08.013
Zhang LP, Zhang RQ, Wu K, Chen YX, Li CY, Hu YB, He JJ, Liang JL and Sun WD. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China:Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 96: 115-129 DOI:10.1016/j.oregeorev.2018.04.012
Zhang RQ, Lu JJ, Lehmann B, Li CY, Li GL, Zhang LP, Guo J and Sun WD. 2017d. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284 DOI:10.1016/j.oregeorev.2016.10.039
Zhang SH, Evans DAD, Li HY, Wu HC, Jiang GG, Dong J, Zhao QL, Raub TD and Yang TS. 2013. Paleomagnetism of the Late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block. Journal of Asian Earth Sciences, 72: 164-177 DOI:10.1016/j.jseaes.2012.11.022
Zhang Y, Yan DP, Zhao F, Li XT, Qiu L and Zhang YX. 2016. Stratigraphic sequences, abundance anomalies and occurrences of As, Sb, Au, Ag in the Lower Cambrian Niutitang Formation in Kaiyang phosphate mine area. Acta Petrologica Sinica, 32(10): 3252-3268 (in Chinese with English abstract)
Zhang ZY, Xie GQ, Li HC and Li W. 2018. Preliminary study on muscovite 40Ar-39Ar geochronology and its significance of the Longshan Sb-Au deposit in Hunan Province. Acta Petrologica Sinica, 34(9): 2535-2547 (in Chinese with English abstract)
Zhu JJ, Zhong H, Xie GQ, Zhao CH, Xu LL and Lu G. 2016. Origin and geological implication of the inherited zircon from felsic dykes, Youjiang basin, China. Acta Petrologica Sinica, 32(11): 3269-3280 (in Chinese with English abstract)
Zhu LM and Hu RZ. 2000. Au-Sb association and fractionation in micro-disseminatedgold deposits, southwestern Guizhou:Geochemistry and thermodynamics. Science in China (Series D), 43(2): 208-216
Zotov AV, Shikina ND and Akinfiev NN. 2003. Thermodynamic properties of the Sb(Ⅲ) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions. Geochimica et Cosmochimica Acta, 67(10): 1821-1836 DOI:10.1016/S0016-7037(02)01281-4
蔡明海, 梁婷, 韦可利, 黄惠明, 刘国庆. 2006. 大厂锡多金属矿田铜坑-长坡92号矿体Rb-Sr测年及其地质意义. 华南地质与矿产, (2): 31-36. DOI:10.3969/j.issn.1007-3701.2006.02.006
陈娴, 苏文超, 黄勇. 2016. 贵州晴隆锑矿床成矿流体He-Ar同位素地球化学. 岩石学报, 32(11): 3312-3320.
谌锡霖, 蒋云杭, 李世永, 廖洪震. 1983. 湖南锡矿山锑矿成因探讨. 地质论评, 29(5): 486-492. DOI:10.3321/j.issn:0371-5736.1983.05.050
陈豫, 刘秀成, 张启厚. 1984. 贵州晴隆大厂锑矿床成因探讨. 矿床地质, 3(3): 1-12.
丁建华, 杨毅恒, 邓凡. 2013. 中国锑矿资源潜力及成矿预测. 中国地质, 40(3): 846-858. DOI:10.3969/j.issn.1000-3657.2013.03.016
付山岭, 胡瑞忠, 陈佑纬, 骆金诚. 2016. 湘中龙山大型金锑矿床成矿时代研究——黄铁矿Re-Os和锆石U-Th/He定年. 岩石学报, 32(11): 3507-3517.
甘成势, 王岳军, 张玉芝, 刘汇川, 张立敏. 2016. 右江盆地晚侏罗世钾玄质高镁安山岩的厘定及其构造意义. 岩石学报, 32(11): 3281-3294.
葛肖虹, 刘俊来, 任收麦, 袁四化. 2014. 中国东部中-新生代大陆构造的形成与演化. 中国地质, 41(1): 19-38. DOI:10.3969/j.issn.1000-3657.2014.01.002
胡瑞忠, 彭建堂, 马东升, 苏文超, 施春华, 毕献武, 涂光炽. 2007. 扬子地块西南缘大面积低温成矿时代. 矿床地质, 26(6): 583-596. DOI:10.3969/j.issn.0258-7106.2007.06.001
胡瑞忠, 毛景文, 范蔚茗, 华仁民, 毕献武, 钟宏, 宋谢炎, 陶琰. 2010. 华南陆块陆内成矿作用的一些科学问题. 地学前缘, 17(2): 13-26.
胡瑞忠, 付山岭, 肖加飞. 2016. 华南大规模低温成矿的主要科学问题. 岩石学报, 32(11): 3239-3251.
华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-308. DOI:10.3969/j.issn.0258-7106.1999.04.002
靳晓野, 李建威, Hofstra A, Marsh E, 刘建中, 杨梧. 2016. 黔西南卡林型金矿床与区域古油藏的关系:来自流体包裹体气相组成和沥青拉曼光谱特征的证据. 岩石学报, 32(11): 3295-3311.
李伟, 谢桂青, 张志远, 张兴康. 2016. 流体包裹体和C-H-O同位素对湘中古台山金矿床成因制约. 岩石学报, 32(11): 3489-3506.
梁婷, 王登红, 李华芹, 黄惠明, 王东明, 于萍, 蔡明海. 2011. 广西大厂石榴石REE含量及Sm-Nd同位素定年. 西北大学学报(自然科学版), 41(4): 676-681.
刘建明, 叶杰, 何斌斌, 张瑞斌, 李永兵. 2002. 华南巨型锑矿带中的Sedex型锑矿床. 矿床地质, 21(增1): 169-172.
马东升. 1999. 华南中、低温成矿带元素组合和流体性质的区域分布规律——兼论华南燕山期热液矿床的巨型分带现象和大规模成矿作用. 矿床地质, 18(4): 347-358. DOI:10.3969/j.issn.0258-7106.1999.04.008
毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区. 矿床地质, 18(4): 291-299. DOI:10.3969/j.issn.0258-7106.1999.04.001
毛景文, 谢桂青, 郭春丽, 袁顺达, 程彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. DOI:10.3969/j.issn.1006-7493.2008.04.005
毛景文, 谢桂青, 程彦博, 陈毓川. 2009. 华南地区中生代主要金属矿床模型. 地质论评, 55(3): 347-354. DOI:10.3321/j.issn:0371-5736.2009.03.005
彭渤, 陈广浩. 2000. 湖南锑金矿成矿大爆发:现象与机制. 大地构造与成矿学, 24(4): 357-364. DOI:10.3969/j.issn.1001-1552.2000.04.009
彭建堂, 胡瑞忠, 蒋国豪. 2003a. 萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约. 岩石学报, 19(4): 785-791.
彭建堂, 胡瑞忠, 赵军红, 符亚洲, 林源贤. 2003b. 湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年. 科学通报, 48(18): 1976-1981.
史明魁, 傅必勤, 靳西祥, 周雪昌. 1993. 湘中锑矿. 长沙: 湖南科技出版社, 1-110.
孙卫东, 李聪颖, 凌明星, 丁兴, 杨晓勇, 梁华英, 张红, 范蔚茗. 2015. 钼的地球化学性质与成矿. 岩石学报, 31(7): 1807-1817.
孙卫东, 林秋婷, 张丽鹏, 廖仁强, 李聪颖. 2018. 跳出南海看南海——新特提斯洋闭合与南海的形成演化. 岩石学报, 34(12): 3467-3478.
涂光炽. 1984. 中国层控矿床地球化学. 第一卷.北京: 科学出版社.
王登红, 秦燕, 王成辉, 陈毓川, 高兰. 2012. 贵州低温热液型汞、锑、金矿床成矿谱系——晴隆大厂、兴仁紫木凼和铜仁乱岩塘为例. 大地构造与成矿学, 36(3): 330-336. DOI:10.3969/j.issn.1001-1552.2012.03.004
王永磊, 徐珏, 张长青, 王成辉, 陈郑辉, 黄凡. 2014. 中国锑矿成矿规律概要. 地质学报, 88(12): 2208-2215.
韦文灼. 1993. 马雄锑矿床地质特征. 西南矿产地质, (2): 8-16, 73.
肖宪国. 2014.贵州半坡锑矿床年代学、地球化学及成因.博士学位论文.昆明: 昆明理工大学 http://cdmd.cnki.com.cn/Article/CDMD-10674-1015539820.htm
杨競红, 蒋少涌, 凌洪飞, 陈永权. 2005. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究. 地学前缘, 12(2): 143-150. DOI:10.3321/j.issn:1005-2321.2005.02.016
杨舜全. 1986. 湖南省锑矿成因及找矿方向的探讨. 湖南地质, 5(4): 12-25.
叶造军. 1996. 贵州大厂锑矿流体包裹体与稳定同位素. 地质地球化学, (5): 18-20.
叶造军, 施继锡, 胡瑞忠. 1997. 贵州大厂锑矿有机质与有机成矿作用. 矿物学报, 17(3): 310-315. DOI:10.3321/j.issn:1000-4734.1997.03.012
张国林, 姚金炎, 谷相平. 1998. 中国锑矿床类型及时空分布规律. 矿产与地质, 12(5): 306-312.
张岳, 颜丹平, 赵非, 李旭拓, 邱亮, 张翼西. 2016. 贵州开阳磷矿地区下寒武统牛蹄塘组地层层序及其As、Sb、Au、Ag丰度异常与赋存状态研究. 岩石学报, 32(11): 3252-3268.
张志远, 谢桂青, 李惠纯, 李伟. 2018. 湖南龙山锑金矿床白云母40Ar-39Ar年代学及其意义初探. 岩石学报, 34(9): 2535-2547.
朱经经, 钟宏, 谢桂青, 赵成海, 胥磊落, 陆刚. 2016. 右江盆地酸性脉岩继承锆石成因及地质意义. 岩石学报, 32(11): 3269-3280.
朱赖民, 胡瑞忠. 1999. 黔西南微细浸染型金矿床中金和锑共生分异现象及其热力学分析. 中国科学(D辑), 29(6): 481-488.